C Center for Embedded Computer Systems
S University of California, Irvine

RIDE: Recoding Integrated Development Environment

Rainer Dbmer

Technical Report CECS-13-02
April 29, 2013

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA
(949) 824-8919

doemer@cecs.uci.edu
http://www.cecs.uci.edu

doemer@cecs.uci.edu
http://www.cecs.uci.edu

RIDE: Recoding Integrated Development Environment

Rainer Dbmer

Technical Report CECS-13-02
April 29, 2013

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA
(949) 824-8919

doemer@cecs.uci.edu
http://www.cecs.uci.edu

Abstract

One solution to address the steadily growing complexityrobedded computer systems is the modeling
at higher levels of abstraction using System-Level Detiorip_anguages (SLDL) such as SpecC or SystemC.
However, writing such executable system models is errongand extremely time-consuming. Little has been
done to support system designers in the tedious manualgaduhre-coding tasks necessary in embedded system
specification. With the Recoding Integrated Developmerir&mment (RIDE), we aim to automate the process
of describing embedded systems by use of advanced conajeeredesign (CAD) techniques. Proper analysis
and automation of the tasks involved in system modelinglidlv to shorten the design time significantly. Also,
guality improvements in the end design are expected if aatiomrelieves the system designer from complex
code analysis and tedious coding tasks, allowing unintgterd focus on the critical tasks of system modeling and
design space exploration. RIDE follows an advanced mogé#nhnique callediesigner-controlled re-coding
which largely automates the process of the creation of tis¢esy model. Using a combination of automatic
and interactive transformations simultaneously on there®wode and a graphical model representation, the
proposed re-coding technique efficiently derives an exdtatparallel system model directly from available
sequential reference code. Using a designer-controllegr@gch, the system designer utilizes his application
knowledge and design experience, whereas the re-codentaltigent union of editor, compiler, and powerful
transformation and analysis tools, realizes the complexdysis and model transformation tasks.

doemer@cecs.uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction\

1.1 Motivation e e e

1.2 Significance of Modeliﬁg
1.2.1 Architecture analogy e

1.3 RelAted WOTK o oo oo e e

Ww NN P

w

2 Problem Definition
2.1 Coding BOWIENEEK .« « o o o o e e
2.2 Model Requirements o o o i e e

AW

3 Recoding Methodology

3.1 Computer-Aided Re-coding e e e
3.1.1 Re-codingapproach e
3.1.2 Systemdesignflow
3.2 RIDE: Recoding Integrated Development Environment
3.2.1 RIDEfrontend
3.2.2 RIDEsuperdatastructure
3.23 RIDEbackend e

NN (U~ NB

4 Preliminary Result§

9
4.1 Source ReCOder e e e 9
4.2 Communication Recoding e e e, 9
4.3 Hierarchy Recodilﬁg ... 10
11
12

4.4 Paralleland Flexible Recoding e
4.5 PointerRecoding e e e e e e

5 Conclusion 13

References 13

List of Figures

1 Design time and extent of automation in a refinement-based desigﬁow[a].... e 3
2 Envisioned design FOW. « o o e e e e e 5
3 Recoding Integrated Development Environment.« 6
4 Early Source Re-Coder Structure. e e e e 9
5 Recoding to create explicitcommunication. e . 9
6 Recoding to create structural hierar&hy. 10
7 Recoding to create a flexible and parallel MP3 decoder. 11
8 Pointer recoding example. e e e 12

List of Tables

1 Productivity gains for communicationrecoding [8]. oL 10
2 Productivity gains for hierarchy recodiﬁLg_[6]. 10
3 Flexible and parallel architectures of MP3 decoder. (7. . . o 12
4 Productivity gains for pointer recodir@S] 12

RIDE: Recoding Integrated Development Environment

Rainer Domer
Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA
doemer@cecs.uci.edu
http://www.cecs.uci.edu

Abstract

One solution to address the steadily growing complexity of embedded tarapstems is the modeling at higher
levels of abstraction using System-Level Description Languages (Stiizh as SpecC or SystemC. However,
writing such executable system models is error-prone and extremelyctingiming. Little has been done to
support system designers in the tedious manual coding and re-codikg tacessary in embedded system spec-
ification. With the Recoding Integrated Development Environment (RIW&xim to automate the process of
describing embedded systems by use of advanced computer-asitpal (@AD) techniques. Proper analysis and
automation of the tasks involved in system modeling will allow to shorten thendisig significantly. Also,
quality improvements in the end design are expected if automation relievegdtean designer from complex
code analysis and tedious coding tasks, allowing uninterrupted focus oaritiel tasks of system model-
ing and design space exploration. RIDE follows an advanced modelingiteeh calleddesigner-controlled
re-codingwhich largely automates the process of the creation of the system modted. ddsombination of auto-
matic and interactive transformations simultaneously on the source coda graphical model representation,
the proposed re-coding technique efficiently derives an executatddlgdaystem model directly from available
sequential reference code. Using a designer-controlled approaehsytetem designer utilizes his application
knowledge and design experience, whereas the re-coder, an intélligemn of editor, compiler, and powerful
transformation and analysis tools, realizes the complex analysis and rmmadsformation tasks.

1 Introduction

As we enter the information era, embedded computing systems have a rafopact on our everyday life
and our entire society. With applications ranging from smart home appliansgdeo-enabled mobile phones,
from real-time automotive applications to communication satellites, and from portabti-media components
to reliable medical devices, we interact and depend on embedded systandsibnbasis.

