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Abstract

Validation is an essential step in System Level Design (SLD)for Multiprocessor System on
Chip (MPSoC). Traditional Instruction Set Simulators (ISS) are often either slow (interpretive
ISS) or unable to handle accurate multiprocessor simulation (static or dynamically compiled
ISS). In this technical report, we propose a hybrid simulation scheme [10] which combines in-
terpreted and static compiled ISS. The proposed ISS is free to execute a target function either
natively or in interpreted mode. With the aid of System LevelDescription Languages (SLDL)
like SpecC/SystemC, the designer using proposed ISS is ableto differentiate the computation
portion and the communication portion of the target code. Byexecuting the computation inten-
sive code on the host natively and the communication portionin interpreted mode, the proposed
ISS is able to speed up the simulation significantly while maintaining acceptable accuracy and
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support for multiprocessor simulation. We have implemented the proposed scheme based on
SWARM [6] [14] [12] simulator and have conducted experiments with several real-life de-
signs. Our test results show that the proposed ISS provides significant speedup in simulation
time and maintains low error in timing estimation.
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Abstract

Validation is an essential step in System Level Design (SLD) for Multiprocessor System on Chip
(MPSoC). Traditional Instruction Set Simulators (ISS) are often either slow (interpretive ISS) or
unable to handle accurate multiprocessor simulation (static or dynamically compiled ISS). In this
technical report, we propose a hybrid simulation scheme [10] which combines interpreted and static
compiled ISS. The proposed ISS is free to execute a target function either natively or in interpreted
mode. With the aid of System Level Description Languages (SLDL) like SpecC/SystemC, the de-
signer using proposed ISS is able to differentiate the computation portion andthe communication
portion of the target code. By executing the computation intensive code on the host natively and
the communication portion in interpreted mode, the proposed ISS is able to speed up the simulation
significantly while maintaining acceptable accuracy and support for multiprocessor simulation.
We have implemented the proposed scheme based on SWARM [6] [14] [12] simulator and have
conducted experiments with several real-life designs. Our test results show that the proposed ISS
provides significant speedup in simulation time and maintains low error in timingestimation.

1 Introduction

1.1 System Level Design Methodology

System Level Design (SLD) reduces the design complexity of Multi-Processor System on Chip
(MPSoC) and enables the designer to explore different software/hardware partitions at an early
stage.

The growing complexity of SoC requires higher level of abstraction. Figure 1 [9] shows that,
as the abstraction level goes down, the design complexity grows exponentially. Due to cost, effi-
ciency, power consumption and real time requirements of embedded systems,design space needs
to be explored on different abstraction levels. System Level DescriptionLanguages (SLDL) model
software and hardware for embedded systems on different abstractionlevels.
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Figure 1: Design Complexity and Abstraction Level [9]
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Figure 2: Top-down System Level Design Methodology [9]

1.1.1 Top-down Design Methodology

Figure 2 [9] shows a top-down work flow of system level design methodology. On each abstraction
level, the flow is able to refine HW/SW for different design choices. The product specification is
captured to generate the specification model which contains the pure function of the product. Com-
putation and communication of the specification model are organized in behaviors and channels. A
profiling tool can be used to estimate the execution time of each behavior for a given input. After
architecture refinement, behaviors in specification model are mapped to different processors. At
this stage, a Transaction Level Model (TLM) is generated to approximate the communication and
the computation. Architecture independent profiling tools could ensure the estimation fidelity at
this stage of design exploration, but TLM is unable to provide accurate performance estimation
for timing of computation and communication. Communication refinement is used to map abstract
channels to concrete communication protocol and hardware. After communication refinement, a
Bus Functional Model (BFM) is generated. In order to get pin-accurate and cycle-accurate simula-
tion result, hardware synthesis and software synthesis are applied to the bus functional model. An
Instruction Set Simulator (ISS) is plugged in to provide cycle-accurate estimation of computation

3
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Figure 3: Functional Validation [9]

functions running on processors.

1.1.2 Validation

Accurate and fast performance estimation is crucial in SLD. On each levelof SLD, functional and
performance validations are required for the verification of the design. Different simulators are used
in the validation process to simulate software and hardware behaviors.

Functional Functional validation verifies the correctness of the execution model. Figure 3 shows
a common set up for functional validation. The stimulus produces input which isprocessed by
Device Under Test (DUT), and the monitor verifies the result produced by the DUT.

Performance Performance validation estimates the performance for hardware and software. Dif-
ferent simulators are used to provide performance estimation in different models. The simulators
are coordinated by a Discrete Event Simulator provided by the SLDL library.

1.2 Design Models at Different Levels of Abstraction

As shown in Section 1.1, the complexity of design and validation grows exponentially as the ab-
straction level goes down. In this section, we will discuss modeling embeddedsystems on different
abstraction levels as shown in Figure 4.

1.2.1 Pure Functional Model

The pure functional model only simulates the functionality of the application andestimates the per-
formance for pure computation. An architecture independent profiling tool is used in architecture
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refinement to compare different algorithm mappings. The estimated timing is veryinaccurate in
terms of cycle count but accurate enough to show fidelity for comparing different algorithm par-
titions on multiple processors. The pure functional model takes the shortestsimulation time, but
cannot provide either estimation of actual execution time of certain architecture or the estimation of
communications between individual processors.

1.2.2 The Transaction Level Model (TLM) Platform Model

Transaction Level Model models the communications between processors with abstract interface
without implementation details of communication protocol. It encapsulates the communications in
channels and simulates the exchange of data and the order of data transaction. TLM can be used
to simulate the communication on abstraction level and verify the correctness ofcommunication.
The system-level designer will have to apply detailed communication protocol information to the
abstract channels in following design stages. Thus, TLM is not capable of providing cycle-accurate
bus transaction timings.

The TLM Platform Model simulates both the computation on individual processors and the
communication among the processors. It provides cycle-approximate estimation for both commu-
nication and computation. The TLM Platform Model is not capable of simulating bus transactions
cycle-by-cycle, thus it cannot provide accurate estimation of communication.

1.2.3 Bus Functional Model

The bus functional model provides a cycle-accurate estimation of communications on the bus. But
inside each processor, a cycle-approximate simulator is used to provide performance estimation.
Bus transactions are simulated by RTL model, thus BFM provides cycle-accurate and pin-accurate
simulation for communications. Bus functional model takes substantially longer simulation time
than TLM, but it provides a much more accurate estimation of communication.
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Figure 6: System Modeling Graph [5]

1.2.4 Implementation Model

The implementation model provides a cycle-accurate estimation for software and a pin-accurate es-
timation for hardware. The software code is synthesized and loaded by aninterpreted ISS which
is plugged back into the implementation model to provide cycle-accurate timing estimation. Bus
transactions are simulated by RTL model, thus it provides pin-accurate result. The implementation
model provides cycle-accurate and pin-accurate simulation for both communication and computa-
tion. Due to the complexity of implementation model simulation, it takes the longest simulation
time.

1.2.5 Comparison of Different Models

The trade off between simulation accuracy and simulation time has been thoroughly discussed by
Cai and Gajski [5]. As shown in 6 [5], for both communication and computation, there are three
degrees of time accuracy: un-timed, approximate-timed and cycle-timed, whichcorresponds to no
cycle count, cycle approximate and cycle accurate in this technical report.Each model described
in the previous sections is represented by a point in the figure (A, B, C, D,F). In the SLD work
flow, as the design flow approaches implementation model (point F), the simulation time increases
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exponentially. To achieve high accuracy and short simulation time, we proposed a hybrid model be-
tween D and F, which simulates communication functions in cycle-accurate mode and computation
functions in cycle-approximate.

1.2.6 Proposed Hybrid Model

The proposed hybrid model combines the TLM Platform Model and the Bus Functional Model.
Instead of plugging in an interpreted ISS which provides cycle-accuratetiming estimation in the
implementation model, we plug in a hybrid ISS which provides cycle-approximate timing estima-
tion.

In SLDL (such as SystemC [3], SpecC [8]), computation is organized into behaviors, and com-
munication is organized into channels. In TLM, a channel is an abstract description of communi-
cation, which can be implemented into different buses or protocols in BFM. Itdescribes both the
communication protocol and the interface with behaviors. When a channel isinstantiated, the in-
terface code will be generated and plugged back into the behaviors [9].Therefore, SLDL defines a
clear boundary between computation and communication in synthesized targetsource code.

