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Abstract

One solution to address the steadily growing complexity of embedded computer systems is the modeling
at higher levels of abstraction using System-Level Description Languages (SLDL) such as SpecC or SystemC.
However, writing such executable system models is error-prone and extremely time-consuming. Little has been
done to support system designers in the tedious manual coding and re-coding tasks necessary in embedded system
specification. With the Recoding Integrated Development Environment (RIDE), we aim to automate the process
of describing embedded systems by use of advanced computer-aided design (CAD) techniques. Proper analysis
and automation of the tasks involved in system modeling willallow to shorten the design time significantly. Also,
quality improvements in the end design are expected if automation relieves the system designer from complex
code analysis and tedious coding tasks, allowing uninterrupted focus on the critical tasks of system modeling and
design space exploration. RIDE follows an advanced modeling technique calleddesigner-controlled re-coding
which largely automates the process of the creation of the system model. Using a combination of automatic
and interactive transformations simultaneously on the source code and a graphical model representation, the
proposed re-coding technique efficiently derives an executable parallel system model directly from available
sequential reference code. Using a designer-controlled approach, the system designer utilizes his application
knowledge and design experience, whereas the re-coder, an intelligent union of editor, compiler, and powerful
transformation and analysis tools, realizes the complex analysis and model transformation tasks.
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Abstract

One solution to address the steadily growing complexity of embedded computer systems is the modeling at higher
levels of abstraction using System-Level Description Languages (SLDL) such as SpecC or SystemC. However,
writing such executable system models is error-prone and extremely time-consuming. Little has been done to
support system designers in the tedious manual coding and re-coding tasks necessary in embedded system spec-
ification. With the Recoding Integrated Development Environment (RIDE), we aim to automate the process of
describing embedded systems by use of advanced computer-aided design (CAD) techniques. Proper analysis and
automation of the tasks involved in system modeling will allow to shorten the design time significantly. Also,
quality improvements in the end design are expected if automation relieves thesystem designer from complex
code analysis and tedious coding tasks, allowing uninterrupted focus on thecritical tasks of system model-
ing and design space exploration. RIDE follows an advanced modeling technique calleddesigner-controlled
re-codingwhich largely automates the process of the creation of the system model. Using a combination of auto-
matic and interactive transformations simultaneously on the source code anda graphical model representation,
the proposed re-coding technique efficiently derives an executable parallel system model directly from available
sequential reference code. Using a designer-controlled approach, the system designer utilizes his application
knowledge and design experience, whereas the re-coder, an intelligent union of editor, compiler, and powerful
transformation and analysis tools, realizes the complex analysis and modeltransformation tasks.

1 Introduction

As we enter the information era, embedded computing systems have a profound impact on our everyday life
and our entire society. With applications ranging from smart home appliancesto video-enabled mobile phones,
from real-time automotive applications to communication satellites, and from portable multi-media components
to reliable medical devices, we interact and depend on embedded systems ona daily basis.

Over recent years, embedded systems have gained a tremendous amountof functionality and processing power
and, at the same time, can now be integrated into a single Multi-Processor System-on-Chip (MPSoC). The design
of such systems, however, faces great challenges due to the huge complexity of these systems. The system
complexity grows rapidly with the increasing number of components that have tocooperate properly and in
parallel. In addition, expectations grow while constraints are tightened. Last but not least, customer demand
constantly requires a shorter time-to-market and thus puts high pressure on designers to reduce the design time
for embedded systems.
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1.1 Motivation

The design roadmap [30] of the international Semiconductor Industry Association ITRS predicts a significant
productivity gap and anticipates tremendous challenges for the semiconductor industry in the near future. The
2004 update of the roadmap identifies system-level design as a major challenge to advance the design process.
System complexityis listed as the top-most challenge in system-level design. As first promising solution to tackle
the design complexity, the ITRS listshigher-level abstraction and specification. In other words, the most relevant
driver to address the system complexity challenge is to raise the abstraction level. This is also emphasized in [28].

1.2 Significance of Modeling

In system level design, the importance of abstract modeling cannot be over-emphasized. Proper abstraction and
modeling is the key to efficient and accurate estimation and successful implementation. However, in contrast to
the great significance of abstraction and modeling, most research has focused on tasksafter the design specifi-
cation phase, such as simulation and synthesis. Little has been done to actuallyaddress the modeling problem.
Difficulty is certainly one major obstacle. Also, the quality of a model is not straightforward to measure and
compare.

A model is an abstraction of reality. More specifically, an embedded system model is an abstract representation
of an actual or intended system. Only a well-designed model will accurately represent and define the properties
of the end product, while allowing efficient examination and effective implementation.

