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Abstract

With the increasing abstraction level of embedded systedelmoSystem Level Description
Languages(SLDL) ,like SystemC or SpeC, have been incghasised as the design entrance.
Having a well described system level model, tools can griylsgnthesize them into lower
level until the final netlist implementation. However, ao@anying with the increase of design
ability, new bottlenecks are generated. Many of the systeel models are recoded from legacy
C reference code, and most of the recoding is nowadays doneatha by designers. Due to
tedious work, this process is error-prone, time-consumargl the quality of the final system
level model is unstable. This problem has been addresseddegigner-controlled Recoding
Integrated Development Environment (RIDE). With both tueband a graphic editor and a set
of analysis and transformation tools, the designer canadecC reference code into a system
level model more efficiently.

In this report, we describe an Eclipse-based software ptaiffor RIDE which can serve
as a robust and extensible framework for RIDE software agraknt and implementation. We
describe in detail the initial software package instaltatiand outline paths for its extension
and customization. As one example, we describe a syntakgtigng feature for the SpecC
SLDL.
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Abstract

With the increasing abstraction level of embedded system models, SystehDescription Lan-
guages(SLDL) ,like SystemC or SpeC, have been increasingly usexldestgn entrance. Having
a well described system level model, tools can gradually synthesize tteetavirer level until the
final netlist implementation. However, accompanying with the increasesifl ability, new bot-
tlenecks are generated. Many of the system level models are recodetefracy C reference code,
and most of the recoding is nowadays done manually by designerstoDedious work, this pro-
cess is error-prone, time-consuming, and the quality of the final syst@hmodel is unstable. This
problem has been addressed by a designer-controlled Recodingat@ed evelopment Environ-
ment (RIDE). With both a textual and a graphic editor and a set of anafsistransformation
tools, the designer can re-code C reference code into a system level mogt efficiently.

In this report, we describe an Eclipse-based software platform for RIDEhntan serve as a
robust and extensible framework for RIDE software development aridrmeptation. We describe
in detail the initial software package installation and outline paths for its extensioincastomiza-
tion. As one example, we describe a syntax-highlighting feature for theCSjlebL.
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1 Introduction

During the past decades years, the technology of Integrated Ciraigndeas been developed
dramatically. Unlike in the early days, when there are only dozens of ttarsistegrated, a modern
chip can contain millions of transistors and the number is doubling every 18 mantiording to
Moore’s Law. Pre-designed IPs, like processors or buses, asawealpecific hardwares can be
integrated into one chip, while even multi-cores & network on chip(NOC) assiple in certain
situations.

This is a great opportunity because the high density of integration givesogsbility of im-
plementing more complex systems (like: embedded system) in a very small spémeofAom-
ponents, which are used to be implemented mechanically, are nowadaysecepha electronic
counterparts.

Meanwhile, it is also a great challenge, because complexity is increasiny faster than the
design ability of the current methodology. A new methodology is neccessétythe gap between
the exponentially increasing complexity and only linearly increasing desidjtyab

1.1 Methodology

To break down the complexitRivide and Conqueis often a good methodology. By partitioning
the intangible big problem into tangible small problems level by level, the struisungroduced
gradually, and the internal relationships become more clear. Finally, alitsdelor implementable
“leaf problems”, combined with the hierarchy information, form up the solubibtie initial com-
plex problem.

This method has been used in hardware design for a long time. In 1960930s, the hardware
designer only have to deal with hundreds of transistors. The systersilig m@anageable, and tran-
sistors can be manipulated directly. In the 1980s, with more and more trassistantegrated onto
the chip, the gate level abstraction becomes popular, because with thasingreomplexity, the
direct transistor design is too hard and costly to be applied. When it comes 1@90s, RTL mod-
eling starts to appear. The gates are replaced by registers with arithmetitiapdilled between
them. Along with Verilog and VHDL, more and more designers describe thHersyat the Register
Transfer Level, and automatic synthesizing tools (like Design Compiler) yathesize them into
gate level, then transistor level. When it comes to the 2000s, TransactiohMedelling(TLM) or
System Level Modeling becomes the highest level abstraction.