Figure 7 shows the bus functional model of an embedded system. The system contains 2 CPUs
and a custom hardware. All processors are connected to a common bus.The ISS is plugged into the
CPU to provide performance estimation in terms of cycle count. Synthesized target source is loaded
in corresponding ISS. Traditionally, an interpreted ISS is plugged into the processor to provide pin-
accurate and cycle-accurate simulation. A centralized simulation engine coordinates the simulation.
The simulation engine drives the interpretive ISS in each processor cycleby cycle. By the end of
each bus cycle, the simulation engine will perform bus transactions thus the communication between
different processors will be simulated. If the proposed ISS is plugged in, only communication
code will be executed cycle-by-cycle, which will result in a pin-accurateand cycle-approximate
simulation.

8
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Figure 8: Discrete Event Simulation Model [9]

1.3 Discrete Event Simulation

In Discrete Event (DE) Simulation, each discrete event contains an instantin time and a change of
system state. The simulation engine applies the discrete events in chronological order. In the context
of SLD, events are changes of internal state of a processor or communications between processors.

As Figure 8 shows, threads are organized in READY queue, WAIT queue and WAITFOR queue.
The WAITFOR queue is a priority queue sorted by the wait time of threads. Initially all threads
are put into the READY queue. The simulation engine picks a thread from the READY queue and
executes the thread. The thread will either notify an event or be moved to WAIT queue or WAITFOR
queue. When the ready queue is empty, the notified threads in the WAIT queue are moved to the
READY queue. If the READY queue is still empty, the first thread in the WAITFOR queue will
be selected, and simulation time will advance to the time that the thread waits for. If the READY
queue is still empty, either the simulation ends or a deadlock occurs.

9



1.3.1 Simulators

Hardware/Software simulators are employed by the Discrete Event simulation engine to provide
performance estimation / functional simulation for different hardware. Inthis section, we review
some common simulators for hardware/software.

Hardware Simulator

VHDL/Verilog VHDL [2]/Verilog [1] are hardware description languages that model thebe-
havior, structure, functional, and physical properties of hardware.They are also used for synthesis
on different abstraction levels and simulate the behavior of hardware with aDiscrete Event simula-
tion engine.

Software Simulator

Profiler A profiler simulates the execution of a program by sampling the function calls at
constant time intervals. With the statistics provided by the profiler, the programdesigner can easily
discover any bottlenecks of the program and optimize the code.

Instruction Set Simulator An Instruction Set Simulator (ISS) simulates the internal state
of a processor when executing a input binary code. The ISS fetches,decodes and executes each
instruction like a real processor and updates the processor’s internalstate. With the help the ISS,
we can accurately estimate the processor cycle count of executing a given input binary code. Other
statics like memory hierarchy statistics can also be retrieved by an ISS.

1.3.2 SpecC/SystemC Simulator

The System Level Description Language employs a Discrete Event simulator. All hardware units
are treated as threads in Figure 8. In different models, hardware units will be synthesized with
different IPs.

1.4 Instruction Set Simulator

Instruction Set Simulator emulates the behavior of a processor. An ISS modelsboth the function and
internal states of a processor. Generally, the internal states include the registers, memory, pipeline
and cache.

1.4.1 Classification

Traditional instruction set simulators can be categorized into three classes:Interpreted, Static Com-
piled and Dynamically Compiled.

10



Interpreted ISS An interpreted ISS executes the target binary instruction by instruction. In each
iteration, the interpreted ISS fetches, decodes and executes the instruction. The interpreted ISS’s
are slow due to their interpreted nature, but provide very detailed estimation of cache, pipeline
and memory model. The interpreted ISS’s are very flexible. They provide estimations for various
purposes.

Static Compiled ISS A static compiled ISS compiles the target code into host binary. Some
approaches compile from the target source and insert timing estimation on source level, while other
approaches map the instructions and registers of the target architecture tothe host architecture and
translate the target binary to host binary. The static compiled ISS is very fast in terms of simulation
time. But it cannot provide accurate estimation for communication since the target code is executed
in “one shot” without interrupt.

Dynamically compiled ISS A dynamically compiled ISS is a combination of static compiled and
interpreted ISS. A dynamically compiled ISS can behave like an interpreted ISS which executes the
binary the target binary instruction by instruction. It could also compiles part of the target code to
host binary. Some approaches profile the target code and translate the most commonly used target
code segment into host binary, while other uses Just In Time (JIT) compilation technique to compile
the target code into host binary on the fly. Dynamically compiled ISS providesmoderate accuracy
in terms of performance estimation and relatively high simulation speed. With proper modifications,
dynamically compiled ISS can be used to provide estimation for communication.

1.5 Related Work

A lot of work has been done to speed up the ISS simulation. Some approaches employ compiled
ISS by mapping the target architecture to the native architecture and translate the target binary into
native binary on assembly level [16]. Some approaches employ Just-In-Time (JIT) compilation and
compile the most frequently executed target code into native code at run-time[7]. Some approaches
compile part of the simulation code into dynamic link libraries, and load the librarieswhenever
native execution is needed [7]. But none of these approaches is aware of the separation of com-
munication and computation in the source code which could be defined by a SLDL as described
in section 1.2.6. And these approaches are designed under different assumptions of a partqicular
application, but none of which is optimized for performance estimation of SLD.

A novel Timed TLM has been proposed [11] to tackle early stage system level design space
exploration. It is fast, accurate and retargetable. But it cannot be categorized into ISS and cannot be
adapted in traditional SLD performance estimation.

Other hybrid ISS approaches have also been proposed before [13]. But the native executed
functions are selected according to an algorithm to minimize the energy estimation error. The
overhead of global variable access in native functions is substantial. This approach is also not
optimized for simulation for Multi-Processor System on Chip (MPSoC).

The proposed ISS takes advantage of the awareness of computation andcommunication bound-
ary of SLDL. It provides a simple and efficient approach to provide performance estimation for

11



SLD and accurate cycle timing for communication, which is not optimized by any ofthe existing
compiled ISS. With accurate cycle timing of communication, the proposed approach could be easily
adapted into SLDL simulation engine which supports MPSoC.

The rest of this technical report is organized as follows: Chapter 2 will introduce the idea
of the proposed ISS approach and the general process of code generation. Chapter 3 will give a
detailed explanation of code generation process. Chapter 4 will give three examples and present
some experimental results. Chapter 5 concludes the technical report anddiscusses future work.

2 Work Flow

In this chapter, we will describe our proposed hybrid ISS approach in general and compare different
design choices of realizing our design specifications. First, we will describe how an ISS is adapted
to SLD context. Then we are going to discuss the challenges of proposed hybrid ISS approach.
Finally, we will describe the general work flow of our proposed approach.

2.1 Instruction Set Simulator (ISS) in System Level Design (SLD) Context

In order to accurately simulate a Bus-Functional Model (BFM), the designflow requires cycle-
accurate simulation for communications between processors. For communication intensive applica-
tions, an interpreted ISS can be used to provide cycle-accurate simulation for all stages. However,
many real life applications are computation intensive, in which case executionof computation code
takes most of the simulation time. Thus simulating the computation code at the higher level in
compiled mode will drastically shorten the simulation time. That is the idea of our hybrid ISS
approach.

Traditionally, an ISS is integrated in the processor in BFM model by use of a wrapper. The
wrapper is a module written in SLDL that communicates with the underlying DiscreteEvent simu-
lation engine and drives the ISS simulation. Every time the wrapper code is executed, the ISS will
be driven to step one cycle ahead. Then the wrapper performs I/O transactions via the processor
bus and checks/sets for interruption with the Programmable Interruption Controller (PIC). Finally,
the wrapper issues await for request to notify the simulation engine to execute the wrapper again
after exactly one processor cycle. For example, as shown in Figure 2.1 inthe traditional model,
the wrapper first callsiss.init() to initialize the state of the ISS. Then the wrapper enters an infinite
loop. Every time the underlying Discrete Event (DE) simulation engines resumes the execution of
the wrapper, the wrapper will first calliss.cycle()to drive the ISS step one cycle. Theniss.read()
andiss.write()are called to perform I/O transactions. Finally the wrapper callswait for function to
notify the DE to resume the execution of the wrapper after one CPU cycle’s simulation time.