Moreover, embedded system models must be executable. Execution of the model allows to simulate the behav-
ior of the intended system and to measure properties beyond the immediate onespresent in the model description.
For example, simulation enables the prediction of properties such as performance and throughput.

The choice of the proper abstraction level is critical. Ideally, multiple well-defined abstraction levels are needed
to enable gradual system refinement and synthesis, adding more detail to the design model with every step. In
other words, a perfect model retains only the essential properties needed for the job at hand, and abstracts away
all unneeded features. Then, as the design process continues, incrementally more features are added to the model.

1.2.1 Architecture analogy

The architectural blueprints of a house can serve as a good analogy that shows the importance of efficient mod-
eling.

An architect, charged with designing a new building, typically develops a setof models of her/his intended
design in order to examine, document and exhibit the intended building features, the general floorplan, room
sizes, etc. For example, to exhibit the aesthetic qualities of the design, the architect often builds an abstract paper
model of the building that shows the three-dimensional design in small scale. For the actual building phase,
however, a different model is needed. Here, the architect draws two-dimensional schematic blueprints for each
floor which accurately show the location and dimensions of the walls, doors and windows, as well as water and
gas pipes, etc.

In this analogy, the purpose of the abstract models is clear, as is the inclusion or omission of design features.
Different models serve different purposes and therefore exhibit different properties. Moreover, the quality of the
architectural model determines the quality of the resulting building.

Another critical aspect in this analogy is the use of computer-aided design (CAD) tools when designing the
blueprints and models of a building. CAD tools with advanced 3D graphics areused to create, modify, and
analyze building models, which in turn leads to efficient blueprint development and high-quality buildings.

In contrast, most embedded designers today still specify their system modelsusing basic text editors, the
equivalent of pencil and paper for building architects!
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1.3 Related Work

Program transformations have been used for different areas, including to improve aesthetics, to parallelize appli-
cations, and to perform high level synthesis. Examples include SUIF [18], Spark [17], Artemis [26], and Sprint
[31]. Interactive program transformations of varying complexity are integrated into editors and programming
environments, including Eclipse [23], MSVC [25], D-Editor [19], Parascope [21] and SUIF Explorer [22]. How-
ever, these are insufficient in creating MPSoC models. Code refactoring[13] is a software engineering technique
used in type-safe object-oriented programming languages. In contrast, our transformations target MPSoC design
and are interactive and designer-controlled.

2 Problem Definition

In essence, the modeling and parallelization of embedded system models suffers from two main problems.
First, modeling and parellelizing a system in a System-Level Description Language (SLDL) is extremely time-
consuming and considerably delays the development process. This creates a significant negative impact on design
productivity. Second, most system-level design models today lack the qualityneeded for effective system syn-
thesis, thus produce poor end designs. In other words, a specificationmodel must be of highest quality, because
its characteristics directly determine the quality of the end product.

2.1 Coding Bottleneck

In the past, the system-level design community has focused on solving various problems of system synthesis.
Researchers have been working towards design automation at various abstraction levels with the goal to automate
steps in the design process and reduce the design time. Motivated by the need to meet the time to market and
aggressive design goals like low power, high performance, and low cost, researchers have proposed various new
methodologies based on system design automation. These technological advances have significantly reduced
the development time of embedded systems. However,design time is still a bottleneckin the development of
embedded systems.

Specification Model

Refinement-1

Intermediate Model-1

Refinement-N

Intermediate Model-N

Implementation Model

Capture/Re-Coding

Less than 1 
week

12-14 weeks

...

...

Manual

Automatic

Reference 
Model

Figure 1: Design time and extent of au-
tomation in a refinement-based design flow
[3].

One critical aspect neglected by the EDA community so far
is the design specification phase where the intended design is
captured and modeled for the model-driven design flow. Each
design methodology expects a very specific design model for the
tools to be successful. These models need to be either hand-
written from scratch or manually modified from a reference
model. While much of the research has focused on synthesis
and refinement tools, little has been done to support the designer
in forming these models.

Fig. 1 shows a generic top-down system design methodology
[14]. Following this system design flow, we have studied several
industrial-size design examples, including a MP3 audio decoder
[2] and a GSM voice codec [15]. For the MP3 design example,
Fig. 1 shows the time spent for creating the design model in com-
parison to the refinement time using automated synthesis tools.
Manually re-coding the reference implementation into a proper
specification model took 12-14 weeks, whereas the entire imple-
mentation was completed in less than a single week of time. This
and other examples confirm thatabout 90% of the system design
time is spent on coding and re-coding of the model, even in the
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presence of available reference code.
Moreover, we need to emphasize that model capturing is not a one time task. When a change in the design

model is required for a refinement step down in the design flow, it is most often necessary to modify orre-code
the input model. Such interruptions in the design flow cause costly delays.