1.2 System Level Description Language

SpecC[13] is the first Transaction Level Modeling language. By introdythe concept of chan-
nels, the communication and computation are separated, and communicatiarilsegdesxplicitly.
The system is abstracted into computations and the explicit transactions bé¢heae



After the system specification is captured in SpecC, the SCE environmpog@Tefine this
specification into software and hardware(in RTL), and the system cangéemented by the lower
level tool chains, like Design Compiler.

Another System Level Description Language is SystemC[15]. The porsteres a lot with
SpecC, however, instead of a totally new language, SystemC implements tinespts by using
object-oriented libraries in C++.

1.3 Hardware Software Co-Design

So far, the System Level Description Language appears to be a godidisto the increasing com-
plexity of system design. However, when the abstraction comes into therslestel, the boundary
between software and hardware becomes more and more ambiguous. pgoth &d SystemC
are heavily related with C language, which is the most popular softwaregmoging language
in the embedded system design. When it comes to this point, idea is to implementdhaiea
and software both in System Level Description Language, which is cajlst®i® Specification or
System Level Model. The System Specification focuses more on theigeaprputation nature of
the application rather than the detailed software or handware implementatitmgsnubdel can be
later on refined into software and hardware implementation.

1.4 Cto SLDL Recoder

The System Specification is usually not created from scratch. Many apiptis, which are used
to run on general purpose computation platforms (like PCs), are a gatidgtaoint to create the
System Specification in SLDL. .

However, because the original C reference code is purely sequéniig .a mount dfstructure
information“ needs to be added to the C code. Manually adding this information is tedioas, e
prone and time-consuming, which makes this process the new bottleneck.

This problem is addressed by a designer-controlled Recoding Intdddateslopment Environ-
ment (RIDE). With both a textual and a graphical editor and plenty of aisadywl transformation
tools, the designer can re-code the C reference code into the SysteirMadel more efficiently.

We describe the motivation for the recoding idea in Section 2, discuss relatidin Section
3, and then outline the new Recoding Integrated Design Environment (RiD&ection 4. Spe-
cific design and implementation details of an Eclipse-based software framésduture RIDE
development are described in Section 5 (and the Appendix) of this report.



2 Motivation

During the past few years, the bottleneck of system design has shitisdtfre RTL Model
creation to the Specification Model. Before that, the bottleneck of the desige BTL coding.
Dozens of engineers spent several months to write the RTL model oftmdexording to the speci-
fication. After the coding is finished, the RTL models are verified, simulatddiaally synthesized
into netlist by some commercial synthesizer (like, Design Compiler). With appearof SLDL,
like SpecC or SystemC, people start to write the system level models frotmtsoreby modifying

reference C code. The SpecC or SystemC model are then automaticallgsygathinto the RTL
model, and further netlist model.

However, the creation of SpecC or SystemC model is not an easy job. Doeriaturity of

this process, many problems exist. In the following part, we define theddepns from three
perspectives.

2.1 Time Issue

According to our experience, manually re-coding the reference impletieniaf MP3 decoder
into a mature SpecC or SystemC model takes 12-14 weeks (shown!in/Fig.1rfZpntrast, the
following processes from Specification Model to Implementation Model oklyd#ess than 1 week.

Reference
Model |

Automatic Less than 1

h week

Intermediate Model-N>

N AN Implementation Modg i 4

Figure 1: MP3 Decoder Design Time

2.2 Quality Issue

An error costs 10 times more energy and money to find it in the lower level thdreihigher
level. This means if a system level model error is found in the netlist level nbdal cost us 1000
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times more money and energy than finding the error in the system level modedn $oror-free
model at the system level is very valuable.

While at the same time, most of the system model is created by modifying thenegerede.
This purely manual process is error-prone.

2.3 Costlssue

Currently the payment to the engineer is often the lion’s share of a project.e@gineer costs
about 80,000 dollars per year. If most of their time is spent on the tediousswdrich can be
automated, that is actually a great waste of human resource.

In summary, thelime, Quality andCostissues make the system level modeling a major bottle-
neck of the whole system design process. As depicted in Fig.2, how teelihidgap in shorter time
with less spending and higher quality has become the new challenge of emdb®ddem design.
These problems will be addressed in the following sections.

Recoding

— T

C Specificatio
Reference n Model

funct () (..}

func2 (..) (..}

|
I

func3 (..){...} i GAP
|

func4 (...) {...} ;

funcs () ..}

funch (..) (..}

Figure 2: Recoding Gap



3 Related Work

Until today, there are actually only few papers to address this problemeaticg the system level
specification models. In this section, we will list the projects that are relatedstpribcess.