Over recent years, embedded systems have gained a tremendous affimctionality and processing power
and, at the same time, can now be integrated into a single Multi-ProcessanSyst€hip (MPSoC). The design
of such systems, however, faces great challenges due to the hugéexitynpf these systems. The system
complexity grows rapidly with the increasing number of components that hagedperate properly and in
parallel. In addition, expectations grow while constraints are tightenedt duasot least, customer demand
constantly requires a shorter time-to-market and thus puts high pressdesigners to reduce the design time
for embedded systems.

doemer@cecs.uci.edu
http://www.cecs.uci.edu

1.1 Motivation

The design roadmap [30] of the international Semiconductor Industrgofesion ITRS predicts a significant
productivity gap and anticipates tremendous challenges for the semit¢ondhdustry in the near future. The
2004 update of the roadmap identifies system-level design as a major chalteadvance the design process.
System complexity listed as the top-most challenge in system-level design. As first promidingpsdo tackle
the design complexity, the ITRS lidiggher-level abstraction and specificatioim other words, the most relevant
driver to address the system complexity challenge is to raise the abstraggbrilleis is also emphasized in [28].

1.2 Significance of Modeling

In system level design, the importance of abstract modeling cannot bewyhasized. Proper abstraction and
modeling is the key to efficient and accurate estimation and successful impéimenHowever, in contrast to
the great significance of abstraction and modeling, most researchdwusetbon taskafter the design specifi-
cation phase, such as simulation and synthesis. Little has been done to sadidadigs the modeling problem.
Difficulty is certainly one major obstacle. Also, the quality of a model is not ditédgward to measure and
compare.

A model is an abstraction of reality. More specifically, an embedded systeral is@ih abstract representation
of an actual or intended system. Only a well-designed model will accuraphgsent and define the properties
of the end product, while allowing efficient examination and effective impleatiem.

Moreover, embedded system models must be executable. Execution ofdbkathows to simulate the behav-
ior of the intended system and to measure properties beyond the immediapresed in the model description.
For example, simulation enables the prediction of properties such asrparfoe and throughput.

The choice of the proper abstraction level is critical. Ideally, multiple wellrgefiabstraction levels are needed
to enable gradual system refinement and synthesis, adding more detaildesign model with every step. In
other words, a perfect model retains only the essential propertiesaéadthe job at hand, and abstracts away
all unneeded features. Then, as the design process continues)émtadly more features are added to the model.

1.2.1 Architecture analogy

The architectural blueprints of a house can serve as a good analagyties the importance of efficient mod-
eling.

An architect, charged with designing a new building, typically develops afsmiodels of her/his intended
design in order to examine, document and exhibit the intended building ésatilve general floorplan, room
sizes, etc. For example, to exhibit the aesthetic qualities of the design, Hietroften builds an abstract paper
model of the building that shows the three-dimensional design in small scatethé actual building phase,
however, a different model is needed. Here, the architect drawslitwensional schematic blueprints for each
floor which accurately show the location and dimensions of the walls, dodrsvandows, as well as water and
gas pipes, etc.

In this analogy, the purpose of the abstract models is clear, as is the imctrsimission of design features.
Different models serve different purposes and therefore exhili@rdifit properties. Moreover, the quality of the
architectural model determines the quality of the resulting building.

Another critical aspect in this analogy is the use of computer-aided deSigD)(tools when designing the
blueprints and models of a building. CAD tools with advanced 3D graphicsised to create, modify, and
analyze building models, which in turn leads to efficient blueprint developarehhigh-quality buildings.

In contrast, most embedded designers today still specify their system mgsileds basic text editors, the
equivalent of pencil and paper for building architects!

2

1.3 Related Work

Program transformations have been used for different areas, ingltalimprove aesthetics, to parallelize appli-
cations, and to perform high level synthesis. Examples include SUIEF §#irk [17], Artemis [26], and Sprint
[31]. Interactive program transformations of varying complexity aregirgtd into editors and programming
environments, including Eclipse [23], MSVC [25], D-Editor [19], Pagse [21] and SUIF Explorer [22]. How-
ever, these are insufficient in creating MPSoC models. Code refac{@8hg a software engineering technique
used in type-safe object-oriented programming languages. In contnastansformations target MPSoC design
and are interactive and designer-controlled.

2 Problem Definition

In essence, the modeling and parallelization of embedded system models Sufin two main problems.
First, modeling and parellelizing a system in a System-Level Description lagyeg{SLDL) is extremely time-
consuming and considerably delays the development process. ThHisaesggnificant negative impact on design
productivity. Second, most system-level design models today lack the gnaétyed for effective system syn-
thesis, thus produce poor end designs. In other words, a specificatidel must be of highest quality, because
its characteristics directly determine the quality of the end product.

2.1 Coding Bottleneck

In the past, the system-level design community has focused on solving ¥gmioblems of system synthesis.
Researchers have been working towards design automation at vaviitection levels with the goal to automate
steps in the design process and reduce the design time. Motivated by theomaeet the time to market and
aggressive design goals like low power, high performance, and loiresgarchers have proposed various new
methodologies based on system design automation. These technologmatesihave significantly reduced
the development time of embedded systems. Howelasign time is still a bottlenedk the development of
embedded systems.

One critical aspect neglected by the EDA community so far
is the design specification phase where the intended design is
captured and modeled for the model-driven design flow. Each
design methodology expects a very specific design model for the Manual
tools to be successful. These models need to be either hand- |
written from scratch or manually modified from a reference t
model. While much of the research has focused on synthesis '\
and refinement tools, little has been done to support the designer AN
in forming these models.

Fig./1 shows a generic top-down system design methodology , ,.omatic :
[14]. Following this system design flow, we have studied several
industrial-size design examples, including a MP3 audio decoder
[2] and a GSM voice codec [15]. For the MP3 design example,
Fig. 1 shows the time spent for creating the design model in com-

parison to the refinement time using automated synthesis tools. i

Manually re-coding the reference implementation into a proper —¥— ——
specification model took 12-14 weeks, whereas the entire impleFigure 1: Design time and extent of au-
mentation was completed in less than a single week of time. Thigomation in a refinement-based design flow

and other examples confirm thethout 90% of the system design [3].
time is spent on coding and re-coding of the modeén in the

Reference
Model

, Capture/Re-Coding

+

12-14 weeks

1 Lessthan1
h week

Intermediate Model-\)

3

presence of available reference code.

