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Abstract

Validation is an essential step in System Level Design ($tuD)ultiprocessor System on
Chip (MPSoC). Traditional Instruction Set Simulators (@& often either slow (interpretive
ISS) or unable to handle accurate multiprocessor simufa(iiatic or dynamically compiled
ISS). In this technical report, we propose a hybrid simoalatscheme [10] which combines in-
terpreted and static compiled ISS. The proposed ISS isdregdcute a target function either
natively or in interpreted mode. With the aid of System L&escription Languages (SLDL)
like SpecC/SystemC, the designer using proposed ISS iscabiifferentiate the computation
portion and the communication portion of the target codeeBgcuting the computation inten-
sive code on the host natively and the communication poitionterpreted mode, the proposed
ISS is able to speed up the simulation significantly whilenta&ing acceptable accuracy and



support for multiprocessor simulation. We have implenztie proposed scheme based on
SWARM [6] [14] [12] simulator and have conducted experingenith several real-life de-
signs. Our test results show that the proposed ISS providesfisant speedup in simulation
time and maintains low error in timing estimation.
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Abstract

Validation is an essential step in System Level Design (SLD) for Multiproc&stem on Chip
(MPSoC). Traditional Instruction Set Simulators (ISS) are often eithewv ¢ioterpretive 1SS) or

unable to handle accurate multiprocessor simulation (static or dynamicattypded ISS). In this

technical report, we propose a hybrid simulation scheme [10] whichbboes interpreted and static
compiled ISS. The proposed ISS is free to execute a target function eithaxiyor in interpreted

mode. With the aid of System Level Description Languages (SLDL) lilkC&pestemC, the de-
signer using proposed ISS is able to differentiate the computation portiothencbmmunication

portion of the target code. By executing the computation intensive codesdmo#t natively and

the communication portion in interpreted mode, the proposed ISS is able¢d sip the simulation
significantly while maintaining acceptable accuracy and support for muktgseor simulation.

We have implemented the proposed scheme based on SWARM [6] P4ifdulator and have

conducted experiments with several real-life designs. Our test resultg $tat the proposed ISS
provides significant speedup in simulation time and maintains low error in tiestighation.

1 Introduction

1.1 System Level Design Methodology

System Level Design (SLD) reduces the design complexity of Multi-ProceSgstem on Chip
(MPSoC) and enables the designer to explore different softwarefheedpartitions at an early
stage.

The growing complexity of SoC requires higher level of abstraction. Eiduf9] shows that,
as the abstraction level goes down, the design complexity grows expdiyeridiae to cost, effi-
ciency, power consumption and real time requirements of embedded sysesitg) space needs
to be explored on different abstraction levels. System Level Descripioguages (SLDL) model
software and hardware for embedded systems on different abstrbmtie.
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1.1.1 Top-down Design Methodology

Figure 2 [9] shows a top-down work flow of system level design methagoldn each abstraction
level, the flow is able to refine HW/SW for different design choices. Thelpct specification is
captured to generate the specification model which contains the pure fuottiee product. Com-
putation and communication of the specification model are organized in behawio channels. A
profiling tool can be used to estimate the execution time of each behavior feemigput. After
architecture refinement, behaviors in specification model are mapped ¢cediffprocessors. At
this stage, a Transaction Level Model (TLM) is generated to approximateammunication and
the computation. Architecture independent profiling tools could ensurestitaation fidelity at
this stage of design exploration, but TLM is unable to provide accuraferpgnce estimation
for timing of computation and communication. Communication refinement is used tolreapct
channels to concrete communication protocol and hardware. After comatignicefinement, a
Bus Functional Model (BFM) is generated. In order to get pin-adeuaad cycle-accurate simula-
tion result, hardware synthesis and software synthesis are applied toslienttional model. An
Instruction Set Simulator (ISS) is plugged in to provide cycle-accurate dtimaf computation



Figure 3: Functional Validation [9]

functions running on processors.

1.1.2 Validation

Accurate and fast performance estimation is crucial in SLD. On eachd&@&ilD, functional and
performance validations are required for the verification of the desigferént simulators are used
in the validation process to simulate software and hardware behaviors.

Functional Functional validation verifies the correctness of the execution model. &g&jshows
a common set up for functional validation. The stimulus produces input whiphoisessed by
Device Under Test (DUT), and the monitor verifies the result produgetidDUT.

Performance Performance validation estimates the performance for hardware andsaftwif-
ferent simulators are used to provide performance estimation in differetiélsmoThe simulators
are coordinated by a Discrete Event Simulator provided by the SLDL library

1.2 Design Models at Different Levels of Abstraction

As shown in Section 1.1, the complexity of design and validation grows exypialig as the ab-
straction level goes down. In this section, we will discuss modeling embexydéeins on different
abstraction levels as shown in Figure 4.

1.2.1 Pure Functional Model

The pure functional model only simulates the functionality of the applicatioreatichates the per-
formance for pure computation. An architecture independent profilinggased in architecture

4
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refinement to compare different algorithm mappings. The estimated timing isnegurate in
terms of cycle count but accurate enough to show fidelity for comparirigreiit algorithm par-
titions on multiple processors. The pure functional model takes the shemesiation time, but
cannot provide either estimation of actual execution time of certain archigemtaine estimation of
communications between individual processors.

1.2.2 The Transaction Level Model (TLM) Platform Model

Transaction Level Model models the communications between procesgbrahstract interface
without implementation details of communication protocol. It encapsulates the cacatians in
channels and simulates the exchange of data and the order of datatteemsatM can be used
to simulate the communication on abstraction level and verify the correctnessrnwhunication.
The system-level designer will have to apply detailed communication protdooivation to the
abstract channels in following design stages. Thus, TLM is not capéplewding cycle-accurate
bus transaction timings.

The TLM Platform Model simulates both the computation on individual praresand the
communication among the processors. It provides cycle-approximate estirfatiooth commu-
nication and computation. The TLM Platform Model is not capable of simulatirsgttansactions
cycle-by-cycle, thus it cannot provide accurate estimation of communication

1.2.3 Bus Functional Model

The bus functional model provides a cycle-accurate estimation of comntiong&n the bus. But
inside each processor, a cycle-approximate simulator is used to providenpgnce estimation.
Bus transactions are simulated by RTL model, thus BFM provides cyclestecand pin-accurate
simulation for communications. Bus functional model takes substantially lomgetagion time
than TLM, but it provides a much more accurate estimation of communication.
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1.2.4 Implementation Model

The implementation model provides a cycle-accurate estimation for softwdia@Ein-accurate es-
timation for hardware. The software code is synthesized and loaded inyeapreted ISS which

is plugged back into the implementation model to provide cycle-accurate timing estimatics
transactions are simulated by RTL model, thus it provides pin-accuraté rélsa implementation
model provides cycle-accurate and pin-accurate simulation for both coication and computa-
tion. Due to the complexity of implementation model simulation, it takes the longest sinmulatio
time.

1.2.5 Comparison of Different Models

The trade off between simulation accuracy and simulation time has been thiyraigcussed by
Cai and Gajski [5]. As shown in 6 [5], for both communication and computatioere are three
degrees of time accuracy: un-timed, approximate-timed and cycle-timed, adridsponds to no
cycle count, cycle approximate and cycle accurate in this technical rdpach model described
in the previous sections is represented by a point in the figure (A, B, €).0n the SLD work

flow, as the design flow approaches implementation model (point F), the sinmuliie increases



Figure 7: ISS in Bus Functional Model

exponentially. To achieve high accuracy and short simulation time, we pedhybrid model be-
tween D and F, which simulates communication functions in cycle-accurate mddammputation
functions in cycle-approximate.

1.2.6 Proposed Hybrid Model

The proposed hybrid model combines the TLM Platform Model and the Bust®nal Model.
Instead of plugging in an interpreted ISS which provides cycle-acctimieg estimation in the
implementation model, we plug in a hybrid ISS which provides cycle-approximategiestima-
tion.

In SLDL (such as SystemC [3], SpecC [8]), computation is organized iglv@viors, and com-
munication is organized into channels. In TLM, a channel is an abstractiggéon of communi-
cation, which can be implemented into different buses or protocols in BFedtribes both the
communication protocol and the interface with behaviors. When a chanmsttésitiated, the in-
terface code will be generated and plugged back into the behaviorEtj@tefore, SLDL defines a
clear boundary between computation and communication in synthesizedsanges code.

