
Center for Embedded Computer Systems
University of California, Irvine

Performance Evaluation and Optimization
of A Custom Native Linux Threads Library

Guantao Liu and Rainer D̈omer

Technical Report CECS-12-11
October 3, 2012

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{guantaol, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/


Performance Evaluation and Optimization
of A Custom Native Linux Threads Library

Guantao Liu and Rainer D̈omer

Technical Report CECS-12-11
October 3, 2012

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{guantaol, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

The current SpecC simulator utilizes PosixThreads, QuickThreads or a custom native Linux
thread library named LiteThreads to perform thread manipulation. While QuickThreads is
very efficient as a user-level thread library and PosixThreads supports multithreading and the
parallel simulator, the proposed LiteThreads library combines the advantages of both thread
libraries and aimes to achieve a significant improvement in simulation time. In this report, we
will present the performance evaluation of the LiteThreadslibrary based on two featured bench-
marks. In addition, more work is done on optimizations of context switching and stack space
allocation. With these improvements, the LiteThreads library achieves better performance than
PosixThreads for the sequential simulator. The same conclusion is also true on 64-bit Linux
machines, as verified by our simulation results.

http://www.cecs.uci.edu


Contents

1 Introduction 1

2 Performance and Optimizations on Context Switching 2
2.1 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Performance and Optimizations on Thread Creation and Deletion 6
3.1 Stack Space Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Thread Creation and Deletion Benchmark . . . . . . . . . . . . . . . . . . . . .. 11
3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Performance on 64-bit Architectures 14

5 Conclusion and Future Work 15

References 21

i



List of Figures

1 Intel Pentium 4 architecture, 2.4 GHz (alpha) . . . . . . . . . . . . . . . . . . .. 3
2 Intel Pentium 4 architecture, 3.0 GHz (epsilon) . . . . . . . . . . . . . . . . . .. 3
3 Intel Core 2 Quad architecture, Q9650 (mu) . . . . . . . . . . . . . . . . . . .. . 4
4 Intel Xeon architecture, X5650 (xi) . . . . . . . . . . . . . . . . . . . . . . . .. . 4

ii



List of Tables

1 Simulation Results of Producer-Consumer Model on alpha and epsilon (LiteThreads
loops=100, 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simulation Results of Producer-Consumer Model on mu and xi (LiteThreads
loops=100, 200) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Simulation Results of Producer-Consumer Model (LiteThreads loops=0,0) . . . . 7
4 Simulation Results of Producer-Consumer Model (LiteThreads loops=0,200) . . . 8
5 Simulation Results of Producer-Consumer Model (LiteThreads loops=100, 0) . . . 9
6 Simulation Results of Producer-Consumer Model (LiteThreads loops=1000, 0) . . 10
7 Simulation Results of Producer-Consumer Model (LiteThreads loops=1000, 2000) 11
8 Simulation Results of TFMUL on alpha . . . . . . . . . . . . . . . . . . . . . . . 13
9 Simulation Results of TFMUL on epsilon . . . . . . . . . . . . . . . . . . . . . . 14
10 Simulation Results of TFMUL on mu . . . . . . . . . . . . . . . . . . . . . . . . 15
11 Simulation Results of TFMUL on xi . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 Simulation Results of Producer-Consumer Model on 64-bit Architectures . . . . . 16
13 Simulation Results of TFMUL on 64-bit Architectures . . . . . . . . . . . . . . .17
14 Simulation Results of Producer-Consumer Model (cores=0 1, loops=00) . . . . . . 17
15 Simulation Results of Producer-Consumer Model (cores=0 1, loops=100 0) . . . . 18
16 Simulation Results of Producer-Consumer Model (cores=0 1, loops=0200) . . . . 18
17 Simulation Results of Producer-Consumer Model (cores=0 1, loops=100 200) . . . 19
18 Simulation Results of Producer-Consumer Model on xi(same physical core, differ-

ent logical cores, loops=0 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
19 Simulation Results of Producer-Consumer Model on xi(same physical core, differ-

ent logical cores, loops=100 0) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
20 Simulation Results of Producer-Consumer Model on xi(same physical core, differ-

ent logical cores, loops=0 200) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20
21 Simulation Results of Producer-Consumer Model on xi(same physical core, differ-

ent logical cores, loops=100 200) . . . . . . . . . . . . . . . . . . . . . . . . .. . 21

iii



List of Listings

1 Thread Initialization with Constant-time Stack Space Allocation . . . . . . . . . . 7
2 Thread Creation with Constant-time Stack Space Allocation . . . . . . . . . . . . 8
3 Intensive Thread Creation/Deletion Benchmark . . . . . . . . . . . . . . . . .. . 11

iv



Performance Evaluation and Optimization
of A Custom Native Linux Threads Library

Guantao Liu and Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{guantaol, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

The current SpecC simulator utilizes PosixThreads, QuickThreads or acustom native Linux thread
library named LiteThreads to perform thread manipulation. While QuickThreads is very efficient
as a user-level thread library and PosixThreads supports multithreading and the parallel simulator,
the proposed LiteThreads library combines the advantages of both thread libraries and aimes to
achieve a significant improvement in simulation time. In this report, we will present the performance
evaluation of the LiteThreads library based on two featured benchmarks.In addition, more work
is done on optimizations of context switching and stack space allocation. With these improvements,
the LiteThreads library achieves better performance than PosixThreadsfor the sequential simulator.
The same conclusion is also true on 64-bit Linux machines, as verified byour simulation results.

1 Introduction

Nowadays, QuickThreads and PosixThreads are the two most popular thread libraries used on Linux
machines. QuickThreads is user-level thread, which has very low overhead and is extremely efficient
for a sequential simulator. As for the PosixThreads library, it is a kernel-level thread library and has
more options to set behaviors and type of mutexes. Thus, Posix threads have the advantage of more
schedulability on different cores of SMP machines. Basically speaking, PosixThreads library carries
more overhead than QuickThreads.

In order to have the advantages of both thread libraries, a custom threadlibrary named
LiteThreads is built on native Linux threads primitives [1]. By utilizing the futex and clone sys-

1

http://www.cecs.uci.edu


tem calls, other than the corresponding mutex and fork system call in PosixThreads, LiteThreads
reduces the overhead of context switching and thread creation/deletion.In this way, LiteThreads
could also be used in the parallel simulator, which is not supported by the QuickThreads library.
Currently, all of these three thread libraries are used in the SpecC simulator.

