
Center for Embedded Computer Systems
University of California, Irvine

System Level Modeling of a H.264 Video Encoder

Che-Wei Chang, Rainer D̈omer

Technical Report CECS-11-04
June 2, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

cheweic,doemer@uci.edu
http://www.cecs.uci.edu

cheweic, doemer@uci.edu
http://www.cecs.uci.edu

System Level Modeling of a H.264 Video Encoder

Che-Wei Chang, Rainer D̈omer

Technical Report CECS-11-04
June 2, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8919

cheweic,doemer@uci.edu
http://www.cecs.uci.edu

Abstract

In this report, we demonstrate the results of our system modeling project involving the encoder of the H.264
advanced video coding(AVC) standard. The goal is to create aH.264/AVC video encoder model with SpecC
System Level Design Language (SLDL). First, we briefly introduce the essential features of the H.264/AVC video
encoder algorithm and the properties of the JM reference C source codes. We then describe the modifications
we have performed to make the JM reference C implementation compliant for SpecC SLDL. Our model has
been separated into three major behavior blocks, which are Stimulus, Design, and Monitor, to reflect a proper
system design testbench. The design-under-test(DUT) component then has been structured into a hierarchy of
communicating behaviors. In this work, we have identified several opportunities for parallel execution in the
H.264 encoding which we have explicitly specified in the system model. The report concludes with experimental
results that validate the correct functionality of our H.264 encoder model by success full simulation.

cheweic, doemer@uci.edu
http://www.cecs.uci.edu

Contents

1 Introduction 1

2 H.264/AVC Video Encoder Algorithm 2
2.1 Background 2
2.2 Input Video Data Format 2
2.3 Coding Structure of H.264/AVC Video Encoder 2

3 Reference C implementation of H.264/AVC Video Encoder 4
3.1 Properties of H.264/AVC Video Encoder JM 13.0 Reference Software. 4
3.2 SpecC compliant reference implementation 5

4 Modeling of H.264/AVC Video Encoder Platform 6
4.1 Major Behaviors : Stimulus, Design, Monitor 7
4.2 Communication between top-level behaviors 11

5 Exploiting parallelism in H.264 Video Encoder 12
5.1 Luminance/Chrominance residual coding and reconstruction 12
5.2 Motion vector searching for multiple reference frames 13

6 Experiments and Results 14

7 Conclusion and Future Work 15

References 16

ii

List of Figures

1 Basic encoding structure for H.264/AVC for a macroblock 3
2 Hierarchy of Video Stream 4
4 Example of Coding Order 5
3 Code Structure 6
5 Top level of H.264 Encoder Model 9
6 Design under Test Behavior 10
7 Communication between Stimulus and Design 17
8 Communication between Design and Monitor 18
9 Simulation report 19

iii

List of Tables

iv

List of Listings

1 Modes of Intra-Frame Prediction 3
2 Properties of the H.264 JM Reference Encoder 4
3 Variables Initialization Modification 7
4 List of function pointers in JM reference encoder 7
5 Before Function Pointer Elimination 8
6 After Function Pointer Elimination 8
7 Concurrent Execution with par statement 12
8 Residual Coding Parallelization 13
9 Motion Vector Searching Parallelization 14

v

System Level Modeling of a H.264 Video Encoder

CW. Chang, R Domer
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-2625, USA
cheweic,doemer@uci.edu
http://www.cecs.uci.edu

Abstract

In this report, we demonstrate the results of our sys-
tem modeling project involving the encoder of the
H.264 advanced video coding(AVC) standard. The
goal is to create a H.264/AVC video encoder model
with SpecC System Level Design Language (SLDL).
First, we briefly introduce the essential features of the
H.264/AVC video encoder algorithm and the proper-
ties of the JM reference C source codes. We then de-
scribe the modifications we have performed to make
the JM reference C implementation compliant for
SpecC SLDL. Our model has been separated into
three major behavior blocks, which are Stimulus, De-
sign, and Monitor, to reflect a proper system design
testbench. The design-under-test(DUT) component
then has been structured into a hierarchy of communi-
cating behaviors. In this work, we have identified sev-
eral opportunities for parallel execution in the H.264
encoding which we have explicitly specified in the sys-
tem model. The report concludes with experimental
results that validate the correct functionality of our
H.264 encoder model by success full simulation.

1 Introduction

High level languages like C language provide us a
fast path to evaluate our algorithm. However, except
for fully sequential behavior, it cannot model system
architectures such as parallelism and pipeline struc-
ture. Hardware description languages like VHDL or
Verilog can perfectly describe those structures, but to
model the whole system of complex application and
refine it with HDL will be very time consuming. To

simplify the system design flow and evaluate the soft-
ware and hardware as a whole at an early design stage,
languages such as System Verilog, SystemC or SpecC
are developed to fill this gap between high level lan-
guage and HDL. SpecC [2] is one of the system level
description languages (SLDL) which models the al-
gorithm at higher levels of abstraction (than RTL). In
this project, we use SpecC to create the system model
of a H.264/AVC video encoder.

The most important feature of a SpecC model is
the separation of computation and communication.
To accelerate the design of a complex System-on-
Chip application, reusability of existing design such
as hard/soft Intellectual Properties (IPs) is a key fea-
ture to solve this problem. SpecC clearly separates
the design model of system-on-chip into two indepen-
dent parts: computation and communication, which
are encapsulated into modules/behaviors and chan-
nels respectively. Since computation and communi-
cation are dealt with independently, the computation
behavior blocks can still be reused without or with
only minor modification even if the communication in
an existing design does not fit in the requirements of
the new project. The communication protocol can be
easily exchanged by using another channel with com-
patible interface. In the same manner, we can also
modify the computation behavior blocks to fit new
requirements without modifying the communication
channels.

Another important feature of SpecC is its capabil-
ity of modeling parallel structures. In a system con-
structed with multiple processing elements, pipelin-
ing or parallel structure are widely used to gain higher

1

cheweic, doemer@uci.edu
http://www.cecs.uci.edu

resource utility and better performance. High level
programming languages like C language generally are
executed sequentially and do not support parallel or
pipelining structure. In SpecC, programmer can use
’par’ statement in the program to model the parallel
structure in the implementation. In this project, these
two features are also used to create our system-level
model of a H.264/AVC video encoder.

This report is organized as follows: In Section II
we will briefly introduce the H.264/AVC video cod-
ing standard and some features of the JM reference C
implementation. Section III shows the modification
we performed on the JM reference C implementation
so that it can be compiled by SpecC. In Section IV we
will demonstrate our SpecC model of a H.264/AVC
video encoder platform. The parallelism we have ex-
ploited in our H.264 encoder model will be described
in Section V. The simulation result is shown in Sec-
tion VI.

2 H.264/AVC Video Encoder Algo-
rithm

Before we demonstrate our SpecC model of
H.264/Video encoder, in this section we first describe
the algorithm [5] and the reference JM C implemen-
tation [3].

2.1 Background

H.264/AVC is the video coding standard of the ITU-
T Video Coding Experts Group and the ISO/IEC
Moving Picture Experts Group. The main goals of
H.264/AVC standard is to enhance the video compres-
sion performance and provide a ’network-friendly’
video representation for both ’conversational’ appli-
cations (video telephony) and ’non-conversational’
(storage, broadcast, or streaming). Compared with
existing standards H.264/AVC has achieved a great
improvement in rate-distortion efficiency, and it also
provides 17 profiles which support different feature
sets for various applications [4] .