Moreover, we need to emphasize that model capturing is not a one time tdwn &fthange in the design
model is required for a refinement step down in the design flow, it is most ofeessary to modify ae-code
the input model. Such interruptions in the design flow cause costly delays.

2.2 Model Requirements

The quality of the system specification model has a direct bearing on #atiedness of the system exploration
and synthesis tools. Thguality of the models determined by its analyzability, flexibility, and potential for
concurrency.

Analyzabilityof the model is essential for automatic synthesis and verification. If the roadabt be statically
analyzed, tools are often unusable or ineffective.

Flexibility in the model is necessary for design space exploration. In system gdésigfpility increases with
the separation of computation and communication in the model. Moreover, flexdgittgnds on proper model
granularity which determines on the amount of possible design partitions, ipimga to processors, hardware
units, memories, and system busses.

Explicitly specifiedconcurrencyin the model is required in order to efficiently utilize the parallel target MP-
SOC architecture. Whether the target platform consists of a multi- or maneyarchitecture, the available
parallelism can only be exploited if it is apparent (explicitly expressed) imtbéel.

In summary, the time-consuming coding and re-coding of system models isasskeottle-neck in the system
design flow, and, at the same time, the quality of the model is most critical foessiul implementation by use
of automated tools.

3 Recoding Methodology

In the following, we describe the envisionB&coding Methodologgnd show some initial results.

3.1 Computer-Aided Re-coding

Since the quality of the design model has tremendous impact on the cost alitgt gfithe resulting system
implementation, creating and optimizing the model of the intended system is a crisicéh e design process.

Our methodology is calledesigner-controlled re-codingnd utilizes acomputer-aidedipproach. This tech-
nique efficiently reduces the time of modeling through interactive automatid@) 87 4, 5].

3.1.1 Re-coding approach

Creating a well-written embedded system model involves separation of conmatianiand computation, intro-
ducing proper granularity, and exposing concurrency. In additida,dtso necessary to realize the model in a
SLDL, such as SystemC [16] or SpecC [14], as only these can captstenss containing both hardware and
software components at different levels of abstraction.

In [9] and [2], we have manually converted a C reference implementati@nMP3 audio decoder into a
properly structured MPSoC specification in SpecC SLDL. The serieamsformations started with the creation
of a testbench that separates the design under test (DUT) from the stiamausonitor blocks used for simu-
lation. Next, we introduced structural hierarchy in the design by entatpsy major functions and enclosing
statements. Then, we localized global variables by restricting their scopelénto expose any hidden commu-
nication in the design. Finally, we exposed potential concurrency in thgrdieg forming parallel and pipelined
computational blocks. Only after all these changes, we finally arrivadsaitable specification model ready for
use in our system synthesis flow.

Omitting any time needed for learning, we measured that the entire process/efiing the given reference C
code into a synthesizable SLDL description required 12-14 weeks ®ofulltime designer [3]. Clearly, design
automation is needed to speed up this tedious coding and re-coding process

However, to enable automation, we need to distinguish betdeeision-making taskshat require human in-
telligence and experience, aadtomatic taskthat can be programmed and automatically executed. For example,
higher-level tasks, such as determining task-level parallism in the desighposing the "right” set of functions
for encapsulation, need to be performed by the experienced desigseal bn his application knowledge. On
the other hand, smaller tasks, such as adding a port to a block, routingghtbigpugh the design hierarchy, and
re-scoping a variable, can be automated by use of proper data stauatat€AD algorithms.

More specifically, tedious textual re-coding operati@as be performed automaticallyf the decisions to
apply these operations are made by the designer. This way, the desigelenisd from mundane text editing
tasks and can focus on the actual modeling decisions.

Another way to look at the recoding task, is the observation that today,

. . e . . Reference
regardless of their complexity, all modification operations are performed Code
manually by the designer using a regular text editor. However, there is
large discrepancy between the task the designer wants to perform {i.e. el Recoding
capsulating a function and its arguments into a behavior block with ports),
and the commands the text editor offers (i.e. adding and deleting charac- Validation,
ters, lines, or text blocks). Thus, the idea of designer-controllediregas Estimation
to put powerful analysis operations and source code transformatitims a
disposal of the designer, such that she/he can apply modeling decisions t
the design automatically, and instantly by a "click of a button”.

To summarize our approactomputer-aided recodinginlike other pro- é’ f,')iﬂfgﬁga
gram transformation approaches, keeps the designer in the loop and pro
vides complete control to create and modify the design model. By making| HW /SW /IF
the modeling process interactive, we rely on the designer to concur, augt!mplementation
ment or overrule the automatic analysis results of the tools, and use the
combined intelligence of the system designer and the advanced analysi
and transformation tools for the coding, re-coding, and modeling tasks.

L

L

Platform

(@)
=
[

k=]

T.
=]

Q@

Validation,
Testing

’

Figure 2: Envisioned design
3.1.2 System design flow flow.

In order to properly evaluate the proposed recoding techniques, we will
integrate them into our existing system design flow. Fig. 2 shows the overadliened design flow and the
position of the recoding tool.

Our design flow starts with available C-based reference code that igyraadilable (often times for free)
for most applications (e.g. JPEG, MPEG, MP3, H.264, etc.). This allows to-gtarp the development with
real code that is accurate and usually well-tested. We then use comjgigérracoding to generate an initial
platform-agnostic design model for early system validation and estimationt, Afieer platform capture and
mapping [27], we generate a transaction-level model (TLM) for degigwees exploration. For the final MPSoC
implementation, we can then rely on our existing hardware, software, amthogesynthesis tools [12].

3.2 RIDE: Recoding Integrated Development Environment

To aid the designer in system specification and modeling, we propose graletd Development Environment
(IDE) for model re-coding. Th&®ecoding IDE(RIDE) supports the designer-controlled interactive approach to
automated coding and recoding as outlined above.