2.2 Model Requirements

The quality of the system specification model has a direct bearing on the effectiveness of the system exploration
and synthesis tools. Thequality of the modelis determined by its analyzability, flexibility, and potential for
concurrency.

Analyzabilityof the model is essential for automatic synthesis and verification. If the modelcannot be statically
analyzed, tools are often unusable or ineffective.

Flexibility in the model is necessary for design space exploration. In system design, flexibility increases with
the separation of computation and communication in the model. Moreover, flexibilitydepends on proper model
granularity which determines on the amount of possible design partitions, i.e. mappings to processors, hardware
units, memories, and system busses.

Explicitly specifiedconcurrencyin the model is required in order to efficiently utilize the parallel target MP-
SOC architecture. Whether the target platform consists of a multi- or many-core architecture, the available
parallelism can only be exploited if it is apparent (explicitly expressed) in themodel.

In summary, the time-consuming coding and re-coding of system models is a serious bottle-neck in the system
design flow, and, at the same time, the quality of the model is most critical for successful implementation by use
of automated tools.

3 Recoding Methodology

In the following, we describe the envisionedRecoding Methodologyand show some initial results.

3.1 Computer-Aided Re-coding

Since the quality of the design model has tremendous impact on the cost and quality of the resulting system
implementation, creating and optimizing the model of the intended system is a critical task in the design process.

Our methodology is calleddesigner-controlled re-codingand utilizes acomputer-aidedapproach. This tech-
nique efficiently reduces the time of modeling through interactive automation [7,8, 3, 4, 5].

3.1.1 Re-coding approach

Creating a well-written embedded system model involves separation of communication and computation, intro-
ducing proper granularity, and exposing concurrency. In addition, itis also necessary to realize the model in a
SLDL, such as SystemC [16] or SpecC [14], as only these can capture systems containing both hardware and
software components at different levels of abstraction.

In [9] and [2], we have manually converted a C reference implementation ofa MP3 audio decoder into a
properly structured MPSoC specification in SpecC SLDL. The series of transformations started with the creation
of a testbench that separates the design under test (DUT) from the stimulusand monitor blocks used for simu-
lation. Next, we introduced structural hierarchy in the design by encapsulating major functions and enclosing
statements. Then, we localized global variables by restricting their scope, inorder to expose any hidden commu-
nication in the design. Finally, we exposed potential concurrency in the design by forming parallel and pipelined
computational blocks. Only after all these changes, we finally arrived ata suitable specification model ready for
use in our system synthesis flow.
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Omitting any time needed for learning, we measured that the entire process of converting the given reference C
code into a synthesizable SLDL description required 12-14 weeks for one full-time designer [3]. Clearly, design
automation is needed to speed up this tedious coding and re-coding process.

However, to enable automation, we need to distinguish betweendecision-making tasks, that require human in-
telligence and experience, andautomatic tasksthat can be programmed and automatically executed. For example,
higher-level tasks, such as determining task-level parallism in the design,or choosing the ”right” set of functions
for encapsulation, need to be performed by the experienced designer based on his application knowledge. On
the other hand, smaller tasks, such as adding a port to a block, routing a signal through the design hierarchy, and
re-scoping a variable, can be automated by use of proper data structures and CAD algorithms.

More specifically, tedious textual re-coding operationscan be performed automatically,if the decisions to
apply these operations are made by the designer. This way, the designer isrelieved from mundane text editing
tasks and can focus on the actual modeling decisions.

Recoding

Platform

Mapping

TLM

HW / SW / IF

Implementation

MPSoC

Validation,

Estimation

Validation,

Exploration

Validation,

Testing

Reference

Code

ConcurrenC

Figure 2: Envisioned design
flow.

Another way to look at the recoding task, is the observation that today,
regardless of their complexity, all modification operations are performed
manually by the designer using a regular text editor. However, there is a
large discrepancy between the task the designer wants to perform (i.e. en-
capsulating a function and its arguments into a behavior block with ports),
and the commands the text editor offers (i.e. adding and deleting charac-
ters, lines, or text blocks). Thus, the idea of designer-controlled recoding is
to put powerful analysis operations and source code transformations at the
disposal of the designer, such that she/he can apply modeling decisions to
the design automatically, and instantly by a ”click of a button”.