Figure 7 shows the bus functional model of an embedded system. Thesymtéains 2 CPUs
and a custom hardware. All processors are connected to a commoFhaus§s is plugged into the
CPU to provide performance estimation in terms of cycle count. Synthesizgd saurce is loaded
in corresponding ISS. Traditionally, an interpreted ISS is plugged intortteepsor to provide pin-
accurate and cycle-accurate simulation. A centralized simulation engindicaias the simulation.
The simulation engine drives the interpretive ISS in each processor lzydgcle. By the end of
each bus cycle, the simulation engine will perform bus transactions thusrtimaenication between
different processors will be simulated. If the proposed ISS is pluggedrily communication
code will be executed cycle-by-cycle, which will result in a pin-accueatd cycle-approximate
simulation.
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1.3 Discrete Event Simulation

In Discrete Event (DE) Simulation, each discrete event contains an inisttimte and a change of
system state. The simulation engine applies the discrete events in chronlaogéraln the context
of SLD, events are changes of internal state of a processor or conationgbetween processors.

As Figure 8 shows, threads are organized in READY queue, WAITgaad WAITFOR queue.
The WAITFOR queue is a priority queue sorted by the wait time of threadsally all threads
are put into the READY queue. The simulation engine picks a thread fromEAOR queue and
executes the thread. The thread will either notify an event or be moved o §uue or WAITFOR
gueue. When the ready queue is empty, the notified threads in the WAI'E gueunoved to the
READY queue. If the READY queue is still empty, the first thread in the WADRFqueue will
be selected, and simulation time will advance to the time that the thread waits foe READY
gueue is still empty, either the simulation ends or a deadlock occurs.



1.3.1 Simulators

Hardware/Software simulators are employed by the Discrete Event simulatimeeio provide
performance estimation / functional simulation for different hardwarethi section, we review
some common simulators for hardware/software.

Hardware Simulator

VHDL/Verilog VHDL [2]/Verilog [1] are hardware description languages that modebite
havior, structure, functional, and physical properties of hardwEiney are also used for synthesis
on different abstraction levels and simulate the behavior of hardware Witbcaete Event simula-
tion engine.

Software Simulator

Profiler A profiler simulates the execution of a program by sampling the function calls at
constant time intervals. With the statistics provided by the profiler, the prodesigner can easily
discover any bottlenecks of the program and optimize the code.

Instruction Set Simulator An Instruction Set Simulator (ISS) simulates the internal state
of a processor when executing a input binary code. The ISS fetdeesdes and executes each
instruction like a real processor and updates the processor’s intatel With the help the ISS,
we can accurately estimate the processor cycle count of executingreilgee binary code. Other
statics like memory hierarchy statistics can also be retrieved by an ISS.

1.3.2 SpecC/SystemC Simulator

The System Level Description Language employs a Discrete Event simubdtdrardware units
are treated as threads in Figure 8. In different models, hardware uillit3ensynthesized with
different IPs.

1.4 Instruction Set Simulator

Instruction Set Simulator emulates the behavior of a processor. An ISS nbadlelhe function and
internal states of a processor. Generally, the internal states includegiseers, memory, pipeline
and cache.

1.4.1 Classification

Traditional instruction set simulators can be categorized into three cldssagreted, Static Com-
piled and Dynamically Compiled.

10



Interpreted ISS An interpreted ISS executes the target binary instruction by instructioradim e
iteration, the interpreted ISS fetches, decodes and executes the instrudteinterpreted 1SS’s

are slow due to their interpreted nature, but provide very detailed estimdticache, pipeline

and memory model. The interpreted ISS’s are very flexible. They prowtimations for various

purposes.

Static Compiled ISS A static compiled ISS compiles the target code into host binary. Some
approaches compile from the target source and insert timing estimation e $exel, while other
approaches map the instructions and registers of the target architectiiechiost architecture and
translate the target binary to host binary. The static compiled ISS is veiiy f@sms of simulation
time. But it cannot provide accurate estimation for communication since the tageis executed

in “one shot” without interrupt.

Dynamically compiled ISS A dynamically compiled ISS is a combination of static compiled and
interpreted ISS. A dynamically compiled ISS can behave like an interpregaii&h executes the
binary the target binary instruction by instruction. It could also compilesagfahe target code to
host binary. Some approaches profile the target code and translate theomosonly used target
code segment into host binary, while other uses Just In Time (JIT) compitattbnique to compile
the target code into host binary on the fly. Dynamically compiled ISS providegerate accuracy
in terms of performance estimation and relatively high simulation speed. Witlepnopdifications,
dynamically compiled ISS can be used to provide estimation for communication.

1.5 Related Work

A lot of work has been done to speed up the ISS simulation. Some appsoacigoy compiled
ISS by mapping the target architecture to the native architecture and teatsdarget binary into
native binary on assembly level [16]. Some approaches employ JO&tkn{JIT) compilation and
compile the most frequently executed target code into native code at rufiffingome approaches
compile part of the simulation code into dynamic link libraries, and load the librarienever
native execution is needed [7]. But none of these approaches ig afvélie separation of com-
munication and computation in the source code which could be defined by b & Described
in section 1.2.6. And these approaches are designed under diffesemhptions of a partgicular
application, but none of which is optimized for performance estimation of SLD.

A novel Timed TLM has been proposed [11] to tackle early stage systeeh design space
exploration. Itis fast, accurate and retargetable. But it cannot bgaried into ISS and cannot be
adapted in traditional SLD performance estimation.

Other hybrid ISS approaches have also been proposed before BLB]the native executed
functions are selected according to an algorithm to minimize the energy estimation &he
overhead of global variable access in native functions is substantiat approach is also not
optimized for simulation for Multi-Processor System on Chip (MPSoC).

The proposed ISS takes advantage of the awareness of computaticonamdinication bound-
ary of SLDL. It provides a simple and efficient approach to providdgoerance estimation for

11



SLD and accurate cycle timing for communication, which is not optimized by ariyeoéxisting
compiled ISS. With accurate cycle timing of communication, the proposed agpcoald be easily
adapted into SLDL simulation engine which supports MPSoC.

The rest of this technical report is organized as follows: Chapter 2 wilbdiuce the idea
of the proposed ISS approach and the general process of codetien. Chapter 3 will give a
detailed explanation of code generation process. Chapter 4 will give éxamples and present
some experimental results. Chapter 5 concludes the technical repafisandses future work.

2 Work Flow

In this chapter, we will describe our proposed hybrid ISS approackneml and compare different
design choices of realizing our design specifications. First, we will desbow an ISS is adapted
to SLD context. Then we are going to discuss the challenges of propgbed WSS approach.
Finally, we will describe the general work flow of our proposed apginoa

2.1 Instruction Set Simulator (ISS) in System Level Design () Context

In order to accurately simulate a Bus-Functional Model (BFM), the deffagn requires cycle-
accurate simulation for communications between processors. For commumioédiasive applica-
tions, an interpreted ISS can be used to provide cycle-accurate simulatialh $tages. However,
many real life applications are computation intensive, in which case exeaiftcmmputation code
takes most of the simulation time. Thus simulating the computation code at the higakemlev
compiled mode will drastically shorten the simulation time. That is the idea of ouich{®88
approach.

Traditionally, an ISS is integrated in the processor in BFM model by use afagper. The
wrapper is a module written in SLDL that communicates with the underlying DisEnetat simu-
lation engine and drives the ISS simulation. Every time the wrapper codedatexre the ISS will
be driven to step one cycle ahead. Then the wrapper performs I/Gattéorss via the processor
bus and checks/sets for interruption with the Programmable Interruptiomdlen(PIC). Finally,
the wrapper issueswait for request to notify the simulation engine to execute the wrapper again
after exactly one processor cycle. For example, as shown in Figure g imaditional model,
the wrapper first callsss.init() to initialize the state of the ISS. Then the wrapper enters an infinite
loop. Every time the underlying Discrete Event (DE) simulation engines restimeexecution of
the wrapper, the wrapper will first calis.cycle(to drive the ISS step one cycle. Thims.read()
andiss.write()are called to perform 1/O transactions. Finally the wrapper eedli for function to
notify the DE to resume the execution of the wrapper after one CPU cyaiedation time.

In our hybrid ISS approach, instead of driving the ISS exactly onéeagreery time, astep()
function is used to drive the ISS to either step one cycle in interpreted matepseveral cycles in
compiled mode. The cycle count that the ISS actually stepped is then rddoydgclecnt After
performing bus transactions, the wrapper notifies the simulation enginedotexbe wrapper code
again aftercyclecnt processor cycles. For example, as shown in Figure 2.1 in the hybrid model,
the wrapper first callhiybrid.iss.init() to initialize the state of the ISS. Then the wrapper enters

12



iss.init();
while(1) {
iss.cycle();
iss.read();
iss.write();
wait_for(1*cycle_delay);

Traditional

Processor

HW

Hybrid

hybrid_iss.init();

while(1) {
cycle_cnt = hybrid_iss.step();
hybrid_iss.read();
hybrid_iss.write();
hybrid_iss.wait_for(cycle_cnt

* cycle_delay);

}

Processor

HW

Hybrid 1SS

Figure 9: Traditional and Hybrid ISS in BFM
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Figure 10: Execution Mode Switch with Proposed Hybrid Approach

an infinite loop. Every time the underlying Discrete Event (DE) simulation esgiasumes the
execution of the wrapper, the wrapper will first chitbrid.iss.step()to drive the ISS to execute
one step. The number of the actual CPU cycle executed depends on theofrthe ISS. If it is

in interpreted mode, exactly one cycle will be executed. If it is in higher legeipgiled mode,
the computation function will be executed in “one shot” and the correspomgitlg count will be
written to cyclecnt Theniss.read()andiss.write()are called to perform 1/O transactions. Finally
the wrapper callsvait_for function to notify the DE to resume the execution of the wrapper after
cyclecnt CPU cycles’ simulation time.

