
Center for Embedded Computer Systems
University of California, Irvine

An Eclipse-based Software Platform for the Recoding
Integrated Development Environment (RIDE)

Bin Zhang, Rainer D̈omer

Technical Report CECS-09-06
May 26, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{binz, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

An Eclipse-based Software Platform for the Recoding
Integrated Development Environment (RIDE)

Bin Zhang, Rainer D̈omer

Technical Report CECS-09-06
May 26, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{binz, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

With the increasing abstraction level of embedded system models, System Level Description
Languages(SLDL) ,like SystemC or SpeC, have been increasingly used as the design entrance.
Having a well described system level model, tools can gradually synthesize them into lower
level until the final netlist implementation. However, accompanying with the increase of design
ability, new bottlenecks are generated. Many of the system level models are recoded from legacy
C reference code, and most of the recoding is nowadays done manually by designers. Due to
tedious work, this process is error-prone, time-consuming, and the quality of the final system
level model is unstable. This problem has been addressed by adesigner-controlled Recoding
Integrated Development Environment (RIDE). With both a textual and a graphic editor and a set
of analysis and transformation tools, the designer can re-code C reference code into a system
level model more efficiently.

In this report, we describe an Eclipse-based software platform for RIDE which can serve
as a robust and extensible framework for RIDE software development and implementation. We
describe in detail the initial software package installation and outline paths for its extension
and customization. As one example, we describe a syntax-highlighting feature for the SpecC
SLDL.

http://www.cecs.uci.edu

Contents

1 Introduction 2
1.1 Methodology . 2
1.2 System Level Description Language .. . 2
1.3 Hardware Software Co-Design .. . 3
1.4 C to SLDL Recoder . 3

2 Motivation 4
2.1 Time Issue . 4
2.2 Quality Issue . 4
2.3 Cost Issue . 5

3 Related Work 6
3.1 Related Work Done in Other Teams . 6
3.2 Related Work Done in Our Team . 8

3.2.1 Recoding Flow . 9
3.2.2 CUTE . 10

4 Recoding Integrated Development Environment (RIDE) 11
4.1 RIDE Frontend . 11
4.2 RIDE Super Data Structure .12
4.3 RIDE Backend . 13

5 Implementation Details 15

6 Conclusion 17

7 Acknowledgement 17

References 18

A RIDE Implementation 20
A.1 Introduction . 20
A.2 Environment Setup . 20

A.2.1 Eclipse 3.3 Setup . 20
A.2.2 Java Runtime Enviroment Setup . 21

A.3 Project Description . 21

B Reference Project 22

i

List of Figures

1 MP3 Decoder Design Time . 4
2 Recoding Gap . 5
3 MAPS Structure [16] . 6
4 Snapshort of CleanC . 8
5 Structure of C to SystemC Synthesizer . 9
6 Basic Recoding Process .9
7 CUTE structure . 10
8 Recoding Integrated Development Environment. 11
9 Internal Software Architecture of RIDE .. . 15
10 The SWIG wrapper generation flow .. 16
11 RIDE editor . 20
12 Project Overview . 21
13 File Extension Association . 22
14 Project Testing . 22

ii

List of Tables

iii

An Eclipse-based Software Platform for the Recoding Integrated
Development Environment (RIDE)

Bin Zhang, Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{binz, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

With the increasing abstraction level of embedded system models, System Level Description Lan-
guages(SLDL) ,like SystemC or SpeC, have been increasingly used as the design entrance. Having
a well described system level model, tools can gradually synthesize them into lower level until the
final netlist implementation. However, accompanying with the increase of design ability, new bot-
tlenecks are generated. Many of the system level models are recoded from legacy C reference code,
and most of the recoding is nowadays done manually by designers. Dueto tedious work, this pro-
cess is error-prone, time-consuming, and the quality of the final systemlevel model is unstable. This
problem has been addressed by a designer-controlled Recoding Integrated Development Environ-
ment (RIDE). With both a textual and a graphic editor and a set of analysisand transformation
tools, the designer can re-code C reference code into a system level model more efficiently.

In this report, we describe an Eclipse-based software platform for RIDE which can serve as a
robust and extensible framework for RIDE software development and implementation. We describe
in detail the initial software package installation and outline paths for its extension and customiza-
tion. As one example, we describe a syntax-highlighting feature for the SpecC SLDL.