To summarize our approach,computer-aided recoding, unlike other pro-
gram transformation approaches, keeps the designer in the loop and pro-
vides complete control to create and modify the design model. By making
the modeling process interactive, we rely on the designer to concur, aug-
ment or overrule the automatic analysis results of the tools, and use the
combined intelligence of the system designer and the advanced analysis
and transformation tools for the coding, re-coding, and modeling tasks.

3.1.2 System design flow

In order to properly evaluate the proposed recoding techniques, we will
integrate them into our existing system design flow. Fig. 2 shows the overall envisioned design flow and the
position of the recoding tool.

Our design flow starts with available C-based reference code that is readily available (often times for free)
for most applications (e.g. JPEG, MPEG, MP3, H.264, etc.). This allows to jump-start the development with
real code that is accurate and usually well-tested. We then use computer-aided recoding to generate an initial
platform-agnostic design model for early system validation and estimation. Next, after platform capture and
mapping [27], we generate a transaction-level model (TLM) for design space exploration. For the final MPSoC
implementation, we can then rely on our existing hardware, software, and interface synthesis tools [12].

3.2 RIDE: Recoding Integrated Development Environment

To aid the designer in system specification and modeling, we propose an Integrated Development Environment
(IDE) for model re-coding. TheRecoding IDE(RIDE) supports the designer-controlled interactive approach to
automated coding and recoding as outlined above.
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RIDE

Text Editor Graphical Editor

Transformation 

Tools

Synthesis

Tools

Imple-

mentation

Compiler

(Code Gen.)

Compiler

(Parser)

Reference 

Code

Analysis 

Tools

synch

CCC Model Rep.
(Super Data Structure)

s y n c h s y
n c
h

GFXTXT

SIR
User Interface Frontend

System Design Backend

Simulation Estimation Optimization

Figure 3: Recoding Integrated Development Environment.

RIDE tightly integrates interactive
graphical and textual editors with the
system-level tool chain for simula-
tion, estimation, refinement, and syn-
thesis. In other words, RIDE is an in-
telligent union of editor, compiler and
powerful transformation and analysis
tools.

RIDE supports re-coding of SLDL
models at various levels of refinement
and at different stages in the design
flow. It can be used to re-code in-
termediate system design models, as
well as the initial C reference imple-
mentation in order to produce a par-
allel and optimized system model.

The conceptual structure of the Re-
coding IDE is shown in Fig. 3. On the
highest level, RIDE consists of a user
interface frontend, a complex data structure for model representation, and a backend of advanced system design
tools.

3.2.1 RIDE frontend

The RIDE frontend offers two main editors to the system designer, a graphical and a textual one. The textual
editor maintains the SLDL source text of the design model and allows the usualnavigation, modification, and
editing tasks of modern text editors. Advanced features include syntax highlighting, auto-completion, semantic
search, ctags, text folding, bookmarks, and undo/redo. Syntax and semantic support is provided for C-based
languages, i.e. C and C++ programming languages, and SystemC [16] and SpecC [11] SLDLs.

The graphical editor presents a hierarchical diagram of the design model that can be used for visualization,
navigation, and modification operations. Supported visualization operationsinclude zoom/unzoon, selection of
hierarchy depth, display of connectivity (ports, busses, channels),and highlighting of objects. On the other
hand, graphical editing is supported by rename, add, move, delete, and cut/copy/paste operations for blocks
(modules/behaviors), channels, interfaces, variables, ports, and connections.

Both editors are linked and constantly synchronized. Any change appliedto the design in one editor instantly
is reflected in the other editor as well. In other words, both editors maintain the same design model, and just
display the model in a different perspective (textual view, graphical view). Note that the synchronization of the
editors is instantaneous, on a key stroke or click of a button, and is accomplished by use of an advanced super
data structure (see Section 3.2.2 below).

The RIDE frontend also controls the backend design tools using a convenient graphical user interface (GUI)
with the usual tool bars, menu structures, and dialog windows. Moreover, the RIDE backend tools can be called
directly from the design objects shown in the editors. Thus, when the designer points to and highlights any object,
such as a channel icon in the graphical editor or a channel name in the textual interface, a context menu pops
up with applicable and available operations. For example, when the designerpoints to a channel instance, the
list of possible operations contains renaming, copying, deleting, changingthe scope, and finding dependents and
connected ports.

To facilitate an efficient implementation, we can use the Eclipse [23] IDE as base framework. Some early
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experiments confirm that most (if not all) features listed above can be implemented as regular plug-in modules.

3.2.2 RIDE super data structure

At the core of the Recoding IDE, a complex data structure maintains a comprehensive, coherent, and consis-
tent (CCC) model representation. The CCC model representation is a super data structure that combines three
dedicated data structures, a textual model representation (TXT), a graphical model representation (GFX), and a
syntax-independent representation (SIR).