RIDE tightly integrates interactive
graphical and textual editors with the RIDE
system-level tool chain for simula-
tion, estimation, refinement, and syn-
thesis. In other words, RIDE is an in-
telligent union of editor, compiler and
powerful transformation and analysis
tools. B L i QU Gl K

RIDE supports re-coding of SLDL —
models at various levels of refinement - >
and at different stages in the design e 1| o Analysis | Transformation § |~ Synthosie
flow. It can be used to re-code in- + |
[| [|

termediate system design models, as
well as the initial C reference imple- Reference Simulation Estimation ~ Optimization Imple-
mentation in order to produce a par- Code mentation

allel and optimized system model.

The conceptual structure of the Re-
coding IDE is shown in Fig.|3. Onthe
highest level, RIDE consists of a user
interface frontend, a complex data structure for model representatidra backend of advanced system design
tools.

Text Editor Graphical Editor

Figure 3: Recoding Integrated Development Environment.

3.2.1 RIDE frontend

The RIDE frontend offers two main editors to the system designer, a iga@nd a textual one. The textual
editor maintains the SLDL source text of the design model and allows the navigiation, modification, and
editing tasks of modern text editors. Advanced features include synthlidtiting, auto-completion, semantic
search, ctags, text folding, bookmarks, and undo/redo. Syntaxeandrgic support is provided for C-based
languages, i.e. C and C++ programming languages, and SystemC [16pacd B.1] SLDLs.

The graphical editor presents a hierarchical diagram of the designl tiadecan be used for visualization,
navigation, and modification operations. Supported visualization operaticiisle zoom/unzoon, selection of
hierarchy depth, display of connectivity (ports, busses, chanrets),highlighting of objects. On the other
hand, graphical editing is supported by rename, add, move, delete ,uiodpy/paste operations for blocks
(modules/behaviors), channels, interfaces, variables, ports, angctions.

Both editors are linked and constantly synchronized. Any change applibé design in one editor instantly
is reflected in the other editor as well. In other words, both editors maintairathe design model, and just
display the model in a different perspective (textual view, graphicabi®ote that the synchronization of the
editors is instantaneous, on a key stroke or click of a button, and is accbepliyy use of an advanced super
data structure (see Section 3/2.2 below).

The RIDE frontend also controls the backend design tools using a demtemaphical user interface (GUI)
with the usual tool bars, menu structures, and dialog windows. MorgiiveRIDE backend tools can be called
directly from the design objects shown in the editors. Thus, when the éggigmts to and highlights any object,
such as a channel icon in the graphical editor or a channel name in thaltexerface, a context menu pops
up with applicable and available operations. For example, when the depiginés to a channel instance, the
list of possible operations contains renaming, copying, deleting, chatiggrsrope, and finding dependents and
connected ports.

To facilitate an efficient implementation, we can use the Eclipse [23] IDE as foasiework. Some early

6

experiments confirm that most (if not all) features listed above can be imptethas regular plug-in modules.

3.2.2 RIDE super data structure

At the core of the Recoding IDE, a complex data structure maintains a coemsigl, coherent, and consis-
tent (CCC) model representation. The CCC model representation is adatpestructure that combines three
dedicated data structures, a textual model representation (TXT), hiceghmodel representation (GFX), and a
syntax-independent representation (SIR).

The textual model representation (TXT), also known as the documenttpbgpresents the design model
as program text specified in a system-level description language (SU&&3lly, RIDE would support both
SystemC [16] and SpecC [11] SLDLs. In other words, the TXT repradion is implemented by use of a
regular text data structure used in a text editor, essentially consisting sfdfriext, and augmented by support
for ctags, syntax-highlighting, and other advanced features (whicBdligse framework supports).

The graphical model representation (GFX) is a complex object-orientagttacture that describes the graph-
ical hierarchy chart of the design in form of its coordinates, sizesrsodmd so on. Here, one can use the existing
facilities in the Eclipse framework as basis, possibly augmented with speajathigs by use of the commercial
Qt GUI libary [1] (by Trolltech [20]).

The syntax-independent representation (SIR) [32, 10] is the celati@btructure for compilation, analysis, and
transformation tools. It contains an abstract syntax tree (AST) of thigrdesdel that corresponds to the textual
representation (TXT). In addition, the SIR contains full-fledged type mdbol tables, necessary to support
compiler tasks such as parsing, semantic checking, static analysis, optimizatiicode generation. Note
that this data structure also maintains source code comments and position tidorgeethat a code generator
can re-generate the source code for use in the TXT representaticst. nig@ably, the SIR data structure is the
basis for analysis tools toward early system estimation, for transformatitsttweard re-coding, modeling and
optimization, and for synthesis tools toward the final system implementation.

The three basis data structures, TXT, GFX and SIR, are combined into& Riper data structure that keeps
the design model accurately reflected and updated in each represen@yichronization functionssynchin
Fig./3) are used for this purpose. Any change to one of the three datauses is immediately synchronized
with the others, such that after each modification or transformation, all taiztiges consistently reflect the
resulting model.

We would like to emphasize that this instant synchronization of the differatat structures becomes a key
part of RIDE. While it is ambitious to maintain a comprehensive, coherent;amsistent super data structure, it
is certainly feasible, even if synchronization has to occur frequentlyafier. every key stroke in the text editor.
As we see below in Section 4, an early prototype implementation of two syrizetbdata structures (TXT and
SIR) showed sufficient responsiveness, even though an adiadotérface was used for the synchronization
operations.

3.2.3 RIDE backend

The RIDE backend is envisioned as a powerful set of analysis ansfaramation tools that the designer can
invoke directly from the two editors. The results of these operations agetljireflected in the editors as well.
In other words, the analysis and transformation tools build the core of tbediag environment.

To provide an overview about envisioned analysis and transformatiks, tae can categorize the re-coding
operations into three classes.