In this report, we will first evaluate the performance of our custom LiteThreads library in the
SpecC simulator, compared to the PosixThreads library and QuickThreadslibrary. Two different
kinds of benchmarks are used in the tests to evaluate the features of LiteThreads. With the premise
of only using sequential simulator, we also optimize the LiteThreads library based on the simulation
results. Finally, we carry out the same evaluation on a 64-bit machine to verify that LiteThreads
library also achieves better performance than PosixThreads on this platform.

2 Performance and Optimizations on Context Switching

Both PosixThreads and QuickThreads have multiple features and options tosupport multithreading,
but LiteThreads has two differences from PosixThreads: the clone system call and spinlocks used
in the synchronization.

In the PosixThreads library, it is a time-consuming task to enter or exit the critical sections,
which often spends lots of time in the context switching between the user level and kernel level.
In order to reduce this overhead, LiteThreads makes use of spinlocks inthe mutexlock and mu-
tex unlock functions, which would avoid such context switching when some other threads are wait-
ing to grab the lock.

In order to achieve better performance than PosixThreads, the spinlockin the LiteThreads
library must be more efficient than the context switching between user leveland kernel level.
This overhead is decided by the loop iterations in the mutexlock and mutexunlock functions in
LiteThreads. If the loop iteration (spin time) is too short, no other threads would grab the lock from
the current thread, which means that the spin time is wasted and it still needs to switch to the kernel
level; while the loop iteration (spin time) is too long, certain threads would finally grab the lock
from the current thread, but the overhead of the spinlock would be larger than that of the context
switching between user level and system level. In this case, the new feature is useless.

Therefore, the performance of the LiteThreads library is largely relatedto the two loop iterations
in the mutexlock and mutexunlock. In our experiments, we will first compare the performance of
the initial LiteThreads with PosixThreads and QuickThreads and then try to optimize the spin lock
according to the simulation results.

2.1 Experiments and Results

For the current experiments, we use the Producer-Consumer model as benchmark and utilize the
sequential simulator to run all the tests. The Producer-Consumer model in thiscase uses the double
handshake protocol to communicate between the two agents and the Producer and Consumer locate
in two different threads.

2



All the tests in these experiments are running on four 32-bit Linux machines,which have In-
tel(R) Pentium 4 architecture 2.40 GHz CPU (named alpha), Intel(R) Pentium 4architecure 3.0
GHz CPU (named epsilon), Intel(R) Core(TM) 2 Quad architecture Q96503.0 GHz CPU (named
mu) and Intel(R) Xeon(R) architecture X5650 2.66 GHz CPU (named xi), respectively.

The architectures of these four processors are indicated as Figure 1,2 , 3 and 4. The dashed line
in the figure means that the core has the hyperthreading feature enabled.

Figure 1: Intel Pentium 4 architecture, 2.4 GHz (alpha)

Figure 2: Intel Pentium 4 architecture, 3.0 GHz (epsilon)

As most of the processors have more than one core, the elapsed time of the simulation varies
with the CPU affinity. In order to eliminate this variation in simulation time, we utilize thetaskset
Linux command to force the whole program to run on one logical core.

t a s k s e t −c 0 e x e c u t a b l e

3



Figure 3: Intel Core 2 Quad architecture, Q9650 (mu)

Figure 4: Intel Xeon architecture, X5650 (xi)

Using this command, we get consistent and reliable simulation results, as shownin Table 1, 2,
3, 4, 5, 6 and 7. The consistent simulation time and the 99% CPU loads indicate that the whole
program indeed runs on one logical core.

The initial LiteThreads has the loop iterations of (100, 200) in the mutexlock and mutexunlock
functions [1]. When compared with the other two thread libraries, it has slightly larger user time
and elapsed time than PosixThreads, as indicated in Table 1 and 2. QuickThreads always has the
best performance on the four servers, as long as we only use the sequential simulator. The zero
system time and much smaller user time indicate that QuickThreads has no kernel-level overhead
and its user-level scheduling is much more efficient than the other two.

For the initial LiteThreads, it seems that it is worse than PosixThreads. However, as we dis-
cussed in the previous section, the simulation time of LiteThreads largely relies on the loop itera-
tions in the mutexlock and mutexunlock. Thus, with changes of the loop iterations, LiteThreads
would achieve a smaller simulation time, as demonstrated in Table 3, and 4. In all thecases, the

4



Table 1: Simulation Results of Producer-Consumer Model on alpha and epsilon (LiteThreads
loops=100, 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
10.1s 12.71s 22.87s 99.00%
10.45s 12.11s 22.62s 99.00%

alpha 9.41s 13.02s 22.49s 99.00% LiteThreads
9.75s 12.9s 22.83s 99.00%
10.38s 14.2s 24.65s 99.00%
5.76s 13.5s 19.3s 99.00%
5.91s 13.24s 19.2s 99.00%

alpha 5.77s 13.25s 19.07s 99.00% PosixThreads
5.89s 13.36s 19.29s 99.00%
5.74s 13.22s 19s 99.00%
0.69s 0 0.69s 99.00%
0.74s 0 0.74s 99.00%

alpha 0.7s 0 0.7s 99.00% QuickThreads
0.7s 0 0.71s 99.00%
0.69s 0 0.7s 99.00%
10.33s 14.59s 24.95s 99.00%
9.51s 13.62s 23.14s 99.00%

epsilon 8.99s 13.92s 22.92s 99.00% LiteThreads
11.58s 12.94s 24.53s 99.00%
9.35s 13.83s 23.19s 99.00%
5.04s 15.38s 20.43s 99.00%
5.26s 15.8s 21.09s 99.00%

epsilon 5.37 15.52s 20.93s 99.00% PosixThreads
5.41s 15.08s 20.51s 99.00%
5.71s 15.1s 20.83s 99.00%
0.57s 0 0.57s 99.00%
0.59s 0 0.59s 99.00%

epsilon 0.59s 0 0.59s 99.00% QuickThreads
0.57s 0 0.57s 99.00%
0.57s 0 0.58s 99.00%

LiteThreads library has identical system time as when the loop iterations are (100, 200), since the
spin time only affects the user-level time. As the loop iteration in the mutexunlock increases (from
0 to 200 and 2000), the user time of the simulation increments monotonically (in Table3, 4, 7),
while the spin time in the mutexlock has no effect on the simulation time.