The textual model representation (TXT), also known as the document object, represents the design model
as program text specified in a system-level description language (SLDL). Ideally, RIDE would support both
SystemC [16] and SpecC [11] SLDLs. In other words, the TXT representation is implemented by use of a
regular text data structure used in a text editor, essentially consisting of lines of text, and augmented by support
for ctags, syntax-highlighting, and other advanced features (which theEclipse framework supports).

The graphical model representation (GFX) is a complex object-oriented data structure that describes the graph-
ical hierarchy chart of the design in form of its coordinates, sizes, colors, and so on. Here, one can use the existing
facilities in the Eclipse framework as basis, possibly augmented with special graphics by use of the commercial
Qt GUI libary [1] (by Trolltech [20]).

The syntax-independent representation (SIR) [32, 10] is the centraldata structure for compilation, analysis, and
transformation tools. It contains an abstract syntax tree (AST) of the design model that corresponds to the textual
representation (TXT). In addition, the SIR contains full-fledged type andsymbol tables, necessary to support
compiler tasks such as parsing, semantic checking, static analysis, optimization, and code generation. Note
that this data structure also maintains source code comments and position information so that a code generator
can re-generate the source code for use in the TXT representation. Most notably, the SIR data structure is the
basis for analysis tools toward early system estimation, for transformation tools toward re-coding, modeling and
optimization, and for synthesis tools toward the final system implementation.

The three basis data structures, TXT, GFX and SIR, are combined into a RIDE super data structure that keeps
the design model accurately reflected and updated in each representation. Sychronization functions (synchin
Fig. 3) are used for this purpose. Any change to one of the three data structures is immediately synchronized
with the others, such that after each modification or transformation, all data structures consistently reflect the
resulting model.

We would like to emphasize that this instant synchronization of the different data structures becomes a key
part of RIDE. While it is ambitious to maintain a comprehensive, coherent, andconsistent super data structure, it
is certainly feasible, even if synchronization has to occur frequently, i.e.after every key stroke in the text editor.
As we see below in Section 4, an early prototype implementation of two synchronized data structures (TXT and
SIR) showed sufficient responsiveness, even though an ad-hoc file interface was used for the synchronization
operations.

3.2.3 RIDE backend

The RIDE backend is envisioned as a powerful set of analysis and transformation tools that the designer can
invoke directly from the two editors. The results of these operations are directly reflected in the editors as well.
In other words, the analysis and transformation tools build the core of the re-coding environment.

To provide an overview about envisioned analysis and transformation tasks, we can categorize the re-coding
operations into three classes.

Analysis functions provide static analysis, such as dependency information, on the objects in the model without
introducing any changes to it. As such, analysis can, for example, provide information to the designer about
potential for parallel execution of blocks and/or functions. Conceptually, analysis function include

7



• revealing dependencies,

• check for potential concurrency, and

• general analysis for program comprehension.

Example operations in this category include determining the usage of variables, introducing concurrency,
and generating dependency graphs.

Structural transformations change the structure of the design model by introducing and/or removing compu-
tational blocks, channels, and functions. In this category, we further distinguish

• granularity transformations,

• composition transformations,

• re-organizing transformations, and

• connectivity transformations.

Introducing new blocks (modules/behaviors), composing hierarchical blocks, splitting and/or merging
blocks (to adjust the design granularity) are some examples of structural transformations.

Functional transformations modify computational blocks, functions, and variables. This category canbe fur-
ther subdivided into

• transformations to contain communication,

• transformation to break dependencies, and

• pruning transformations.

Localizing global variables, breaking composite data types into smaller data types, and trimming the width
of wider data types into optimized bit vectors, are some examples of transformations in this category.

8



4 Preliminary Results

To demonstrate the feasibility of the proposed RIDE approach, and to estimatethe productivity gains that can be
expected, we have implemented a simple textual recoder [3] and obtained promising preliminary results that we
will review in the following sections.

4.1 Source Recoder

Document
Object

Parser

Text  
Editor

Transformation 
Tools

Preproc

GUI

Code Generator

AST

Figure 4: Early Source Re-Coder Structure.

In an early implementation, we have implemented a source
re-coder [3] based on an existing QT [20] and Scintilla [29]
based textual editor. In this extended text editor, the de-
signer can call a small set of analysis and transformation
operations by clicking on added buttons in the Graphical
User Interface (GUI) provided by the editor.

Fig. 4 shows the software architecture of our preliminary
source re-coder, consisting of 5 components, a text editor,
a data structure (abstract syntax tree, AST), a preprocessor
and parser, a code generator, and a set of initial transforma-
tion tools.