2.2 Hybrid ISS Approach

The proposed hybrid approach employs two execution modes: Compilee Ktudl Interpreted
Mode. A program will execute as Figure 10 shows. The execution will juagk land forth be-
tween interpreted and compiled mode. In Interpreted Mode, the code istederycle-by-cycle,
which is cycle accurate. In Compiled Mode, the code is executed in “orig givming is annotated
at the end of the computation, which is cycle approximate. In our implementateopthputation
code can be executed either in Compiled Mode to speed up the simulation orpréiee Mode to
provide performance estimation related information. Communication code [RPaadand Write
Data in Figure 10) is executed in Interpreted Mode since there could bealt#O operations
or bus transactions which need synchronization. By the end of eadk @ote, bus transactions

14



are simulated by the simulation engine of SLDL. This way, we can speed umntbé&son with-
out sacrificing the accurate timing for communication. The proposed ISR ls-agcurate during
communication and cycle-approximate during computation.

The major challenge of hybrid ISS approach is to coordinate the executianget code and
native code, which should:

e Ensure the correctness of the execution.
e Make a good trade-off between simulation accuracy and simulation speed.

In this section, we will discuss different approaches to ensure ¢oegs and make a compar-
ison in terms of execution efficiency, implementation complexity, portability and stionlaccu-
racy.

2.2.1 Design Choice: Assembly Level Translation vs. Source Level @pilation

To maintain adaptability and efficiency, traditional compiled ISS approacatrased target code to
host binary on assembly level [16]. It is a universal, fast but “digglution, which could handle
execution mode switch on instruction level but is barely retargetable. Thgldteon on assembly
level is a great choice for compiled simulation. But there could be many prsbéelapting the
scheme to hybrid simulation in System Level Design context, since we needtb sive execution
between host and target.

¢ Alot of code needs to be rewritten for different target architecturesppihg one instruction
set to another could be a lot of work if the designer wants to explore degitions on
different architectures on different host platforms.

¢ Relocating the target binary code could be a problem in our hybrid sch&ltheugh a code
generation tool can be used to maintain a symbol table and handle the relocation

The problem with assembly level translation is that a lot of the translation waskalready
been implemented by assembler and compiler. Thus, it would be much moreni@arivié we
manipulate the target code on source level and let the compiler performwHevel operations.
A switch between the compiled mode and interpreted mode can be realized Qyasgstem call
The system calln the context of our proposed ISS approach, is similar to but not exaetlgaime
as the system call of an OS. It is triggered hyap instruction and handled by interrupt handlers in
the ISS. We also need to make sure the behavior of the program is prepeclyronized on binary
level. The major challenge of this approach is to coordinate execution ofilemhgnd interpreted
mode and make sure the variables on the host side and the target sidepemrysynchronized.

2.2.2 Execution Mode Switch

In the proposed approach, execution mode switch is needed only omtipeiaiion and communi-
cation boundaries. With the ability to separate computation and communicationadseDL, we
are able to encapsulate all computation code blocks in separate functfarsswé can restrain the
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Target Host

int comm(void) {
recv(in_data);
comp_func(in_data,out_data); [ ========"==
send(out_data);

Need
Performan
ce
Estimation?

}

void comp_func_target(void* in_data,
void* out_data) {

void comp_func_host(void* in_data, void*

) 7 out_data) {

}
\_ J 1

Figure 11: Execution Mode Switch

execution mode switch on function boundaries. Due to limited number of exacutide switches,
the overhead of such encapsulation is small. With predefined context wiition in source code,
we can achieve the mode switch by manipulating the target code on C sowkeMeich is highly
retargetable. The only thing that needs to be changed for differemtsaigy Application Binary
Interface (ABI).

In execution mode switch, the modified target code is compiled and loaded byifiedan-
terpreted 1SS and the program is executed in interpreted mode inside th&@H&$omputation
functions in the target code are replaced by a series of system calles@djall computation func-
tions are compiled and linked with the proposed ISS with proper modificatioenwe interpreted
simulator encounters a computation function, the system call will pass th@bowver the host ISS.
The host ISS will decide whether to execute the corresponding compufatiotion natively for
fast simulation or interpretively to collect information for performance estimatibthe function
is executed interpretively, cycle count used by the function will be dEmbralong with profiling
results for future performance estimation. If the function is executedeigtiparameters will be
retrieved from the target stack according to the target ABI. After theveatxecution, the return
value is written back to target stack. Cycle count of the ISS is updateda aotification will be
sent to the simulation engine.

For example, Figure 11 shows the simplified code segment of execution matdé.s The
comm()function wraps the major execution path on the target side. The targetdilsta commu-

nication functionrecv() to receive the data to be processed. The address of the data is thed pass

to computation functiomompfunc() When the Program Counter (PC) htismpfunc(), a system
call is triggered. The host ISS takes over the execution. It will decidetlven to execute the func-
tion natively or in interpreted mode. If the function is executed on the host gid parameters of
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the function will be acquired from the target register/memory according ttatiget ABI. Then a
wrapper on the host side execute the computation function with the parameteised. After the
function is executed, the return value of the function is then written back tmthet memory/reg-
ister by the wrapper. Then the execution of the target is resumed, andtihg data is written to
outdata The target calls theend()function to send the data via processor bus. The actual bus
transaction will be taken care of by the wrapper mentioned in Section 2.1.

2.2.3 Memory Synchronization

In the proposed approach, special consideration needs to be paid toyrsgmohronization which
ensures that the variable values on the host side and the target sidesistant.

Endianness Endianness is an important issue if two processors of different ereiarame access-
ing the same memory region. To ensure the correctness of read and vweit&Swill convert a
memory word from host endian to target endian when it is loading memory isteegnd convert
the endian back when writing back to the memory. This way, the computatiotidoran the host
side will not need to worry about the endianness of the target. Congidbanwe put computation
intensive functions that are likely to access memory more frequently on gteitimakes sense to
let the target take care of the endianness conversion to reduce thimuaverhead.

Global Variables Unlike assembly level translation, whose resulting code is executed in the same
memory region as the interpretive target, the source level code genespfiooach we employed
in the proposed hybrid ISS has an additional task. We need to perf@ouaree synchronization
manually since the target and host codes are executed in differenktsoiéth all communication
code excluded from the host functions, the host code will not peréorynl/O operations, the only
synchronization needed is the synchronization between the on-chip memondé¢he host memory.
Such memory synchronizations should be considered for three typesiables: global variables,
dynamic allocated memory, and local variables.

It is possible to synchronize the value of global variables at the begiraridghe end of the
computation functions. The problem is that the overhead might be too higliind@ut which
part of memory has been modified, all memory accesses need to be repidcadpecial function
by the code generation tool, so that statistics of all memory accesses cendratgd. It will not
be a considerable overhead for the target side since it is executed jrétéet mode. But for the
host side, if all memory accesses are replaced by a function call, thieeacewill be significant.
Another possibility is to synchronize all global variables no matter if they heen modified or
not. If switching between interpreted mode and compiled mode is very fregiés could also
create a large overhead.

Considering that the endianness problem is taken care of by the simulatbigghcan read or
write the target memory freely. The only trick is to make sure that the host is gitiithe correct
addresses. That leads to our solution of tackling synchronization célglabables.

For global and static variables, the target address of each variableeceeirieved from the
symbol table after target code compilation. The symbol table will be convertadheader file and
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Symbol Table for Target Binary

Target Source ﬁ
Symbol Address

inta=0; i -
; [_Cross compiler Oxaf 0 a Oxaf 0

double b[10][10]

Oxae90 b 0xae90

Target Binary

N

Simulator Source A/;\\\_of_fs_et_ -
void foo(void) {
b[0][0] = 1; Oxaf 0 Symbol Address
}a = b Cross compiler _ )} Oxae90 a 8)f(1;sfet0+
Computation Function
b offset +
Target Memory 0xae90

\ Host Binary

Figure 12: Global Variable Synchronization

compiled with ISS source code to instrument the global variables. Wherctidans accessing a
global variable in native execution mode, it will first look up in the symbol tabletlie address.
With the MMU function in the interpretive ISS, the actual address of a vizriegdn easily be calcu-
lated. The resulting address is an offset in the target memory regionefdherthe host function
will be able to access the global variables directly from the target memory.