As we are using the sequential simulator, these phenomena are easily explainable. When the
current thread is running in the program, no other thread can enter or exist the critical section during
the spin lock of this thread. After releasing the lock, any thread could enterthe critical section if no
one else is executing. In such a case, the spin time in the mutexunlock is wasted and the lock is
always available when some thread wants to grab it. Thus, the user time in the simulation is linear
to the spin time in the mutexunlock and unrelated to the loop iteration in the mutexlock.

5



Table 2: Simulation Results of Producer-Consumer Model on mu and xi (LiteThreads loops=100,
200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.43s 5.17s 7.61s 99.00%
2.44s 5.1s 7.55s 99.00%

mu 2.49s 5.06s 7.55s 99.00% LiteThreads
2.51s 5.09s 7.6s 99.00%
2.55s 5.07s 7.63s 99.00%
1.6s 4.9s 6.51s 99.00%
1.51s 4.98s 6.5s 99.00%

mu 1.58s 4.93s 6.52s 99.00% PosixThreads
1.59s 4.92s 6.52s 99.00%
1.64s 4.85s 6.5s 99.00%
0.34s 0 0.34s 99.00%
0.33s 0 0.34s 99.00%

mu 0.33s 0 0.33s 99.00% QuickThreads
0.33s 0 0.34s 99.00%
0.33s 0 0.34s 99.00%
2.61s 3.65s 6.28s 99.00%
2.71s 3.63s 6.36s 99.00%

xi 2.65s 3.8s 6.48s 99.00% LiteThreads
2.56s 3.68s 6.27s 99.00%
2.63s 3.93s 6.59s 99.00%
1.33s 4.75s 6.1s 99.00%
1.27s 4.99s 6.28s 99.00%

xi 1.47s 4.96s 6.45s 99.00% PosixThreads
1.25s 4.86s 6.13s 99.00%
1.36s 4.89s 6.27s 99.00%
0.55s 0 0.55s 99.00%
0.53s 0 0.54s 99.00%

xi 0.53s 0 0.54s 99.00% QuickThreads
0.53s 0 0.54s 99.00%
0.53s 0 0.53s 99.00%

In the most optimized case (loop iterations=0,0), the LiteThreads library spends no time in
spinlock and the smaller user time of LiteThreads leads to better performance than PosixThreads.

3 Performance and Optimizations on Thread Creation and Deletion

Another difference in LiteThreads is that it makes use of clone system call,instead of fork in the
thread creation. Compared with fork, clone system call has more options to control the sharing
between the parent and child thread, and would be more efficient when new child threads are created.
Except that, the mechanism of the two thread libaries in thread creation is similar.

6



Table 3: Simulation Results of Producer-Consumer Model (LiteThreads loops=0, 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4.31s 13.38s 17.73s 99.00%
4.03s 13.76s 17.83s 99.00%

alpha 4.24s 13.36s 17.66s 99.00% LiteThreads
4.25s 13.2s 17.49s 99.00%
4.24s 13.23s 17.51s 99.00%
4.39s 13.13s 17.55s 99.00%
4.11s 13.91s 18.05s 99.00%

epsilon 4.26s 13.31s 17.58s 99.00% LiteThreads
3.93s 13.06s 17s 99.00%
4.17s 12.94s 17.12s 99.00%
1.13s 5.07s 6.2s 99.00%
1.05s 5.19s 6.25s 99.00%

mu 1.13s 5.07s 6.21s 99.00% LiteThreads
1.13s 5.09s 6.22s 99.00%
1.16s 5.06s 6.23s 99.00%
0.97s 3.82s 4.8s 99.00%

1s 3.88s 4.9s 99.00%
xi 0.95s 3.64s 4.61s 99.00% LiteThreads

0.98s 3.85s 4.85s 99.00%
1.02s 3.87s 4.9s 99.00%

3.1 Stack Space Allocation

Before invoking the system call (clone or fork), the thread library needs to allocate a chunk of stack
space for the new thread. In both thread libraries, this process is achieved by themalloc() function
which is quite complex and time-consuming. By finding a feasible space whenevever a new thread
is created, themalloc() limits the performance of both thread libraries. In order to achieve a higher
efficiency in LiteThreads, we need to find another way to allocate the stack space.

As eachmalloc()function call needs to switch between the user level and system level, and also
spends lots of time finding a big enough chunk of free space, themalloc()function consumes much
simulation time whenever it is called. One way to reduce the complexity is to allocate a whole
chunk of stack space at the beginning of the simulation. As the stack space for each thread is fixed,
we can use onemalloc() function call to allocate the stack space for all the threads created in the
program. Later when a new thread is created, the simulator only needs to pickthe first available
stack space from the whole chunk of memory.

In the LiteThreads library, we utilize this mechanism to optimize thread creation. An integer
arrayFreeStacksis used as the data structure to record which stack space is available. The integer
variableFreeStackTophold the top index in theFreeStacks. To make thread creation faster, the array
FreeStacksworks as a stack and the allocation of a piece of stack space only involves pulling the
top item from the arrayFreeStacks. This operation takes constant time and there is no time spent in
searching. Our specific implementation is shown as Listing 1 and Listing 2.

7



Table 4: Simulation Results of Producer-Consumer Model (LiteThreads loops=0, 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
8.4s 13.82s 22.27s 99.00%
9.85s 12.58s 22.49s 99.00%

alpha 10.22s 12.31s 22.57s 99.00% LiteThreads
9.54s 12.87s 22.57s 99.00%
10.3s 12.27s 22.62s 99.00%
10.76s 13.1s 23.93s 99.00%
9.16s 14.19s 23.37s 99.00%

epsilon 9.46s 13.6s 23.1s 99.00% LiteThreads
8.88s 14.37s 23.26s 99.00%
10.32s 13.51s 23.91s 99.00%
2.45s 5.08s 7.54s 99.00%
2.28s 5.28s 7.56s 99.00%

mu 2.47s 5.09s 7.57s 99.00% LiteThreads
2.49s 5.02s 7.52s 99.00%
2.29s 5.2s 7.5s 99.00%
2.62s 3.8s 6.44s 99.00%
2.51s 3.64s 6.18s 99.00%

xi 2.51s 3.64s 6.17s 99.00% LiteThreads
2.62s 3.73s 6.38s 99.00%
2.49s 3.7s 6.21s 99.00%