Compared to the envisioned Recod-
ing IDE in Fig. 3, this early imple-
mentation has no support for graphical editing (no GFX data structure), and lacks
many other aspects. Most notably, the synchronization functions betweenthe two
data structures are implemented in a simple ad-hoc fashion. After changes in the text editor, the AST data
structure is recreated by writing all source code into a file, and calling the C preprocessor and the SLDL parser
on that file. In other words, the AST is built from scratch every time the text changes. Vice versa, the entire
text file is replaced with a new file generated by a code generator when the AST changes due to a transformation
operation.

Block -2Block -1

R1 R2RW2RW1

Block -2Block -1

R1 R2

RW2RW1

Block -2Block -1
R1 R2

RW2RW1

Data Flow/ Explicit 
connectuivity

Implicit 
Dependency

Localize 
R1, R2

Make explicit data 
connections RW1, 

RW2

Block -2
Block -1

R1
R2

C1 C2

Establish 
Synchronization

RW1, RW2

Read port Write port

Figure 5: Recoding to create explicit communication.

Clearly, this ad-hoc implementation
needs major improvement. Nevertheless,
it allows us to gauge the feasibility of
RIDE and even estimate the benefits and
expected productivity gains.

4.2 Communication Recoding

Communication exploration is critical in
MPSoC design. Given a design model with
explicit communication, design space ex-
ploration can be conducted automatically.
However, the communication in the design
needs to be clearly exposed in the model
by using and connecting standard com-
munication channels. This, unfortunately,
requires significant time in re-writing the
model.

In [8], we have introduced our re-coding
approach that is based on decision making
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by the designer (”designer-in-the-loop”) and automation of the model analysis and transformation tasks. In partic-
ular, we have developed 3 code transformations to expose communication, namely (1) localizing global variables,
(2) establishing explicit connectivity, and (3) introducing synchronization. Fig. 5 shows these transformations in
an overview.

Properties JPEG MP3 GSM

Global Variables localized 8 70 83
New Ports added 2 146 163

New Channels added 1 6 2
Re-coding time (secs) 27 246 260

Estimated Manual time (mins) 53 497 585
Productivity gain 117x 121x 135x

Table 1: Productivity gains for communication recod-
ing [8].

We have implemented these communication recod-
ing transformations in our preliminary source recoder,
and have estimated the resulting productivity gain in
comparison with manual editing. Table 1 shows the
results for three real-life examples. For each example,
we have used our re-coder to expose the communica-
tion in the models, which involves the transformations
(1) through (3). Table 1 shows the times measured us-
ing the re-coder compared to estimated manual times.
It also shows the resulting productivity gains, more
than 100x for each example.

4.3 Hierarchy Recoding

decodeMP3

do_layer3

III_antialiasIII_dequant III_hybrid

III_i_stereoIII_synth_1to1

B_decodeMP3
B_do_layer3

B_III_dequant

B_III_antialias

(a) Partial function hierarchy in MP3 code

B_III_hybrid

B_III_i_stereo

B_synth_1to1

(b) Structural hierarchy in the MP3 code

B_dct64

dct64

Figure 6: Recoding to create structural hierarchy.

Structural hierarchy is a critical property needed in
system design models. With a well-structured model,
design exploration can evaluate various partitions by
grouping and re-grouping different blocks and map-
ping them onto different components in the target ar-
chitecture. The lack of structural hierarchy and the
presence of ambiguities prohibits the direct use of
flat C code. Design exploration and system synthesis
tools require models with clean structural hierarchy,
where all the computation blocks are properly encap-
sulated and have a statically analyzable interface. The
quality of this input SoC model directly determines
the effectiveness of the system design tools. Thus,
creating a suitable structural hierarchy of behavioral
blocks is critical. Moreover, it is also very time con-
suming when performed manually.

In [6], we have developed a set of automatic source code transformations that allows to create models with
structural hierarchy from C reference code. The transformations use the given functional hierarchy to create a
behavior tree with static interfaces. For the example of an MP3 decoder application, the creation of structural
hierarchy is illustrated in Fig. 6.

Properties JPEG Float-point MP3 Fix-point MP3 GSM

Lines of C code 1K 3K 10K 10K
C Functions 32 30 67 163

Lines of SpecC code 1.6K 7K 13K 7K
Behaviors created 28 43 54 70
Re-coding time ≈ 30 mins ≈ 35 mins ≈ 40 mins ≈ 50 mins
Manual time 1.5 week 3 weeks 2 weeks 4 weeks

Productivity factor 120x 205x 120x 192x

Table 2: Productivity gains for hierarchy recoding [6].