2.2 Input Video Data Format

The input of a H.264 video encoder and output of a
H.264 video decoder are both in YUV format. In a
YUV-format file, the information of brightness, called
luma, and the information of color, calledchroma,
are stored separately. In a YUV-format file, for ev-
ery frame in the video stream, there will be one ar-
ray for storing luma information and two arrays for
chroma information. Because the human visual sys-
tem is more sensitive to luma than chroma, sampling
formats in which the chroma component has only one
half or one fourth of the number of samples than luma
component are proposed. The three major sampling
formats are listed below:

*4-4-4 sampling: The number of chroma samples
is the same as the number of luma samples in each of
the chroma arrays.

*4-2-2 sampling: The number of chroma samples
is the same as the number of luma samples in vertical
dimension, but half in the horizontal dimension.

*4-2-0 sampling: The number of chroma samples
is half of the number of luma samples in both vertical
and horizontal dimensions

In these three sampling formats, the precisions for
each sample are all 8-bits.

2.3 Coding Structure of H.264/AVC Video
Encoder

The basic encoding structure of H.264/AVC is shown
in Figure 1. In the following sections, we will briefly
describe the functions of these blocks.

In H.264/AVC video encoder, each video slice is
encoded using intra-frame or inter-frame prediction to
remove the spatial and temporal similarity in pictures.

* Intra-Frame Prediction: The spatial prediction in
H.264 is called Intra-Frame prediction. It makes use
of the characteristic that in certain areas in a picture,
the pixels values are all the same or vary with little
difference. In this case, H.264 encoder predicts the
pixel values in the current coded macroblock from the
pixel values in its neighbor macroblocks to compress
the video data. The reference macroblocks are usu-
ally the macroblock above or to the left of the cur-
rent coded macroblock. In H.264, encoder can alter-
natively select the block-size of 4x4 or 16x16 in the

2

Figure 1: Basic encoding structure for H.264/AVC for
a macroblock

inter-frame prediction. For 16x16 and 4x4 block spa-
tial predictions, there are four and nine different ways
to predict the pixel value respectively. These predic-
tion modes are listed in Listing 1.

In H.264, the slice which are coded with intra-
frame prediction, are called I-slice.

* Inter-Frame Prediction: The temporal prediction
in H.264/AVC video encoder is called Inter-Frame
Prediction which makes use of the temporal similar-
ity between current coded pictures and the reference
pictures. A continuous video is formed by a sequence
of pictures, and a picture is often composed of back
scene and the object scene. In a continuous video, the
back scene generally is still or varies in very limit dif-
ference, and the object scene moves in the continuous
pictures in certain regular way (for example in cer-
tain speed and direction). Encoder temporal predicts
a picture by comparing the difference between current
coded picture and reference pictures in the buffer and
obtains a motion vector for motion compensation in
decoder. In prior standards, the reference pictures are
limited to the previous pictures in display order. In
H.264/AVC video encoder, this limitation is removed
and the reference pictures can be previous or future
pictures in display order. The inter-frame prediction
performs the block-based motion estimation on every
macroblock in the current coded frame, and a distinct
motion vector is sent for each macroblock for motion
compensation in H.264 decoder.

1 Mode 0 V e r t i c a l Mode
2 Mode 1 H o r i z o n t a l Mode
3 Mode 2 DC Mode
4 Mode 3 Diagona l Down L e f t Mode
5 Mode 4 Diagona l Down Righ t Mode
6 Mode 5 V e r t i c a l R igh t Mode
7 Mode 6 H o r i z o n t a l Down Mode
8 Mode 7 V e r t i c a l L e f t Mode
9 Mode 8 H o r i z o n t a l Up Mode

(a) Prediction Mode of Intra 4x4

1 Mode 0 V e r t i c a l Mode
2 Mode 1 H o r i z o n t a l Mode
3 Mode 2 DC Mode
4 Mode 3 P lane Mode

(b) Prediction Mode of Intra 16x16

Listing 1: Modes of Intra-Frame Prediction

In H.264, two types of slices could be encoded with
inter-frame prediction, which are P-slice and B-slice.
In addition to the intra-frame prediction described in
the previous section, macroblocks in P-slice and B-
slice can be encoded using inter-frame prediction. In
inter-frame prediction, both P-slice and B-slice are
predicted by motion estimation toward the reference
pictures. The major difference between P-slice and
B-slice is that unlike P-slice, in which only one mo-
tion vector is obtained for motion compensation, in B
slice the motion vector is the weighted average of two
motion vectors to two different reference pictures.

In H.264/AVC video coding standard, the concept
of B slices is generalized. The pixel values are bi-
predicted from the weighted combination of two dif-
ferent motion compensated reference frames. Just
like the reference pictures in inter-frame prediction,
the reference pictures in bi-prediction can be previous
or future pictures in display order.

After spatial or temporal prediction, the differences
between input pictures and predicted pictures are
transformed to frequency domain by the block trans-
formation function in H.264 coding algorithm. There
are several unique features about the block transform
selected by H.264:

* integer transform design
* specified to 8-bit input video data
* a 4x4 transform size is supported, rather than just

8x8 transform

3

While the macroblock size is still 16x16, pixels
are divided into 4x4 or 8x8 blocks for transforma-
tion. The output coefficients are then quantized and
scanned (in zig-zag fashion for frame coding) from
the lowest frequency coefficient toward the highest.
In this way the highest-variance coefficients are or-
dered first, which maximizes the number of consec-
utive zero-valued coefficients to gain better perfor-
mance in entropy coding. In addition to the quantized
coefficients, information required to decode the coded
data such as encoding parameters, reference frame in-
dexes, and motion vectors for motion compensation
are coded with entropy coding and form a compressed
video bitstream.

3 Reference C implementation of
H.264/AVC Video Encoder

SpecC SLDL is a superset of the C language and
it is compliant with ANSI-C. It means that every
ANSI-C program can be compiled well by SpecC
compiler. To make the H.264 codec modeling eas-
ier, rather than developing a H.264/AVC codec with
SpecC SDLD from the very beginning, in this project
we took the JM 13.0 reference implementation [3],
released by Joint Video Team of ISO/IEC MPEG &
ITU-T VCEG, as the beginning of this project. Since
the JM reference implementation is programmed with
C language, the first step to create a SpecC model of
H.264/AVC codec in this project, is to modify some
syntax in the JM reference implementation which is
not ANSI-C or SpecC compliant.

In this section, we briefly describe some features of
the JM reference implementation and the modifica-
tion we did toward the reference implementation for
simplicity and SpecC compliant reason.

3.1 Properties of H.264/AVC Video Encoder
JM 13.0 Reference Software

The JM reference software of H.264/AVC codec con-
sists of both encoder (inlencod directory) and de-
coder (inlencoddirectory). In this project, we only
focus our work on the modeling of H.264 encoder,
and use decoder part of the JM reference implementa-
tion for consistency verification. Listing 2 shows the

1 T o t a l number o f t h e s o u r c e f i l e s : 57
2 T o t a l number o f t h e heade r f i l e s : 51
3 Number o f t h e s o u r c e code l i n e s : 63K
4 Number o f f u n c t i o n s in sou rcecode : 814

Listing 2: Properties of the H.264 JM Reference En-
coder

properties of the H.264 JM 13.0 reference encoder.
In H.264/AVC video codec, the video is processed

from one picture (frame) to another. Every frame is
divided into one or multiple slices, and every slice
is then divided into several macroblocks in size of
16x16 luma pixels. Each macroblock is also di-
vided into sub-macroblock partitions for intra and in-
ter frame prediction. For example, the size of sub-
macroblock partition for inter-frame prediction can
be 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4. The
transform for the difference between original frame
and predicted frame is either in size of 8x8 or 4x4.
Figure 2 shows the hierarchy of a video sequence in
H.264/AVC video codec.