Listing 1: Thread Initialization with Constant-time Stack Space Allocation
1 s t a t i c i n t F r e e S t a c k s [THREADSTACK NUM ] ;
2 s t a t i c i n t FreeStackTop ;
3 s t a t i c vo id ∗Globa l S tackTop ;
4 s t a t i c vo id ∗ G l o b a l S t a c k S t a r t ;
5
6 vo id l i t e t h r e a d i n i t ( vo id )
7 {
8 i n t i ;
9

10 i f ( ! ( G l o b a l S t a c k S t a r t = ma l loc ( ( SIMTHREAD STACK SIZE
11 + s i z e o f( l i t e t h r e a d a r g ) ) ∗ THREAD STACK NUM ) ) )
12 {
13 re turn ;
14 }
15 Globa l S tackTop = (char ∗ ) G l o b a l S t a c k S t a r t + SIMTHREAD STACK SIZE
16 ∗ THREAD STACK NUM + s i z e o f( l i t e t h r e a d a r g )
17 ∗ (THREAD STACK NUM − 1 ) ;
18 f o r ( i = 0 ; i < THREAD STACK NUM; i ++)
19 F r e e S t a c k s [ i ] = i ;
20 FreeStackTop = i− 1 ;
21 }

8



Table 5: Simulation Results of Producer-Consumer Model (LiteThreads loops=100, 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4.16s 12.36s 16.57s 99.00%
4.42s 12.1s 16.55s 99.00%

alpha 4.19s 12.32s 16.56s 99.00% LiteThreads
4.33s 12.08s 16.45s 99.00%
4.18s 12.3s 16.51s 99.00%
4.55s 12.55s 17.15s 99.00%
4.78s 11.98s 16.77s 99.00%

epsilon 4.02s 12.84s 16.87s 99.00% LiteThreads
4.07s 12.8s 16.88s 99.00%
4.06s 12.87s 16.95s 99.00%
1.11s 5.15s 6.26s 99.00%
1.22s 5.05s 6.28s 99.00%

mu 1.16s 5.09s 6.26s 99.00% LiteThreads
1.12s 5.07s 6.2s 99.00%
1.13s 5.08s 6.22s 99.00%
1.04s 3.79s 4.85s 99.00%
1.04s 3.71s 4.77s 99.00%

xi 1.03s 3.9s 4.94s 99.00% LiteThreads
0.92s 3.73s 4.67s 99.00%
1.02s 3.84s 4.88s 99.00%

Listing 2: Thread Creation with Constant-time Stack Space Allocation
1 i n t l i t e t h r e a d c r e a t e (i n t (∗ fn ) ( vo id ∗ ) , vo id ∗ a r g s )
2 {
3 vo id ∗ s t a c k t o p ;
4 vo id ∗ s t a c k ;
5 l i t e t h r e a d a r g ∗ l t a r g ;
6 i n t R e s u l t ;
7
8 a s s e r t ( fn ) ;
9

10 i f ( F reeStackTop>= 0)
11 { s t a c k = (char ∗ ) G l o b a l S t a c k S t a r t + ( SIMTHREAD STACK SIZE
12 + s i z e o f( l i t e t h r e a d a r g ) ) ∗ F r e e S t a c k s [ FreeStackTop ] ;
13 R e s u l t = F r e e S t a c k s [ FreeStackTop ] ;
14 FreeStackTop−−;
15 }
16 e l s e
17 {
18 e r r n o = ENOMEM;
19 re turn −1;
20 }
21
22 s t a c k t o p = (char ∗ ) s t a c k + SIMTHREAD STACK SIZE ;
23 l t a r g = ( l i t e t h r e a d a r g∗ ) s t a c k t o p ;

9



Table 6: Simulation Results of Producer-Consumer Model (LiteThreads loops=1000, 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
4.25s 12.3s 16.6s 99.00%
3.75s 12.7s 16.49s 99.00%

alpha 4.19s 12.25s 16.48s 99.00% LiteThreads
4.31s 12.24s 16.59s 99.00%
4.25s 12.15s 16.44s 99.00%
4.04s 14.45s 18.51s 99.00%
4.08s 13.51s 17.71s 99.00%

epsilon 4.36s 13.08s 17.48s 99.00% LiteThreads
4.54s 13.87s 18.42s 99.00%
4.01s 14.73s 18.76s 99.00%
1.1s 5.11s 6.22s 99.00%
1.14s 5.06s 6.21s 99.00%

mu 1.11s 5.09s 6.2s 99.00% LiteThreads
1.07s 5.13s 6.21s 99.00%
1.08s 5.13s 6.22s 99.00%
1.07s 3.78s 4.86s 99.00%
1.04s 3.87s 4.93s 99.00%

xi 0.99s 3.67s 4.68s 99.00% LiteThreads
1.05s 3.8s 4.88s 99.00%
0.98s 3.84s 4.84s 99.00%

24 l t a r g−>fn = fn ;
25 l t a r g−>arg = a r g s ;
26 l t a r g−>P r i v a t e D a t a = NULL;
27 # i f d e f STACK TOP CHECK
28 l t a r g−>guard1 [ 0 ] = l t a r g−>guard1 [ 1 ] = l t a r g−>guard1 [ 2 ] = 0xDEADBEEF;
29 l t a r g−>guard2 [ 0 ] = l t a r g−>guard2 [ 1 ] = l t a r g−>guard2 [ 2 ] = 0xDEADBEEF;
30 # end i f
31
32 ThreadID [ R e s u l t ] = c l one ( l i t e t h r e a ds t a r t s t o p , s t a c k t o p ,
33 # i f d e f CLONE IO
34 CLONE IO |
35 # end i f
36 CLONE FS | CLONE FILES | CLONE SIGHAND
37 | CLONEVM | CLONE THREAD |
38 # i f d e f CLONE DETACHED
39 CLONE DETACHED |
40 # end i f
41 CLONE CHILD SETTID | CLONE CHILD CLEARTID ,
42 l t a r g , NULL, NULL, &c t i d [ R e s u l t ] ) ;
43
44 i f ( ThreadID [ R e s u l t ] != −1)
45 re turn R e s u l t ;
46 e l s e
47 re turn −1;
48 }