Following our recoding methodology,
the designer selectively chooses significant
functions and statement blocks to be en-
capsulated and interactively invokes the
automated code transformations.

Using our source recoder, we have ap-
plied these transformations to a set of in-
dustrial design examples, as listed in Ta-
ble 2. Each of these examples spanned a few thousand lines of code. Thetable provides the number of functions

10



in the input C code and the number of behaviors that were introduced to create a well-structured MPSoC model.
The behaviors were created by encapsulating functions and statements, chosen based on our application knowl-
edge. Using the automatic transformations in the source recoder, the models were created in a matter of minutes.

Earlier, very similar transformations were conducted manually on these examples by different designers. This
manual recoding took weeks of development time, as shown in Table 2. Usingour source recoder, the well-
structured SoC models were created in the order of minutes instead of weeks, resulting in large productivity
gains.

4.4 Parallel and Flexible Recoding

Concurrency and flexibility are two critical features of a MPSoC model. Concurrency in the model is necessary to
exploit the parallel resources available on the multi- or many-core platform. Flexibility is necessary for freedom
in design space exploration.

However, two main factors limit today’s compilers in generating a parallel and flexible MPSoC specification
automatically from a sequential monolithic application: first, the heterogeneousnature of MPSoCs with cus-
tomized processors and non-regular memory hierarchy, and second, the complexity of the unstructured input
application. Completely automatic compilers, though successful in extracting instruction level parallelism on
shared-memory architectures, cannot expose task level parallelism which requires application-specific knowl-
edge.

In contrast, we propose to create parallel and flexible models based on iterative designer-controlled transforma-
tions, instead of a monolithic completely automatic compilation. The discrete transformation steps are combined
by the designer to create the desired specification model.

In [7, 4], we have proposed a designer-controlled approach to create a parallel and flexible MPSoC model. In
particular, we have developed a set of six code and data partitioning transformations that can split loops and com-
posite variables to expose concurrency and create flexibility. Our transformations include loop splitting, vector
and composite data structure partitioning, variable localization, and synchronization of shared data. These trans-
formations implement re-coding tasks that are intuitive even to a programmer withlimited compiler knowledge.
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2
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(a) Sequential MP3 code structure
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1
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1
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(b) Parallel MP3 code structure

Synthesis 
Filter loop 
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Partition-2
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Figure 7: Recoding to create a flexible and parallel MP3 decoder.

Fig. 7 illustrates the data parallelism ex-
posed in a MP3 decoder using our source
re-coder. With the model created in Fig. 7,
we could explore two distributed paral-
lel design alternatives and two shared-
memory based parallel architectures.

Table 3 show the results for the different
fix-point MP3 implementations. For each
design, the tables list the main compo-
nents and their clock frequencies, as well
as the performance achieved in decoding
one frame of MP3 data. Note that a frame
must be decoded in less than 26.12 ms.
This timing constraint is only met by 5 out
of the 10 possible architectures, as shown
in the last row of the Table 3. Note that
the required performance was met only due
to the explicit parallelism exposed by our
transformations. This clearly shows that
the parallelism exposed through our trans-
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formations is indeed effective.

4.5 Pointer Recoding
Models Arch-1 Arch-2 Arch-3 Arch-4 Arch-5

ARM7TDMI ARM7TDMI ARM7TDMI ARM7TDMI ARM7TDMI
(50MHz) (50MHz) (50MHz) (50MHz) (50MHz)

1 HW 1 HW 2 HW 2 HW
(100MHz) (100MHz) (100MHz) (100MHz)

Shared Mem. Shared Mem.

TLM 48.62 ms 32.12 ms 32.12 ms 17.27 ms 17.27 ms
BFM 48.90 ms 33.83 ms 36.08 ms 20.33 ms 21.23 ms

< 26.12 ms — — — OK OK

Table 3: Flexible and parallel architectures of MP3 decoder. [7].

Due to the wide availabil-
ity of C reference applica-
tions, the design of today’s
embedded systems often starts
from C reference code typi-
cally obtained from open-source
projects and standardizing com-
mittees. These C models are
reused to create a system model
in the desired SLDL. Though
this code reuse speeds up the design process, it poses numerous challenges. The presence of pointers in the
input C code is one such issue.

The ambiguity introduced by the use of pointers in the C code presents serious problems to system design
tools. Most of today’s synthesis and verification tools are not designed tohandle pointers, as their primary goal is
to address other tasks. To overcome this limitation, designers invest significant time and effort to create definitive
unambiguous system models by recoding pointers.