Figure 2: Hierarchy of Video Stream

In the reference C implementation, we can also see
the same hierarchy in the source code. A simplified
flow chart of the program execution is shown in Fig-
ure 3. Frames in the video stream are read out from
the YUV file one by one by aReadOneFramefunc-
tion call and then every slice in the frame is encoded
by a encodeoneslice function call in a while loop.
The slice is further divided into 16x16-pixel mac-
roblocks and every macroblock is then encoded by
a encodeonemacroblockfunction call. The coding
tools such as inter or intra prediction and spatial trans-
form are all executed in theencodeonemacroblock

4

function.
Notes that in this JM reference implementation, the

picture frames do not have to be encoded in the dis-
play order. According to the JM Reference Software
Manual, user can decide the order by modifying the
HierarchicalCoding setting in the encoding param-
eter. Two examples of changing coding order are
shown in Figure 4. In the first example, the coding
order for nine consecutive frames is frame 0, 8, 4, 2,
6, 1, 3, 5, and frame 7; in the second example, the
coding order for nine consecutive frames is frame 0,
8, 2, 4, 6, 1, 3, 5, and frame 7.

Figure 4: Example of Coding Order

3.2 SpecC compliant reference implementa-
tion

In this project, we took JM13 version of H.264 video
encoder as reference C implementation, and con-
verted it to a hierarchical SpecC model so that we can
conduct further design space exploration using SCE
[1]. However, the JM reference implementation is not
fully ANSI-C compliant and some syntax in the ref-
erence C codes will lead to errors when the reference
source codes are compiled with SpecC. The first step
we have to accomplish is to make some modification
to the reference C implementation so that it can be
compiled by SpecC compiler. Besides, some function
calls, such asfopenor fwrite are ANSI-C compliant,
though, they are not adequate to be used in the SpecC

model because they are not hardware-synthesizable.

In this section, we list the modifications we per-
formed on the reference C implementation for creat-
ing our SpecC model of H.264 encoder.

1. Encoding Parameters Initialization: In the orig-
inal reference C implementation, major encoding pa-
rameters such frame rate, frame mode selection, and
search algorithm selection for motion estimation, are
initialized at the beginning of video encoding. During
initialization, a configuration file calledencoder.cfgis
opened by a function callfopenand a structure named
InputParameters, which stores the encoding param-
eters is initialized with the content inencoder.cfg.
Sincefopenis not hardware-synthesizable, we either
move it out of the H.264 SpecC model or just hard
code the parameters in the H.264 SpecC model. To
simplify the communication between thestimulusbe-
havior (in charge of providing test patterns to thede-
signbehavior) anddesignbehavior (in charge of im-
plementing the major function the target algorithm)
here we simply hard-coded the parameters in thede-
sign behavior. More details about these two behav-
ior and the communication between them will be de-
scribed in the next section.

The same situation also happened in quantization
table initialization. Instead of reading the quanti-
zation coefficients from configuration fileq it ma-
trix.cfg and q offset.cfg, we hard-coded the coeffi-
cients into the tables indesignbehavior.

2. Variables Initialization: This part can be sep-
arated into local variables initialization and global
variables initialization. Unlike C program, in which
variables can be initialized to the result of certain
arithmetic or logical operations, at declaration the
variables can only be initialized to a constant values
in SpecC SLDL. In local variable initialization, we
can fix this difference by simply manually separating
the variable declaration and initialization. For global
variables, since assigning values to variables outside
of function scope is not SpecC compliant, we cre-
ated two functions calledsei init andpost2ctxinitto
fix this problem. At the beginning of encoding pro-
cedure, these two functions will be called to initialize
global variables. Listing 3 shows in general how we
modified the variable initialization.

3. Function Pointer Elimination: In C language,

5

Figure 3: Code Structure

function pointer is very useful for program simplicity
and maintenance, which can greatly reduce the use
of if or case-switch statements. However, due to its
ambiguity for high-level synthesis, function pointers
are not adequate in SpecC. In the JM H.264 refer-
ence software, the function pointer syntax is widely
used due to various encoding options implemented
in the JM reference implementation. To eliminate
the function pointers in the program, we either re-
moved the encoding options or replaced them with a
switch statement (even though it makes the program
look more complex). When function pointers are used
for encoding option selection, for simplicity, we only
kept one encoding option and eliminated the others.
Listing 5 and Listing 6 shows how we replaced the
function pointers with case-switch statement. List-
ing 4 shows the existing function pointers in the JM
reference implementation.

4. Source files renaming: Since SpecC compiler

only accepts source files with.sc postfix, 53 source
files are renamed with same name and postfix by.sc.

After these modifications, the reference implemen-
tation is SpecC compliant. Since the encoding param-
eters are hard coded in the program already, except for
YUV file, no other input file is needed.

4 Modeling of H.264/AVC Video En-
coder Platform

One important feature of SpecC is the separation of
computation and communication, which increases the
reusability of existing software and hardware imple-
mentation. In this section, we also describe our SpecC
model of H.264 video encoder in these two views.

First, we will describe the functions of three major
behaviors at the topmost level in every SpecC model:
stimulus, design, monitor. Then, in the second sub-

6

1 v a r t y p e g l o b a l v a r 1 = g l o b a l v a r 1 i n i t ;
2 v a r t y p e g l o b a l v a r 2 = g l o b a l v a r 2 i n i t ;
3 :
4 :
5

6 r e t u r n v a r t y p e func t i on name (i n p u t v a r s)
7 {
8 v a r t y p e l o c a l v a r 1 = l o c a l v a r 1 i n i t ;
9 v a r t y p e l o c a l v a r 2 = l o c a l v a r 2 i n i t ;
10 :
11 :
12

13 (f u n c i t o n d e s c r i p t i o n)
14 }

(a) Before Variables Initialization Modification

1 v a r t y p e g l o b a l v a r 1 ;
2 v a r t y p e g l o b a l v a r 2 ;
3 :
4 :
5

6 void g l o b a l v a r i n i t ()
7 {
8 g l o b a l v a r 1 = g l o b a l v a r 1 i n i t ;
9 g l o b a l v a r 2 = g l o b a l v a r 1 i n i t ;
10 :
11 :
12 }
13

14 re turn v a r t y p e main (i n p u t v a r s)
15 {
16 l o c a l v a r i a b l e d e c l a r a t o i n
17 :
18 g l o b a l v a r i n i t () ;
19 :
20 (f u n c t i o n d e s c r i p t i o n)
21 }
22

23 r e t u r n v a r t y p e func t i on name (i n p u t v a r s)
24 {
25 v a r t y p e l o c a l v a r 1 ;
26 v a r t y p e l o c a l v a r 2 ;
27 :
28 l o c a l v a r 1 = l o c a l v a r 1 i n i t ;
29 l o c a l v a r 2 = l o c a l v a r 2 i n i t ;
30 :
31 (f u n c i t o n d e s c r i p t i o n)
32 }