10



Table 7: Simulation Results of Producer-Consumer Model (LiteThreads loops=1000, 2000)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
61.07s 12.88s 74.14s 99.00%
61.31s 12.34s 73.81s 99.00%

alpha 62.21s 11.59s 73.96s 99.00% LiteThreads
61.97s 11.82s 73.95s 99.00%
62.13s 11.65s 73.94s 99.00%
63.54s 14.11s 77.67s 99.00%
63.36s 13.81s 77.19s 99.00%

epsilon 63.85s 13.54s 77.42s 99.00% LiteThreads
63.55s 13.64s 77.22s 99.00%
63.72s 13.52s 77.27s 99.00%
14.4s 4.74s 19.15s 99.00%
12.3s 6.83s 19.13s 99.00%

mu 11.81s 7.27s 19.09s 99.00% LiteThreads
13.35s 5.79s 19.14s 99.00%
13.62s 5.48s 19.11s 99.00%
14.94s 4.3s 19.3s 99.00%
15.79s 3.58s 19.43s 99.00%

xi 14.29s 5.09s 19.44s 99.00% LiteThreads
15.75s 3.77s 19.58s 99.00%
14.27s 5.03s 19.36s 99.00%

3.2 Thread Creation and Deletion Benchmark

In order to measure the performance of the optimized LiteThreads library, abenchmark having
intensive thread creation/deletion (named TFMUL, Threads with pure FloatMultiplication) is uti-
lized. Also, all the tests are running on the four 32-bit Linux machines. Theinitial LiteThreads,
the allocation-optimized LiteThreads, PosixThreads, and QuickThreads are used in the sequential
simulator. To avoid the same stack space is reused from time to time in the simulation, a random
pattern of stack space allocation is added into the testbench. The details of thetestbench are shown
in Listing 3.

Listing 3: Intensive Thread Creation/Deletion Benchmark
1 # inc lude <s t d i o . h>
2 # inc lude <s t d l i b . h>
3 # inc lude <sim . sh>
4
5 / / number o f m u l t i p l i c a t i o n s per u n i t
6 # d e f i n e MAXLOOP 1000
7
8 / / number o f l oops
9 # i f n d e f MAXTHREAD

11



10 # d e f i n e MAXTHREAD 10000
11 # end i f
12
13 t ypede f double f l o a t t ;
14
15 b e h a v i o r Fmul
16 {
17 i n t i = 0 ;
18 f l o a t t f = 1 . 2 ;
19
20 vo id main ( )
21 {
22 whi le ( i < MAXLOOP)
23 {
24 f ∗= 1 . 1 ;
25 i ++;
26 }
27 }
28 } ;
29
30 b e h a v i o r Main
31 {
32 Fmul fmul0 , fmul1 , fmul2 , fmul3 , fmul4 ,
33 fmul5 , fmul6 , fmul7 , fmul8 , fmul9 ;
34
35 i n t main (vo id ) {
36 i n t i ;
37 char ∗ p t r47 , ∗ p t r53 , ∗ p t r73 , ∗ p t r 8 9 ;
38 p r i n t f ( ”Fmul[%d,%d ] s t a r t i n g . . . \n” , MAXTHREAD, MAXLOOP) ;
39 f o r ( i = 0 ; i < MAXTHREAD; i ++)
40 {
41 par { fmul0 ; }
42 p t r 4 7 = (char ∗ ) ma l loc ( 4 7 ) ;
43 par { fmul0 ; fmul1 ; fmul2 ; fmul3 ; fmul4 ; fmul5 ; fmul6 ; }
44 p t r 7 3 = (char ∗ ) ma l loc ( 7 3 ) ;
45 f r e e ( p t r 4 7 ) ;
46 par { fmul0 ; fmul1 ; fmul2 ; fmul3 ; fmul4 ; fmul5 ; fmul6 ; fmul7 ; }
47 p t r 7 3 = (char ∗ ) ma l loc ( 7 3 ) ;
48 f r e e ( p t r 8 9 ) ;
49 par { fmul0 ; fmul1 ; fmul2 ; fmul3 ; }
50 p t r 4 7 = (char ∗ ) ma l loc ( 4 7 ) ;
51 f r e e ( p t r 7 3 ) ;
52 par { fmul0 ; fmul1 ; }
53 p t r 8 9 = (char ∗ ) ma l loc ( 8 9 ) ;
54 f r e e ( p t r 4 7 ) ;
55 par { fmul0 ; fmul1 ; fmul2 ; fmul3 ; fmul4 ; }
56 p t r 5 3 = (char ∗ ) ma l loc ( 5 3 ) ;
57 f r e e ( p t r 8 9 ) ;
58 par { fmul0 ; fmul1 ; fmul2 ; fmul3 ; fmul4 ; fmul5 ; }
59 p t r 7 3 = (char ∗ ) ma l loc ( 7 3 ) ;
60 f r e e ( p t r 5 3 ) ;
61 f r e e ( p t r 7 3 ) ;

12



62 }
63 p r i n t f ( ”Done !\ n” ) ;
64 re turn ( 0 ) ;
65 }
66 } ;

3.3 Experiments and Results

Table 8: Simulation Results of TFMUL on alpha

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
10.31s 52.51s 67.95s 92.00%
10.31s 57.44s 73s 92.00%

alpha 9.99s 57.34s 72.68s 92.00% Initial LiteThreads
10.48s 56.93s 72.54s 92.00%
10.17s 57.59s 72.84s 93.00%
9.23s 46.09s 60.2s 91.00%
9.17s 46.06s 60.21s 91.00%

alpha 9.17s 45.25s 59.4s 91.00% Optimized LiteThreads
9.15s 46.56s 60.81s 91.00%
9.03s 45.84s 59.86s 91.00%
13.17s 47.31s 65.81s 91.00%
13.33s 47.35s 65.95s 92.00%

alpha 13.33s 47.92s 66.62s 91.00% Posixthread
13.25s 47.62s 66.08s 92.00%
13.32s 47.46s 65.96s 92.00%
1.71s 3.74s 5.51s 99.00%
1.64s 3.69s 5.39s 99.00%

alpha 1.71s 3.64s 5.4s 99.00% Quickthread
1.69s 4.01s 5.76s 98.00%
1.76s 3.85s 5.66s 99.00%

The simulation results of TFMUL are shown in Table 8, 9, 10 and 11. For boththe intial
LiteThreads and the optimized LiteThreads in these tables, they have alreadyimplemented the op-
timization in context switching (loop iterations in mutexlock and mutexunlock are 0). Thus, both
of them should have smaller user time than PosixThreads, which is indicated in the second column
in Table 8, 9, 10 and 11.