1

http://www.cecs.uci.edu

1 Introduction

During the past decades years, the technology of Integrated Circuit design has been developed
dramatically. Unlike in the early days, when there are only dozens of transistors integrated, a modern
chip can contain millions of transistors and the number is doubling every 18 months according to
Moore’s Law. Pre-designed IPs, like processors or buses, as wellas specific hardwares can be
integrated into one chip, while even multi-cores & network on chip(NOC) are possible in certain
situations.

This is a great opportunity because the high density of integration gives thepossibility of im-
plementing more complex systems (like: embedded system) in a very small space. Alot of com-
ponents, which are used to be implemented mechanically, are nowadays replaced by electronic
counterparts.

Meanwhile, it is also a great challenge, because complexity is increasing much faster than the
design ability of the current methodology. A new methodology is neccessaryto fill the gap between
the exponentially increasing complexity and only linearly increasing design ability.

1.1 Methodology

To break down the complexity,Divide and Conqueris often a good methodology. By partitioning
the intangible big problem into tangible small problems level by level, the structureis introduced
gradually, and the internal relationships become more clear. Finally, all solvable or implementable
“leaf problems“, combined with the hierarchy information, form up the solutionof the initial com-
plex problem.

This method has been used in hardware design for a long time. In 1960s and1970s, the hardware
designer only have to deal with hundreds of transistors. The system is easily manageable, and tran-
sistors can be manipulated directly. In the 1980s, with more and more transistors are integrated onto
the chip, the gate level abstraction becomes popular, because with the increasing complexity, the
direct transistor design is too hard and costly to be applied. When it comes to the 1990s, RTL mod-
eling starts to appear. The gates are replaced by registers with arithmetic operation filled between
them. Along with Verilog and VHDL, more and more designers describe the system at the Register
Transfer Level, and automatic synthesizing tools (like Design Compiler) can synthesize them into
gate level, then transistor level. When it comes to the 2000s,Transaction Level Modelling(TLM) or
System Level Modeling becomes the highest level abstraction.

1.2 System Level Description Language

SpecC[13] is the first Transaction Level Modeling language. By introducing the concept of chan-
nels, the communication and computation are separated, and communication is described explicitly.
The system is abstracted into computations and the explicit transactions between them.

2

After the system specification is captured in SpecC, the SCE environment[21] can refine this
specification into software and hardware(in RTL), and the system can beimplemented by the lower
level tool chains, like Design Compiler.

Another System Level Description Language is SystemC[15]. The concept shares a lot with
SpecC, however, instead of a totally new language, SystemC implements these concepts by using
object-oriented libraries in C++.

1.3 Hardware Software Co-Design

So far, the System Level Description Language appears to be a good solution to the increasing com-
plexity of system design. However, when the abstraction comes into the system level, the boundary
between software and hardware becomes more and more ambiguous. Both SpecC and SystemC
are heavily related with C language, which is the most popular software programming language
in the embedded system design. When it comes to this point, idea is to implement the hardware
and software both in System Level Description Language, which is called System Specification or
System Level Model. The System Specification focuses more on the generic computation nature of
the application rather than the detailed software or handware implementation,andthis model can be
later on refined into software and hardware implementation.

1.4 C to SLDL Recoder

The System Specification is usually not created from scratch. Many applications, which are used
to run on general purpose computation platforms (like PCs), are a good starting point to create the
System Specification in SLDL. .

However, because the original C reference code is purely sequential,huge a mount of”structure
information‘‘ needs to be added to the C code. Manually adding this information is tedious, error-
prone and time-consuming, which makes this process the new bottleneck.

This problem is addressed by a designer-controlled Recoding Integrated Development Environ-
ment (RIDE). With both a textual and a graphical editor and plenty of analysis and transformation
tools, the designer can re-code the C reference code into the System Level Model more efficiently.

We describe the motivation for the recoding idea in Section 2, discuss relatedwork in Section
3, and then outline the new Recoding Integrated Design Environment (RIDE) in Section 4. Spe-
cific design and implementation details of an Eclipse-based software framework for future RIDE
development are described in Section 5 (and the Appendix) of this report.