(b) After Variables Initialization Modification

Listing 3: Variables Initialization Modification

1 void (∗ wr i teMB type In fo)
2 void (∗ w r i t e I n t r a P r e d M o d e)
3 void (∗ w r i t e B 8 t y p e I n f o)
4 void (∗ wr i teRefFrame [6])
5 void (∗writeMVD)
6 void (∗ writeCBP)
7 void (∗ wr i t eDquan t)
8 void (∗ wri teCIPredMode)
9 void (∗ w r i t e F i e l d M o d e I n f o)

10 void (∗ w r i t e M B t r a n s f o r m s i z e)
11 i n t (∗WriteNALU)
12 i n t 6 4 (∗ g e t D i s t o r t i o n)
13 e x t e r n imgpe l ∗ (∗ g e t l i n e [2])
14 e x t e r n imgpe l ∗ (∗ g e t l i n e 1 [2])
15 e x t e r n imgpe l ∗ (∗ g e t l i n e 2 [2])
16 e x t e r n imgpe l ∗ (∗ g e t c r l i n e [2])
17 e x t e r n imgpe l ∗ (∗ g e t c r l i n e 1 [2])
18 e x t e r n imgpe l ∗ (∗ g e t c r l i n e 2 [2])
19 e x t e r n i n t (∗ computeUniPred [6])
20 e x t e r n i n t (∗ computeBiPred)
21 e x t e r n i n t (∗ computeBiPred1 [3])
22 e x t e r n i n t (∗ computeBiPred2 [3])
23 void (∗ ge tNe ighbour)
24 void (∗ g e t m b b l o c k p o s)

Listing 4: List of function pointers in JM reference
encoder

section, we will describe the communication between
stimulus& designanddesign& monitor.

4.1 Major Behaviors : Stimulus, Design,
Monitor

In HDL implementation, to verify the correctness of
an implementation, a testbench environment includ-
ing the function of providing test pattern and function
of output comparison is necessary. This concept is
also applicable to SpecC modeling. At the topmost
level of a SpecC model, two behaviors namedstimu-
lusandmonitorare created to implement the function
of the testbench, and the application we want to model
with SpecC is encapsulated in a behavior namedde-
sign. These three behaviors usually are executed in
parallel, and the communication between them are
implemented to guarantee the necessary synchroniza-
tion among these three behaviors.

In the following paragraphs, we describe the func-
tions of these three behaviors and the roles they play
in our SpecC model of H.264/AVC video encoder.

7

1 r e t u r n t y p e ∗ fp (i n p u t v a r s) ;
2

3 r e t u r n t y p e func 1 (i n p u t v a r s)
4 {
5 :
6 }
7

8 r e t u r n t y p e func 2 (i n p u t v a r s)
9 {
10 :
11 }
12

13 void f p i n i t (i n i t c o n d i t i o n)
14 {
15 :
16 s w i t c h (c o n d i t i o n){
17 c o n d i t i o n 1 :
18 fp = func 1 ; break ;
19 c o n d i t i o n 2 :
20 fp = func 2 ; break ;
21 d e f a u l t :
22 }
23 }
24

25 r e t u r n t y p e f p c a l l 1 (i n p u t v a r s)
26 {
27 :
28 fp () ;
29 :
30 }
31

32 r e t u r n t y p e f p c a l l 2 (i n p u t v a r s)
33 {
34 :
35 fp () ;
36 :
37 }

Listing 5: Before Function Pointer Elimination

1 r e t u r n t y p e func 1 (i n p u t v a r s)
2 {
3 :
4 }
5

6 r e t u r n t y p e func 2 (i n p u t v a r s)
7 {
8 :
9 }

10

11 r e t u r n t y p e f p c a l l 1 (i n p u t v a r s)
12 {
13 :
14 s w i t c h (c o n d i t i o n){
15 c o n d i t i o n 1 :
16 f unc 1 (i n p u t v a r s) ; break ;
17 c o n d i t i o n 2 :
18 f unc 2 (i n p u t v a r s) ; break ;
19 d e f a u l t :
20 }
21 :
22 }
23

24 r e t u r n t y p e f p c a l l 2 (i n p u t v a r s)
25 {
26 :
27 s w i t c h (c o n d i t i o n){
28 c o n d i t i o n 1 :
29 f unc 1 (i n p u t v a r s) ; break ;
30 c o n d i t i o n 2 :
31 f unc 2 (i n p u t v a r s) ; break ;
32 d e f a u l t :
33 }
34 :
35 }

Listing 6: After Function Pointer Elimination

8

Main

i_stimulus
hs_start
no_frames
hs_frm_no
frm_no
imgY_out
imgU_out
imgV_out

i_design
hs_start
no_frames
hs_frm_no
frm_no
imgY_frame
imgU_frame
imgV_frame
hs_nlength
queued_nbyte
hs_nreceived
hs_finish

fr
a
m
e
V

fr
a
m
e
Y

h
s
_
fi
n
is
h

h
s
_
fr
m
_
n
o

fr
a
m
e
U

i_monitor
dhs_nlength
queued_nbyte
dhs_nbyte_received
hs_finish

h
s
_
n
le
n
g
th

h
s
_
n
re
c
e
iv
e
d

h
s
_
s
ta
rt

q
u
e
u
e
d
_
n
b
y
te

fi
n
is
h

fr
m
_
n
o

n
o
_
fr
a
m
e
s

Figure 5: Top level of H.264 Encoder Model

* BehaviorStimulus:
In a SpecC model, this behavior is in charge of pro-

viding input data forDesignbehavior. It can be con-
sidered as the test pattern generator for design ver-
ification. Depending on the implementation ofDe-
signbehavior,Stimulusbehavior sometimes is also in
charge of providing configuration information forDe-
signbehavior. Since the encoding parameters and the
quantization coefficients for H.264 video encoder are
hard-coded in ourDesignbehavior,Stimulusbehav-
ior does not have to read parameters and coefficients
from the configuration file.

In the original JM reference implementation, a vari-
able namedFrameNumberInFile, which indicates the
next frame to be encoded, will be updated for each
frame encoding and a function namedReadOneFrame
is called.

This function will read the corresponding picture
frame from a opened video raw file namedtest.yuv.

Note that in the JM reference implementation the
frame coding order does not have to be the same
as the display order. Therefore,FrameNumberInFile
variable indicating the next picture frame to be en-
coded, is necessary. In our model, theStimulusbe-
havior is implemented based on theReadOneFrame
function. At the beginning of the encoding process
in our SpecC model,Stimulusbehavior will open raw
file test.yuvfor read with functionfopen. After the
YUV file is opened,Stimulusbehavior will notify
Design behavior of the beginning of video encod-
ing. Stimulusbehavior then enters a state of waiting
for FrameNumberInfileupdating fromDesignbehav-
ior. OnceStimulusbehavior receivesFrameNumber-
Infile, it reads the corresponding picture frame from
file test.yuvand sends frame data toDesignbehav-
ior over the communication channels. In this project,
for simplicity, we have fixed the sampling format to
YUV420 and the frame size at 176x144 for Y frame
and 88x72 for U and V frames.

* BehaviorDesign under test (DUT):
In our SpecC model, this behavior is in charge of

the implementation of target design, and it is also the
behavior in which we will perform the design space
exploration in the future.Designbehavior receives
input data fromStimulusbehavior, performs the ap-
plication or algorithm on the received data and then
generates output results for validation. The content of
Designbehavior depends on our design goal: we can
implement a specific part of the target application or
algorithm, such as temporal/spatial prediction or spa-
tial transform, and only evaluate the execution of this
specific part; we can also implement the whole tar-
get application or algorithm inDesignbehavior and
evaluate the execution of the whole algorithm.