For example, Figure 12 shows a simplified scenario. After the the targetesmicompiled,
each global variable corresponds to a target addees®xaf80,b - Oxae90 in the example). At
run-time the target binary is loaded by the simulator binary. If there is natipgrsystem involved
and the target binary is not relocated, the address of the global variatitee simulator will just be
its original address plus an offset, which marks the starting address sifttkéator target memory.
When the computation source on the host refers to that global variabteLitdsgo to the original
address of the variable plus the offset. If the target binary is loadedblpeatable loader, simply
changing the value dfffsetwill produce the correct address. If an operating system that stgppor
virtual memory is involved, the virtual address of the variable should bénteda function which
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converts it to its corresponding run-time physical memory address. Thefiseet should be added
to the translated address to produce the correct address.

Pointers Synchronization of pointers is similar to synchronization of global variabAesoffset
should be added to the actual pointer value at run-time. The offset isrdeé&sl by the loading
scheme as described in the previous section. If the binary is loaded witlocation, the starting
address of the target memory is used as the offset. If the target binalgéated during loading, a
run-time relocation offset should be added to the previous offset. Iparating system with virtual
address space is involved, the simulator should retrieve the actual dradicass from the MMU
of the processor.

For all functions with pointer type parameters, the pointer value is convertethost memory
address by adding the offset and optionally going through a MMU. Fduaditions with pointer
type return value, the pointer value is converted to target target adolyesigbtracting the offset
and optionally going through a MMU. With pointer type parameters and rewle\conversion,
all pointer type variables in native execution scope are referring toenatidress space. This also
avoids the pointer analysis problem, which is proved to be difficult at compile[fiBje

Dynamically Allocated Memory For dynamically allocated memory, a customized version of
malloc() function can be implemented and linked with the ISS source to cooperate with-the in
terpretedmalloc() function to ensure that all dynamically allocated memory segments are actually
allocated in the simulation target memory region and all internal data strucamesfioc() func-

tion are synchronized.

C memory management routines use static global data structures to maintaindlamdds=e
memory. A simplifiedmalloc() is implemented on the target side to provide dynamic memory
management. Lists of free memory chunks and occupied memory chunkeraek &s static global
variables in the target memory. With the same technique that we used in acdbeiaddress of
global variables, we can access the memory management data structueetangéh memory. To
use the data structure, we need to use the same algorithm as the memory mabhagetines on
the target side. But all addresses in the target management data stnesdrio be converted to
host memory addresses for allocation operations and the host memoegsdtould be converted
back to the target memory addresses for de-allocate operations.

Another problem is that code on the host other than the computation functiatgsalso invoke
memory management routines. We need to restrict the use of customizea \a@nsialloc function
inside the computation function scope. This can be done by adding a prefistiamized memory
allocation routines and rename the function calls in the computation functions.

Local Variables For local variables, no synchronization is needed under the assumpicinéh
computation code is executed in one shot. Lack of memory synchronizatitotéd variables will
not affect the correctness of the program. But cache statistics willsatburate if the host code
frequently accesses the target memory. Additional cache statistics coghbeated by inserting
run-time statistics code whenever target memory is accessed through a,dminié will greatly
affect the performance of the simulator.
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Figure 13: Work Flow Overview

2.3 Work Flow Overview

To achieve the specifications in the previous sections, the target codeésped by a code genera-
tion tool. The tool strips the computation code from the target source amdajea the computation
code for the host. Computation functions in the target source are thecedds the system call
stubs. The computation code and corresponding auxiliary functionsemectimplied on the host
and linked with an interpreted ISS. The resulting host simulator loads the ntbtdifiget binary to
perform simulation.

As Figure 13 shows, the target C/SpecC source is fed to our codeatjenetool. With the
information of communication and computation function provided by the SLD toelctide gen-
eration tool will strip the source of computation functions from the targetcsoas well as their
dependencies to produce communication source. On the target sidepthmin@ation source is
then compiled by a cross compiler to produce the final target executabéeexdtutable is then
used as an input for our code generation tool to provide a symbol talidh whntains the addresses
for all global variables. Our code generation tool then produces fovdkee computation functions
to access the global variables. On the host side, the computation funatidisedr dependencies
stripped from the target source along with the global informationtgpddefstructare compiled
into host binary. The binary is then linked with the SWARM library to produeefihal simulator
binary.

On higher level, the SLDL invokes a wrapper for the simulator binary (ilesd in Section 2.1)
to drive the simulation. Bus transactions and I/O operations are simulated byrdpger in the
SLD context.
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3 Implementation

3.1 Compilation Work Flow

We built a code generation tool to achieve the proposed approach.o@ergeneration tool takes
C/SpecC code as input, replaces the computation functions in the targe¢ sma generates the
source for native execution. The tool also generates code for targest memory synchronization.
Performance estimation is conducted at run-time and timing synchronizatiavidgd by the host
source. Finally, the host source is linked with an interpretive ISS and ithettainary is loaded by
the hybrid ISS.

Figure 3.1 shows the work flow of the code generation tool. According tdigwaission in the
previous chapter, the target source is first processed by the p#wsisg Function dependencies,
complex custom types and global variables definitions are retrieved fetardpet source and stored
in separate files. On the target side, the target source goes througetsstaurce replacement tool,
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all computation functions will be copied to the host source and renamed inrtjet surce. The
computation functions in the target source are then replaced by a sdabglsfwith the same name
as the computation functions. A system call (trap instruction) is implemented tirediabel so that
whenever the target side executes the computation function, an interitpewriggered and the
control will be handed over to the host simulator.

The stripped source then goes through a cross compiler to produceahtfget binary. The
target binary is fed into themtool to produce a symbol table which contains the addresses of global
variables. The symbol table and the global variable declarations will baetiedur code generation
tool to produce code that accesses the global variables in the coddretsaes in target memory,
and store them in comp.h. Arstructdefinitions,enumdefinitions andypedefdefinitions are also
copied to comp.h.

The code generation tool derives a new simulator clisg\¢m) from base ISS clasSWARM
in our code generation tool. Computation functions are member functions afetiveed class.
With function dependency information, our code generation tool copiesoaibutation function
along with their dependencies into the derived class and stores them in ppmpa invoke the
computation functions correctly, an interrupt handler should be gewdefateesach computation
function. The handler marshals the parameters of the function call ankieisitbe corresponding
computation function. The interrupt handler also returns the value fromadimgputation function
to the target according to the target’s Abstract Binary Interface (ABI).

The generated host source files (comp.h, comp.c and globals.h) are abmijiiiethe native
compiler and linked with the SWARM library to form the proposed ISS. Thecstdsmary is loaded
by the proposed ISS binary during the simulation.

3.2 Target Code Generation

The computation function calls are replaced by system calls. After compilatithre darget code,
the address of global and static variables can be fetched from the bamget. Such address infor-
mation should be fed back to the code generation tool for host codeagiemer

3.2.1 Target Functions

In the proposed approach, the computation functions are renamedtetnsyall with a unique id is
generated to replace the original function call. When the function callrecthe host is responsible
for retrieving the parameters and save the return value according to thep&Bification of the
target compiler. Detailed information is described in host interrupt handieergtion in Section
3.3.2.

As shown in Figure 3.2dct() is the computation function in the target source. It consists of
three functiongreshift() chendct(Jandbound() It is first renamed tanterpreteddct() to prevent
the target from calling the function. Function names in the symbol table agatedly the same
as assembly labels. A global assembly label with the same name as the computatitonf
is generated. The label is implemented as a trap instructen x800012 Each computation
function corresponds to a unique i@x800012 and each unique id corresponds to an interrupt
handler in the ISS’s interrupt vector table. On assembly level, when a datigrufunction is
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void dct(int in_block[ 4], int out_block[ 4])
{
preshift(in_block);
chendct(in_block, out_block);
bound(out_block);

} 1

void interpreted_dct(int in_block[ 4], int out_block[ 4]) .global dct

1 dct:
preshift(in_block); swi Ox 00012
chendct(in_block, out_block); mov pc, Ir

bound(out_block);

Figure 15: Target Functions

called, parameters for the computation function will be stored in registeragireg to the stack
which depends on the ABI specification of the architecture. Then thesmonding interrupt is
triggered. The interrupt handler on the host side will be responsiblesfoeving the parameters,
invokes the compiled version of the computation function and returns the tathe target.

3.2.2 Target Global Variables

The addresses of global and static variables are needed by the Hegjarteration. Thus, after the
compilation of the modified target source, the symbol table is retrieved frortatbet binary by
nm The addresses along with the symbol names are fed back to the codatgene

As shown in Figure 16, the target source is compiled by the cross compddahargenerated
binary is processed bgm to produce a symbol table. The symbol table produced by name and
the definitions of the global variable retrieved by the code scanning tediedrto the host code
generation tool to form the definition of target global variables. The rofebe conversion are
described in Section 3.3.2.