3

2 Motivation

During the past few years, the bottleneck of system design has shifted from the RTL Model
creation to the Specification Model. Before that, the bottleneck of the design isthe RTL coding.
Dozens of engineers spent several months to write the RTL model of a design according to the speci-
fication. After the coding is finished, the RTL models are verified, simulated and finally synthesized
into netlist by some commercial synthesizer (like, Design Compiler). With appearance of SLDL,
like SpecC or SystemC, people start to write the system level models from scratch or by modifying
reference C code. The SpecC or SystemC model are then automatically synthesized into the RTL
model, and further netlist model.

However, the creation of SpecC or SystemC model is not an easy job. Due toimmaturity of
this process, many problems exist. In the following part, we define these problems from three
perspectives.

2.1 Time Issue

According to our experience, manually re-coding the reference implementation of MP3 decoder
into a mature SpecC or SystemC model takes 12-14 weeks (shown in Fig.1 [2]). In contrast, the
following processes from Specification Model to Implementation Model only takes less than 1 week.

Specification Model

Refinement-1

Intermediate Model-1

Refinement-N

Intermediate Model-N

Implementation Model

Capture/Re-Coding

Less than 1
week

12-14 weeks

...

...

Manual

Automatic

Reference
Model

Figure 1: MP3 Decoder Design Time

2.2 Quality Issue

An error costs 10 times more energy and money to find it in the lower level than inthe higher
level. This means if a system level model error is found in the netlist level model, it will cost us 1000

4

times more money and energy than finding the error in the system level model. So, an error-free
model at the system level is very valuable.

While at the same time, most of the system model is created by modifying the reference code.
This purely manual process is error-prone.

2.3 Cost Issue

Currently the payment to the engineer is often the lion’s share of a project. One engineer costs
about 80,000 dollars per year. If most of their time is spent on the tedious works which can be
automated, that is actually a great waste of human resource.

In summary, theTime, Quality andCost issues make the system level modeling a major bottle-
neck of the whole system design process. As depicted in Fig.2, how to bridge the gap in shorter time
with less spending and higher quality has become the new challenge of embedded system design.
These problems will be addressed in the following sections.

Figure 2: Recoding Gap

5

3 Related Work

Until today, there are actually only few papers to address this problem of creating the system level
specification models. In this section, we will list the projects that are related to this process.

3.1 Related Work Done in Other Teams

MAPS: MAPS[16] is project undertaken at RWTH Aachen University. It proposed an integrated
framework to parallelize the C applications for MPSoC platforms. The description of the target
MPSoC is given as an input. It extracts coarse-grained parallelism, and aset of tools have been
developed for the framework. The structure of MAPS is depicted in Fig.3.

Figure 3: MAPS Structure [16]

6

However, this work focuses on modifying the code to creating a parallel program on MPSoC
rather than creating the specification model of the application. That means MAPS is mostly a
software flow with small code in the future synthesized into hardware. However, this feature is very
important because most of the MPSoC chips are customized, and part of theHW are ASICs instead
of purely general on-shelf processors.

Meanwhile, this work is based on a so-called Tightly-Coupled-Thread(TCT) programming
model[20] rather than some mature system level modeling model, like SpecC or SystemC.

CleanC: Another project that also addresses this problem is called CleanC [8]. Itcan analyze
the C code for a variety of coding patterns that make the C code hard to understand by humans and
difficult to analyze by tools, like:

• Distinguish source file from header file

• Use macros for constants and conditional exclusion

• Keep variables local

• Make sure a pointer points to only one data set

• Do not use recursive function calls

• Do not use functions with varargs

• Use switch statements instead of function pointers

• Use the manifest loop pattern

• Make the control ow regular

• Keep side-effects out of expressions

• Use indexes instead of pointer arithmetic

• Do not cast to / from a pointer

• Cast the result of malloc() to the correct type

• Use arithmetic operators to perform calculations

• Avoid the dark corners of the C standard

• Respect the semantics of types

This tool is implemented as the plugin in Elicpse development environment [11] withCDT [1]
installed. The violations are listed under the ”Clean-C Problem” tab as well as inthe code. A
snapshot of the tools is given in Fig.4.3

7

Figure 4: Snapshort of CleanC

However, similar to the MAPS, CleanC is also only a pure software flow. It can only analyze a
handful features and all the code transformation work has to be done bythe designer.