In our project, Design behavior implements the
whole H.264/AVC video encoding algorithm. For
every frame,Designbehavior generates a newFra-
meNumberInfileand send it toStimulusbehavior to
request a new set of frame data, and then enters a state
of waiting for corresponding frame data. Once cor-
responding Y, U, and V frame data are all received,
Design behavior performs the spatial/temporal pre-
diction, spatial transform and quantization, and en-
tropy coding over the received frame data. The en-
coded data is then sent toMonitor behavior over com-

9

munication channels in the form of byte-sequence for
generating a H.264-format file namedtest.264. The
transmission of the encoding data is performed on
frame basis, i.e., for every frame,Designsends a se-
quence of bytes toMonitor behavior. Note that be-
cause of the different characteristics between picture
frames, the length of the byte-sequence for encoded
data varies. SinceMonitor behavior is independent
of the execution of H.264 video encoding, it does
not have the information about how long the byte se-
quence is. Therefore, except for the encoded data,
Designbehavior also has to send the corresponding
length of byte sequence toMonitor behavior for ev-
ery encoded frame. Once every picture frame in the
input raw file is encoded,Designissues a notification
to Monitor behavior so thatMonitor behavior knows
when to terminate the encoding.

In our Design behavior there are two sub-
behaviors namedh264encoder and h264writer
working in parallel to achieve the task described
above:h264encoderis the behavior in charge of the
implementation of H.264 video encoding algorithm,
andh264writer deals with the transmission of length
of byte-sequence toMonitor behavior. When the en-
coding of a frame is finished,h264encoderwill send
the byte-sequence toMonitor through a byte-queue
and the corresponding length of byte-sequence is sent
to h264writer through a integer-sequence. Once ev-
ery frame in the YUV file is encoded,h264encoder
will send out a length of byte-sequence with zero
value toh264writer. The function ofh264writer is
to read the length of byte-sequence from the integer-
queue and send the value toMonitor. h264writer
also detects the zero value of the length. When a
length of byte-sequence with zero value is detected,
h264writer will notify the monitor of the end of en-
coding. Figure 6 shows the block diagram ofDe-
sign under Testgenerated by System-on-Chip Envi-
ronment (SCE).

* BehaviorMonitor :
The main function of this module is to generate

output file(s) for verification. Depending on the im-
plementation ofDesignbehavior, the content of the
output files varies. IfDesignbehavior implements
one specific part of the target implementation or al-
gorithm, then the content of the output files should

design

i_h264_encoder

i_h264_write

no_frames

hs_start

imgY_frame

imgU_frame

imgV_frame

hs_nlength

queued_nbyte

hs_nreceived

hs_finish

nlength_queue

hs_frm_no

frm_no

i_encoding_init

...g_finished

h
s
_

s
ta

rt

..._terminate

nlength_queue

n
o

_
fr

a
m

e
s

h
s
_

fr
m

_
n

o

fr
m

_
n

o

im
g

Y
_

fr
a

m
e

im
g

U
_

fr
a

m
e

im
g

V
_

fr
a

m
e

n
le

n
g

th
_

q
u

e
u

e

q
u

e
u

e
d

_
n

b
y
te

i_encoding_frames

n
le

n
g

th
_

q
u

e
u

e

h
s
_

fr
m

_
n

o

i_encode_ip_frame

q
u

e
u

e
d

_
n

b
y
te

b
it
_

s
li
c
e

_
s
ta

rt
_

s
e

q
u

e
n

c
e

fr
m

_
n

o
n

o
_

fr
a

m
e

s

im
g

U
_

fr
a

m
e

n
le

n
g

th
_

q
u

e
u

e

n
u

m
_

fr
a

m
e

s

h
s
_

s
ig

n
a

l

i_start_sequence

b
_

fr
a

m
e

s
_

to
_

e
n

c
o

d
e

i_encode_b_frames

im
g

Y
_

fr
a

m
e

...e_finished

h
s
_

s
ta

rt

im
g

V
_

fr
a

m
e

q
u

e
u

e
d

_
n

b
y
te

q
u

e
u

e
d

_
n

b
y
te

h
s
_

fr
m

_
n

o

b
_

fr
a

m
e

s
_

to
_

e
n

c
o

d
e

im
g

U
_

fr
a

m
e

fr
m

_
n

o

h
s
_

s
ig

n
a

l

i_encode_one_frame

h
s
_

fr
m

_
n

o

le
n

_
o

u
t

i_WriteNALU

n
BitsWritten
nlength_queue
queued_nbyte

im
g

Y
_

fr
a

m
e

n
a

lu

to
ta

l_
p

p
s

i

h
s
_

s
ig

n
a

l

re
tu

rn
_

v
a

lu
e

n
le

n
g

th
_

q
u

e
u

e

im
g

V
_

fr
a

m
e

im
g

V
_

fr
a

m
e

i_encode_one_frame

le
n

q
u

e
u

e
d

_
n

b
y
te

B
it
s
W

ri
tt

e
n

n
le

n
g

th
_

q
u

e
u

e

q
u

e
u

e
d

_
n

b
y
te

im
g

U
_

fr
a

m
e

fr
m

_
n

o

im
g

Y
_

fr
a

m
e

n
le

n
g

th
_

q
u

e
u

e

i_write_PPS

P
P

S
_

id

i_init_frame

nlength_queue

queued_nbyte

i_WriteNALU

n
BitsWritten
nlength_queue
queued_nbyte

..._dpb_bhvr

p

e
n

c
_

fr
a

m
e

_
p

ic
tu

re
_

0

n
le

n
g

th
_

q
u

e
u

e

n
a

lu

...e_picture

frame

rd_pass

q
u

e
u

e
d

_
n

b
y
te

...ut_picture

pic

nlength_queue

queued_nbyte

..._dpb_bhvr

p

n
le

n
g

th
_

q
u

e
u

e

i_init_frame

nlength_queue

queued_nbyte

B
it
s
W

ri
tt

e
n

fr
m

_
p

ic

q
u

e
u

e
d

_
n

b
y
te

...ut_picture

pic

nlength_queue

queued_nbyte

fr
m

_
p

ic

q
u

e
u

e
d

_
n

b
y
te

e
n

c
_

fr
a

m
e

_
p

ic
tu

re
_

0

...e_picture

frame

rd_pass

le
n

_
o

u
t

n
le

n
g

th
_

q
u

e
u

e

le
n

_
in

Figure 6: Design under Test Behavior

10

be the output of this specific part; ifDesignbehavior
implements the whole application or algorithm, the
content of the output file is the output of the applica-
tion or algorithm. According to the implementation of
Designbehavior, golden sample(s) are pre-generated
and compared with the output file(s) for consistency.
In this projectDesignbehavior implement the whole
H.264/AVC video encoding algorithm, which makes
the generation of gold sample(s) easier: we simply
use the encoded video stream generated by JM refer-
ence software as golden sample.

In original reference C implementation of H.264
encoder, when a frame encoding is finished, a func-
tion calledWriteNALUwill be called. In this func-
tion the encoded data bytes will befwrite to a out-
put file test.264. In SpecC model,fwrite operation
is moved out fromDesign to Monitor behavior be-
causefwrite function is not hardware-synthesizable.
The main function ofMonitor behavior in our SpecC
model is to receive byte-sequence fromDesignbe-
havior and write those bytes to output filetest.264.
Another function implemented inMonitor is to termi-
nate the encoding program withexit(0); which is not
hardware-synthesizable either.

