
Center for Embedded Computer Systems
University of California, Irvine

A Parallel Transaction-Level Model of H.264 Video
Decoder

Xu Han, Weiwei Chen and Rainer Doemer

Technical Report CECS-11-03
June 2, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{hanx, weiweic, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

A Parallel Transaction-Level Model of H.264 Video
Decoder

Xu Han, Weiwei Chen and Rainer Doemer

Technical Report CECS-11-03
June 2, 2011

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{hanx, weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

H.264 video decoder is a computationally demanding application. In resource-limited em-
bedded environment, it is desirable to exploit parallelismin order to implement a H.264 de-
coder. After reviewing a list of technical details of H.264 standard, we have discussed several
possiblities of parallelization and developed a TLM model with parallel slice decoders. Exten-
sive experiments are performed to demonstrate the benefit ofthe our model.

http://www.cecs.uci.edu

Contents

1 Introduction 1

2 H.264/AVC Standard Features 2
2.1 YUV Color Space and 4:2:0 Sampling . 2
2.2 Macroblocks . 3
2.3 Slices . 4
2.4 H.264 Decoding Algorithm . 5

3 Parallelism Exploitation 6

4 A SpecC Model with Parallel Slice Decoders 7

5 Experiment and Results 8

6 Conclusion 9

References 10

i

List of Figures

1 A typical multimedia data unit . 2
2 4:2:0 Sampling . 2
3 Into a Macroblock . 3
4 Nine Intra 4×4 prediction modes . 3
5 Motion Compensation . 4
6 A H.264 video frame divided into four fixed-size slices. 4
7 Possible Slice Patterns with FMO enabled . 5
8 Block Diagram of H.264 Decoder in JM 13.0 . 6
9 Construction of a macroblock in JM 13.0 H.264 decoder 7
10 Recoding From JM Reference to SpecC model 7

ii

List of Tables

1 Simulation results of H.264 Decoder (”Harbour”, 299 frames 4 slices each, 30 fps). 9
2 Simulation speedup with different h264 streams (spec model). 10

iii

A Parallel Transaction-Level Model of H.264 Video Decoder

Xu Han, Weiwei Chen and Rainer Doemer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{hanx, weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

H.264 video decoder is a computationally demanding application. In resource-limited embedded
environment, it is desirable to exploit parallelism in order to implement a H.264decoder. After
reviewing a list of technical details of H.264 standard, we have discussedseveral possiblities of
parallelization and developed a TLM model with parallel slice decoders. Extensive experiments are
performed to demonstrate the benefit of the our model.

1 Introduction

H.264/AVC video coding standard [6] is widely used in video applications such as internet stream-
ing, disc storage, and television services. H.264/AVC provides high-quality video at less than half
the bit rate compared to its predecessors H.263 and H.262. In multimedia services, it can be con-
sidered the best compromise between quality and size to combine H.264 video and Mp3 video, as
in Figure 1. However, H.264 encoding and decoding also requires more computing resources than
its predecessors. In order to implement the standard on resource-limited embedded systems, it is
highly desirable to exploit available parallelism in its algorithm.

The rest of the report is organized as follows: several features of H.264 standard is introduced
in the next section. Section 3 discusses possible parallelism that we can exploit to build our model.
Section 4 describes the parallel H.264 decoder model, followed by some experiments and results
showing the benefit of the parallelism. Section 6 concludes the report.

1

http://www.cecs.uci.edu

Track

Track(MP3 audio)

Track (Timed text)

(H.264 video)

Figure 1: A typical multimedia data unit

2 H.264/AVC Standard Features

This section introduces a list of features of H.264 standard that are most related to our decoder
model.

2.1 YUV Color Space and 4:2:0 Sampling

H.264 standard represents color in a picture with YUV format. Component Y (called luma) rep-
resents brightness. Components U and V (called chroma) represent color. Because human visual
system is more sensitive to brightness than color, H.264 keeps more luma samples than chroma to
ensure both picture quality and compression rate. Especially, the most popular sampling structure in
which chroma component has one fourth of the number of luma component is called 4:2:0 sampling.
Each sample is represented by 8 bits of data.

Figure 2: 4:2:0 Sampling

2

2.2 Macroblocks

A macroblock is the basic encoding and decoding unit in H.264 standard. One macroblock covers
a fixed-size rectangular picture area of 16×16 pixels, which contains, with 4:2:0 sampling, 16×16
luma samples and 8×8 of each of the chroma samples, as illustrated in Figure 3. To decode a
macroblock, either intra prediction or inter prediction is required.