C-to-SystemC Synthesizer: A C-to-SystemC Synthesizer is mentioned in paper[25] with struc-
ture shown in Fig.5 It uses some scheduling methods to generate SystemC codefrom C code. How-
ever, given complexity of some reference C code, this method appears quite simple to work.

Others: Other related work includes parallelizing compilers and a software engineering tech-
nique known as refactoring. Intensive research has been done in theparallel computing field to auto-
matically parallelize the software, such as interprocedural analysis[18],symbolic analysis[19], and
loop transformation[18] [7]. However, these are more focused on general computing or scientific
computing, which has little touch in the embedded system community. For the code refactoring[17]
[22], the purpose is different from our recoding. Refactoring is morefocused on improving the
human readability, understandability, and maintainability of the source code, while our recoding is
focused on creating the system level model by exposing the communication and concurrency.

3.2 Related Work Done in Our Team

Besides the related work done in other teams, this topic has been heavily researched by Pramod
Chandraiah. Several papers [3], [4], [5], [6] have been published on this recoding process, and a

8

Figure 5: Structure of C to SystemC Synthesizer

designer controlled recoder [2] has been created.

3.2.1 Recoding Flow

Figure 6: Basic Recoding Process

The basic re-coding process by P.Chandraiah is depicted in Fig.6. As shown, it takes 4 major steps
to start from a pure C Reference Model to a Flexible System Model withoutunnecessary pointers:

• Creating Structural Hierarchy : This process encapsulates the computation. The original
functions in the C Reference Model are packed hierarchily intobehaviors.

• Code & Data Partitioning : In this process, the C Reference Model structure will be dis-
mantled. Functions and global variables will be partitioned into reasonable pieces to give

9

more flexibility for the later process. Several typical transformations include: loop splitting,
cumulative access type analysis, partition of vector dependents and synchronizing dependent
variables.

• Creating Explicit Communication : After the code has been divided into small pieces, the
variables are replaced by channels to connect different behaviors tocompose the whole sys-
tem. The concept of channel is the most significant contribution of system level modeling.
They contain more information than variables, and these information can be used, later on,
by compiler or synthesizer to generate lower level representation.

• Recode Pointers: After we get the flexible system model, the pointer recoding will be ap-
plied. Pointer is an very common concept in software but sometimes abused in the code. In
the pointer recoding process, these unnecessary pointers are removed.

Inside these steps, detailed re-coding techniques are:

• Loop Splitting
• Cumulative Access-Type Analysis
• Partitioning Vector Dependants
• Breaking Composite Structures
• Synchronizing Dependent Variables
• Variable Rescoping

3.2.2 CUTE

Based on the concept mentioned above, an Interactive Source Recoder has been implemented.
Working as an union of editor, abstract syntax tree(AST), parser, transformationer and code genera-
tor, many of the transformations can be done by justing clicking one button. The structure of CUTE
is depicted in Fig.7

Figure 7: CUTE structure

10

4 Recoding Integrated Development Environment (RIDE)

To aid the designer in system specification and modeling, we propose an Integrated Develop-
ment Environment (IDE) for model re-coding. The Recoding IDE (RIDE) supports the designer-
controlled interactive approach to automated coding and recoding as outlined above.

RIDE

Text Editor Graphical Editor

Transformation
Tools

Synthesis
Tools

Imple-
mentation

Compiler
(Code Gen.)

Compiler
(Parser)

Reference
Code

Analysis
Tools

synch

CCC Model Rep.
(Super Data Structure)

s y n c h s y n
c h

GFXTXT

SIRUser Interface Frontend
System Design Backend

Simulation Estimation Optimization

Figure 8: Recoding Integrated Development Environment.

RIDE tightly integrates interactive graphical and textual editors with the system-level tool chain
for simulation, estimation, refinement, and synthesis. In other words, RIDE isan intelligent union
of editor, compiler and powerful transformation and analysis tools.

RIDE supports re-coding of SLDL models at various levels of abstraction. It can be used to re-
code intermediate system design models, as well as the initial C reference implementation in order
to produce an optimal system model.

The conceptual structure of the proposed Recoding IDE is shown in Figure 8. On the highest
level, RIDE consists of a user interface frontend, a complex data structure for model representation,
and a backend of advanced system design tools. The RIDE is build on the eclipse [11].