To satisfy the requirements described above, there
are two separate sub-behaviors namedmonitor write
and monitor finish which work in parallel inMoni-
tor behavior. Themonitor write behavior is in charge
of the byte-sequence reading and writing the bytes to
the output filetest.264; themonitor finishbehavior is
in charge of the termination of the whole application.
After the initialization of the H.264 video encoding
in our SpecC model, these two behaviors are both in
waiting state and wait for the length of byte-sequence
and end of encoding notification, respectively.moni-
tor write behavior has to receive the length of next en-
coded byte-sequence fromDesignbehavior through
a doublehandshake channel, before it fetches corre-
sponding number of bytes from a byte queue between
DesignandMonitor behavior andfwrite the bytes into
test.264. During the video encodingmonitor write is
always in waiting state. When it receives the end of
encoding notification fromDesignbehavior, it closes
the output file and usesexit(0) to terminate the pro-
gram.

4.2 Communication between top-level be-
haviors

* communication between Stimulus and Design:
The communication between stimulus and design

modules is implemented with two double handshake
channels and three frame queues. The first hand-
shake channel is used to send encoding initiation sig-
nal fromStimulusto Designto start the encoding; the
second double handshake channel is used to transfer
variableFrameNumberInFilefrom Designto Stimu-
lus to request frame data. OnceStimulusreceives
theFrameNumberInFilevariable fromDesign, it will
read the corresponding frame and send them toDe-
sign through frame queue channels. The Y, U, and
V frames are transmitted separately through different
frame queue channel. For simplicity, the size of the
frame in our encoder is fixed to 176x144 pixels per
frame. Therefore, the size of frame queue channel is
176x144 bytes for Y-frame queue, 88x72 bytes for U
and V frame. For now, in frame encoding, the depth
of these three queues are all set to 1.

Figure 7 shows the comparison between JM refer-
ence software and SpecC model, and the communica-
tion betweenStimulusandDesignbehaviors as well.

*communication between Design and Monitor:
The communication between design and monitor is

implemented with one handshake channel, two dou-
ble handshake channels, and one byte-queue chan-
nel. The two doublehandshake channels are used
to synchronize the update of length of byte-sequence
in h264writer and bytes writing operation inmon-
itor writer. To update the length of byte-sequence
h264writer in it Design behavior will read one in-
teger from the integer queue betweenh264encoder
and h264writer. If the length of byte-sequence is
zero,h264writer will notify the Monitor of the end of
encoding through the handshake channel, andMon-
itor will terminate the encoding program immedi-
ately; if the length of byte-sequence is not zero,
h264writer will send the value toMonitor through a
doublehandshake channel HSNLENGTH. After the
transmission,h264writer will enter a waiting state
and wait for the reply fromMonitor through another
doublehandshake channel named HSNRECEIVED.

11

WhenMonitor finishes the writing operation, it sends
an acknowledge through HSNRECEIVED to notify
h264writer of the accomplishment of writing oper-
ation. After receiving the acknowledge,h264writer
continues the update of length of byte-sequence.

Figure 8 shows the comparison between JM refer-
ence software and SpecC model, and the communica-
tion betweenDesignandMonitor behaviors as well.

5 Exploiting parallelism in H.264
Video Encoder

H.264 video codec is a very complex algorithm with
heavy a computational load. For some applications,
such as video camera which has to encode input video
in real-time, we might have to add parallel structure in
the implementation to accelerate the encoding. After
inspecting the reference JM source code of H.264 en-
coder, we have found some possible parallelism in the
encoder.

In this section, we have two parallel structures im-
plemented in our H.264 encoder model.

One important feature of SpecC SLDL is its abil-
ity to simulate parallel structure. Parallel structure is
very common in hardware description language like
Verilog, but for high level languages like C, it is quite
difficult to simulate parallel structure since programs
are usually executed in sequential way. In SpecC,
par statement is used when concurrent execution is
required.

One simple instance of concurrent execution with
par statement is shown in Listing 7. With this fea-
ture, designer can explore parallelism in the target ap-
plication and verify the functionality without actually
implementing it with hardware description language.

Dependency between codes implies sequential ex-
ecution order, and in most cases disturbing this or-
der leads to functionality error. Therefore, we have to
make sure that there is no dependency between the
variables used in the code before executing two or
more sections of code, which was running sequen-
tially originally, in concurrent way. Due to the pre-
diction mechanism in the H.264 video encoder, paral-
lelism across frames and macroblocks might not be

1 behavior B par
2 {
3 B b1 , b2 , b3 ;
4

5 void main (void)
6 {
7 par{
8 b1 . main () ;
9 b2 . main () ;

10 b3 . main () ;
11 }
12 }
13 } ;

Listing 7: Concurrent Execution with par statement

feasible: intra-prediction of a macroblock requires
the pixel values from the left, up, and up-left mac-
roblocks, and inter-prediction of a macroblock uses
the macroblocks in the previous reconstructed frames
as references to compute the motion vectors.

Two possible opportunities for parallelism we have
found are concurrent encoding of multiple slices, and
parallel execution of encoding procedure inside one
macroblock. In this report, for now we only focus
on the parallelism inside macroblock encoding. The
two occurrences of parallelism, which we have im-
plemented in our H.264 encoder model, are (1) Lumi-
nance/Chrominance residual coding and reconstruc-
tion, and (2) Motion vector search for multiple refer-
ence frames.

5.1 Luminance/Chrominance residual cod-
ing and reconstruction

The first potential for parallelism we found in the
H.264 encoder is the residual coding of Luma(Y) and
Chrominance(U/V) pixels in a macroblock. In intra-
and inter-prediction encoding, the difference between
predicted macroblock and original macroblock, called
residual, will be transformed with DCT and then
quantized to reduce the size of data. Then the trans-
formed and quantized residual will be written into
output file. Since the quantization in H.264 codec is
lossy quantization, to make sure the reference frames
in the encoder are identical to the reference frame
in the decoder, the quantized residual in the encoder
has to be inverse-quantized and inverse-transformed

12

so that the residual in the encoder and decoder end
are identical. The predicted macroblock then will
be combined with inverse-quantized and transformed
residual to reconstruct the decoded picture. The de-
coded picture will be put in decoded picture buffer for
future reference in inter-prediction. During the resid-
ual coding and reconstruction, luminance pixels and
chrominance pixels are processed separately. In origi-
nalRDCostfor macroblocksfunction, the luma pixel
coding and chroma pixel coding are executed sequen-
tially. In our H.264 SpecC model, we managed to
combine the luma and chroma residual coding and re-
construction in inter-prediction coding and execute it
concurrently.

The code before and after modification are shown
in Listing 8. In the original source code, we
can see that functionChromaResidualCodingwill
be called after luma residual coding except for
IPCM mode. Now we have created a new be-
haviorLumaChromaResidualCodingbhvr to concur-
rently execute luma and chroma residual coding in
inter-prediction encoding. In the future, we will
add luma residual coding in intra-prediction encod-
ing(mode==I16MB and I8MB) into the concurrent
execution as well. Another potential for parallelism
in this part is that the U and V chroma pixel resid-
ual coding can be further separated and executed in
parallel.

5.2 Motion vector searching for multiple ref-
erence frames

In H.264 encoder, the reference pictures are stored in
two decoded picture buffers namedList0 and List1.
The predicted macroblock in inter-prediction is ob-
tained by comparing the current macroblock with the
macroblock in the reference frame and searching for
the reference macroblock with minimal error. Inter-
prediction will search reference pictures in decoded
picture buffer and find out the motion vector between
original macroblock and best-matching reference pic-
ture. For P frame encoding, all reference pictures in
List0will be searched for inter prediction; for B frame
encoding, both decoded picture bufferList0andList1
will be searched.