Analysis functions provide static analysis, such as dependency information, on the objectsiottel without
introducing any changes to it. As such, analysis can, for example, growfiokmation to the designer about
potential for parallel execution of blocks and/or functions. Conceptuatglysis function include

7

e revealing dependencies,
¢ check for potential concurrency, and
e general analysis for program comprehension.

Example operations in this category include determining the usage of variafifeslucing concurrency,
and generating dependency graphs.

Structural transformations change the structure of the design model by introducing and/or removingLeo
tational blocks, channels, and functions. In this category, we furisgnguish
e granularity transformations,
e composition transformations,
e re-organizing transformations, and
e connectivity transformations.

Introducing new blocks (modules/behaviors), composing hierarchicaks, splitting and/or merging
blocks (to adjust the design granularity) are some examples of strucamafdrmations.

Functional transformations modify computational blocks, functions, and variables. This categonpednr-
ther subdivided into
¢ transformations to contain communication,
¢ transformation to break dependencies, and
e pruning transformations.

Localizing global variables, breaking composite data types into smaller das, typd trimming the width
of wider data types into optimized bit vectors, are some examples of trangfonsian this category.

4 Preliminary Results

To demonstrate the feasibility of the proposed RIDE approach, and to esthegisoductivity gains that can be
expected, we have implemented a simple textual recoder [3] and obtaimadsip® preliminary results that we
will review in the following sections.

4.1 Source Recoder

In an early implementation, we have implemented a source
re-coder|[3] based on an existing QT [20] and Scintilla [29]
based textual editor. In this extended text editor, the de-
signer can call a small set of analysis and transformation
operations by clicking on added buttons in the Graphical 3
User Interface (GUI) provided by the editor. Text
Fig./4 shows the software architecture of our preliminary Editor ;
source re-coder, consisting of 5 components, a text editor, 4 : n
a data structure (abstract syntax tree, AST), a preprocessor | Gul |
and parser, a code generator, and a set of initial transforma-
tion tools. Figure 4: Early Source Re-Coder Structure.
Compared to the envisioned Recod-
ing IDE in Fig. I3, this early imple-
mentation has no support for graphical editing (no GFX data structurepd dacks
many other aspects. Most notably, the synchronization functions betwéen two
data structures are implemented in a simple ad-hoc fashion. After changes textheditor, the AST data
structure is recreated by writing all source code into a file, and calling the@qgcessor and the SLDL parser
on that file. In other words, the AST is built from scratch every time the teahges. Vice versa, the entire
text file is replaced with a new file generated by a code generator wherShelanges due to a transformation
operation.
Clearly, this ad-hoc implementation
needs major improvement. Nevertheless,

it allows us to gauge the feasibility of LB}_”_EMU,_l Lawi_| I_Bg_l

RIDE and even estimate the benefits and

L.) l A ‘\
expected productivity gains. _— s Block . Block >
Locallze
R1, R2

4.2 Communication Recoding

Transformatio
Tools

Make explicit data
connections RW1,

Communication exploration is critical in RW2
MPSoC design. Given a design model with c1 D—J_(| c2

explicit communication, design space ex- I
ploration can be conducted automatically. R1 BIEI 2 <:'Estam$h III) §BEI »
. . . . ock - sh B -1 ock -
However, the communication in the design Block -1 Synchronizatio o
RW1, RW2

needs to be clearly exposed in the model it - .
. " - == Implici ata Flow/ Explicit

by using and connecting standard com- Dependency connectuivity
munication channels. This, unfortunately,
requires significant time in re-writing the
model.

In [8], we have introduced our re-coding
approach that is based on decision making

A Read port V¥ Write port

Figure 5: Recoding to create explicit communication.

by the designer ("designer-in-the-loop”) and automation of the modésinand transformation tasks. In partic-
ular, we have developed 3 code transformations to expose communicatioely(1) localizing global variables,
(2) establishing explicit connectivity, and (3) introducing synchroniratkig. 5 shows these transformations in
an overview.

We have implemented these communication recod-
ing transformations in our preliminary source recoder,

Properties | JPEG| MP3 | GSM |

and have estimated the resulting productivity gain in Global Variables localized 8 70 33
comparison with manual editing. Table 1 shows the New Ports added 2 146 | 163
results for three real-life examples. For each example, New Channels added 1 6 2
we have used our re-coder to expose the communica- Re-coding time (secs) 27 | 246 | 260
tion in the models, which involves the transformations | Estimated Manual time (ming) 53 | 497 | 585
(1) through (3). Table 1 shows the times measured us- Productivity gain 117x | 121x]| 135x

ing the re-coder compared to estimated manual times
It also shows the resulting productivity gains, more
than 100x for each example.

"Table 1: Productivity gains for communication recod-
ing [8].

4.3 Hierarchy Recoding /fé

B_do_layer3
Structural hierarchy is a critical property needed in

system design models. With a well-structured model,
design exploration can evaluate various partitions by
grouping and re-grouping different blocks and map-
ping them onto different components in the target ar-
chitecture. The lack of structural hierarchy and the
presence of ambiguities prohibits the direct use of
flat C code. Design exploration and system synthesis
tools require models with clean structural hierarchy,
where all the computation blocks are properly encap- \ /
SUIatEd and have a Statica”y analyzable interface' The (a) Partial function hierarchy in MP3 code (b) Structural hierarchy in the MP3 code
quality of this input SoC model directly determines

the effectiveness of the system design tools. Thus, Figure 6: Recoding to create structural hierarchy.
creating a suitable structural hierarchy of behavioral

blocks is critical. Moreover, it is also very time con-

suming when performed manually.

In [6], we have developed a set of automatic source code transformmdltianhallows to create models with
structural hierarchy from C reference code. The transformatiomshesgiven functional hierarchy to create a
behavior tree with static interfaces. For the example of an MP3 decodkcatfmm, the creation of structural
hierarchy is illustrated in Fig. 6.