3.3 Host Code Generation

The host code generation consists of two parts: function code and gknteble definition code.
The computation function code along with their auxiliary functions are insémteda hybrid ISS
class MyArm) derived from the original interpreted ISSWARNM.
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Symbol Table for Target Binary

Target Source ﬁ
- Symbol Address
inta=0; = - a7 O _——=Z
double b[10][10]; |—L>r°55 comprer udl - a Oxaf 0

— Oxae90 b 0xae90

Target Binary

Code <
Generator
E j Host Source

#define a *(int*)(pMemory + Oxaf 0)
typedef double type0[10][10]
#define b *(type0*)(pMemory + 0xae90)

Figure 16: Target Global Variable

24



iclass SWARM {

protected:
CArmProc* pArm,;
char* pMemory;

void load(...);
void cycle(...);
void step(...);
virtual void regCompSWI(void);

g 7

class MyArm: public SWARM {
private:
void comp_funcl(...);
void comp_funcl_auxi(...);
void comp_funcl_auxi(...);
void regCompSWI(void);

}...

void SWI_comp_funcl(uint32_t r0,
uint32_trl, uint32_tr2, uint32_tr3,
SWARM * sArm)

i
h

void

MyArm::regCompSWI (void)

{
pArm->RegisterSWI (Ox 00010,

SWI_comp_funcl);

e ,

Figure 17: Host Code Generation Overview
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3.3.1 Compiled Computation Function Generation

Hybrid ISS Structure  As shown in Figure 17, the proposed hybrid 138yArm) is constructed
based on the interpreted counterp&WWARNM. It is derived from the interpreted ISS. TB&VARM
base consists of two major components, a processor €awar(Proc* pArm and its main memory
(char* pMemory. The SWARMclass also provides functions for SLDL wrapper to control the
simulation {oad(), cycle() step(). It also contains a virtual functioregCompSWI(}o register
computation function interrupt handlers.

In the derived hybrid ISS clas$yArm), all computation functionscompfuncl() and their
auxiliary functions ¢ompfunclauxl1()andcompfunclaux2() are member functions of the hy-
brid ISS. For each computation function, an interrupt handler func8¥vlcompfuncl() is gener-
ated to retrieve the parameters of the computation function and save thevatiemegCompSWI()
is implemented to register such interrupt handlers to the hybrid ISS duringitiad¢ization.

The interpreted ISS is compiled into a library, and the generated hybrid isldisked with
the library to generate the final simulator binary. The design of the higrangtinly deals with
the presence of several instances of ISS in a multiprocessor simulatioh.pEzgcessor will have
its own SLDL wrapper function to invoke the simulator binary source and sthinces share the
same base interpreted ISS code. The same function or global variabldsappear on different
processors, but as long as they are in different hybrid ISS instatieze will not be any conflicts
between the simulators. The design also makes it easier to define globblesmd#sets (described
in Section 3.3.2).

Dependencies for Computation Functions A source scanning toos{lentbol) is used to generate
the dependencies for computation functions. After the scanning the targete, the dependency
lists for all computation functions are generated. Our code generatiowithdhen merge the
dependency list together and make sure that there are no duplicatesursk £ode of the functions
in the list is copied to the host code as member functions of the hybrid ISS Alasepe identifier
(MyArm::) will be added to each function definition. Declarations of the functionsksiee copied
into the declaration oMyArmclass in the header file.

For example, Figure 18 shows dependency generation for fundtitfh dct() depends on
function preshift() chendct() andbound() The source code of all four functions are copied to the
host source. A scope identifidgriyArm::) is added to the definition of each function. Additionally,
a SWLdct() function is generated as interrupt handler that invokesltt@ function. Declarations
of all these functions are added to the class definitioMpArmin the host header file. The next
section will explain the generation of the interrupt handler function.

Interrupt Handlers for Computation Functions  An interrupt handler function is generated for
each computation function to retrieve the parameters and save the retues.valbie interrupt
handler is architecture dependent. In our example, we build our hyBidiop of an ARM ISS
interpreted simulator called SWARM. The interrupt handler should confoewbstraction Binary
Interface (ABI) of the target compiler in order to retrieve the parametaissave the return values
correctly.
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void dct(int in_block[ 4], int out_block[ 4])
{
preshift(in_block);
chendct(in_block, out_block);
bound(out_block);

} T

void MyArm::dct(int in_block[ 4], int out_block[ 4])| Istruct MyArm : SWARM {

(
preshift(in_block); void preshift(int [ 4]);
chendct(in_block, out_block); void chendct(int [ 4], int [ 4]);
bound(out_block); void bound(int[ 4]);

} void dct(int[ 4]);

void MyArm::preshift(int [ 4]) {...} void SWI_dct(uint32_t r0,

void MyArm::chendct(int [ 4], int[ 4]){...} uint32_trl, uint32_tr2,

void MyArm::bound(int[ 4]){...} uint32_t r3, SWARM * sArm)

void MyArm::SWI_dct(uint32_t r0, uint32_t rl,

uint32_tr2, uint32_tr3, SWARM * sArm) {...} i 7

Figure 18: Host Interrupt Dependency Generation

dct (int in_block[ 4], int out_block] 4]j

L

typedef int def _typeO[ 4];

uint32_t SWI_dct (uint32_t r0, uint32_t rl, uint32_t r2, uint32_t r3, SWARM * sArm)
{
def_typeO & var0 = *reinterpret_cast < def type0 * >(sArm->pMemory + r0);
def_typeO & varl = *reinterpret_cast < def_type0 * >(sArm->pMemory + rl);
((MyArm *) sArm)->dct (var0, varl);
return r0;

| y

Figure 19: Host Interrupt Handler
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In ARM ABI specification, the parameters are stored in regist@rsr3. The return value is
stored back irr0. Thus the only information we need to make the function call is the function
prototype which provides all parameter types and the return type.

The prototype of the interrupt handler is:

uint32.t SWLfunc (uint32t r0, uint32t rl, uint32t r2, uint32t r3, SWARM * sArm);

rO - r4 stores values al - r4 register of the processor, which stores the value of the first four
parameters of the function.

sArmis a pointer to an instance of the SWARM ISS.

For each parameter in the function parameter list, a variable of the paranpses tyeclared.
The variables are assigned the values of the corresponding regist@roptr type conversion. The
parameter type conversion follows the following rules:

If parameter is of a simple typéng, char, doublg, a simple explicit conversion will be used.

If the parameter is of a pointer type, an offset will be added to the pointee v&he calcula-
tion of the offset is the same as the calculation of address offset forlglabables.

If the parameter is of an array typmi([64][64] ), atypedefstatement will be generated to
definenewtype The variable will be accessed wittnew type*)(offset + addresgas shown
in Figure 19).

If the parameter is of a complex typstiuct union...)), the address will be fetched from the
register. A proper offset will be added to the address. The actugcbof the complex type
variable will be fetched from the stack.

For the ARM processor, if there are more than four parameters in thédonmarameter list,
parameters other than the first four will be fetched from the proceds. stac

For example, as shown in Figure 19, functi®WLdct() is generated for functiodct(). The
SWidct() function has five parameters, rO - r2 stores register values and sArmpomir to the
simulator object. The simulator object contains a pointer to the processaséore— pArm) and
a pointer to the target memorgArm—pMemory.

The code generator parses the function’s parameter list and coneevtdtile of the correspond-
ing register to the parameter type. For array type$g4] in dct() function), atypedefstatement is
generated and a reinterpreted conversion is used to interpret the eataetly. Since such types
are pointers to target memory, an offset of the target memory should leel &ktm—pMemory.
The parameters are passed in as a reference to the correspondime ety pe.

In this example, the function does not return anything. If the function metarvalue, the
value will be converted taiint32.t and stored irr0. If the function returns a pointer, an offset
(sArm—pMemory will be subtracted from the return value. If the function returns a comiyies,

a variable of the complex type will be declared to store the value. The vathe cbmplex variable
will be placed on top of the process stack.

28



.global readblock
.global huffencode
.global quantize
.global zigzag
readblock:
swi Ox 00010
mov pc,lr
huffencode:
swi Ox 00011
mov pc,Ir
quantize:
swi Ox 00012
mov pc,lr
zigzag:
swi Ox 00013

void

MyArm::regCompSWI (void)

{
pArm->RegisterSWI (Ox 00010, SWI_readblock);
pArm->RegisterSWI (Ox 00011, SWI_huffencode);
pArm->RegisterSWI (Ox 00012, SWI_quantize);
pArm->RegisterSWI (Ox 00013, SWI_zigzag);

}

mov pc,lr 7

Figure 20: Computation Interrupt Registration
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Registering for Computation Interrupt Handlers  For each computation function, an id number
is associated with the function name (e0x800012n Figure 3.2). A vector table is stored in the
processor coreGArmProq to record the entry point of each interrupt handler function. To registe
the computation interrupt function in the vector table, the virtual funatggCompSWI(heeds to

be implemented in the hybrid ISS clasgdyArm).