In our hybrid ISS approach, instead of driving the ISS exactly one cycle every time, astep()
function is used to drive the ISS to either step one cycle in interpreted mode orstep several cycles in
compiled mode. The cycle count that the ISS actually stepped is then recorded by cyclecnt. After
performing bus transactions, the wrapper notifies the simulation engine to execute the wrapper code
again aftercyclecnt processor cycles. For example, as shown in Figure 2.1 in the hybrid model,
the wrapper first callshybrid iss.init() to initialize the state of the ISS. Then the wrapper enters
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Figure 10: Execution Mode Switch with Proposed Hybrid Approach

an infinite loop. Every time the underlying Discrete Event (DE) simulation engines resumes the
execution of the wrapper, the wrapper will first callhybrid iss.step()to drive the ISS to execute
one step. The number of the actual CPU cycle executed depends on the mode of the ISS. If it is
in interpreted mode, exactly one cycle will be executed. If it is in higher level compiled mode,
the computation function will be executed in “one shot” and the correspondingcycle count will be
written tocyclecnt. Theniss.read()andiss.write()are called to perform I/O transactions. Finally
the wrapper callswait for function to notify the DE to resume the execution of the wrapper after
cyclecnt CPU cycles’ simulation time.

2.2 Hybrid ISS Approach

The proposed hybrid approach employs two execution modes: Compiled Mode and Interpreted
Mode. A program will execute as Figure 10 shows. The execution will jump back and forth be-
tween interpreted and compiled mode. In Interpreted Mode, the code is executed cycle-by-cycle,
which is cycle accurate. In Compiled Mode, the code is executed in “one shot”. Timing is annotated
at the end of the computation, which is cycle approximate. In our implementation, the computation
code can be executed either in Compiled Mode to speed up the simulation or in Interpreted Mode to
provide performance estimation related information. Communication code (ReadData and Write
Data in Figure 10) is executed in Interpreted Mode since there could be external I/O operations
or bus transactions which need synchronization. By the end of each clock cycle, bus transactions
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are simulated by the simulation engine of SLDL. This way, we can speed up the simulation with-
out sacrificing the accurate timing for communication. The proposed ISS is cycle-accurate during
communication and cycle-approximate during computation.

The major challenge of hybrid ISS approach is to coordinate the execution of target code and
native code, which should:

• Ensure the correctness of the execution.

• Make a good trade-off between simulation accuracy and simulation speed.

In this section, we will discuss different approaches to ensure correctness and make a compar-
ison in terms of execution efficiency, implementation complexity, portability and simulation accu-
racy.

2.2.1 Design Choice: Assembly Level Translation vs. Source Level Compilation

To maintain adaptability and efficiency, traditional compiled ISS approaches convert target code to
host binary on assembly level [16]. It is a universal, fast but “dirty”solution, which could handle
execution mode switch on instruction level but is barely retargetable. The translation on assembly
level is a great choice for compiled simulation. But there could be many problems adapting the
scheme to hybrid simulation in System Level Design context, since we need to switch the execution
between host and target.

• A lot of code needs to be rewritten for different target architectures. Mapping one instruction
set to another could be a lot of work if the designer wants to explore designoptions on
different architectures on different host platforms.

• Relocating the target binary code could be a problem in our hybrid scheme.Although a code
generation tool can be used to maintain a symbol table and handle the relocation.

The problem with assembly level translation is that a lot of the translation work has already
been implemented by assembler and compiler. Thus, it would be much more convenient if we
manipulate the target code on source level and let the compiler perform the low level operations.
A switch between the compiled mode and interpreted mode can be realized by using asystem call.
Thesystem callin the context of our proposed ISS approach, is similar to but not exactly the same
as the system call of an OS. It is triggered by atrap instruction and handled by interrupt handlers in
the ISS. We also need to make sure the behavior of the program is properlysynchronized on binary
level. The major challenge of this approach is to coordinate execution of compiled and interpreted
mode and make sure the variables on the host side and the target side are properly synchronized.

2.2.2 Execution Mode Switch

In the proposed approach, execution mode switch is needed only on the computation and communi-
cation boundaries. With the ability to separate computation and communication codes of SLDL, we
are able to encapsulate all computation code blocks in separate functions. Thus we can restrain the
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Figure 11: Execution Mode Switch

execution mode switch on function boundaries. Due to limited number of execution mode switches,
the overhead of such encapsulation is small. With predefined context switchposition in source code,
we can achieve the mode switch by manipulating the target code on C source level, which is highly
retargetable. The only thing that needs to be changed for different targets is Application Binary
Interface (ABI).

In execution mode switch, the modified target code is compiled and loaded by a modified in-
terpreted ISS and the program is executed in interpreted mode inside the ISS. The computation
functions in the target code are replaced by a series of system calls. Copies of all computation func-
tions are compiled and linked with the proposed ISS with proper modification. When the interpreted
simulator encounters a computation function, the system call will pass the control over the host ISS.
The host ISS will decide whether to execute the corresponding computationfunction natively for
fast simulation or interpretively to collect information for performance estimation. If the function
is executed interpretively, cycle count used by the function will be recorded along with profiling
results for future performance estimation. If the function is executed natively, parameters will be
retrieved from the target stack according to the target ABI. After the native execution, the return
value is written back to target stack. Cycle count of the ISS is updated, anda notification will be
sent to the simulation engine.

For example, Figure 11 shows the simplified code segment of execution mode switch. The
comm()function wraps the major execution path on the target side. The target firstcalls a commu-
nication functionrecv() to receive the data to be processed. The address of the data is then passed
to computation functioncompfunc(). When the Program Counter (PC) hitscompfunc(), a system
call is triggered. The host ISS takes over the execution. It will decide whether to execute the func-
tion natively or in interpreted mode. If the function is executed on the host side, the parameters of
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the function will be acquired from the target register/memory according to thetarget ABI. Then a
wrapper on the host side execute the computation function with the parametersacquired. After the
function is executed, the return value of the function is then written back to thetarget memory/reg-
ister by the wrapper. Then the execution of the target is resumed, and the output data is written to
out data. The target calls thesend()function to send the data via processor bus. The actual bus
transaction will be taken care of by the wrapper mentioned in Section 2.1.

2.2.3 Memory Synchronization

In the proposed approach, special consideration needs to be paid to memory synchronization which
ensures that the variable values on the host side and the target side are consistent.

Endianness Endianness is an important issue if two processors of different endianness are access-
ing the same memory region. To ensure the correctness of read and write, the ISS will convert a
memory word from host endian to target endian when it is loading memory to register and convert
the endian back when writing back to the memory. This way, the computation function on the host
side will not need to worry about the endianness of the target. Considering that we put computation
intensive functions that are likely to access memory more frequently on the host, it makes sense to
let the target take care of the endianness conversion to reduce the run-time overhead.

Global Variables Unlike assembly level translation, whose resulting code is executed in the same
memory region as the interpretive target, the source level code generationapproach we employed
in the proposed hybrid ISS has an additional task. We need to perform resource synchronization
manually since the target and host codes are executed in different contexts. With all communication
code excluded from the host functions, the host code will not performany I/O operations, the only
synchronization needed is the synchronization between the on-chip memories and the host memory.
Such memory synchronizations should be considered for three types of variables: global variables,
dynamic allocated memory, and local variables.

It is possible to synchronize the value of global variables at the beginningand the end of the
computation functions. The problem is that the overhead might be too high. Tofind out which
part of memory has been modified, all memory accesses need to be replacedwith a special function
by the code generation tool, so that statistics of all memory accesses can be generated. It will not
be a considerable overhead for the target side since it is executed in interpreted mode. But for the
host side, if all memory accesses are replaced by a function call, the overhead will be significant.
Another possibility is to synchronize all global variables no matter if they havebeen modified or
not. If switching between interpreted mode and compiled mode is very frequent, this could also
create a large overhead.

Considering that the endianness problem is taken care of by the simulator, the host can read or
write the target memory freely. The only trick is to make sure that the host is writing to the correct
addresses. That leads to our solution of tackling synchronization of global variables.

For global and static variables, the target address of each variable canbe retrieved from the
symbol table after target code compilation. The symbol table will be convertedto a header file and
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int a = 0;

double b[10][10];

Target Source

Cross compiler

Symbol Address

a 0xaf80

b 0xae90

Target Binary

Symbol Table for Target Binary

0xaf80

0xae90

void foo(void) {

b[0][0] = 1;

a = b[1][1];

}
Computation Function

Simulator Source

Host Binary

Target Memory

0xaf80

0xae90

offset

Cross compiler

Symbol Address

a offset + 

0xaf80

b offset + 

0xae90

Figure 12: Global Variable Synchronization

compiled with ISS source code to instrument the global variables. When a function is accessing a
global variable in native execution mode, it will first look up in the symbol table for the address.
With the MMU function in the interpretive ISS, the actual address of a variable can easily be calcu-
lated. The resulting address is an offset in the target memory region. Therefore, the host function
will be able to access the global variables directly from the target memory.