The parallelism we exploited in inter prediction is

1 func RDCost fo r Macrob locks (. .)
2 {
3 :
4 i f (mode<P8x8)
5 LumaResidualCoding (currMB) ;
6 e l s e i f (mode==P8x8)
7 Se tCoe f fAndRecons t ruc t i on8x8 (currMB) ;
8 e l s e i f (mode==I16MB)
9 I n t r a16x16 Mode Dec i s i on (currMB) ;

10 e l s e i f (mode==I8MB)
11 I n t r a8x8Mac rob lock (currMB) ;
12 e l s e i f (mode==IPCM)
13 :
14

15 i f (mode !=IPCM)
16 ChromaResidualCoding (currMB) ;
17

18 :
19 }

(a) Original sequential Luma/Chroma Residual Coding

1 behavior LumaChromaResidualCodingbhvr (. .)
2 {
3 par{
4 i LumaRes idua lCod ingbhv r . main () ;
5 i Ch romaRes idua lCod ingbhv r . main () ;
6 }
7 } ;
8

9 behavior RDCos t fo r Macrob lock bhv r (. .)
10 {
11 :
12 i f (mode<P8x8)
13 i LumaChromaRes idua lCod ingbhvr . main () ;
14 e l s e i f (mode==P8x8)
15 Se tCoe f fAndRecons t ruc t i on8x8 (currMB) ;
16 e l s e i f (mode==I16MB)
17 I n t r a16x16 Mode Dec i s i on (currMB) ;
18 e l s e i f (mode==I8MB)
19 I n t r a8x8Mac rob lock (currMB) ;
20 e l s e i f (mode==IPCM)
21 :
22

23 i f ((mode !=IPCM)&(mode>=P8x8))
24 i Ch romaRes idua lCod ingbhv r . main () ;
25

26 :
27 } ;

(b) Luma/Chroma Residual Coding in Parallel

Listing 8: Residual Coding Parallelization

13

in the function calledPartitionMotionSearch. This
function in the original C code calculates the minimal
error and finds out the best motion vector for each
reference picture. In our H.264 encoder model, we
create a parallel behavior to execute the motion vector
search for all reference pictures in the decoded picture
buffer. Since the number of reference pictures is user-
defined and we set this number to five, there will be at
most five parallel motion vector searches for P frame
encoding and ten parallel motion vector searches for
B frame encoding in our H.264 model.

The codes before and after modification are shown
in Listing 9. Note that the behaviorRefFrameMo-
tionSearchbhvr in parallel model is not identical to
the behavior in the sequential model. In parallel ver-
sion of motion vector search, everyRefFrameMotion-
Searchbhvr will be assigned a list number and ref-
erence picture number. Before executing the mo-
tion search, these two numbers will be compared
with variablesnumlist and numref to determine if
the motion vector search in the corresponding refer-
ence picture and list is required. We did this modi-
fication to prevent motion vector search from being
executed when the reference picture does not exist.
For example, if there are only two reference pictures
in the decoded picture buffer and the current frame
is a P frame, onlyRefFrameMotionSearchbhvr 00
and only RefFrameMotionSearchbhvr 01 will exe-
cute the motion vector search, and the restRef-
FrameMotionSearchbhvrwill be idle.

6 Experiments and Results

In this project, we validate our H.264 SpecC model
by comparing the output video file generated by our
model with the output file generated by reference C
code. We also calculate the run time of the encoding
process of our H.264 model. A simulation report of
the H.264 video encoding for a 19-frame video clip
with our H.264 SpecC model is shown in Figure 9.

In the simulation report, some parameters of this
encoder model are shown: the input video format is
YUV420, the frame size is 176x144, the number of
reference frames is 5, and so on. We can also see that
the encoding order is different from displaying order
in this simulation report. The encoding order in this

1 behavior P a r t i t i o n M o t i o n S e a r c hb h v r (. .)
2 {
3 f o r (l i s t =0; l i s t < n u m l i s t s ; l i s t ++)
4 {
5 f o r (r e f =0; r e f < num ref ; r e f ++)
6 {
7 :
8 i Re fF rameMot ionSearchbhv r . main () ;
9 :

10 }
11 }
12 :
13 } ;

(a) Sequential Motion Vector Searching

1 behavior P a r a l l e l R e f F r a m e M o t i o n S e a r c hb h v r (. .)
2 {
3 :
4 par{
5 i Re fF rameMot ionSearchbhv r 00 . main () ;
6 i Re fF rameMot ionSearchbhv r 01 . main () ;
7 i Re fF rameMot ionSearchbhv r 02 . main () ;
8 i Re fF rameMot ionSearchbhv r 03 . main () ;
9 i Re fF rameMot ionSearchbhv r 04 . main () ;

10 i Re fF rameMot ionSearchbhv r 10 . main () ;
11 i Re fF rameMot ionSearchbhv r 11 . main () ;
12 i Re fF rameMot ionSearchbhv r 12 . main () ;
13 i Re fF rameMot ionSearchbhv r 13 . main () ;
14 i Re fF rameMot ionSearchbhv r 14 . main () ;
15 }
16 } ;
17

18 behavior P a r t i t i o n M o t i o n S e a r c hb h v r (. .)
19 {
20 :
21 i P a r a l l e l R e f F r a m e M o t i o n S e a r c hb h v r . main () ;
22 :
23 } ;

(b) Parallel Motion Vector Searching

Listing 9: Motion Vector Searching Parallelization

14

simulation is I0, P2, B1, P4, B3, P6, B5, P8, B7, P10,
B9, P12, B11, P14, B13, B16, B15, P18, and then
B17. The run time of this simulation is also shown
after the encoding is finished.

H.264 video encoder might be the most compli-
cated application we have ever modeled with SpecC.
In this simulation, there are 19 frames been encoded:
one for I-frame and nine for P-frame and B-frame in-
dividually. Since the frame rate of this video clip is
30 frames per second, the total length of the encoded
video is about 2/3 second. To encode such a short
video clip, it took about 90 seconds to complete the
process with our H.264 model.

7 Conclusion and Future Work

In this project, we have implemented a system model
of a H.264/AVC video encoder with SpecC SLDL.
We first made necessary modifications in the JM ref-
erence software to make the reference source code
SpecC compliant. After the reference code is fully
SpecC compliant, we separated the reference imple-
mentation into three major behaviorsStimulus, De-
sign, Monitor in our SpecC model, and assigned
proper channels for the communication between these
three behaviors.

We have also exploited two opportunities for par-
allelism in our H.264 encoder model: parallel lumi-
nance and chrominance pixel residual coding, and
parallel motion vector search for multiple reference
pictures.

At this point, our H.264 SpecC model is still
far away from a perfect synthesizable SpecC model.
There is still lots of work to do to make it perfect.
Several improvements we plan for the future are listed
below:

1. Global variables elimination: Global variables
are very convenient for C language programmer and
also makes C programs look concise. Every func-
tion in the C program can access the global variables
without explicit variable transmission. However, it
is not appropriate to use global variables in SpecC
because of the lack of explicit communication. To
let System-on-Chip Environment (SCE) estimate the
communication cost in design exploration, we should
keep every variable transmission as explicit as pos-

sible. Therefore, the global variables have to be re-
placed by local variables and corresponding commu-
nications in the SpecC model. Right now the commu-
nication between the three major behaviors is totally
global-variables free, but we still have to eliminate the
global variables inDesignbehavior in the future.