On the other hand, as each thread in the benchmark has only pure computation, most of the
simulation time is spent on thread creation and deletion (1,000,000 threads in total), which results
in much larger system time than user time.

From the tables it is easily seen that, on all the four servers the QuickThreads library still has
the smallest simulation time in both user time and system time. For the initial LiteThreads, ithas a
little larger system time than PosixThreads in Table 8. The same phenomena are shown in the other
three tables.

13



Table 9: Simulation Results of TFMUL on epsilon

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
8.36s 50.81s 64.56s 91.00%
8.06s 49.13s 62.36s 91.00%

epsilon 7.93s 49.42s 62.53s 91.00% Initial LiteThreads
8.17s 49.01s 62.35s 91.00%
8.01s 49.27s 62.46s 91.00%
7.65s 47.27s 60.5s 90.00%
7.65s 47.36s 60.71s 90.00%

epsilon 7.16s 44.21s 56.67s 90.00% Optimized LiteThreads
7.33s 45.41s 58.17s 90.00%
7.66s 47.71s 60.66s 91.00%
10.56s 46.4s 62.41s 91.00%
10.15s 46.07s 61.54s 91.00%

epsilon 10.71s 45.64s 61.64s 91.00% Posixthread
10.36s 46.28s 61.9s 91.00%
10.49s 46.66s 62.45s 91.00%
1.57s 4.02s 5.66s 98.00%
1.47s 3.69s 5.2s 99.00%

epsilon 1.52s 3.69s 5.26s 99.00% Quickthread
1.57s 3.93s 5.6s 98.00%
1.44s 3.92s 5.4s 99.00%

After implementing the allocation optimization in thread creation, the system time of
LiteThreads on all servers is reduced obviously. For an instance, the system time of the LiteThreads
in Table 11 decreases from about 17 seconds to 14 seconds. However, despite of the obvious im-
provement in system level overhead, sometimes on epsilon and mu the system timeof LiteThreads
is still a little larger than PosixThreads.

Combining the optimizations on context switching and thread creation, the LiteThreads library
has achieved better performance in elapsed time than the PosixThreads library on all four machines.

4 Performance on 64-bit Architectures

All the previous experiments are running on the 32-bit Linux hosts. On a 64-bit host, the
LiteThreads, PosixThreads and QuickThreads have similar performance as before.

Next, we execute the previous two benchmarks on one 64-bit machine. Thexi server in our
previous experiments has the 64-bit CPU and 64-bit Fedora 12 Linux operating system installed.
When enabling these two features, this machine can run the 64-bit benchmarks.

In our new experiment, the two original benchmarks are both running on thismachine and
the LiteThreads has included both the optimizations of the context switching andthe stack space
allocation. Besides, all the LiteThreads, PosixThreads and QuickThreads libraries are running in
64-bit mode.

14



Table 10: Simulation Results of TFMUL on mu

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
3.01s 21.78s 26.99s 91.00%
2.93s 21.79s 26.9s 91.00%

mu 3.08s 21.83s 27.1s 91.00% Initial LiteThreads
3.02s 21.79s 26.99s 91.00%
3.12s 21.75s 27.06s 91.00%
2.51s 19.05s 23.74s 90.00%
2.41s 19.11s 23.71s 90.00%

mu 2.53s 19.15s 23.85s 90.00% Optimized LiteThreads
2.55s 18.95s 23.65s 90.00%
2.36s 19s 23.53s 90.00%
3.82s 17.39s 23.5s 90.00%
3.74s 17.78s 23.79s 90.00%

mu 3.79s 17.56s 23.64s 90.00% Posixthread
3.82s 17.32s 23.42s 90.00%
3.72s 17.8s 23.83s 90.00%
0.58s 1.81s 2.39s 99.00%
0.58s 1.78s 2.37s 99.00%

mu 0.57s 1.72s 2.29s 99.00% Quickthread
0.59s 1.71s 2.31s 99.00%
0.57s 1.82s 2.4s 99.00%

From the simulation results in Table 12 and 13, we can easily find that the simulationperfor-
mance is similar as before. In both the two benchmarks, the QuickThreads library has the best
performance, while the optimized LiteThreads are obviously better than PosixThreads. When using
the sequential simulator, QuickThreads accordingly has the smallest user and system time, leading
to the much smaller elapsed time in simulation.

In the benchmark of the Producer-Consumer model, the user time of LiteThreads is similar
to that of PosixThreads, but the smaller system time makes LiteThreads more efficient. In the
benchmark with intensive thread creation/deletion, both of the user time and system time in the
LiteThreads library are smaller than those of the PosixThreads library, asa result of the optimization
in the mutex lock/unlock and stack space allocation.

Based on these statistics, we can conclude that LiteThreads has better performance than Posix-
Threads on the 64-bit machine, just as on the 32-bit hosts.

5 Conclusion and Future Work

In this report, we made use of two different benchmarks to evaluate three thread libraries used in the
SpecC sequential simulator. From the simulation results, we can draw the conclusion that the Quick-
Threads library is most efficient in the sequential simulator, while the PosixThreads library is worse
than the optimized LiteThreads library. The optimizations on the context switchingand thread cre-
ation/deletion reduce the user-level and system-level overhead of LiteThreads, respectively. These

15



Table 11: Simulation Results of TFMUL on xi

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.56s 17.19s 21.75s 90.00%
2.42s 17.1s 21.54s 90.00%

xi 2.48s 16.85s 21.32s 90.00% Initial LiteThreads
2.48s 16.9s 21.37s 90.00%
2.5s 17.25s 21.77s 90.00%
2.11s 14.67s 18.69s 89.00%
2.03s 14.71s 18.65s 89.00%

xi 2s 14.49s 18.41s 89.00% Optimized LiteThreads
1.97s 14.44s 18.27s 89.00%
1.99s 14.5s 18.4s 89.00%
3.29s 16.41s 21.82s 90.00%
3.32s 16.28s 21.68s 90.00%

xi 3.17s 16.41s 21.7s 90.00% Posixthread
3.3s 16.55s 21.93s 90.00%
3.34s 16.43s 21.9s 90.00%
0.64s 1.33s 2.02s 97.00%
0.64s 1.24 1.94s 97.00%

xi 0.65s 1.38s 2.09s 97.00% Quickthread
0.6s 1.26s 1.91s 97.00%
0.59s 1.23s 1.87s 97.00%