For example, Figure 12 shows a simplified scenario. After the the target source is compiled,
each global variable corresponds to a target address (a - 0xaf80,b - 0xae90 in the example). At
run-time the target binary is loaded by the simulator binary. If there is no operating system involved
and the target binary is not relocated, the address of the global variables in the simulator will just be
its original address plus an offset, which marks the starting address of thesimulator target memory.
When the computation source on the host refers to that global variable, it should go to the original
address of the variable plus the offset. If the target binary is loaded by arelocatable loader, simply
changing the value ofoffsetwill produce the correct address. If an operating system that supports
virtual memory is involved, the virtual address of the variable should be fedinto a function which
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converts it to its corresponding run-time physical memory address. Then an offset should be added
to the translated address to produce the correct address.

Pointers Synchronization of pointers is similar to synchronization of global variables. An offset
should be added to the actual pointer value at run-time. The offset is determined by the loading
scheme as described in the previous section. If the binary is loaded withoutrelocation, the starting
address of the target memory is used as the offset. If the target binary is relocated during loading, a
run-time relocation offset should be added to the previous offset. If an operating system with virtual
address space is involved, the simulator should retrieve the actual physical address from the MMU
of the processor.

For all functions with pointer type parameters, the pointer value is convertedto a host memory
address by adding the offset and optionally going through a MMU. For allfunctions with pointer
type return value, the pointer value is converted to target target addressby subtracting the offset
and optionally going through a MMU. With pointer type parameters and return value conversion,
all pointer type variables in native execution scope are referring to native address space. This also
avoids the pointer analysis problem, which is proved to be difficult at compile time[15].

Dynamically Allocated Memory For dynamically allocated memory, a customized version of
malloc() function can be implemented and linked with the ISS source to cooperate with the in-
terpretedmalloc() function to ensure that all dynamically allocated memory segments are actually
allocated in the simulation target memory region and all internal data structures for malloc() func-
tion are synchronized.

C memory management routines use static global data structures to maintain the used and free
memory. A simplifiedmalloc() is implemented on the target side to provide dynamic memory
management. Lists of free memory chunks and occupied memory chunks are stored as static global
variables in the target memory. With the same technique that we used in acquiringthe address of
global variables, we can access the memory management data structures in the target memory. To
use the data structure, we need to use the same algorithm as the memory management routines on
the target side. But all addresses in the target management data structureneed to be converted to
host memory addresses for allocation operations and the host memory address should be converted
back to the target memory addresses for de-allocate operations.

Another problem is that code on the host other than the computation functionscould also invoke
memory management routines. We need to restrict the use of customized version of malloc function
inside the computation function scope. This can be done by adding a prefix tocustomized memory
allocation routines and rename the function calls in the computation functions.

Local Variables For local variables, no synchronization is needed under the assumption that the
computation code is executed in one shot. Lack of memory synchronization for local variables will
not affect the correctness of the program. But cache statistics will not be accurate if the host code
frequently accesses the target memory. Additional cache statistics could begenerated by inserting
run-time statistics code whenever target memory is accessed through a pointer, but it will greatly
affect the performance of the simulator.
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2.3 Work Flow Overview

To achieve the specifications in the previous sections, the target code is processed by a code genera-
tion tool. The tool strips the computation code from the target source and generates the computation
code for the host. Computation functions in the target source are then replaced by the system call
stubs. The computation code and corresponding auxiliary functions are then complied on the host
and linked with an interpreted ISS. The resulting host simulator loads the modified target binary to
perform simulation.

As Figure 13 shows, the target C/SpecC source is fed to our code generation tool. With the
information of communication and computation function provided by the SLD tool, the code gen-
eration tool will strip the source of computation functions from the target source as well as their
dependencies to produce communication source. On the target side, the communication source is
then compiled by a cross compiler to produce the final target executable. The executable is then
used as an input for our code generation tool to provide a symbol table which contains the addresses
for all global variables. Our code generation tool then produces codefor the computation functions
to access the global variables. On the host side, the computation functions and their dependencies
stripped from the target source along with the global information andtypedef/struct are compiled
into host binary. The binary is then linked with the SWARM library to produce the final simulator
binary.

On higher level, the SLDL invokes a wrapper for the simulator binary (described in Section 2.1)
to drive the simulation. Bus transactions and I/O operations are simulated by thewrapper in the
SLD context.
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3 Implementation

3.1 Compilation Work Flow

We built a code generation tool to achieve the proposed approach. Our code generation tool takes
C/SpecC code as input, replaces the computation functions in the target source and generates the
source for native execution. The tool also generates code for targetto host memory synchronization.
Performance estimation is conducted at run-time and timing synchronization is provided by the host
source. Finally, the host source is linked with an interpretive ISS and the target binary is loaded by
the hybrid ISS.

Figure 3.1 shows the work flow of the code generation tool. According to thediscussion in the
previous chapter, the target source is first processed by the parsingtools. Function dependencies,
complex custom types and global variables definitions are retrieved from the target source and stored
in separate files. On the target side, the target source goes through a target source replacement tool,
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all computation functions will be copied to the host source and renamed in the target source. The
computation functions in the target source are then replaced by a series oflabels with the same name
as the computation functions. A system call (trap instruction) is implemented under the label so that
whenever the target side executes the computation function, an interrupt will be triggered and the
control will be handed over to the host simulator.

The stripped source then goes through a cross compiler to produce the final target binary. The
target binary is fed into thenmtool to produce a symbol table which contains the addresses of global
variables. The symbol table and the global variable declarations will be fedinto our code generation
tool to produce code that accesses the global variables in the correct addresses in target memory,
and store them in comp.h. Anystructdefinitions,enumdefinitions andtypedefdefinitions are also
copied to comp.h.

The code generation tool derives a new simulator class (MyArm) from base ISS classSWARM
in our code generation tool. Computation functions are member functions of thederived class.
With function dependency information, our code generation tool copies allcomputation function
along with their dependencies into the derived class and stores them in comp.cpp. To invoke the
computation functions correctly, an interrupt handler should be generated for each computation
function. The handler marshals the parameters of the function call and invokes the corresponding
computation function. The interrupt handler also returns the value from thecomputation function
to the target according to the target’s Abstract Binary Interface (ABI).

The generated host source files (comp.h, comp.c and globals.h) are compiled with the native
compiler and linked with the SWARM library to form the proposed ISS. The target binary is loaded
by the proposed ISS binary during the simulation.

3.2 Target Code Generation

The computation function calls are replaced by system calls. After compilation of the target code,
the address of global and static variables can be fetched from the targetbinary. Such address infor-
mation should be fed back to the code generation tool for host code generation.

3.2.1 Target Functions

In the proposed approach, the computation functions are renamed. A system call with a unique id is
generated to replace the original function call. When the function call occurs, the host is responsible
for retrieving the parameters and save the return value according to the ABI specification of the
target compiler. Detailed information is described in host interrupt handler generation in Section
3.3.2.

As shown in Figure 3.2,dct() is the computation function in the target source. It consists of
three functionspreshift(), chendct()andbound(). It is first renamed tointerpreteddct() to prevent
the target from calling the function. Function names in the symbol table are essentially the same
as assembly labels. A global assembly label with the same name as the computation function
is generated. The label is implemented as a trap instruction (swi 0x800012). Each computation
function corresponds to a unique id (0x800012) and each unique id corresponds to an interrupt
handler in the ISS’s interrupt vector table. On assembly level, when a computation function is
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void dct(int in_block[64], int out_block[64]) 

{

preshift(in_block);

chendct(in_block, out_block);

bound(out_block);

}

void interpreted_dct(int in_block[64], int out_block[64]) 

{

preshift(in_block);

chendct(in_block, out_block);

bound(out_block);

}

.global dct

dct:

swi 0x800012

mov pc, lr

Figure 15: Target Functions

called, parameters for the computation function will be stored in registers or pushed to the stack
which depends on the ABI specification of the architecture. Then the corresponding interrupt is
triggered. The interrupt handler on the host side will be responsible forretrieving the parameters,
invokes the compiled version of the computation function and returns the valueto the target.

3.2.2 Target Global Variables

The addresses of global and static variables are needed by the host code generation. Thus, after the
compilation of the modified target source, the symbol table is retrieved from thetarget binary by
nm. The addresses along with the symbol names are fed back to the code generator.

As shown in Figure 16, the target source is compiled by the cross compiler and the generated
binary is processed bynm to produce a symbol table. The symbol table produced by name and
the definitions of the global variable retrieved by the code scanning tool are fed to the host code
generation tool to form the definition of target global variables. The rulesof the conversion are
described in Section 3.3.2.