B_lIl_dequant

decodeMP3 B_lIl_antialias

B_III_hybrid

B_llI_i_stereo

1ll_dequant

B_synth_1tol

B_dct64

FoIIowing our recoding methodology Properties JPEG Float-point MP3| Fix-point MP3 GSM \
: : P Lines of C code 1K 3K 10K 10K
the dgsngner selectively chooses significant C Functions o 0 o7 163
functions and statement blocks to be en- [TinesofSpecCcode 1.6K 7K 13K 7K
capsulated and interactively invokes the | Behaviorscreated| 28 43 54 70
. Re-coding time | = 30 mins ~ 35 mins ~ 40 mins | =~ 50 mins
aUtor_nated code transformations. Manual time 1.5 week 3 weeks 2 weeks 4 weeks
Using our source recoder, we have ap- | Productivity factor 120x 205x 120x 192x

plied these transformations to a set of in-
dustrial design examples, as listed in Ta-
ble/2. Each of these examples spanned a few thousand lines of codabléhprovides the number of functions

Table 2: Productivity gains for hierarchy recoding [6].

10

in the input C code and the number of behaviors that were introducedate@avell-structured MPSoC model.
The behaviors were created by encapsulating functions and statentessndased on our application knowl-
edge. Using the automatic transformations in the source recoder, the medelsreated in a matter of minutes.

Earlier, very similar transformations were conducted manually on these éembpdifferent designers. This
manual recoding took weeks of development time, as shown in Table 2. Osingpurce recoder, the well-
structured SoC models were created in the order of minutes instead of,weskling in large productivity
gains.

4.4 Parallel and Flexible Recoding

Concurrency and flexibility are two critical features of a MPSoC model.c8oency in the model is necessary to
exploit the parallel resources available on the multi- or many-core platfolexibHity is necessary for freedom
in design space exploration.

However, two main factors limit today’s compilers in generating a parallel axibfe MPSoC specification
automatically from a sequential monolithic application: first, the heterogensatuse of MPSoCs with cus-
tomized processors and non-regular memory hierarchy, and secendoriplexity of the unstructured input
application. Completely automatic compilers, though successful in extractitrgdtisn level parallelism on
shared-memory architectures, cannot expose task level parallelisth vetgjuires application-specific knowl-
edge.

In contrast, we propose to create parallel and flexible models basedativaatesigner-controlled transforma-
tions, instead of a monolithic completely automatic compilation. The discrete trarefon steps are combined
by the designer to create the desired specification model.

In [7,4], we have proposed a designer-controlled approach ttecagaarallel and flexible MPSoC model. In
particular, we have developed a set of six code and data partitioninfomanragions that can split loops and com-
posite variables to expose concurrency and create flexibility. Our tianafions include loop splitting, vector
and composite data structure partitioning, variable localization, and symizhtion of shared data. These trans-
formations implement re-coding tasks that are intuitive even to a programmelimitiid compiler knowledge.

Fig./7 illustrates the data parallelism ex-
posed in a MP3 decoder using our source

(a) Sequential MP3 code struct

(b) Parallel MP3 code structt

sbsample(2][36][32]: sbsamp el re-coder. With the model pre_ated in Fig. 7,
pem(2][1152] we could explore two distributed paral-
filter[2][2][2][16][8] O/P: shsamplel, shsample2 lel dESign alternatives and two shared-
Stereo + memory based parallel architectures.
Ofp:isbsample jdot Table 3 show the results for the different
f’r;f;ft": Partition-¥ \ Partition-2 fix-point MP3 implementations. For each
Alias design, the tables list the main compo-
Loop-A nents and their clock frequencies, as well
pem1[1152] 5;““22}1[22[116][8] as the performance achieved in decoding
filter1[2][2][16][8 iter.
P Sbsample b s o] P sbsample? one frame of MP3 data. Note that a frame
tocakfleer, pem must be decoded in less than 26.12 ms.
Synthesis et oo ﬁf{g:‘ﬁi)'z This timing constraint is only met by 5 out
Filter loop Partition- Partition-2 of the 10 possible architectures, as shown
Loop- in the last row of the Table 3. Note that

the required performance was met only due
to the explicit parallelism exposed by our

Figure 7: Recoding to create a flexible and parallel MP3 decodertransformations. This clearly shows that

11

the parallelism exposed through our trans-

formations is indeed effective.

4.5 Pointer Recoding

Due to the wide availabil- Models Arch-1 Arch-2 Arch-3 Arch-4 Arch-5
itv of C reference applica- ARM7TDMI | ARM7TDMI | ARM7TDMI | ARM7TDMI | ARM7TDMI
Wy _ ppiica (50MHz) | (S50MHz) | (50MHz) | (50MHz) | (50MHz)
tions, the design of today’s 1 HW 1 HW 2 HW 2 HW
embedded systems often starts (100MHz) | (100MHz) | (100MHz) | (100MHz)
from C reference code typi- TLM 48.62 32.12 S?zreliMem 17.27 ShlireziMem'
- . ms . ms . ms . ms . ms
cally obtained from open-source BEM 48.90ms | 3383ms | 36.08ms | 2033ms | 21.23ms
projects and standardizing com- [<2612ms — — — oK oK |

mittees. These C models are
reused to create a system model
in the desired SLDL. Though

Table 3: Flexible and parallel architectures of MP3 decoder. [7].

this code reuse speeds up the design process, it poses numerousgesall@he presence of pointers in the

input C code is one such issue.

The ambiguity introduced by the use of pointers in the C code presents serioblems to system design
tools. Most of today’s synthesis and verification tools are not designleaitdle pointers, as their primary goal is
to address other tasks. To overcome this limitation, designers invest sighifina and effort to create definitive

unambiguous system models by recoding pointers.