For example, as shown in Figure 20, all four computation functiceedplock() huffencode()
guantize(Jandzigzag() are registered to the processor cqgrArim) with a interrupt handler register
function RegisterSWI{)provided by the processor core. TiegCompSWI(Junction will be exe-
cuted in the constructor of the SWARM class, so that when the programdedazach label for the
computation function will correspond to a unique interrupt id in the procesye.

3.3.2 Memory Synchronization

Pointer Analysis It has been shown that in C language, general pointer analysis at camygle
is impossible, the value of pointers at run-time is unpredictable [13]. Thusveie such compile
time pointer analysis by mapping pointers / global variables directly to target ngeiGaven the
fact that the ISS takes care of the byte order conversion, the hodéitarcess the target memory
freely without worrying about the endianness.

Custom Types To compile the computation functions on the host, information about custom types
in the target source is collected. The following custom types need to bastdatrfrom the target
source code.

e typedefdeclarations
e structdeclarations
e uniondeclarations
e enumdeclarations
e macro definitions

These declarations need to be copied to the header file of the host.source

Global Variables As discussed in Section 2.2.3, synchronizing the values of global vagiable
would consume a lot of simulation time. Thus we choose to mandate the globdllgaria the
host source to point to the corresponding addresses in the target memeocgn use the code
generator to replace every occurrence of the global variable with@adiped code segment that
calculates the address of the corresponding variable in the target me3uchyreplacements can be
easily achieved with macro definitions. The variable name is defined as a thatde-references

a pointer of the variable type. The value of the pointer is an offset plus thettaddress of the
variable in the symbol table. The replacement is conducted by the pregsadnstead of our code
generator.
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int LastDC;
LastDC 000059

J b

#define LastDC (*(int*)(pMemory + 0x5f9 )) J

BITMAPFILEHEADER BmpFileHeader;
BmpFileHeader 2f0 ‘

#define BmpFileHeader (*(BITMAPFILEHEADER*)(pMemory + 0x 2f0))J

int ACEhuff_ehufco[257];
ACEhuff_ehufco 000074dc

J b

typedef int type0[257]; J
)

#define ACEhuff_ehufco (*(type0*)(pMemory + 0x74dc)

Figure 21: Global Variable Substitution

Macro Definition Convention In order to have the preprocessor replace the global variable
names without changing the original code manually, we use the follow mafinitid& convention.
#define vamame *(type*)(offset + targeaddress)

e var_.nameis the name of the global variable
e typeis the type of the global variable
o Offsetis the offset for the global variable in the host context

e targetaddresds the target address of the global variable retrieved from the symboldéble
the target binary.

Address Binding The addresses of global variables are retrieved from the symbol thble o
the target binary. An offsepMemory should be added to the address retrieved from the symbol
table (as shown in Figure 16) to construct the correct address. Sicgalbal variables are only
used in computation functions which are in the hybrid ISS cldsgAfm) scope,pMemorywill
be recognized. With the presence of multiple instances of hybrid simupd¢tamorywill refer to
different scopes to resolve the conflict.

For example, as shown in Figure 21 on the left side, each variable namsosaied with a
target address after compilation of the target source. On the right sidace definition for the
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variable is constituted of the its address in the target binary plus an ofidéis simplified example,
no relocatable loader or operating system that supports virtual memorylsedyv If a relocatable
loader is involved, a function that calculates the relocated address dh@wdded to the offset.
If an operating system with virtual memory is involved, the virtual addresslghbe converted to
physical address by the MMU function of the simulator.

Type Mapping For simple types liként, char or doubleor user defined typestfuct, union
enumandtypede}, we can use the type name directly in type mapping.

For array typesift [257] in the example in Figure 21), especially for multidimensional arrays.
We need to define new types in order to perceive the variables’ valuectigr

For example, in Figure 21,tgpedefis defined for typent [257] so that the same type of macro
definition can be used for array types.

Local Variables Since the computation code is executed in “one shot” without interrupt, there
is no need to synchronize general local variables. But for static lauéhies, they need to be
synchronized the same way as global variables. Since the static variebmdaaccessible inside
the function scope, we need to convert all static local variables to glabiables. Such conversion
might results in naming conflicts. Thus we should add a prefix to all static l@ci@bles before

the conversion. The prefix should be unigque between functions, thdartbeon names are used

as prefixes for local variables. Since we don't change the targetesguour code generator, such
naming conversion is safe in terms of preserving the local static variallgsia access scope.

Dynamic Allocated Memory Dynamic allocated memory can be synchronized by coordinating
the malloc() andfree() function on both target and host side. On the host side, all invocations of
memory allocation functions are replaced by a custom function (with an adalisen. prefix) to
perform memory allocation and de-allocation with the record in the target memory

As described in Section 2.2.3, whenever a allocation or de-allocation fansticalled on the
host side, the host memory management function should allocate/de-allocatayrie the target
memory region and do the book keeping in the data structure in target menherfollowing code
shows the data structure used by the target side to keep track of ustdentemory chunks.

typedef struct HNTAG

{
struct HNTAG: pNext Addr;
struct HNTAG: pNextSize;
struct HNTAG- pPrevAddr;
struct HNTAG: pPrevSize;

Voi dx pHol e;
uint32_t nLengt h;
} HEAP_NODE;
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typedef struct HTAG

{
HEAP_NCDE* pAddr Li st ;
HEAP_NCDE* pSi zeli st ;
HEAP_NODE* pUsedLi st ;

} HEAP;

static HEAP+ _ heap;

On the target side, the memory management functions use a simple double litkeglésnen-
tation to store free memory chunk list and used memory chunk list HE¥P_NODE represents a
node in the linked list. It contains the starting memory addrpb®lg), the length fLength) of the
memory chunk. Optionally the nodes can be ordered by addressgRidvAddrandpNextAddy
and/or by size (witlpPrevSizeand pNextSize The free list is ordered by both size and address.
The used list is ordered only with address. A global static variableapis used to store the entry
point of the data structure.

The target address afheapvariable can be retrieved at compile time. Thus after the target
is initialized, we can access the memory management data structure in the tangetynby ac-
cessing the value af heap Whenever we read fromheap the target memory addresses should
be converted to host memory addresses (as described in retrievingr @oidtglobal variable ad-
dresses from the target). Whenever we write to_tiweap the host memory addresses should be
converted to target memory addresses (as described in function refusnconversion). As long
as we can ensure the correctness of addresses between targesesidén The implementation of
memory management functions is a trivial issue. The memory management fisracdiobe simply
converted from its target counterpart.

To used the customized version of memory management functions on thadesive need
to add a prefix to all invocations of memory management functions in the compufatiotions
and their dependencies. So that the customized version of memory manadeneéion will not
confuse other functions in the host source.

3.3.3 Technicalities in Merging the Target C Source

Merging the target source from different C source files could reswdoflicts in the host source
code. Naming conflicts, header re-expansion and dependency pobteild result in compilation
error of the host source. In this section, we briefly discuss a fewataire merging the target source
into a single host source file.

Expanding Macro Definitions Macro expansion could be a big problem for merging different
source files. Because different source files could use differdimititens for the same macro name.
Originally the codes are in different file scope when they are merged &gsetbhme of the macro
definitions might not get properly expanded. For example, for the follgwode:

definel. h:
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#defi ne THRESHOLD 100

define2. h:
#defi ne THRESHOLD 1000

The code generator could be confused by the two definitions and finalpfahe macros could be
wrongfully expanded in the host source.

Another problem with macro definition is that if there is conditional macro defirstithe code
generator could also get confused. For example, consider the follawhey

#i f def W N32

int main(int argc, charx* argv) {
#el se

int main(void) {

#endi f

The WIN32 version of the code takes parameters from the command line, while the emdbedde
version of the code takes no parameters. The code generator will iesedrparsing the function
prototype, since the macro definitions are passed as compiler parameters.