3.3 Host Code Generation

The host code generation consists of two parts: function code and global variable definition code.
The computation function code along with their auxiliary functions are insertedinto a hybrid ISS
class (MyArm) derived from the original interpreted ISS (SWARM).
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int a = 0;

double b[10][10];

Target Source

Cross compiler

Symbol Address

a 0xaf80

b 0xae90

Target Binary

Symbol Table for Target Binary

0xaf80

0xae90

nm

Code 

Generator

#define a *(int*)(pMemory + 0xaf80)

typedef  double type0[10][10]

#define b *(type0*)(pMemory + 0xae90)

Host Source

Figure 16: Target Global Variable
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class SWARM {

protected:

CArmProc* pArm;

char* pMemory;

...

void load(...);

void cycle(...);

void step(...);

virtual void regCompSWI(void);

...

}

class MyArm: public SWARM {

private:

void comp_func1(...);

void comp_func1_aux1(...);

void comp_func1_aux1(...); 

void regCompSWI(void);

...

}

void SWI_comp_func1(uint32_t r0, 

uint32_t r1, uint32_t r2, uint32_t r3, 

SWARM * sArm)

{

...

}

void

MyArm::regCompSWI (void)

{

pArm->RegisterSWI (0x800010, 

SWI_comp_func1);

...  

}

Figure 17: Host Code Generation Overview
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3.3.1 Compiled Computation Function Generation

Hybrid ISS Structure As shown in Figure 17, the proposed hybrid ISS (MyArm) is constructed
based on the interpreted counterpart (SWARM). It is derived from the interpreted ISS. TheSWARM
base consists of two major components, a processor core (CArmProc* pArm) and its main memory
(char* pMemory). The SWARMclass also provides functions for SLDL wrapper to control the
simulation (load(), cycle(), step()). It also contains a virtual functionregCompSWI()to register
computation function interrupt handlers.

In the derived hybrid ISS class (MyArm), all computation functions (compfunc1()) and their
auxiliary functions (compfunc1aux1()andcompfunc1aux2()) are member functions of the hy-
brid ISS. For each computation function, an interrupt handler function (SWIcompfunc1()) is gener-
ated to retrieve the parameters of the computation function and save the returnvalue.regCompSWI()
is implemented to register such interrupt handlers to the hybrid ISS during the initialization.

The interpreted ISS is compiled into a library, and the generated hybrid classis linked with
the library to generate the final simulator binary. The design of the hierarchy mainly deals with
the presence of several instances of ISS in a multiprocessor simulation. Each processor will have
its own SLDL wrapper function to invoke the simulator binary source and all instances share the
same base interpreted ISS code. The same function or global variables could appear on different
processors, but as long as they are in different hybrid ISS instances, there will not be any conflicts
between the simulators. The design also makes it easier to define global variables offsets (described
in Section 3.3.2).

Dependencies for Computation Functions A source scanning tool (silentbob) is used to generate
the dependencies for computation functions. After the scanning the targetsource, the dependency
lists for all computation functions are generated. Our code generation toolwill then merge the
dependency list together and make sure that there are no duplicates. All source code of the functions
in the list is copied to the host code as member functions of the hybrid ISS class. A scope identifier
(MyArm::) will be added to each function definition. Declarations of the functions arealso copied
into the declaration ofMyArmclass in the header file.

For example, Figure 18 shows dependency generation for functiondct(). dct() depends on
functionpreshift(), chendct() andbound(). The source code of all four functions are copied to the
host source. A scope identifier (MyArm::) is added to the definition of each function. Additionally,
a SWIdct() function is generated as interrupt handler that invokes thedct() function. Declarations
of all these functions are added to the class definition ofMyArm in the host header file. The next
section will explain the generation of the interrupt handler function.

Interrupt Handlers for Computation Functions An interrupt handler function is generated for
each computation function to retrieve the parameters and save the return values. The interrupt
handler is architecture dependent. In our example, we build our hybrid ISS on top of an ARM ISS
interpreted simulator called SWARM. The interrupt handler should conformthe Abstraction Binary
Interface (ABI) of the target compiler in order to retrieve the parameters and save the return values
correctly.
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void dct(int in_block[64], int out_block[64]) 

{

preshift(in_block);

chendct(in_block, out_block);

bound(out_block);

}

void MyArm::dct(int in_block[64], int out_block[64]) 

{

preshift(in_block);

chendct(in_block, out_block);

bound(out_block);

}

void MyArm::preshift(int [64]) {...}

void MyArm::chendct(int [64], int [64]) {...}

void MyArm::bound(int[64]) {...}

void MyArm::SWI_dct(uint32_t r0, uint32_t r1, 

uint32_t r2, uint32_t r3, SWARM * sArm) {...}

struct MyArm : SWARM {

...

void preshift(int [64]);

void chendct(int [64], int [64]);

void bound(int[64]);

void dct(int[64]);

void SWI_dct(uint32_t r0, 

uint32_t r1, uint32_t r2, 

uint32_t r3, SWARM * sArm)

...

}

Figure 18: Host Interrupt Dependency Generation

typedef int def_type0[64];

uint32_t SWI_dct (uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3, SWARM * sArm)

{

def_type0 & var0 = *reinterpret_cast < def_type0 * >(sArm->pMemory + r0);

def_type0 & var1 = *reinterpret_cast < def_type0 * >(sArm->pMemory + r1);

((MyArm *) sArm)->dct (var0, var1);

return r0;

}

dct (int in_block[64], int out_block[64])

Figure 19: Host Interrupt Handler
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In ARM ABI specification, the parameters are stored in registersr0 - r3. The return value is
stored back inr0. Thus the only information we need to make the function call is the function
prototype which provides all parameter types and the return type.

The prototype of the interrupt handler is:
uint32 t SWI func (uint32t r0, uint32 t r1, uint32 t r2, uint32 t r3, SWARM * sArm);

• r0 - r4 stores values ofr0 - r4 register of the processor, which stores the value of the first four
parameters of the function.

• sArmis a pointer to an instance of the SWARM ISS.

For each parameter in the function parameter list, a variable of the parameter type is declared.
The variables are assigned the values of the corresponding register withproper type conversion. The
parameter type conversion follows the following rules:

• If parameter is of a simple type (int, char, double), a simple explicit conversion will be used.

• If the parameter is of a pointer type, an offset will be added to the pointer value. The calcula-
tion of the offset is the same as the calculation of address offset for global variables.

• If the parameter is of an array type (int [64][64] ), a typedefstatement will be generated to
definenewtype. The variable will be accessed with*(new type*)(offset + address)(as shown
in Figure 19).

• If the parameter is of a complex type (struct, union. . . )), the address will be fetched from the
register. A proper offset will be added to the address. The actual content of the complex type
variable will be fetched from the stack.

• For the ARM processor, if there are more than four parameters in the function parameter list,
parameters other than the first four will be fetched from the process stack.

For example, as shown in Figure 19, functionSWIdct() is generated for functiondct(). The
SWIdct() function has five parameters, r0 - r2 stores register values and sArm is apointer to the
simulator object. The simulator object contains a pointer to the processor core(sArm→ pArm) and
a pointer to the target memory (sArm→pMemory).

The code generator parses the function’s parameter list and converts the value of the correspond-
ing register to the parameter type. For array types (int[64] in dct() function), atypedefstatement is
generated and a reinterpreted conversion is used to interpret the value correctly. Since such types
are pointers to target memory, an offset of the target memory should be added (sArm→pMemory).
The parameters are passed in as a reference to the corresponding parameter type.

In this example, the function does not return anything. If the function returns a value, the
value will be converted touint32 t and stored inr0. If the function returns a pointer, an offset
(sArm→pMemory) will be subtracted from the return value. If the function returns a complextype,
a variable of the complex type will be declared to store the value. The value ofthe complex variable
will be placed on top of the process stack.
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void

MyArm::regCompSWI (void)

{

pArm->RegisterSWI (0x800010, SWI_readblock);

pArm->RegisterSWI (0x800011, SWI_huffencode);

pArm->RegisterSWI (0x800012, SWI_quantize);

pArm->RegisterSWI (0x800013, SWI_zigzag);

}

.global readblock

.global huffencode

.global quantize

.global zigzag

readblock:

swi 0x800010

mov pc,lr

huffencode:

swi 0x800011

mov pc,lr

quantize:

swi 0x800012

mov pc,lr

zigzag:

swi 0x800013

mov pc,lr

Figure 20: Computation Interrupt Registration
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Registering for Computation Interrupt Handlers For each computation function, an id number
is associated with the function name (e.g.0x800012in Figure 3.2). A vector table is stored in the
processor core (CArmProc) to record the entry point of each interrupt handler function. To register
the computation interrupt function in the vector table, the virtual functionregCompSWI()needs to
be implemented in the hybrid ISS class (MyArm).