Table 12: Simulation Results of Producer-Consumer Model on 64-bit Architectures

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
10.46s 27.26s 37.83s 99.00%
10.42s 27.48s 38.01s 99.00%

xi 9.98s 26.8s 36.89s 99.00% LiteThreads
10.61s 27.66s 38.39s 99.00%
10.24s 27.45s 37.8s 99.00%
10.55s 33s 43.68s 99.00%
10.43s 33.11s 43.67s 99.00%

xi 10.51s 32.75s 43.38s 99.00% Posixthread
10.96s 33.65s 44.74s 99.00%
10.34s 33.61s 44.07s 99.00%
4.35s 0 4.36s 99.00%
4.11s 0 4.12s 99.00%

xi 4.31s 0 4.32s 99.00% Quickthread
4.25s 0 4.26s 99.00%
4.3s 0 4.32s 99.00%

conclusions are true on both 32-bit and 64-bit Linux servers.

One open question we noticed in the evaluation is the relationship between the simulation per-
formance and the CPU affinity. In our experiments with intensive context switches, we get some

16



Table 13: Simulation Results of TFMUL on 64-bit Architectures

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
2.3s 14.67s 18.95s 89.00%
2.26s 14.57s 18.78s 89.00%

xi 2.29s 14.44s 18.67s 89.00% LiteThreads
2.36s 14.52s 18.83s 89.00%
2.27s 14.38s 18.59s 89.00%
3.92s 20.26s 26.37s 91.00%
4.05s 19.69s 25.9s 91.00%

xi 3.85s 20.08s 26.12s 91.00% Posixthread
4s 19.99s 26.19 91.00%

3.94s 19.97s 26.07s 91.00%
0.8s 3.38s 4.2s 99.00%
0.83s 3.08s 3.93s 99.00%

xi 0.82s 3.22s 4.06s 99.00% Quickthread
0.82s 3.2s 4.04s 99.00%
0.76s 2.99s 3.76s 99.00%

interesting simulation results when using the LiteThreads and setting the CPU affinity. Table 14, 15,
16, 17 and 18, 19, 20, 21 list the simulation performance of LiteThreads in two different situations.

Table 14: Simulation Results of Producer-Consumer Model (cores=0 1, loops=0 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
6.27s 15s 19.93s 106.00%
6.38s 14.56s 18.54s 112.00%

epsilon 5.02s 16.18s 19.31s 109.00% LiteThreads
7.13s 14.54s 20.16s 107.00%
5.84s 16.78s 18.69s 121.00%
0.58s 5.19s 7.76s 74.00%
0.49s 5.2s 7.52s 75.00%

mu 0.44s 5.25s 7.29s 78.00% LiteThreads
0.55s 5.14s 7.1s 80.00%
0.45s 5.1s 7s 79.00%
2.91s 11.06s 14.54s 96.00%
2.59s 11.21s 14.54s 94.00%

xi 1.97s 11.84s 14.55s 94.00% LiteThreads
1.84s 12.04s 14.52s 95.00%
3.54s 10.2s 14.45s 95.00%

In the first experiment, the Producer-Consumer benchmark is running onservers epsilon, mu
and xi, while the Producer thread and the Consumer thread in the program are set on logical core
0 and 1 respectively. The second experiment is only carried out on server xi, with the two threads
(Producer thread and Consumer thread) on the same physical core buttwo different logical cores
(logical cores 0&12, 3&15 and 10&22).

17



Table 15: Simulation Results of Producer-Consumer Model (cores=0 1, loops=100 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
7.03s 14.43s 19.64s 109.00%
6.12s 17.74s 24.53s 97.00%

epsilon 5.79s 15.64s 20.23s 105.00% LiteThreads
7.1s 13.7s 18.12s 114.00%
6.13s 14.85s 18.2s 115.00%
0.2s 5.67s 7.22s 81.00%
0.48s 5.25s 6.66s 86.00%

mu 0.55s 5.06s 6.58s 85.00% LiteThreads
0.47s 5.18s 6.77s 83.00%
0.52s 5.19s 7.11s 80.00%
5.09s 8.91s 15.05s 93.00%
3.65s 10.28s 15.08s 92.00%

xi 5.04s 8.73s 14.62s 94.00% LiteThreads
3.06s 10.79s 14.58s 95.00%
5.54s 8.24s 14.43s 95.00%

Table 16: Simulation Results of Producer-Consumer Model (cores=0 1, loops=0 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
10.46s 14.63s 24.22s 103.00%
10.49s 13.9s 20.53s 118.00%

epsilon 10.54s 13.86s 19.43s 125.00% LiteThreads
10.57s 13.85s 19.24s 126.00%
10.29s 14.21s 19.34s 126.00%
2.06s 4.76s 7.02s 97.00%
1.63s 4.93s 6.68s 98.00%

mu 1.8s 4.72s 6.36s 102.00% LiteThreads
1.74s 4.86s 6.65s 99.00%
1.96s 4.74s 7.12s 94.00%
6.37s 10.51s 14.67s 115.00%
6.6s 10.3s 14.79s 114.00%

xi 6.46s 10.44s 14.66s 115.00% LiteThreads
6.46s 10.3s 14.76s 113.00%
7.07s 10.14s 14.85s 115.00%

From Figure 1, 2, 3 and 4, we can find that the communication overhead grows in these two
experiments. However, in both experiments, we could still get the same patterns of the user time
and system time as those in the case where all the threads in the program are forced to run on
one logical core. The system time in different cases stays similar, while the user time decreases
monotonically with the loop iteration in the mutex unlock, and is not affected by the variation of the
loop iteration in the mutex lock.