In [5], we have developed pointer recoding that can

1. inta[50], ab[50][16]; 1. inta[50], ab[50][16];

2. intvl, v2,x,Y; 2. intvi, v2,x,y;

3. int*pl,*p2, *p3, *p4, (*p5)[16], p6; 3. intip3, ip4, ip5, ip6;

4. pl=_&x 4. /INothing here

5. *pl=y+l; 5. x=y+l;

6. if(condition) p2 = &v1; 6. if(condition) p2 = &v1; .
7. else p2 = &v2; 7. else p2 = &v2; recoding example.
8. *p2=5; 8. *p2=5;

9. p3 = &ab[40][10]; 9. ip3=10;

10. *p3 =100; 10. ab[40][ip3] = 100;

11. pd=a; 11. ip4 = 0;

12. p4++; 12. ip4++;

13. *p4++ =1, 13. afip4++] =1,

14. p5 = &ab[5]; 14. ip5=5;

15. p6 = p4+vi; 15. ip6 = ip4+vl;

(a) Code with pointe (b) Code with p1, p3, p4, p5, p6 substitt

Figure 8: Pointer recoding example.

lyzed, can be manually resolved through the editor.
The main advantage of recoding point-

replace pointers in C code with actual variables. Our
transformation recodes most pointer expressions and
can recode even pointers that are used across func-
tions and behaviors. Fig. 8 shows a typical pointer

In general, resolving pointer ambiguity is a hard
problem and a complete solution is not available.
Hence, to be effective on real-life examples, pointer
recoding needs to be interactive. By following our
designer-controlled recoding methodology, the de-
signer can selectively recode problematic pointers in
the desired scope, and realize the code transforma-
tion on-the-fly Pointers, that cannot be statically ana-

ers is to enhance program comprehension | Quantities | GSM [Fix-Point MP3] Floating-Point MP3|
for the designer and to make the model Lines of C code 13K 8.7K 3.6K
conducive for tools with limited or no ca- Functionsin C Model | 163 o7 30
- . . . Behaviors in Spec. Mode]| 70 54 43
pability to handle pointers. Our interactive Interfering pointers 17 3 16
source recoder makes pointer recoding fea- Pointers recoded 17 22 14
sible and enables it to be useful on real-life | Automatic Re-coding tim¢ ~ 1.5min| _~ 1.5 min ~ 1 min
embedded source codes. Our pointer re- Estimated Manual time | 170 mins 220 mins 140 mins
' [Productivity factor | 113x] 146x | 140x |

coder was effective in recoding 83% of the
pointers in the embedded MyBench bench-
mark [24].

Table 4: Productivity gains for pointer recoding [5].

To estimate the productivity gains, we applied the source recoder to two Md8 decoders and a GSM

12

vocoder application, each spanning thousands of lines of code. Fesm @codes, we created a model in SLDL
suitable for design exploration and synthesis. The design tools sugitegsfiformed design space exploration

by mapping code and data patrtitions in the model to different processtnm@mories. This required that the

input model is free of pointers.

Using our source recoder, the pointers were eliminated in a matter of minstebpan in Table 4. In the
absence of our pointer recoder, the designer must perform theimgcstdps manually. The manual time shown
in Table 4 is estimated using an average time of 10 minutes per pointer recodiegylyCusing our pointer
recoding approach results in large productivity gains.

5 Conclusion

In this report, we address the critical problem of modeling and parallelizafiembedded systems. We have
described ae-coding methodologyWe automate the process of modeling by usearhputer-aided re-coding
This allows to derive a flexible parallel system model straight from availafégence code and thereby drasti-
cally shorten the design time.

Our preliminary experiments support the expectation of high productivitysgaOur combination of auto-
matic transformations and interactive control carries potential not onMRB0oC architectures, but also toward
general-purpose multi- and many-core processing.

Using designer-controlled computer-aided re-coding, complex modsftmramations can be realized instantly
by a click of button. Thus, tedious coding tasks like exposing communicatiobegerformed in the order of
seconds, instead of hours. Moreover, for code transformationigloéhcomplexity, such as converting longer
sections of reference code automatically into flexible and parallel desigelsy@¥en higher productivity gains
are expected.

In the long run, our re-coding technique may even have potential to savpatallel programming prob-
lem. Starting from available reference code, the combination of automati¢dranagions and designer control
promises to quickly generate a flexible system model suitable for geneedlgbarchitectures. This not only
includes MPSoC platforms, but also general-purpose multi- and manypomcessors.

References

[1] Jasmin Blanchette and Mark Summerfiel@++ GUI Programming with Qt 3 Prentice Hall, February
2004.

[2] Pramod Chandraiah and Rainebmer. Specification and design of an MP3 audio decoder. Technical
Report CECS-TR-05-04, Center for Embedded Computer Systemserdityvof California, Irvine, May
2005.

[3] Pramod Chandraiah and Rainebtier. An Interactive Model Re-Coder for Efficient SoC Specification.
In Achim Rettberg, Mauro C. Zanella, Rainebier, Andreas Gerstlauer, and Franz J. Rammig, editors,
Embedded System Design: Topics, Techniques and TiBad®n, MA, 2007. Springer.

[4] Pramod Chandraiah and Rainedier. Designer-Controlled Generation of Parallel and Flexible Heteroge-
neous MPSoC Specification. Rroceedings of the Design Automation Conference (DAM)e 2007.

[5] Pramod Chandraiah and Rainedmer. Pointer re-coding for creating definitive MPSoC modelsPrim
ceedings of the International Conference on Hardware/Software @pdaad System Synthes&alzburg,
Austria, September 2007.

13

[6] Pramod Chandraiah and Rainedmer. Automatic re-coding of reference code into structured and analyz-
able SoC models. IRroceedings of the Asia and South Pacific Design Automation Confer@BEDAC)
Seoul, Korea, January 2008.

[7] Pramod Chandraiah and Rainepier. Code and Data Structure Partitioning for Parallel and Flexible MP-
SoC Specification Using Designer-Controlled Re-CodiligEE Transactions on Computer-Aided Design
of Intergrated Circuits and Systems (TCARY(6):1078-1090, June 2008.