Figure 3: Into a Macroblock

Intra prediction constructs a macroblock by using neighboring samples which are from previ-
ously decoded macroblocks in current picture. There are three modes of intra prediction. Intra 4×4
mode predicts a macroblock with smaller blocks of size 4×4. Intra 16×16 mode predicts the whole
16×16 block and is suitable for smooth area of a picture. Imode simply bypasses the prediction
and transform coding of this macroblock to preserve precise video samples. Figure 4 shows how
Intra 4×4 prediction can be done by referring to video samples from left and above (which is the
previously decoded area) the block to be predicted.

Figure 4: Nine Intra 4×4 prediction modes

Inter prediction, also known as motion compensation, predicts a macroblock by referring to
previously decoded pictures. A macroblock can be partitioned into sub-blocks for inter prediction.
The option of sub-blocks sizes are 16×16, 16×8, 8×16, and 8×8, among which 8×8 block can be
further partitioned into 8×4, 4×8 or 4×4 blocks. Figure 5 illustrates how motion compensation is

3

done with two references pictures. A picture reference index and a motionvector are required to
perform motion compensation.

Figure 5: Motion Compensation

2.3 Slices

A slice is a sequence of macroblocks. On the other hand, a H.264 video frame can be split into one
or more slices. Figure 6 shows an example of a frame divided into four slices. Note that slices can
be of very flexible shape and size with a feature of Flexible Macroblock Ordering(FMO) enabled, as
shown in Figure 7, where each color represents a slice group which cancontain one or more slices.

Slice 0

Slice 1

Slice 2

Slice 3

Figure 6: A H.264 video frame divided into four fixed-size slices.

Slices can be classified into three types according to their coding style. A slicewith all mac-
roblocks coded using intra prediction is called anI slice. In addition to intra prediction, aP slice
contains inter predicted macroblocks with only one reference frame per prediction block. In addi-
tion to coding types in a P slice, aB slicecan have inter predicted macroblocks with two reference

4

Figure 7: Possible Slice Patterns with FMO enabled

frames per prediction block.
Notably, Slices areindependentof each other, in the sense that decoding one slice will not

require any data from the other slices in the current video frame. However, to correctly decode a
frame, reference frames are needed if the frame contains P slices, and information from other slices
are still needed when deblocking filter works across slice boundaries.

2.4 H.264 Decoding Algorithm

Our study is based on H.264/AVC JM reference software[4]. This section is to introduce the al-
gorithm of H.264 decoder as implemented in JM version 13.0. JM 13.0 relies heavily on global
storage depicted in parallelograms in Figure 8) in the decoding process. Generally, it accesses all
input image parameter in structureimg, temporary output data in structuredecpictureand decoded
frames in decoded picture bufferdpb.

As shown in Figure 8, decoding starts on parsing incoming NAL units, which isa logical data
packet containing H.264 syntax structures. It carries both coded videodata and information indi-
cating the method to decode the data. After parsing, coded residual data is entropy decoded, inverse
quantized, reordered, inverse transformed and result in the decodedresidual data stored in array
m7, which will later build part of a decoded macroblock. On the other hand, parsed information
on MB typesandprediction mode infois used to construct the current macroblock by predicting
its content. Depending on how the macroblock is encoded in the first place, either intra prediction
or motion compensation will apply to acquired the predicted data, the result of which is stored in
an arraympr in JM 13.0. At this point, the macroblock has all necessary data decoded and can be

5

NAL parser

(derive MB_types,
slice_header, and

other decoding info)

NAL
Entroy decoding

AND
Inverse Quantize

AND
Reorder

coded
residual

data

Intra prediction
 OR

 motion
compensation

decoded
residual

data (cof)
Inverse transform

Predicted
data

(mpr)

prediction
mode info

+

Transformed
residual data

(m7)

Decoded
macroblcok

(m7,
imgY/UV) End of

frame?

next macroblock / next slice

Deblocking filter

No

Yes

Output

Decoded
picture

buffer (dpb)

Decoded
picture

(dec_picture)

Img
parameter

(img)

Figure 8: Block Diagram of H.264 Decoder in JM 13.0

constructed by adding transformed residual data and predicted data together. On finish decoding
one macroblock, the decoder proceeds to next macroblock in current slice or next slice. After an
entire frame is decoded, deblocking filter is applied to remove the blocking artifacts in a frame. The
output of the deblocking filter is stored in a decoded picture buffer which uses the buffered frames
as reference to decode future frames.

3 Parallelism Exploitation

Various possible parallelisms exist in H.264 standard.
On frame level, decoding a frame can depend on reference frames of very flexible position and

number with inter prediction applied. Although part of the frames can be intra predicted only, it is
still very difficult to exploit parallelism on frame level.