To solve these conflicts, we need to expand the macro definitions befocedikegeneration
instead of copying the macro definitions directly to the generated sourctareBgripping the
computation source, we can first use the preprocessor witBFh&\G Sparameter in thdlakefile
to eliminate these conflicts.

static Declarations Many embedded system applications are implemented by C language. To
restrict the accessing scope in C languagestatckeyword is often used. In our code generation,
we have to get rid of thetatic keyword in the function declaration to make computation functions
a general member of thielyArm class. But simply removing thstatic keyword could result in
naming conflicts. For example, considering the following code:

filel.c:

static void print(int a) {
printf("%l\n", a);

}

file2.c:

static void print(int a) {
printf("9\n", a);

}

The two versions oprint() function will result in conflict for our code generator. The solution is
similar to resolving static local variables. We simply add the file name as a prefir foirtistion
name f{ile L print() andfile2_print()) and replace all occurrences of the functions in the correspond-
ing file with the new name.
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Global Variable Name Shadowing In C language, if a local variable has the same name as the
global variable, the global variable is shadowed in the local scope. Baowirirapproach of syn-
chronizing global variable, we use macro definition. The source coddirstlbe processed by the
preprocessor and the local variables that have the same name as theaylelde will be replaced

by the address of the global variable. The compiler would complain abodefirétion of the local
variable. For example, for the following code segment.

int a =10; // => #define a *x(intx)(pMenory + Oxaf 80)
void foo(void) {
int a =5;

After code generation, the code will be converted to:

void MYArm :foo(void) {
int =(int*x)(pMenory + Oxaf80) = 5;
}

which will result in a compile error. To solve this problem, we need to renamtad variables
that have the same name as any of the global identifier (global variable naseeslefined structs

).

struct Dependencies Our code generator extracts theuctandtypedefdefinition from the target
source code in undetermined order. This could cause dependermigmso For example, for the
following definitions:

struct s2{

int a;

struct sl b;

}

struct s1{

enum type c;

}

typedef enum { RED, YELLOW BLUE} enum type;

The definition ols2depends on the definition ef, and the definition a§1depends on the definition

of enumtype With definition order shown in the example, the compiler will not be able to resolv
the definitions o61lands2 To solve this problem, a directed acyclic graph should be constructed for
nested types. Then, the code generator can simply traverse the graptuogthe type definitions

in the correct order.
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Figure 22: Image Processor

4 Experimental Results

We have tested several real world applications with interpreted, nativéybrid simulation. For
interpreted simulation, a modified SWARM simulator is used, and all the code ¢sitexecom-
pletely in interpreted mode. SWARM [6] is an interpreted ISS for ARM preoeslt is modified
by Schirner and Sachdeva [14] to be adapted in SLD environment. TharjlR] modified the
SWARM to support for multiprocessor simulation. Our modified SWARM is base&im’s ver-
sion. We consider the cycle count of the interpretive case to be accltata rates of the other
cases are calculated based on the cycle count of the interpreted modati#¥® simulation, the tar-
get code is compiled with a native compiler which has no cycle estimation in this Easklybrid
simulation, the proposed hybrid ISS is used.

4.1 Image Processor

As shown in Figure 22, the image processor reads an image and perrenalsransformations
on the image. In our test cases, a 192 by 144 image is used as input. Adtagehthe output of
the previous stage is used as input. The image will be first transformed ictodtd white image,
then transformed to night view, then horizontally mirrored, then horizontgtlpét, then vertically
flipped and finally blurred.

Each stage is considered to be a computation function. In our test caseboase different
stages to run in compiled mode. The speedup is calculated based on the camgtpteted mode
(test case 1). The cycle countin complete interpreted mode (test cammh¥idered to be accurate.
The error for each test case is calculated based on the cycle coustatfitiplete interpreted mode.

In Table 1, we show the experimental results for simulation time of the image ga@ceA
computation function is marked as “C” if it is chosen to run in compiled mode oif ft'is chosen
to runininterpreted mode. For each test case, we measure the simulation timgsjJItmealculate
the simulation speedup.

The accuracy for each test case is shown in Table 2. The ideal estimatisesrthe perfor-
mance estimation from the interpreted mode, which is the best performancetimstimaheory. In
real life, a profiling tool will be used to produce the cycle count estimatioreéeh computation
function. And the final accuracy depends on the accuracy of thdipgatfool, which is beyond the
scope of our work.

As shown in Table 1 and Table 2, if all functions are chosen to run in compilede, the
simulation gains a speedup of 3659X while still maintains a low cycle count efrér1l5% for
ideal performance estimation. Since SWARM provides a complete simulation of AlRMory
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Table 1: Tests Cases and Speedup for Image Processor

id Modules in Compiled Mode Time(s) | Speedup
& W | Night View | HMirror | HFlip | VFlip | Blur

1 I I I I I I 497.727| 1.00

2 I C C C C C 16.909 | 29.44
3 C I C C C C 4.074 | 122.17
4 C C I C C C 7.421 67.07
5 C C C I C C 13.045 | 38.15
6 C C C C I C 13.404 | 37.13
7 C C C C C I 439.66 1.13

8 C C C C C C 0.136 | 3659.76

Table 2: Tests Cases and Accuracy for Image Processor

: Ideal Estimation

'd 1 ISS Cycles Est Total Error(%)
1 | 32245709 0 32245709| 0.00
2 | 1513616 | 29392849| 30906465 4.15
3 328202 | 30578362| 30906564| 4.15
4 406755 | 30496778 30903533| 4.16
5 | 1321022 | 29581835 30902857 4.16
6 | 1539454 | 29364228 30903682 4.16
7 | 25838940 | 5068768 | 30907708 4.15
8 10162 | 30896564| 30906726| 4.15
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Figure 23: YUV Converter

hierarchy, the simulation speed of memory operations in SWARM is extremely Jlbet is the
major cause of the drastic speedup in the hybrid scheme. Most of the cdimpdtactions are
matrix operations, which involve a lot of memory access. We can get the sams&usion from

the Blur function. TheBlur function consists only 80% of the cycle count in complete interpreted
mode. But the simulation time consumeshiyr is close to 88%. Becaudur function accesses
memory more frequently.

4.2 YUV Converter

As shown in Figure 23, the YUV converter [4] loads a YUV video streamyeds a YUV frame
into RGB frame, performs transformations on the RGB frame, converts thdietbBGB frame
into YUV frame and finally saves the output YUV frame to an output video streln our test
cases, a 352 by 288 YUV video stream is used as input. The converksr giery other frame
starting from the 21st frame in reversed order, performs transformatighe frame and saves the
the modified frame to output stream. Thus, the output stream is the 2X plagbtmekinput stream
in reversed order with transformation.

Each operation{UV to RGB Negative andRGB to YUYV is considered to be a computation
function. In our test cases, we choose different operations to ruonpited mode. The speedup
is calculated based on the complete interpreted mode (test case 1). Theayaién complete
interpreted mode (test case 1) is considered to be accurate. Theoemreach test case is calculated
based on the cycle count of the complete interpreted mode.

In Table 3, we show the experimental results for simulation time of the image encad
computation function is marked as “C” if it is chosen to run in compiled mode oif ft'is chosen
torunininterpreted mode. For each test case, we measure the simulation timgsjJItmealculate
the simulation speedup.

The accuracy for each test case is shown in Table 4. In terms of agcura use two ways of
performance estimation. Auto estimation estimates the cycle count of computatiiohs based
on the cycle count from interpreted mode in the first iteration of the executibeal estimation
reuses the performance estimation from the interpreted mode, which is theeblesmance esti-
mation in theory. Since the cycle count for each computation function in altidesaare the same,
the auto estimation is the same as ideal estimation. In real life, a profiling tool wilked to
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Table 3: Tests Cases and Speedup for YUV Converter

id Modules in Compiled Mode Time(s) | Speedup
YUV to RGB | Negative| RGB to YUV

1 I I I 715.006| 1.00

2 I C C 2.528 | 282.83

3 C I C 350.576| 2.04

4 C C I 472.875| 1.51

5 C C C 2.306 | 310.06

Table 4: Tests Cases and Accuracy for YUV Converter
id | 1SS Cycles Auto Estimation Ideal Estimation
Est Total Error(%) Est Total Error (%)

1 | 52219066 0 52219066/ 0.00 0 52219066/ 0.00
2 205710 | 52013932| 52219642 0.00 52013932| 52219642 0.00
3 | 28437689 | 23783376 52221065/ 0.00 23783376| 52221065, 0.00
4 | 23957735 | 28263876| 52221611| 0.00 28263876| 52221611 0.00
5 100334 | 52030592| 52130926 0.17 52030592| 52130926/ 0.17

produce the cycle count estimation for each computation function. And thleaficuracy depends
on the accuracy of the profiling tool, which is beyond the scope of oukwdfe want to show

the upper bound and lower bound of accuracy with different estimatida bo@ur experimental

results.

As shown in Table 3 Table 4, if all functions are chosen to run in compiled mbdesimulation
gains a speedup of 310X while still maintains a low cycle count error of 0fb7%deal performance
estimation. The computation functions in YUV converter also access memaoryreguently. We
can draw the same conclusion as for image processor by compdéegativeand RGB to YUV
function. Negativeis more computation intensive whiRGB to YUVis more memory intensive.
The latter takes 26% less cycle count than the former, and 35% more simulatiothméhe
former. TheYUV to RGBfunction takes very short simulation time since it invokesd function
which is actually running on the host. Thus, the memory access in the simulatoided.