For example, as shown in Figure 20, all four computation functions (readblock(), huffencode(),
quantize()andzigzag()) are registered to the processor core (pArm) with a interrupt handler register
function (RegisterSWI()) provided by the processor core. TheregCompSWI()function will be exe-
cuted in the constructor of the SWARM class, so that when the program is loaded each label for the
computation function will correspond to a unique interrupt id in the processor core.

3.3.2 Memory Synchronization

Pointer Analysis It has been shown that in C language, general pointer analysis at compiletime
is impossible, the value of pointers at run-time is unpredictable [13]. Thus weavoid such compile
time pointer analysis by mapping pointers / global variables directly to target memory. Given the
fact that the ISS takes care of the byte order conversion, the host is able to access the target memory
freely without worrying about the endianness.

Custom Types To compile the computation functions on the host, information about custom types
in the target source is collected. The following custom types need to be subtracted from the target
source code.

• typedefdeclarations

• structdeclarations

• uniondeclarations

• enumdeclarations

• macro definitions

These declarations need to be copied to the header file of the host source.

Global Variables As discussed in Section 2.2.3, synchronizing the values of global variables
would consume a lot of simulation time. Thus we choose to mandate the global variables in the
host source to point to the corresponding addresses in the target memory,we can use the code
generator to replace every occurrence of the global variable with a specialized code segment that
calculates the address of the corresponding variable in the target memory.Such replacements can be
easily achieved with macro definitions. The variable name is defined as a macrothat de-references
a pointer of the variable type. The value of the pointer is an offset plus the target address of the
variable in the symbol table. The replacement is conducted by the pre-processor instead of our code
generator.
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#define BmpFileHeader (*(BITMAPFILEHEADER*)(pMemory + 0x82f0))

BITMAPFILEHEADER BmpFileHeader; 

BmpFileHeader 82f0

typedef int type0[257];

#define ACEhuff_ehufco (*(type0*)(pMemory + 0x74dc))

int ACEhuff_ehufco[257];

ACEhuff_ehufco 000074dc

#define LastDC (*(int*)(pMemory + 0x5f98))

int LastDC; 

LastDC 00005f98

Figure 21: Global Variable Substitution

Macro Definition Convention In order to have the preprocessor replace the global variable
names without changing the original code manually, we use the follow macro definition convention.

#define varname *(type*)(offset + targetaddress)

• var nameis the name of the global variable

• typeis the type of the global variable

• offsetis the offset for the global variable in the host context

• target addressis the target address of the global variable retrieved from the symbol tableof
the target binary.

Address Binding The addresses of global variables are retrieved from the symbol table of
the target binary. An offset (pMemory) should be added to the address retrieved from the symbol
table (as shown in Figure 16) to construct the correct address. Since the global variables are only
used in computation functions which are in the hybrid ISS class (MyArm) scope,pMemorywill
be recognized. With the presence of multiple instances of hybrid simulator,pMemorywill refer to
different scopes to resolve the conflict.

For example, as shown in Figure 21 on the left side, each variable name is associated with a
target address after compilation of the target source. On the right side, amacro definition for the
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variable is constituted of the its address in the target binary plus an offset. In this simplified example,
no relocatable loader or operating system that supports virtual memory is involved. If a relocatable
loader is involved, a function that calculates the relocated address shouldbe added to the offset.
If an operating system with virtual memory is involved, the virtual address should be converted to
physical address by the MMU function of the simulator.

Type Mapping For simple types likeint, char or doubleor user defined types (struct, union,
enumandtypedef), we can use the type name directly in type mapping.

For array types (int [257] in the example in Figure 21), especially for multidimensional arrays.
We need to define new types in order to perceive the variables’ value correctly.

For example, in Figure 21, atypedefis defined for typeint [257] so that the same type of macro
definition can be used for array types.

Local Variables Since the computation code is executed in “one shot” without interrupt, there
is no need to synchronize general local variables. But for static local variables, they need to be
synchronized the same way as global variables. Since the static variables are only accessible inside
the function scope, we need to convert all static local variables to global variables. Such conversion
might results in naming conflicts. Thus we should add a prefix to all static local variables before
the conversion. The prefix should be unique between functions, thus thefunction names are used
as prefixes for local variables. Since we don’t change the target source in our code generator, such
naming conversion is safe in terms of preserving the local static variables’ original access scope.

Dynamic Allocated Memory Dynamic allocated memory can be synchronized by coordinating
the malloc() and free() function on both target and host side. On the host side, all invocations of
memory allocation functions are replaced by a custom function (with an additional swi prefix) to
perform memory allocation and de-allocation with the record in the target memory.

As described in Section 2.2.3, whenever a allocation or de-allocation function is called on the
host side, the host memory management function should allocate/de-allocate memory in the target
memory region and do the book keeping in the data structure in target memory. The following code
shows the data structure used by the target side to keep track of used andfree memory chunks.

typedef struct HNTAG
{

struct HNTAG* pNextAddr;
struct HNTAG* pNextSize;
struct HNTAG* pPrevAddr;
struct HNTAG* pPrevSize;

void* pHole;
uint32_t nLength;

} HEAP_NODE;
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typedef struct HTAG
{

HEAP_NODE* pAddrList;
HEAP_NODE* pSizeList;
HEAP_NODE* pUsedList;

} HEAP;

static HEAP* __heap;

On the target side, the memory management functions use a simple double linked list implemen-
tation to store free memory chunk list and used memory chunk list. TheHEAP NODE represents a
node in the linked list. It contains the starting memory address (pHole), the length (nLength) of the
memory chunk. Optionally the nodes can be ordered by address (withpPrevAddrandpNextAddr)
and/or by size (withpPrevSizeandpNextSize). The free list is ordered by both size and address.
The used list is ordered only with address. A global static variableheapis used to store the entry
point of the data structure.

The target address ofheapvariable can be retrieved at compile time. Thus after the target
is initialized, we can access the memory management data structure in the target memory by ac-
cessing the value of heap. Whenever we read fromheap, the target memory addresses should
be converted to host memory addresses (as described in retrieving pointer and global variable ad-
dresses from the target). Whenever we write to theheap, the host memory addresses should be
converted to target memory addresses (as described in function return value conversion). As long
as we can ensure the correctness of addresses between target and host side. The implementation of
memory management functions is a trivial issue. The memory management functions can be simply
converted from its target counterpart.

To used the customized version of memory management functions on the host side, we need
to add a prefix to all invocations of memory management functions in the computation functions
and their dependencies. So that the customized version of memory management function will not
confuse other functions in the host source.

3.3.3 Technicalities in Merging the Target C Source

Merging the target source from different C source files could result inconflicts in the host source
code. Naming conflicts, header re-expansion and dependency problems could result in compilation
error of the host source. In this section, we briefly discuss a few caveats in merging the target source
into a single host source file.

Expanding Macro Definitions Macro expansion could be a big problem for merging different
source files. Because different source files could use different definitions for the same macro name.
Originally the codes are in different file scope when they are merged together, some of the macro
definitions might not get properly expanded. For example, for the following code:

define1.h:
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#define THRESHOLD 100

define2.h:
#define THRESHOLD 1000

The code generator could be confused by the two definitions and finally one of the macros could be
wrongfully expanded in the host source.

Another problem with macro definition is that if there is conditional macro definitions, the code
generator could also get confused. For example, consider the followingcode:

#ifdef WIN32
int main(int argc, char** argv) {
#else
int main(void) {
#endif

The WIN32 version of the code takes parameters from the command line, while the embedded
version of the code takes no parameters. The code generator will be confused parsing the function
prototype, since the macro definitions are passed as compiler parameters.

To solve these conflicts, we need to expand the macro definitions before thecode generation
instead of copying the macro definitions directly to the generated source. Before stripping the
computation source, we can first use the preprocessor with theCFLAGSparameter in theMakefile
to eliminate these conflicts.

static Declarations Many embedded system applications are implemented by C language. To
restrict the accessing scope in C language, thestatickeyword is often used. In our code generation,
we have to get rid of thestatickeyword in the function declaration to make computation functions
a general member of theMyArm class. But simply removing thestatic keyword could result in
naming conflicts. For example, considering the following code:

file1.c:
static void print(int a) {
printf("%d\n", a);
}

file2.c:
static void print(int a) {
printf("%X\n", a);
}

The two versions ofprint() function will result in conflict for our code generator. The solution is
similar to resolving static local variables. We simply add the file name as a prefix to the function
name (file1 print() andfile2 print()) and replace all occurrences of the functions in the correspond-
ing file with the new name.