4.1 RIDE Frontend

The RIDE frontend offers two main editors to the system designer, a graphical and a textual
one. The textual editor maintains the SLDL source text of the design model andallows the usual
navigation, modification, and editing tasks of modern text editors. Advancedfeatures include syn-
tax highlighting, auto-completion, semantic search, ctags, text folding, bookmarks, and undo/redo.
Syntax and semantic support is provided for C-based languages, i.e. C and C++ programming lan-
guages, and SystemC [15] and SpecC [10] SLDLs.

11

The graphical editor is envisioned to present a hierarchical diagram ofthe design model that
can be used for visualization, navigation, and modification operations. Supported visualization
operations include zoomin/zoomout, selection of hierarchy depth, display ofconnectivity (ports,
busses, channels), and highlighting of objects. On the other hand, graphical editing is supported by
rename, add, move, delete, and cut/copy/paste operations for blocks (modules/behaviors), channels,
interfaces, variables, ports, and connections.

All editors are linked and constantly synchronized. Any change applied tothe design in one
editor instantly is reflected in the other editor as well. In other words, both editors maintain the
same design model, and just display the model in a different perspective (textual view, graphical
view). Note that the synchronization of the editors is instantaneous, on a key-stroke or click of a
button, and is accomplished by use of an advanced super data structure (see Section 4.2 below).

The RIDE frontend also controls the backend design tools using a convenient graphical user
interface (GUI) with the usual tool bars, menu structures, and dialog windows. Moreover, the RIDE
backend tools can be called directly from the design objects shown in the editors. Thus, when
the designer points to and highlights any object, such as a channel icon in thegraphical editor
or a channel name in the textual interface, a context menu pops up with applicable and available
operations.

For example, when the designer points to a channel instance, the list of possible operations con-
tains renaming, copying, deleting, changing the scope, and finding dependents and connected ports.

4.2 RIDE Super Data Structure

At the core of the Recoding IDE, we plan a complex data structure that maintains a compre-
hensive, coherent, and consistent (CCC) model representation. TheCCC model representation is
a super data structure that combines three dedicated data structures, a textual model representation
(TXT), a graphical model representation (GFX), and a syntax-independent representation (SIR).

The textual model representation(TXT), also known as the document object, represents the
design model as program text specified in a system-level description language (SLDL). We plan
to support both SystemC [15] and SpecC [10] SLDLs. In other words, the TXT representation is
implemented by use of a regular text data structure used in a text editor, essentially consisting of
lines of text, and augmented by support for ctags, syntax-highlighting, and other advanced features.

The graphical model representation (GFX) is a complex object-oriented data structure that
describes the graphical hierarchy chart of the design in form of its coordinates, sizes, colors, and so
on.

12

Thesyntax-independent representation(SIR) [24, 9] is the central data structure for compila-
tion, analysis, and transformation tools. It contains an abstract syntax tree (AST) of the design
model that corresponds to the textual representation (TXT). In addition,the SIR contains full-
fledged type and symbol tables, necessary to support compiler tasks such as parsing, semantic
checking, static analysis, and optimization. Note that this data structure also maintains source code
comments and position information so that a code generator can re-generatethe source code for use
in the TXT representation.

Most notably, the SIR data structure is the basis for analysis tools toward early system estima-
tion, for transformation tools toward re-coding, modeling and optimization, andfor synthesis tools
toward the final system implementation.

The three basis data structures, TXT, GFX and SIR(including the MDS), are combined into a
RIDE super data structure that will keep the design model accurately reflected and updated in each
representation. Synchronization functions (synchin Figure 8) are used for this purpose. Any change
to one of the three data structures is immediately synchronized with the others, such that after each
modification or transformation, all data structures consistently reflect the resulting model.

We would like to emphasize that this instant synchronization of the different data structures is a
key contribution of RIDE. While it is ambitious to maintain a comprehensive, coherent, and consis-
tent super data structure, it is certainly feasible, even if synchronizationhas to occur frequently, i.e.
after every key stroke in the text editor. As we have seen in [2], an earlyprototype implementation
of two synchronized data structures showed sufficient responsiveness, even though a brute-force file
interface was used for the synchronization operations.