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int *p1,*p2, *p3, *p4, (*p5)[16], p6;

4. p1 = &x;
5. *p1 = y+1;
6. if(condition) p2 = &v1; 
7. else p2 = &v2;
8. *p2 = 5;
9. p3 = &ab[40][10];
10. *p3 = 100;
11. p4 = a;
12. p4++;
13. *p4++ = 1;
14. p5 = &ab[5];
15. p6 = p4+v1;

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int ip3, ip4, ip5, ip6;

4. //Nothing here 
5. x =y+1;
6. if(condition) p2 = &v1; 
7. else p2 = &v2;
8. *p2 = 5;
9. ip3 =10; 
10. ab[40][ip3] = 100;
11. ip4 = 0;
12. ip4++;
13. a[ip4++] = 1; 
14. ip5 = 5;
15. ip6 = ip4+v1;

(a) Code with pointers (b) Code with p1, p3, p4, p5, p6 substituted

Figure 8: Pointer recoding example.

In [5], we have developed pointer recoding that can
replace pointers in C code with actual variables. Our
transformation recodes most pointer expressions and
can recode even pointers that are used across func-
tions and behaviors. Fig. 8 shows a typical pointer
recoding example.

In general, resolving pointer ambiguity is a hard
problem and a complete solution is not available.
Hence, to be effective on real-life examples, pointer
recoding needs to be interactive. By following our
designer-controlled recoding methodology, the de-
signer can selectively recode problematic pointers in
the desired scope, and realize the code transforma-
tion on-the-fly. Pointers, that cannot be statically ana-

lyzed, can be manually resolved through the editor.

Quantities GSM Fix-Point MP3 Floating-Point MP3

Lines of C code 13K 8.7K 3.6K
Functions in C Model 163 67 30

Behaviors in Spec. Model 70 54 43
Interfering pointers 17 23 16
Pointers recoded 17 22 14

Automatic Re-coding time ≈ 1.5 min ≈ 1.5 min ≈ 1 min
Estimated Manual time 170 mins 220 mins 140 mins

Productivity factor 113x 146x 140x

Table 4: Productivity gains for pointer recoding [5].

The main advantage of recoding point-
ers is to enhance program comprehension
for the designer and to make the model
conducive for tools with limited or no ca-
pability to handle pointers. Our interactive
source recoder makes pointer recoding fea-
sible and enables it to be useful on real-life
embedded source codes. Our pointer re-
coder was effective in recoding 83% of the
pointers in the embedded MyBench bench-
mark [24].

To estimate the productivity gains, we applied the source recoder to two MP3 audio decoders and a GSM
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vocoder application, each spanning thousands of lines of code. From these C codes, we created a model in SLDL
suitable for design exploration and synthesis. The design tools successfully performed design space exploration
by mapping code and data partitions in the model to different processors and memories. This required that the
input model is free of pointers.

Using our source recoder, the pointers were eliminated in a matter of minutes, as shown in Table 4. In the
absence of our pointer recoder, the designer must perform the recoding steps manually. The manual time shown
in Table 4 is estimated using an average time of 10 minutes per pointer recoding. Clearly, using our pointer
recoding approach results in large productivity gains.

5 Conclusion

In this report, we address the critical problem of modeling and parallelizationof embedded systems. We have
described are-coding methodology. We automate the process of modeling by use ofcomputer-aided re-coding.
This allows to derive a flexible parallel system model straight from availablereference code and thereby drasti-
cally shorten the design time.

Our preliminary experiments support the expectation of high productivity gains. Our combination of auto-
matic transformations and interactive control carries potential not only forMPSoC architectures, but also toward
general-purpose multi- and many-core processing.

Using designer-controlled computer-aided re-coding, complex model transformations can be realized instantly
by a click of button. Thus, tedious coding tasks like exposing communication can be performed in the order of
seconds, instead of hours. Moreover, for code transformations of higher complexity, such as converting longer
sections of reference code automatically into flexible and parallel design models, even higher productivity gains
are expected.

In the long run, our re-coding technique may even have potential to solve the parallel programming prob-
lem. Starting from available reference code, the combination of automatic transformations and designer control
promises to quickly generate a flexible system model suitable for general parallel architectures. This not only
includes MPSoC platforms, but also general-purpose multi- and many-coreprocessors.
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[2] Pramod Chandraiah and Rainer Dömer. Specification and design of an MP3 audio decoder. Technical
Report CECS-TR-05-04, Center for Embedded Computer Systems, University of California, Irvine, May
2005.
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[4] Pramod Chandraiah and Rainer Dömer. Designer-Controlled Generation of Parallel and Flexible Heteroge-
neous MPSoC Specification. InProceedings of the Design Automation Conference (DAC), June 2007.
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