[8] Pramod Chandraiah, Junyu Peng, and Rain@mBr. Creating Explicit Communication in SoC Models

Using Interactive Re-Coding. IRroceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC) Yokohama, Japan, January 2007.

[9] Pramod Chandraiah, Hans Gunar Schirner, Nirupama SrinivdsRamer mer. System-On Chip Mod-
eling and Design: A case study on MP3 Decoder. Technical ReporS8cHEEG04-17, Center for Embedded
Computer Systems, University of California, Irvine, July 2004.

[10] Rainer mer. The SpecC internal representation. Technical report, Informatid Computer Science,
University of California, Irvine, January 1999. SpecC V 2.0.3.

[11] Rainer bmer, Andreas Gerstlauer, and Daniel GajsRpecC Language Reference Manual, Version 2.0
SpecC Technology Open Consortiulnttp://www.specc.org, December 2002.

[12] Rainer Dbmer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cahd{#u, Samar Abdi, and
Daniel Gajski. System-on-Chip Environment: A SpecC-based FramewpHdterogeneous MPSoC De-
sign. EURASIP Journal on Embedded Systep@98(647953):13, July 2008.

[13] Martin Fowler. Refactoring: Improving the design of existing code.Proceedings of the Second XP
Universe and First Agile Universe Conference on Extreme ProgrammumigAgile Methods - XP/Agile
Universe 2002page 256, London, UK, 2002. Springer-Verlag.

[14] Daniel D. Gajski, Jianwen Zhu, Rainebner, Andreas Gerstlauer, and Shuging ZtgpmecC: Specification
Language and Design Methodolodyluwer Academic Publishers, 2000.

[15] Andreas Gerstlauer, Shuging Zhao, Daniel D. Gajski, and AritddHorak. Design of a GSM vocoder
using SpecC methodology. Technical Report ICS-TR-99-11, Infaemand Computer Science, University
of California, Irvine, March 1999.

[16] Thorsten Gitker, Stan Liao, Grant Martin, and Stuart Swa&ystem Design with SystemKluwer Aca-
demic Publishers, 2002.

[17] Sumit Gupta, Rajesh Kumar Gupta, Nikil D. Dutt, and Alexandru Nicofaaordinated parallelizing com-
piler optimizations and high-level synthesSCM Trans. Des. Autom. Electron. Sy${(4):441-470, 2004.

[18] Mary W. Hall, Jennifer-Ann M. Anderson, Saman P. AmarasingBean R. Murphy, Shih-Wei Liao,
Edouard Bugnion, and Monica S. Lam. Maximizing multiprocessor perfocsarith the SUIF compiler.
IEEE Computer29(12):84—-89, 1996.

[19] Seema Hiranandani, Ken Kennedy, Chau-Wen Tseng, and Scétaien. The D editor: a new interactive
parallel programming tool. ISupercomputingpages 733-742, 1994,

[20] Trolltech Inc. Qt application development framewohktp://www.trolltech.com/products/qt/.

14

http://www.specc.org
http://www.trolltech.com/products/qt/

[21] K. Kennedy, K. S. MKinley, and C.-W. Tseng. Analysis and transformation in the ParaScojper E¢h
Proceedings of the 1991 ACM International Conference on SupentitimypCologne, Germany, 1991.

[22] Shih-Wei Liao, Amer Diwan, Robert P. Bosch Jr., Anwar M. Ghutp@and Monica S. Lam. SUIF explorer:
An interactive and interprocedural parallelizer.Rrinciples Practice of Parallel Programmingages 37—
48, 1999.

[23] Eclipse java development tool-kit. http://eclipse.org/jdt/index.html.

[24] MiBench, A free, commercially representative embedded benchmarkuite.
http://www.eecs.umich.edu/mibench/.

[25] Microsoft visual studio. http://msdn.microsoft.com/vstudio/.

[26] A.D. Pimentel, L.O.Hertzberger, P. Lieverse, and P. Wolf. Exploembedded-systems architectures with
artemis.|IEEE Transactions on Computei®4(1), November 2001.

[27] Alberto Sangiovanni-Vincentelli and Grant Martin. Platform-Basex$ion and Software Design Method-
ology for Embedded SystemHzEE Design and Test of Computels(6):23—-33, 2001.

[28] Alberto L. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning dlioends and Challenges of System-
Level Design.Proceedings of the IEEB5(3):467-506, March 2007.

[29] Scintilla source code editing component. http://www.scintilla.org.

[30] SEMATECH Inc. International technology roadmap for semiconohsc(ITRS), 2004 update, design.
http://lwww.itrs.net/, 2004.

[31] Sprint parallelizes real life applications for embedded systems. httpa/invec.be/design/sprint/.

[32] Ines Viskic and Rainer Bmer. A Flexible, Syntax Independent Representation (SIR) for Sylstewi De-
sign Models. InProceedings of the EuroMicro Conference on Digital System Deglgbrovnik, Croatia,
August 2006.

15

http://www.itrs.net/

	1 Introduction
	1.1 Motivation
	1.2 Significance of Modeling
	1.2.1 Architecture analogy

	1.3 Related Work

	2 Problem Definition
	2.1 Coding Bottleneck
	2.2 Model Requirements

	3 Recoding Methodology
	3.1 Computer-Aided Re-coding
	3.1.1 Re-coding approach
	3.1.2 System design flow

	3.2 RIDE: Recoding Integrated Development Environment
	3.2.1 RIDE frontend
	3.2.2 RIDE super data structure
	3.2.3 RIDE backend

	4 Preliminary Results
	4.1 Source Recoder
	4.2 Communication Recoding
	4.3 Hierarchy Recoding
	4.4 Parallel and Flexible Recoding
	4.5 Pointer Recoding

	5 Conclusion
	References