4.3 RIDE Backend

The RIDE backend is planned as a powerful set of analysis and transformation tools that the de-
signer can invoke directly from the two editors. The results of these operations are directly reflected
in the editors as well.

We would like to emphasize that the strength of RIDE lies in this system design backend. In other
words, the analysis and transformation tools build the core of the re-codingenvironment.

To provide an overview about expected analysis and transformation tasks, we can conceptually
categorize our re-coding operations into three classes.

Analysis functions provide static analysis, such as dependency information, on the objects in the
model without introducing any changes to it. As such, analysis can, for example, provide
information to the designer about potential for parallel execution of blocksand/or functions.
Conceptually, analysis function include

• revealing dependencies,

13

• check for potential concurrency, and

• general analysis for program comprehension.

Example operations in this category include determining the usage of variables, introducing
concurrency, and generating dependency graphs.

Structural transformations change the structure of the design model by introducing and/or re-
moving computational blocks, channels, and functions. In this category, we further distin-
guish

• granularity transformations,

• composition transformations,

• re-organizing transformations, and

• connectivity transformations.

Introducing new blocks (modules/behaviors), composing hierarchical blocks, splitting
and/or merging blocks (to adjust the design granularity) are some examples of structural trans-
formations.

Functional transformations modify computational blocks, functions, and variables. This cate-
gory can be further subdivided into

• transformations to contain communication,

• transformation to break dependencies, and

• pruning transformations.

Localizing global variables, breaking composite data types into smaller data types, and trim-
ming the width of wider data types into optimized bit vectors, are some examples of transfor-
mations in this category.

14

5 Implementation Details

We use the Eclipse framework [11] to implement RIDE. Eclipse is a software platform to provide
a basement for integrated development environment (IDE) development. It is written in Java, and
IDE developers can extend its functions by installing plugins written for it.

Eclipse itself is not a single monolithic program.The basement is called the runtime system,
which is based on Equinox[12]. The runtime system is very light weight, andall the other functions
are implemented as plugins on top of it. Each plugin can use the functions of another plugin, and
also provide functions which can be used by other plugins.

Figure 9: Internal Software Architecture of RIDE

The software architecture of RIDE is depicted in Fig.9. As shown, the RIDEfrontend (4.1) is
implemented as a plugin in the Eclipse environment. The editor can be derived from the editor
offered in Eclipse, while other components need to be written from scratch.

For the RIDE super data structure (4.2), we would like to reuse the repository data structure
SIR. However, due to that the SIR was originally written in C++, we have to create a wrapper for
this data structure. The tool we use to automaticly generate this wrapper is called SWIG [23]. The
wrapper generation flow is depicted in Fig.10. After the wrapper is generated, the SIR functions
can be used in Eclipse by calling the Java interface.

For the RIDE backend (4.3), some of the tools are implemented in the same way asthe super
data structure. The repository code in C++ can be reused, and the wrapper in Java is generated to
make it possible be called in the Eclipse plugin.

15

Figure 10: The SWIG wrapper generation flow

For some other tools with no good repository code, there are two choices: first is write the new
tools in Java. This is an easier way, but the consistency is broken, because part of the tools are Java
while part of the tools are in C++. The second choice is still use C++ to write these tools and use
SWIG to create a wrapper for them. This method can keep the consistency ofthe project, but takes
longer time. And the cross-platform feature of Java cannot be used in thiscase, because the code in
C++ is not cross-platform.

For a more detailed documentation of the implementation of the RIDE software platform, please
refer to the Appendix.

16

6 Conclusion

In this report, we have addressed the gap between C reference code and SLDL. New tool struc-
tures are proposed with the consideration of time, quality and cost. With both text and graphic
interface in the proposed RIDE framework, the flexibility of the design entrance is increased. The
designer can apply the transformations in either text form or graphic. Newtransformation tools can
be offered with higher quality code generated. New analysis tools can alsofacilitate the understand-
ing of the model.

Similar to the RTL languages 10 years ago, SLDL will be the standard in the future. More
applications will be designed from SLDL, and more mature tools will come out. Inthe long term,
the design of embedded systems may be so simple that even the initial algorithm designer can
implement their own system from pure C code without having any knowledge of the hardware
details. However, this progress do not happen automatically without EDA engineer’s work.