34



Global Variable Name Shadowing In C language, if a local variable has the same name as the
global variable, the global variable is shadowed in the local scope. But inour approach of syn-
chronizing global variable, we use macro definition. The source code willfirst be processed by the
preprocessor and the local variables that have the same name as the global variable will be replaced
by the address of the global variable. The compiler would complain about thedefinition of the local
variable. For example, for the following code segment.

int a = 10; // => #define a *(int*)(pMemory + 0xaf80)
void foo(void) {
int a = 5;
...
}

After code generation, the code will be converted to:

void MyArm::foo(void) {
int *(int*)(pMemory + 0xaf80) = 5;
}

which will result in a compile error. To solve this problem, we need to rename thelocal variables
that have the same name as any of the global identifier (global variable names, user defined structs
. . . ).

struct Dependencies Our code generator extracts thestructandtypedefdefinition from the target
source code in undetermined order. This could cause dependency problems. For example, for the
following definitions:

struct s2{
int a;
struct s1 b;
}
struct s1{
enum_type c;
}
typedef enum {RED, YELLOW, BLUE} enum_type;

The definition ofs2depends on the definition ofs1, and the definition ofs1depends on the definition
of enumtype. With definition order shown in the example, the compiler will not be able to resolve
the definitions ofs1ands2. To solve this problem, a directed acyclic graph should be constructed for
nested types. Then, the code generator can simply traverse the graph to produce the type definitions
in the correct order.

35



Black & 

White

Night 

View
HMirror HFlip Vflip Blur

Figure 22: Image Processor

4 Experimental Results

We have tested several real world applications with interpreted, native and hybrid simulation. For
interpreted simulation, a modified SWARM simulator is used, and all the code is executed com-
pletely in interpreted mode. SWARM [6] is an interpreted ISS for ARM processor. It is modified
by Schirner and Sachdeva [14] to be adapted in SLD environment. Then Kim [12] modified the
SWARM to support for multiprocessor simulation. Our modified SWARM is basedon Kim’s ver-
sion. We consider the cycle count of the interpretive case to be accurate. Error rates of the other
cases are calculated based on the cycle count of the interpreted mode. For native simulation, the tar-
get code is compiled with a native compiler which has no cycle estimation in this case. For Hybrid
simulation, the proposed hybrid ISS is used.

4.1 Image Processor

As shown in Figure 22, the image processor reads an image and performs several transformations
on the image. In our test cases, a 192 by 144 image is used as input. At eachstage, the output of
the previous stage is used as input. The image will be first transformed into black and white image,
then transformed to night view, then horizontally mirrored, then horizontally flipped, then vertically
flipped and finally blurred.

Each stage is considered to be a computation function. In our test cases, we choose different
stages to run in compiled mode. The speedup is calculated based on the completeinterpreted mode
(test case 1). The cycle count in complete interpreted mode (test case 1) isconsidered to be accurate.
The error for each test case is calculated based on the cycle count of the complete interpreted mode.

In Table 1, we show the experimental results for simulation time of the image processor. A
computation function is marked as “C” if it is chosen to run in compiled mode or “I”if it is chosen
to run in interpreted mode. For each test case, we measure the simulation time (Time(s)) to calculate
the simulation speedup.

The accuracy for each test case is shown in Table 2. The ideal estimation reuses the perfor-
mance estimation from the interpreted mode, which is the best performance estimation in theory. In
real life, a profiling tool will be used to produce the cycle count estimation for each computation
function. And the final accuracy depends on the accuracy of the profiling tool, which is beyond the
scope of our work.

As shown in Table 1 and Table 2, if all functions are chosen to run in compiledmode, the
simulation gains a speedup of 3659X while still maintains a low cycle count errorof 4.15% for
ideal performance estimation. Since SWARM provides a complete simulation of ARMmemory
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Table 1: Tests Cases and Speedup for Image Processor

id
Modules in Compiled Mode

Time(s) Speedup
B & W Night View HMirror HFlip VFlip Blur

1 I I I I I I 497.727 1.00
2 I C C C C C 16.909 29.44
3 C I C C C C 4.074 122.17
4 C C I C C C 7.421 67.07
5 C C C I C C 13.045 38.15
6 C C C C I C 13.404 37.13
7 C C C C C I 439.66 1.13
8 C C C C C C 0.136 3659.76

Table 2: Tests Cases and Accuracy for Image Processor

id ISS Cycles
Ideal Estimation

Est Total Error(%)
1 32245709 0 32245709 0.00
2 1513616 29392849 30906465 4.15
3 328202 30578362 30906564 4.15
4 406755 30496778 30903533 4.16
5 1321022 29581835 30902857 4.16
6 1539454 29364228 30903682 4.16
7 25838940 5068768 30907708 4.15
8 10162 30896564 30906726 4.15
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Figure 23: YUV Converter

hierarchy, the simulation speed of memory operations in SWARM is extremely slow. That is the
major cause of the drastic speedup in the hybrid scheme. Most of the computation functions are
matrix operations, which involve a lot of memory access. We can get the same conclusion from
theBlur function. TheBlur function consists only 80% of the cycle count in complete interpreted
mode. But the simulation time consumes byBlur is close to 88%. BecauseBlur function accesses
memory more frequently.

4.2 YUV Converter

As shown in Figure 23, the YUV converter [4] loads a YUV video stream, converts a YUV frame
into RGB frame, performs transformations on the RGB frame, converts the modified RGB frame
into YUV frame and finally saves the output YUV frame to an output video stream. In our test
cases, a 352 by 288 YUV video stream is used as input. The converter picks every other frame
starting from the 21st frame in reversed order, performs transformationon the frame and saves the
the modified frame to output stream. Thus, the output stream is the 2X playbackof the input stream
in reversed order with transformation.

Each operation (YUV to RGB, Negative, andRGB to YUV) is considered to be a computation
function. In our test cases, we choose different operations to run in compiled mode. The speedup
is calculated based on the complete interpreted mode (test case 1). The cyclecount in complete
interpreted mode (test case 1) is considered to be accurate. The error for each test case is calculated
based on the cycle count of the complete interpreted mode.

In Table 3, we show the experimental results for simulation time of the image encoder. A
computation function is marked as “C” if it is chosen to run in compiled mode or “I”if it is chosen
to run in interpreted mode. For each test case, we measure the simulation time (Time(s)) to calculate
the simulation speedup.

The accuracy for each test case is shown in Table 4. In terms of accuracy, we use two ways of
performance estimation. Auto estimation estimates the cycle count of computation functions based
on the cycle count from interpreted mode in the first iteration of the execution. Ideal estimation
reuses the performance estimation from the interpreted mode, which is the best performance esti-
mation in theory. Since the cycle count for each computation function in all iterations are the same,
the auto estimation is the same as ideal estimation. In real life, a profiling tool will beused to
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Table 3: Tests Cases and Speedup for YUV Converter

id
Modules in Compiled Mode

Time(s) Speedup
YUV to RGB Negative RGB to YUV

1 I I I 715.006 1.00
2 I C C 2.528 282.83
3 C I C 350.576 2.04
4 C C I 472.875 1.51
5 C C C 2.306 310.06

Table 4: Tests Cases and Accuracy for YUV Converter

id ISS Cycles
Auto Estimation Ideal Estimation

Est Total Error(%) Est Total Error (%)
1 52219066 0 52219066 0.00 0 52219066 0.00
2 205710 52013932 52219642 0.00 52013932 52219642 0.00
3 28437689 23783376 52221065 0.00 23783376 52221065 0.00
4 23957735 28263876 52221611 0.00 28263876 52221611 0.00
5 100334 52030592 52130926 0.17 52030592 52130926 0.17

produce the cycle count estimation for each computation function. And the final accuracy depends
on the accuracy of the profiling tool, which is beyond the scope of our work. We want to show
the upper bound and lower bound of accuracy with different estimation tools in our experimental
results.

As shown in Table 3 Table 4, if all functions are chosen to run in compiled mode, the simulation
gains a speedup of 310X while still maintains a low cycle count error of 0.17%for ideal performance
estimation. The computation functions in YUV converter also access memory very frequently. We
can draw the same conclusion as for image processor by comparingNegativeand RGB to YUV
function. Negativeis more computation intensive whileRGB to YUVis more memory intensive.
The latter takes 26% less cycle count than the former, and 35% more simulation timethan the
former. TheYUV to RGBfunction takes very short simulation time since it invokesfread function
which is actually running on the host. Thus, the memory access in the simulator is avoided.