On macroblock level, we firstly review how a macroblock is constructed in JM 13.0. Illustrated
by Figure 9, the decoder firstly acquires the predicted data (mpr) by refer

As for the deblocking filter, although it operates across boundaries of macroblocks and slices,
deblocking a macroblock only depends on its neighbor macroblocks since itsgoal is to remove
block edges. Therefore, it is possible to filter a frame in parallel, though such parallelism is not easy
to exploit.

Due to the nature of slices, it is most promising to exploit parallelism on slice level.We devel-
oped a SpecC model with four parallel slice decoders, which is expected tobe most efficiency when
incoming stream has 4 balanced slices per frame.

6

Decoded area
Macroblock

under
construction

cof
Step 1

mpr

m7

Step 2Step 3

Step 4

mpr

cof

Predicted block

Residual block
Decoded

coefficients
(residual)

m7

Figure 9: Construction of a macroblock in JM 13.0 H.264 decoder

4 A SpecC Model with Parallel Slice Decoders

read_new
_slice()

decode_sli
ce()

EOS?

exit_pictur
e()

decode_one_frame()

N

Y

Slice reader

Slice
decoder3

Slice
decoder2

Slice
decoder0

Slice
decoder1

Synchronizer

DUT

Figure 10: Recoding From JM Reference to SpecC model

An initial system-level model with Simulator, DUT and Monitor structure is designed in [5].
Now after identifying parallelism at slice level, we have extended the existing system-level model

7

by further recoding JM reference code. The decoding procedure inJM is done by functionde-
codeone frame, which contains subfunctionsread newslice, decodeslice and exit picture, as
shown in Figure 10. After recoding,read newslice is recoded intoslice reader, decodeslice into
four slice decodersandexit picture into Synchronizer.

With any input video stream encoded with four slices per frame, Slice Reader reads out four
slices every running cycle and dispatch them to Slice Decoders via channel interface. Each slice de-
coder internally consists of the regular H.264 decoder functions, such as entropy decoding, inverse
quantization and transformation, motion compensation, and intra-prediction. Upon each Slice De-
coder finishing its work in parallel, Synchronizer completes the decoding byapplying a deblocking
filter to the decoded frame.

Up to date, this model can be manually adjusted to decode video stream with different number
of slices.

5 Experiment and Results

We use the System-on-Chip Environment (SCE) [2] for synthesis and validating of our H.264 de-
coder model. SCE is a refinement-based framework for heterogeneous MPSoC design. It starts with
a system specification model described in the SpecC language [3] and implements a top-down ESL
design flow based on the specify-explore-refine methodology.

We partition our parallel H.264 decoder model as follows: the four slice decoders are mapped
onto four custom hardware units; the synchronizer is mapped onto an ARM7TDMI processor at
100MHz which also implements the overall control tasks and cooperation with the surrounding
testbench. We choose Round-Robin scheduling for tasks in the processor and allocate an AMBA
AHB for communication between the processor and the hardware units. Using SCE, we generate
the transaction level models (TLM) of our parallel H.264 decoder design at different abstraction
levels. They arespecfor the specification model,arch for the architecture mapped model with
different kinds of processing elements (PE),schedfor the model with scheduling decisions made for
operation systems on mapped processors,net for the model with network connectivities among PEs,
tlm for transaction level model with communication protocols, andcommfor pin-cycle accurate
model with communication details.

For our first experiment, we use the same stream ”Harbour” of 299 videoframes, each with
4 slices of equal size. As shown in [1], 68.4% of the total computation time is spent in the slice
decoding, which we have parallelized in our decoder model.

As a reference point, we calculate the maximum possible performance gain asfollows:

MaxSpeedup=
1

ParallelPart
NumO fCores+SerialPart

For 4 parallel cores, the maximum speedup is

MaxSpeedup4 =
1

0.684
4 +(1−0.684)

= 2.05

The maximum speedup for 2 cores is accordinglyMaxSpeedup2 = 1.52 .

Table 1 lists the simulation results for several TLMs generated with SCE when using our multi-
core simulator on a Fedora core 12 host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at

8

3.0 GHz, compiled with optimization (-O2) enabled. We compare the elapsed simulation time
against the single-core reference simulator (the table also includes the CPUload reported by the
Linux OS). Although simulation performances decrease when issuing only one parallel thread due
to additional mutexes for safe synchronization in each channel and the scheduler, our multi-core
parallel simulation is very effective in reducing the simulation time for all the modelswhen multiple
cores in the simulation host are used.

Table 1: Simulation results of H.264 Decoder (”Harbour”, 299 frames 4 slices each, 30 fps).

Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4 #delta cycles #threads

sim. time sim. time speedup sim. time speedup sim. time speedup
spec 20.80s (99%) 21.12s (99%) 0.98 14.57s (146%) 1.43 11.96s (193%) 1.74 76280 15
arch 21.27s (97%) 21.50s (97%) 0.99 14.90s (142%) 1.43 12.05s (188%) 1.76 76280 15

models sched 21.43s (97%) 21.72s (97%) 0.99 15.26s (141%) 1.40 12.98s (182%) 1.65 82431 16
net 21.37s (97%) 21.49s (99%) 0.99 15.58s (138%) 1.37 13.04s (181%) 1.64 82713 16
tlm 21.64s (98%) 22.12s (98%) 0.98 16.06s (137%) 1.35 13.99s (175%) 1.55 115564 63

comm 26.32s (96%) 26.25s (97%) 1.00 19.50s (133%) 1.35 25.57s (138%) 1.03 205010 75
maximum speedup 1.00 1.00 1.52 2.05 n/a n/a

Table 1 also lists the measured speedup and the maximum theoretical speedup for the models
that we have created following the SCE design flow. The more threads are issued in each schedul-
ing step, the more speedup we gain. The#delta cyclescolumn shows the total number of delta
cycles executed when simulating each model. This number increases when thedesign is refined
and is the reason why we gain less speedup at lower abstraction levels. More communication over-
head is introduced and the increasing need for scheduling reduce the parallelism. However, the
measured speedups are somewhat lower than the maximum, which is reasonable given the over-
head introduced due to parallelizing and synchronizing the slice decoders. The comparatively lower
performance gain for thecommmodel in simulation with 4 threads can be explained due to the
inefficient cache utilization in our Intel(R) Core(TM)2 Quad machine1.

Using a video stream with 4 slices in each frame is ideal for our model with 4 hardware decoders.
However, we even achieve simulation speedup for less ideal cases. Table 2 shows the results when
the test stream contains different number of slices. We also create a test stream file with 4 slices per
frame but the size of the slices are imbalanced (percentage of MBs in each slice is 31%, 31%, 31%,
7%). Here, the speedup of our multi-core simulator versus the referenceone is 0.98 for issuing
1 thread, 1.28 for 2 threads, and 1.58 for 4 threads. As expected, the speedup decreases when
available parallel work load is imbalanced.

6 Conclusion

In this work, we have discussed options of parallelism in H.264 decoding and developed a SpecC
model with four parallel slice decoders. We have refined the model using SCE design flow and per-

1The Intel(R) Core(TM)2 Quad implements a two-pairs-of-two-cores architecture and Intel Advanced Smart Cache
technology for each core pair (http://www.intel.com/products/processor/core2quad/prodbrief.pdf)

9

Table 2: Simulation speedup with different h264 streams (spec model).

Simulator Reference Multi-Core
Par. issued threads: n/a 1 2 4

1 1.00 0.98 0.98 0.95
2 1.00 0.98 1.40 1.35
3 1.00 0.99 1.26 1.72

slices 4 1.00 0.98 1.43 1.74
frame 5 1.00 0.99 1.27 1.53

6 1.00 0.99 1.41 1.68
7 1.00 0.98 1.30 1.55
8 1.00 0.98 1.39 1.59

formed extensive experiments with our multi-core simulator. The results show satisfactory speedup
in our parallel decoder model.

Acknowledgment

This work has been supported in part by funding from the National Science Foundation (NSF)
under research grant NSF Award #0747523. The authors thank the NSF for the valuable support.
Any opinions, findings, and conclusions or recommendations expressedin this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] Weiwei Chen, Xu Han, and R. Doemer. Multicore simulation of transaction-level models using
the soc environment.Design Test of Computers, IEEE, 28(3):20 –31, may-june 2011.

[2] Rainer D̈omer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu, Samar
Abdi, and Daniel Gajski. System-on-Chip Environment: A SpecC-based Framework for Het-
erogeneous MPSoC Design.EURASIP Journal on Embedded Systems, 2008(647953):13 pages,
2008.

[3] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski.System Design: A
Practical Guide with SpecC. Kluwer, 2001.

[4] H.264/AVC JM Reference Software.http://iphome.hhi.de/suehring/tml/.

[5] Bin Zhang Weiwei Chen, Siwen Sun and R. Dömer. System level modeling of a h.264 decoder.
Technical Report CECS-TR-08-10, Center for Embedded Computer Systems, University of
California, Irvine, 2008.

10

http://iphome.hhi.de/suehring/tml/

[6] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC video
coding standard.Circuits and Systems for Video Technology, IEEE Transactions on, 13(7):560
–576, july 2003.

11

	1 Introduction
	2 H.264/AVC Standard Features
	2.1 YUV Color Space and 4:2:0 Sampling
	2.2 Macroblocks
	2.3 Slices
	2.4 H.264 Decoding Algorithm

	3 Parallelism Exploitation
	4 A SpecC Model with Parallel Slice Decoders
	5 Experiment and Results
	6 Conclusion
	References