4.3 JPEG Encoder

As shown in Figure 24, a JPEG encoder is composed of five major operatimedblock dct,
guantize zigzagandhuffman A picture block of 256 bytes from a BMP picture is readrbgidblock
and goes througtict, quantize zigzagandhuffmanto produce the final JPEG image. At each stage,
the output of the previous stage is used as input. In our example, we us@H encoder to
encode a 166 by 96 mono BMP image. We choose to run different stagempiled mode. For
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readblock | = dct | quantize | = zigzag | huffman

Figure 24: JPEG Encoder

Table 5: Tests Cases and Speedup for Image Processor

. Modules in Compiled Mode )

d read| dct | quan Eigzag huff Time(s) | Speedup
1 | | I I I 56.280 1.00
2 C I I I I 54.119 1.08
3| C C I I I 28.007 2.09
4| C C C I I 18.032 3.25
5 C C C C I 14.615 4.01
6| C C C I C 3.903 15.01
7| C C I C C 11.286 5.19
8| C I C C C | 27.689 2.12
9| C C C C C 0.437 | 134.10

each test, we measure the simulation time and the cycle count produced bybtit IBS. The
speedup is calculated based on the complete interpreted mode (test cdse Igycle count in
complete interpreted mode (test case 1) is considered to be accuraterdrifereeach test case is
calculated based on the cycle count of the complete interpreted mode.

In Table 5, we show the experimental results of JPEG encoder. A compufatiction is
marked as “C” if it is chosen to run in compiled mode or “I" if it is chosen to runniterpreted
mode. For each test case, we measure the simulation time (Time(s)) to calculabmuiegion
speedup.

The accuracy for each test case is shown in Table 6. In terms of agcura use two ways of
performance estimation. Auto estimation estimates the cycle count of computaiaiiofis based
on the cycle count from interpreted mode in the first iteration of the executibgal estimation
reuses the performance estimation from the interpreted mode, which is theeblesmance esti-
mation in theory. In real life, a profiling tool will be used to produce the cgdent estimation for
each computation function. And the final accuracy depends on theaagcaf the profiling tool,
which is beyond the scope of our work. We want to show the upper banddower bound of
accuracy with different estimation tools in our experimental results. In thec#se, the estima-
tion of huffencodén auto estimation is very inaccurate (the first iteratiomoffencodeaakes three
times as many cycles as average, since it sets up the encoding tables initerditisin), but better
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Table 6: Tests Cases and Accuracy for Jpeg Encoder

id | 1SS Cycles Auto Estimation Ideal Estimation
Est Total Error(%) Est Total Error (%)

1 | 4259525 0 4259525| 0.00 0 4259525 0.00
2 | 3667270 | 601360 | 4268630 0.01 600989 | 4268259 0.00
3 | 1990576 | 2293540| 4284116| 0.37 2298315| 4288891 0.48
4 | 1307698 | 3001300| 4308998| 0.95 2994785| 4302483 0.80
5 | 1093127 | 3235480| 4328607 1.41 3228965| 4322092 1.26
6 290805 | 7917820| 8208625| 92.31 | 4021976| 4312781 1.04
7 753095 | 7444240| 8197335 92.05 | 3559686| 4312781 1.04
8 | 1757823 | 6459820| 8217643 92.52 | 2558830| 4316653 1.13
9 66235 8152000| 8218235| 92.54 | 4256156| 4322391 1.26

performance estimation tools will greatly improve the results.

As shown in Table 5 Table 6, if all functions are chosen to run in compiled ptbdesimulation
gains a speedup of 134X while still maintains a low cycle count error of 1f26%eal performance
estimation. The JPEG encoder is more computation intensive and less memosjvantaan the
previous two examples. Thus, the speedup is significantly less the préwiousxamples. The
more computation functions are chosen to run in compiled mode, the largeretbéugpis and the
greater the cycle error is. For individual functions, we can see frentable that:

e dcttakes almost half of the simulation time. But the cycle coumtabfs similar tohuffencode
The performance difference could be caused by the architectureetiffe between Pentinum
and ARM.

¢ huffencodgroduces the largest cycle count error when it is run in compiled modsadsnng
that the cycle estimation fdruffencodes very inaccurate.

e uantizeandzigzagproduces the same cycle count error when they are run in compiled mode
since the cycle count difference between iterations of the two functiorsyswmall. But run-
ning quantizein compiled mode results in a larger speedup in simulation time sjnaatize
takes longer computation time.

From the experimental results of the JPEG encoder, we can concluderticatmputation in-
tensive applications like JPEG encoder, the proposed hybrid ISSagtpdoastically speeds up the
simulation while maintains a low cycle count error.

4.4 Limitations

The proposed hybrid ISS provides accurate performance estimatieorfguutation intensive ap-
plications. For communication intensive applications, traditional interpret8dst®uld be used
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to provide cycle-accurate timing between communication and computation. Faratedappli-
cations, the user is free to choose whether to run a computation function ripreteel mode or
compiled mode. By targeting a particular operating system, which is listed in Rivkonle we can
better estimate the timing of communication in the middle of a computation function.

5 Conclusion and Future Work

In this technical report, we proposed a new hybrid ISS approacheidoqmance estimation of
embedded systems in System Level Design context. The proposed hgBripproach simulates
computation functions in compiled mode and communication functions in interpretdd. mide
proposed hybrid ISS approach drastically speeds up the simulationmfgrutation intensive appli-
cations while still maintains a low cycle count error.

Traditionally, in System Level Design context, the simulation is either cyclecxppate (like
in Transaction Level Model or Bus Function Model) or completely cycledeate and pin-accurate
(like in Implementation Model). The former produces an inaccurate perfarenastimation, while
the latter takes a substantial longer simulation time. In the proposed apphyasimulating the
computation functions in cycle-approximate mode and maintains cycle-aceunatgin-accurate
simulation for communication between processors, we allow the user to expwdesign space
in between. In our proposed approach, the user is free to choogbextte run a function in
interpreted mode or compiled mode. Thus, the user will have the freedom te anttlade off
between simulation speed and simulation accuracy in their own design.

In this technical report, we also discussed different approachexiefgeneration and proposed
our code generation approach on C source level. The proposedendeation approach is flexible,
retargetable and adaptable.

To realize our design specification, we proposed our schemes of evdgatgion, execution
mode switch and context synchronization technique. These techniquémghaty adaptable and
easy to implement.

To tackle the switch between compiled mode and interpreted mode, we praposexkcution
mode switch scheme. A system call is used to switch from interpreted moddieraioucompiled
mode execution. The interrupt handler generated by our code gemaias care of the marshaling
of parameters and return values. The scheme can applied to varioite@toks with only small
modifications according to the Abstract Binary Interface of the targéiteture.

To synchronize the context between compiled and interpreted mode, wesgeour memory
synchronization scheme. We synchronize the global/static variables amdrpdyy accessing the
variables in target memory directly. We synchronize dynamic allocated memamdgementing
our customized version of memory management functions on the host sideakedhe customized
memory management functions operate on data structures in the target menMergvoid the
synchronization of local variables by execution the computation functioosdrshot on host side.

In conclusion, our proposed hybrid ISS approach makes a good afaletween simulation
speed and simulation accuracy. We provide the user the freedom to matiofus in compiled
mode or interpreted mode in the context of System Level Design. Our @tkragion is easy to
implement and highly adaptable.
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5.1 Future Work

Our proposed approach is not able to handle communications in the middlesx&ttigtion of com-
putation functions, since computation functions are executed in compiled mitautvinterrupt.
For computation intensive applications, cycle count error caused by eldy df communication
handling is negligible. But for communication intensive applications, sudrsoould greatly af-
fect the accuracy. We need to apply some modifications to our propopedbap to reduce such
errors. For modern OS, communication is usually handled by device sliivére background. The
driver code and the OS kernel code are all considered to be communicatie in our context. Our
goal is to execute some of these communication code “in the middle” of computatiotidn.

In interpreted simulation, the interruption caused by communications will natgehthe ex-
ecution path of computation functions. It will only delay the execution of caatjn functions.
Based on this observation, we can simply “interrupt” the clock for computatitimout actually
interrupting the execution. Thus, the execution of computation functions etibe changed. The
only thing to be changed is the ISS wrapper (see Section 2.1) in SLD colntéixe presence of OS,
the wrapper is executed whenever an OS timer interruption is triggered, athtasks except the
computation functions will be executed in interpreted mode. If a computatiatifumis executed,
the cycle count advancement caused by the computation function will regigieed immediately.
Instead, a portion of the advancement will be applied whenever the Gotesethe computation
function for a unit time slice.

Such modifications should be applied to the wrapper based on a specifih®Scheduler of
OS also needs to be modified so that the wrapper can access the schaueleral data structure.
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