2. Memory allocation elimination : In an embed-
ded system where memory space is fixed and limited,
memory allocation functions such as malloc are not
hardware-synthesizable. Therefore, it is better to re-
place memory allocation functions with explicit array
declarations in the SpecC model.

3. Explore more parallelism inDesignbehavior:
We have found two opportunities for parallelism and
implemented them in our H.264 model. There might
be more parallelism to be exploited in the encoder.
For example, since both intra-frame and inter-frame
prediction are used in P-slice encoding, we could look
into this part to find out if it is possible to run these
two predictions in parallel. Another potential par-
allelism we can explore is to add pipeline structure
in our SpecC model. Since the encoding of a mac-
roblock is processed in the order of temporal/spatial
prediction, transform and quantization, and then en-
tropy coding, maybe it is possible to execute these
steps in pipeline structure.

4. Design space exploration on System-on-Chip
Environment (SCE) : System-on-Chip Environment
(SCE) is a system developing tool in which we can as-
sign different combinations of processor(s) and hard-
ware(s) to implement the H.264 encoder and estimate
the execution time for those different resource as-
signments and operating frequencies. After we cre-
ate a ”clean” SpecC model in which all global vari-
ables are eliminated and all functions are hardware-
synthesizable, we plan to explore the design space of
H.264 video encoder with SCE for different require-
ments and applications.

Acknowledgment

This work has been supported in part by funding
from the National Science Foundation (NSF) under
research grant NSF Award #0747523. The authors
thank the NSF for the valuable support. Any opin-
ions, findings, and conclusions or recommendations

15

expressed in this material are those of the authors and
do not necessarily reflect the views of the National
Science Foundation.

References

[1] L. Cai, A. Gerstlauer, S. Abdi, J. Peng, D. Shin,
H. Yu, R. Dömer, and D. Gajski. System-onchip
environment (sce version 2.2.0 beta): Manual.
Technical Report CECS-TR-03-45, Center for
Embedded Computer Systems, December 2003.

[2] Andreas Gerstlauer, Rainer Dömer, Junyu Peng,
and Daniel D. Gajski.System Design: A Practical
Guide with SpecC. Kluwer Academic Publishers,
2001.

[3] H.264/AVC JM Reference Software.
http://iphome.hhi.de/suehring/tml/.

[4] Wikipedia H.264/MPEG-4 AVC.
http://en.wikipedia.org/wiki/H.264/MPEG-4
AVC.

[5] Gisle Bjontegaard Thomas Wiegand, Gary J. Sul-
livan and Ajay Luthra. Overview of the h.264/avc
video coding standard.IEEE Transactions on
Circuits and Systems for Video Technology, 13(7),
JULY 2003.

16

http://iphome.hhi.de/suehring/tml/
http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

Frame Init

Read

One Frame

Encode

Frame Picture

...

...

Encode I/P Frame

...

...

...

Encoding Initialization

Encoding Termination

Read

One Frame

fopen(target)

Double Handshake

Encoding Start Flag

Double Handshake

Frame Number

ReceiverSender

SenderReceiver

Frame Queue

for Y/U/V Frames

Receiver

Design

Stimulus

Encoding Frames

Frame Init

Read

One Frame

Encode

Frame Picture

...

...

Encode I/P Frame

...

...

...

Encoding Initialization

Encoding Termination

Encoding Frames

Reference C

implementation

SpecC

Modeling

Frame Init

Read

One Frame

Encode

Frame Picture

...

...

Encode B Frame

...

...

Frame Init

Read

One Frame

Encode

Frame Picture

...

...

Encode B Frame

...

...

Sender

Receiver

Figure 7: Communication between Stimulus and Design

17

Figure 8: Communication between Design and Monitor

18

------------------------------------- H.264 SpecC Model -------------------------------------

 Input YUV file : test.yuv

 Output H.264 bitstream : test.264

 Output YUV file : test_rec.yuv

 YUV Format : YUV 4:2:0

 Frames to be encoded I-P/B : 10/9

 Freq. for encoded bitstream : 15

 PicInterlace / MbInterlace : 0/0

 Transform8x8Mode : 1

 ME Metric for Refinement Level 0 : SAD

 ME Metric for Refinement Level 1 : Hadamard SAD

 ME Metric for Refinement Level 2 : Hadamard SAD

 Mode Decision Metric : Hadamard SAD

 Motion Estimation for components : Y

 Image format : 176x144

 Error robustness : Off

 Search range : 32

 Total number of references : 5

 References for P slices : 5

 List0 references for B slices : 5

 List1 references for B slices : 5

 Sequence type : I-B-P-B-P (QP: I 28, P 28, B 30)

 Entropy coding method : CABAC

 Profile/Level IDC : (100,40)

 Motion Estimation Scheme : Fast Full Search

 Search range restrictions : none

 RD-optimized mode decision : used

 Data Partitioning Mode : 1 partition

 Output File Format : H.264 Bit Stream File Format

Encoding. Please Wait.

=============== FrameNumberInFile = 0, Type = I_SLICE ===============

=============== FrameNumberInFile = 2, Type = P_SLICE ===============

=============== FrameNumberInFile = 1, Type = B_SLICE ===============

=============== FrameNumberInFile = 4, Type = P_SLICE ===============

=============== FrameNumberInFile = 3, Type = B_SLICE ===============

=============== FrameNumberInFile = 6, Type = P_SLICE ===============

=============== FrameNumberInFile = 5, Type = B_SLICE ===============

=============== FrameNumberInFile = 8, Type = P_SLICE ===============

=============== FrameNumberInFile = 7, Type = B_SLICE ===============

=============== FrameNumberInFile = 10, Type = P_SLICE ===============

=============== FrameNumberInFile = 9, Type = B_SLICE ===============

=============== FrameNumberInFile = 12, Type = P_SLICE ===============

=============== FrameNumberInFile = 11, Type = B_SLICE ===============

=============== FrameNumberInFile = 14, Type = P_SLICE ===============

=============== FrameNumberInFile = 13, Type = B_SLICE ===============

=============== FrameNumberInFile = 16, Type = P_SLICE ===============

=============== FrameNumberInFile = 15, Type = B_SLICE ===============

=============== FrameNumberInFile = 18, Type = P_SLICE ===============

=============== FrameNumberInFile = 17, Type = B_SLICE ===============

H264 Encoding Process has finished

Total Run Time: 90.000 seconds

Files test.264 and test.264.gold are identical

Figure 9: Simulation report

19

	1 Introduction
	2 H.264/AVC Video Encoder Algorithm
	2.1 Background
	2.2 Input Video Data Format
	2.3 Coding Structure of H.264/AVC Video Encoder

	3 Reference C implementation of H.264/AVC Video Encoder
	3.1 Properties of H.264/AVC Video Encoder JM 13.0 Reference Software
	3.2 SpecC compliant reference implementation

	4 Modeling of H.264/AVC Video Encoder Platform
	4.1 Major Behaviors : Stimulus, Design, Monitor
	4.2 Communication between top-level behaviors

	5 Exploiting parallelism in H.264 Video Encoder
	5.1 Luminance/Chrominance residual coding and reconstruction
	5.2 Motion vector searching for multiple reference frames

	6 Experiments and Results
	7 Conclusion and Future Work
	References