7 Acknowledgement

This work has been supported in part by the National Science Foundationunder grant NSF CAREER
Award #0747523. The authors thank the NSF for supporting this research.

17

References

[1] CDT Project.http://www.eclipse.org/cdt/.

[2] Pramod Chandraiah and Rainer Dömer. An Interactive Model Re-Coder for Efficient SoC
Specification. InProc. International Embedded System Symposium, Embedded System De-
sign: Topics, Techniques and Trends,̈ Springer, Irvine, California, USA, May 2002.

[3] Pramod Chandraiah and Rainer Dömer. Designer-Controlled Generation of Parallel and Flex-
ible Heterogeneous MPSoC Specification. InProceedings of the Design Automation Confer-
ence (DAC), San Diego, California, USA, June 2007.

[4] Pramod Chandraiah and Rainer Dömer. Pointer Re-coding for Creating Definitive MPSoC
Models. InCODES-ISSS, Salzburg, Austria, September 2007.

[5] Pramod Chandraiah and Rainer Dömer. Automatic Re-coding of Reference Code into Struc-
tured and Analyzable SoC Models. InProceedings of the Asia and South Pacific Design
Automation Conference (ASPDAC), Seoul, South Korea, January 2008.

[6] Pramod Chandraiah and Rainer Dömer. Code and Data Structure Partitioning for Parallel
and Flexible MPSoC Specification Using Designer-Controlled Re-Coding. In IEEE Tran. on
Computer-Aided Design of Inegrated Circuits and System, June 2008.

[7] J.-H Chow, L.E.Lyon, and V.Sarkar. Automatic parallelization for symmetricshared-memory
multiprocessors. InProc. Conf. CASCON, 1995.

[8] CleanC home page.http://www.imec.be/CleanC/.

[9] Rainer D̈omer. The SpecC internal representation. Technical report, Information and Com-
puter Science, University of California, Irvine, January 1999. SpecC V 2.0.3.

[10] Rainer D̈omer, Andreas Gerstlauer, and Daniel Gajski.SpecC Language Reference Manual,
Version 2.0. SpecC Technology Open Consortium,http://www.specc.org, December 2002.

[11] Eclipse Project.http://www.eclipse.org.

[12] Equinox Project.http://www.eclipse.org/equinox/.

[13] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing Zhao.SpecC:
Specification Language and Design Methodology. Kluwer Academic Publishers, 2000.

[14] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski.System Design: A
Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[15] Thorsten Gr̈otker, Stan Liao, Grant Martin, and Stuart Swan.System Design with SystemC.
Kluwer Academic Publishers, 2002.

18

http://www.eclipse.org/cdt/
http://www.imec.be/CleanC/
http://www.specc.org
http://www.eclipse.org
http://www.eclipse.org/equinox/

[16] J.Ceng, J.Castrillon, W.Sheng, H.Scharwächter, R.Leupers, and H.Meyr G.Ascheid. MAPS:
An Integrated Framework for MPSoC Application Paralleization. InProceedings of the Design
Automation Conference (DAC), Anaheim, California,USA, June 2008.

[17] M.Fowler. Refactoring: Improving the design of existing code. InProc. 2nd XP Universe, 1st
Agile Universe Conf. Extreme Program. Agile Methods-XP/Agile Universe, 2002.

[18] M.H.Hall, S.P.Amarasinghe, B.R.Murphy, S.W.Liao, and M.S.Lam. Detecting coarse-
grain parallelism using an interprocedural paralleizing compiler. InACM/IEEE
Conf.Supercomputing, 1995.

[19] M.R.Haghighat and C.D.Polychronopouls. Symbolic analysis for parallelizing compilers. In
ACM Trans. Program. Lang. Syst., July 1996.

[20] M.Z.Urfianto, T.Isshiki, A.U.Khan, D.Li, , and H.Kunieda. A Multiprocessor System-on-
Chip Architecture with Enhanced Compiler Support and Efficient Interconnect. In IP-SOC
2006,Design and Reuse, S.A., 2006.

[21] R.Doemer, A.Gerstlauer, J.Peng, D.Shin, L.Cai, H.Yu, S.Abdi, and D.Gajski. System-on-
Chip Environment: A SpecC-Based Framework for Heterogeneous MPSoC Design.EURASIP
Journal on Embedded Systems, 2008(647953):13, July 2008.