4.3 JPEG Encoder

As shown in Figure 24, a JPEG encoder is composed of five major operations: readblock, dct,
quantize, zigzagandhuffman. A picture block of 256 bytes from a BMP picture is read byreadblock
and goes throughdct, quantize, zigzagandhuffmanto produce the final JPEG image. At each stage,
the output of the previous stage is used as input. In our example, we use theJPEG encoder to
encode a 166 by 96 mono BMP image. We choose to run different stages in compiled mode. For
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Figure 24: JPEG Encoder

Table 5: Tests Cases and Speedup for Image Processor

id
Modules in Compiled Mode

Time(s) Speedup
read dct quan zigzag huff

1 I I I I I 56.280 1.00
2 C I I I I 54.119 1.08
3 C C I I I 28.007 2.09
4 C C C I I 18.032 3.25
5 C C C C I 14.615 4.01
6 C C C I C 3.903 15.01
7 C C I C C 11.286 5.19
8 C I C C C 27.689 2.12
9 C C C C C 0.437 134.10

each test, we measure the simulation time and the cycle count produced by the hybrid ISS. The
speedup is calculated based on the complete interpreted mode (test case 1).The cycle count in
complete interpreted mode (test case 1) is considered to be accurate. The error for each test case is
calculated based on the cycle count of the complete interpreted mode.

In Table 5, we show the experimental results of JPEG encoder. A computation function is
marked as “C” if it is chosen to run in compiled mode or “I” if it is chosen to run ininterpreted
mode. For each test case, we measure the simulation time (Time(s)) to calculate thesimulation
speedup.

The accuracy for each test case is shown in Table 6. In terms of accuracy, we use two ways of
performance estimation. Auto estimation estimates the cycle count of computation functions based
on the cycle count from interpreted mode in the first iteration of the execution. Ideal estimation
reuses the performance estimation from the interpreted mode, which is the best performance esti-
mation in theory. In real life, a profiling tool will be used to produce the cyclecount estimation for
each computation function. And the final accuracy depends on the accuracy of the profiling tool,
which is beyond the scope of our work. We want to show the upper boundand lower bound of
accuracy with different estimation tools in our experimental results. In the test case, the estima-
tion of huffencodein auto estimation is very inaccurate (the first iteration ofhuffencodetakes three
times as many cycles as average, since it sets up the encoding tables in its firstiteration), but better
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Table 6: Tests Cases and Accuracy for Jpeg Encoder

id ISS Cycles
Auto Estimation Ideal Estimation

Est Total Error(%) Est Total Error (%)
1 4259525 0 4259525 0.00 0 4259525 0.00
2 3667270 601360 4268630 0.01 600989 4268259 0.00
3 1990576 2293540 4284116 0.37 2298315 4288891 0.48
4 1307698 3001300 4308998 0.95 2994785 4302483 0.80
5 1093127 3235480 4328607 1.41 3228965 4322092 1.26
6 290805 7917820 8208625 92.31 4021976 4312781 1.04
7 753095 7444240 8197335 92.05 3559686 4312781 1.04
8 1757823 6459820 8217643 92.52 2558830 4316653 1.13
9 66235 8152000 8218235 92.54 4256156 4322391 1.26

performance estimation tools will greatly improve the results.
As shown in Table 5 Table 6, if all functions are chosen to run in compiled mode, the simulation

gains a speedup of 134X while still maintains a low cycle count error of 1.26%for ideal performance
estimation. The JPEG encoder is more computation intensive and less memory intensive than the
previous two examples. Thus, the speedup is significantly less the previoustwo examples. The
more computation functions are chosen to run in compiled mode, the larger the speedup is and the
greater the cycle error is. For individual functions, we can see from the table that:

• dct takes almost half of the simulation time. But the cycle count ofdct is similar tohuffencode.
The performance difference could be caused by the architecture difference between Pentinum
and ARM.

• huffencodeproduces the largest cycle count error when it is run in compiled mode considering
that the cycle estimation forhuffencodeis very inaccurate.

• quantizeandzigzagproduces the same cycle count error when they are run in compiled mode
since the cycle count difference between iterations of the two functions is very small. But run-
ning quantizein compiled mode results in a larger speedup in simulation time sincequantize
takes longer computation time.

From the experimental results of the JPEG encoder, we can conclude thatfor computation in-
tensive applications like JPEG encoder, the proposed hybrid ISS approach drastically speeds up the
simulation while maintains a low cycle count error.

4.4 Limitations

The proposed hybrid ISS provides accurate performance estimation forcomputation intensive ap-
plications. For communication intensive applications, traditional interpreted ISS should be used
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to provide cycle-accurate timing between communication and computation. For moderate appli-
cations, the user is free to choose whether to run a computation function in interpreted mode or
compiled mode. By targeting a particular operating system, which is listed in FutureWork, we can
better estimate the timing of communication in the middle of a computation function.

5 Conclusion and Future Work

In this technical report, we proposed a new hybrid ISS approach for performance estimation of
embedded systems in System Level Design context. The proposed hybrid ISS approach simulates
computation functions in compiled mode and communication functions in interpreted mode. The
proposed hybrid ISS approach drastically speeds up the simulation for computation intensive appli-
cations while still maintains a low cycle count error.

Traditionally, in System Level Design context, the simulation is either cycle approximate (like
in Transaction Level Model or Bus Function Model) or completely cycle-accurate and pin-accurate
(like in Implementation Model). The former produces an inaccurate performance estimation, while
the latter takes a substantial longer simulation time. In the proposed approach,by simulating the
computation functions in cycle-approximate mode and maintains cycle-accurateand pin-accurate
simulation for communication between processors, we allow the user to explorethe design space
in between. In our proposed approach, the user is free to choose whether to run a function in
interpreted mode or compiled mode. Thus, the user will have the freedom to make a trade off
between simulation speed and simulation accuracy in their own design.

In this technical report, we also discussed different approaches of code generation and proposed
our code generation approach on C source level. The proposed codegeneration approach is flexible,
retargetable and adaptable.

To realize our design specification, we proposed our schemes of code generation, execution
mode switch and context synchronization technique. These techniques are highly adaptable and
easy to implement.

To tackle the switch between compiled mode and interpreted mode, we proposedour execution
mode switch scheme. A system call is used to switch from interpreted mode execution to compiled
mode execution. The interrupt handler generated by our code generator takes care of the marshaling
of parameters and return values. The scheme can applied to various architectures with only small
modifications according to the Abstract Binary Interface of the target architecture.

To synchronize the context between compiled and interpreted mode, we proposed our memory
synchronization scheme. We synchronize the global/static variables and pointers by accessing the
variables in target memory directly. We synchronize dynamic allocated memory by implementing
our customized version of memory management functions on the host side andmake the customized
memory management functions operate on data structures in the target memory.We avoid the
synchronization of local variables by execution the computation functions inone shot on host side.

In conclusion, our proposed hybrid ISS approach makes a good tradeoff between simulation
speed and simulation accuracy. We provide the user the freedom to run functions in compiled
mode or interpreted mode in the context of System Level Design. Our code generation is easy to
implement and highly adaptable.
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5.1 Future Work

Our proposed approach is not able to handle communications in the middle of theexecution of com-
putation functions, since computation functions are executed in compiled mode without interrupt.
For computation intensive applications, cycle count error caused by this delay of communication
handling is negligible. But for communication intensive applications, such errors could greatly af-
fect the accuracy. We need to apply some modifications to our proposed approach to reduce such
errors. For modern OS, communication is usually handled by device drivers in the background. The
driver code and the OS kernel code are all considered to be communication code in our context. Our
goal is to execute some of these communication code “in the middle” of computation function.

In interpreted simulation, the interruption caused by communications will not change the ex-
ecution path of computation functions. It will only delay the execution of computation functions.
Based on this observation, we can simply “interrupt” the clock for computationwithout actually
interrupting the execution. Thus, the execution of computation functions will not be changed. The
only thing to be changed is the ISS wrapper (see Section 2.1) in SLD context.In the presence of OS,
the wrapper is executed whenever an OS timer interruption is triggered. Thus, all tasks except the
computation functions will be executed in interpreted mode. If a computation function is executed,
the cycle count advancement caused by the computation function will not beapplied immediately.
Instead, a portion of the advancement will be applied whenever the OS executes the computation
function for a unit time slice.

Such modifications should be applied to the wrapper based on a specific OS.The scheduler of
OS also needs to be modified so that the wrapper can access the scheduler’s internal data structure.
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