However, in the first experiment (Table 14, 15, 16, 17), we can notice that the user time, system

18



Table 17: Simulation Results of Producer-Consumer Model (cores=0 1, loops=100 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Thread Library
10.57s 14.44s 20.82s 120.00%
10.7s 15.05s 24.15s 106.00%

epsilon 10.38s 14.95s 21.4s 118.00% LiteThreads
11.08s 15.58s 25.42s 104.00%
10.14s 15.27s 20.24s 125.00%
1.54s 5.04s 6.43s 102.00%
1.4s 5.23s 6.72s 98.00%

mu 1.84s 4.85s 7.06s 94.00% LiteThreads
1.78s 4.86s 6.66s 99.00%
1.79s 5.13s 7.19s 96.00%
4.24s 12.38s 15.08s 110.00%
4.98s 11.79s 15.09s 111.00%

xi 6.01s 10.86s 15.22s 110.00% LiteThreads
4.89s 11.88s 15.03s 111.00%
6.13s 10.52s 14.64s 113.00%

Table 18: Simulation Results of Producer-Consumer Model on xi(same physical core, different
logical cores, loops=0 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Core
3.34s 6.53s 10.65s 92.00%
3.2s 6.84s 10.88s 92.00%

xi 3.54s 5.29s 9.59s 92.00% (0 12)
3.45s 6.12s 10.35s 92.00%
2.71s 5.66s 8.66s 96.00%
3.07s 5.44s 8.46s 100.00%
3.31s 5.51s 8.79s 100.00%

xi 3.49s 5.81s 9.65s 96.00% (3 15)
3.12s 5.48s 8.92s 96.00%
3.12s 5.77s 9.38s 94.00%
2.91s 5.53s 8.3s 101.00%
3.05s 5.76s 8.77s 100.00%

xi 3.15s 5.68s 8.68s 101.00% (10 22)
3.25s 5.93s 9.14s 100.00%
3.31s 6.29s 9.81s 97.00%

time and elapsed time are not consistent in each case, which leads to the fact that the elapsed time on
servers mu and xi remains identical no matter how we change the loop iterationsin the LiteThreads
library.

In the second experiment, the elapsed time of LiteThreads is even smaller whenwe increase the
spin time in mutexunlock, contradictory to our conclusion in the previous parts. Also sometimes,
the CPU load surpasses 100%, even though we only use the sequential simulator in the tests.

19



Table 19: Simulation Results of Producer-Consumer Model on xi(same physical core, different
logical cores, loops=100 0)

Hostname Usr Time Sys Time Elapsed Time CPU Load Core
3.38s 6.4s 10.53s 92.00%
3.3s 5.73s 9.81s 92.00%

xi 3s 6.53s 10.21s 93.00% (0 12)
3.36s 6.23s 10.38s 92.00%
3.68s 5.3s 9.68s 92.00%
3.29s 5.81s 9.64s 94.00%
3.49s 5.15s 9.17s 94.00%

xi 3.59s 5.08s 9.15s 94.00% (3 15)
3.27s 5.63s 9.44s 94.00%
3.27s 5.87s 9.74s 93.00%
2.87s 5.46s 8.35s 99.00%
2.95s 5.82s 8.69s 100.00%

xi 2.6s 4.37s 6.78s 102.00% (10 22)
3.29s 6.25s 9.51s 100.00%
3.14s 6.03s 9.13s 100.00%

Table 20: Simulation Results of Producer-Consumer Model on xi(same physical core, different
logical cores, loops=0 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Core
4.29s 4s 7.58s 109.00%
5.13s 3.7s 7.86s 112.00%

xi 4.22s 4.22s 7.61s 110.00% (0 12)
4.17s 4.39s 7.79s 109.00%
4.39s 4.1s 7.64s 111.00%
4.78s 3.56s 7.07s 118.00%
4.15s 3.93s 6.76s 119.00%

xi 4.33s 4.09s 6.99s 120.00% (3 15)
4.57s 3.66s 7.01s 117.00%
4.54s 4.29s 7.67s 115.00%
4.83s 3.63s 6.95s 121.00%
4.05s 4.15s 6.76s 121.00%

xi 4.31s 4.25s 6.98s 122.00% (10 22)
3.8s 4.39s 6.78s 120.00%
4.24s 4.22s 6.97s 121.00%

These phenonema are explicit in the two experiments, and extremely obvious on servers epsilon
and xi. As both epsilon and xi have the feature of hyperthreading, while mudoes not, we believe
these phenomena are related behind the hyperthreading feature.

Based on what we have found, we plan to design more specific experimentsto find the reasons
of these open questions in the future.

20



Table 21: Simulation Results of Producer-Consumer Model on xi(same physical core, different
logical cores, loops=100 200)

Hostname Usr Time Sys Time Elapsed Time CPU Load Core
4.38s 4.01s 7.63s 110.00%
4.46s 4.13s 7.77s 110.00%

xi 4.7s 3.91s 7.72s 111.00% (0 12)
4.46s 4.14s 7.66s 112.00%
4.63s 3.98s 7.77s 110.00%
4.79s 3.5s 7.56s 109.00%
4.29s 4.18s 7.27s 116.00%

xi 4.95s 3.53s 7.55s 112.00% (3 15)
4.94s 3.47s 7.47s 112.00%
4.95s 3.59s 7.52s 113.00%
3.84s 4.21s 6.64s 121.00%
4.32s 4.11s 6.96s 121.00%

xi 3.95s 4.09s 6.64s 121.00% (10 22)
3.68s 3.87s 5.95s 126.00%
3.79s 3.93s 6.08s 126.00%

Acknowledgment

The authors would like to thanks Jeff White and Tony Mathew for their initial exploration on
LiteThreads as an alternative to PosixThreads.

This work has been supported in part by funding from the National Science Foundation (NSF)
under research grant NSF Award #0747523. The authors thank the NSF for the valuable support.
Any opinions, findings, and conclusions or recommendations expressedin this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] Tony Mathew and Rainer D̈omer. A custom thread library built on native linux threads for
faster embedded system simulation. Technical Report CECS-TR-11-10,Center for Embedded
Computer Systems, University of California, Irvine, December 2011.

21


	1 Introduction
	2 Performance and Optimizations on Context Switching
	2.1 Experiments and Results

	3 Performance and Optimizations on Thread Creation and Deletion
	3.1 Stack Space Allocation
	3.2 Thread Creation and Deletion Benchmark
	3.3 Experiments and Results

	4 Performance on 64-bit Architectures
	5 Conclusion and Future Work
	References