[22] Index of Refactorings.thhp://www.refactoring.com/catalog/index.html.

[23] SWIG Project.http://www.swig.org/.

[24] Ines Viskic and Rainer D̈omer. A Flexible, Syntax Independent Representation (SIR) for
System Level Design Models. InEURODSD, Dubrovnik, Croatia, Aug 2006.

[25] Myoung-Keun You and Gi-Yong Song. Implementation of a C-to-SystemC synthesizer proto-
type. InASICON, October 2007.

19

thhp://www.refactoring.com/catalog/index.html
http://www.swig.org/

A RIDE Implementation

A.1 Introduction

As depicted in Fig.9, we have implemented an Eclipse-based text editor with syntax-highlighting.
A snapshot of this editor is shown in Fig.11. This editor derives from the Eclipse editor with syntax
highlight function added. It uses a scanner to scan all the keywords ofSpecC in the file and uses
color to print them in the editor.

Figure 11: RIDE editor

A.2 Environment Setup

A.2.1 Eclipse 3.3 Setup

Step 1: Download the Eclipse 3.3 from the following website:
http://archive.eclipse.org/eclipse/downloads/

Step 2: Extract the tar ball by the following command:

gunzip < eclipse-SDK-3.3-linux-gtk.tar.gz | tar xvf -

Step 3: Eclipse is ready to be used in the eclipse folder (No other plug-in needed)

20

http://archive.eclipse.org/eclipse/downloads/

A.2.2 Java Runtime Enviroment Setup

Step 1: Download the JRE 1.6 from the following website:
http://java.sun.com/javase/downloads/index.jsp

Step 2: Install the JRE by the following command:

./jre-6y13-linux-i586.bin

A.3 Project Description

After the enviroment setup, we can build our Eclipse plug-in. The source code can be found in the
subfolderworkspace. Currently, only the syntax highlighting is working in the project.

This project is developed in the Eclipse 3.3. After the project is opened in theEclipse enviro-
ment, the file tree can be on the left of the IDE (shown in Figure 12).

Figure 12: Project Overview

As shown, there are 12 classes in this project. The most important class in theproject is ”Spec-
CEditor”. In this class, the highlight keywords are defined.

After the keywords are defined, the next step is to associate the file with ”sc” extension. This
association process can be done in the MANIFEST.MF file, Extensions Tab(Figure 13). Find
the ”org.eclipse.ui.editors” on the left side, and associate the extension by modifying the ”SpecC
Editor” property.

After the project has been properly set up, the project can be tested byclicking the ”Launch an
Eclipse application” button in the Overview Tab of MANIFEST.MF file (Figure 14). A new eclipse

21

http://java.sun.com/javase/downloads/index.jsp

Figure 13: File Extension Association

with the syntax highlight plug-in is opened. We can open a SpecC file with ”sc”extension to test
wether the syntax highlight works or not. (Figure 11)

Figure 14: Project Testing

B Reference Project

In this design, we use the framework of the Signs project developed by Guenter Bartsch from
University of Stuttgart. The information of the Signs project can be found inthe website:
http://www.iti.uni-stuttgart.de/∼bartscgr/signs/wiki/index.php/Main Page

22

http://www.iti.uni-stuttgart.de/~bartscgr/signs/wiki/index.php/Main_Page

	1 Introduction
	1.1 Methodology
	1.2 System Level Description Language
	1.3 Hardware Software Co-Design
	1.4 C to SLDL Recoder

	2 Motivation
	2.1 Time Issue
	2.2 Quality Issue
	2.3 Cost Issue

	3 Related Work
	3.1 Related Work Done in Other Teams
	3.2 Related Work Done in Our Team
	3.2.1 Recoding Flow
	3.2.2 CUTE

	4 Recoding Integrated Development Environment (RIDE)
	4.1 RIDE Frontend
	4.2 RIDE Super Data Structure
	4.3 RIDE Backend

	5 Implementation Details
	6 Conclusion
	7 Acknowledgement
	References
	A RIDE Implementation
	A.1 Introduction
	A.2 Environment Setup
	A.2.1 Eclipse 3.3 Setup
	A.2.2 Java Runtime Enviroment Setup

	A.3 Project Description

	B Reference Project