3.1 Related Work Done in Other Teams

MAPS: MAPS[16] is project undertaken at RWTH Aachen University. It mregd an integrated
framework to parallelize the C applications for MPSoC platforms. The desgripf the target
MPSoC is given as an input. It extracts coarse-grained parallelism, aatlat tools have been
developed for the framework. The structure of MAPS is depicted in Fig.3.

Sequential Architecture
C Code Description

C Front-end Trace Gen.

Analysis

L
[ Static/Dynamic Analysis ]47

WSCDFG [-============q=======-==-

MAPS <
CBs Partitioning

Code
Emission

_____________ Parallelized |

C Code
et C Compiler Performance

Evaluation

& Simulator

Figure 3: MAPS Structure [16]



However, this work focuses on modifying the code to creating a parakgram on MPSoC
rather than creating the specification model of the application. That meari3SM#& mostly a
software flow with small code in the future synthesized into hardware. Menvhis feature is very
important because most of the MPSoC chips are customized, and parttiitlage ASICs instead
of purely general on-shelf processors.

Meanwhile, this work is based on a so-called Tightly-Coupled-Thread)Ti@ogramming
model[20] rather than some mature system level modeling model, like SpecGtensy.

CleanC: Another project that also addresses this problem is called CleanC [8anlanalyze
the C code for a variety of coding patterns that make the C code hard testemtt by humans and
difficult to analyze by tools, like:

e Distinguish source file from header file
e Use macros for constants and conditional exclusion
e Keep variables local
e Make sure a pointer points to only one data set
e Do not use recursive function calls
e Do not use functions with varargs
e Use switch statements instead of function pointers
e Use the manifest loop pattern
e Make the control ow regular
e Keep side-effects out of expressions
e Use indexes instead of pointer arithmetic
e Do not cast to / from a pointer
e Cast the result of malloc() to the correct type
e Use arithmetic operators to perform calculations
¢ Avoid the dark corners of the C standard
e Respect the semantics of types
This tool is implemented as the plugin in Elicpse development environment [11]04h [1]

installed. The violations are listed under the "Clean-C Problem” tab as well #®icode. A
snapshot of the tools is given in Fig.4.3
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Figure 4: Snapshort of CleanC

However, similar to the MAPS, CleanC is also only a pure software flow.dtardy analyze a
handful features and all the code transformation work has to be dotie ldesigner.

C-to-SystemC SynthesizerA C-to-SystemC Synthesizer is mentioned in paper[25] with struc-
ture shown in Fig.5 It uses some scheduling methods to generate Systemi@oodecode. How-
ever, given complexity of some reference C code, this method appatsopple to work.

Others: Other related work includes parallelizing compilers and a software engigetech-
nique known as refactoring. Intensive research has been donegaréiéel computing field to auto-
matically parallelize the software, such as interprocedural analysisi@holic analysis[19], and
loop transformation[18] [7]. However, these are more focused orrgéoomputing or scientific
computing, which has little touch in the embedded system community. For the dad®rag[17]
[22], the purpose is different from our recoding. Refactoring is nfooeised on improving the
human readability, understandability, and maintainability of the source cduke, @ur recoding is
focused on creating the system level model by exposing the communicat@oaaurrency.

3.2 Related Work Done in Our Team

Besides the related work done in other teams, this topic has been heaviycres by Pramod
Chandraiah. Several papers [3], [4], [5], [6] have been puetisbn this recoding process, and a
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Figure 5: Structure of C to SystemC Synthesizer

designer controlled recoder [2] has been created.

3.2.1 Recoding Flow

Create Hierarchy Partition Code Expose Recode Pointers
/—_\, mFata\, m /_\

C Reference Hierarchical Partitioned Flexible
Model Model Model System
A=

e
func2 (...) {...}

funcs (...){...} L !

funcé (...) {...} ‘ B2 H = ’ ‘ #

Figure 6: Basic Recoding Process

The basic re-coding process by P.Chandraiah is depicted|in Fig.6. wasihtakes 4 major steps
to start from a pure C Reference Model to a Flexible System Model withiongcessary pointers:

e Creating Structural Hierarchy : This process encapsulates the computation. The original
functions in the C Reference Model are packed hierarchilyletfoaviors

e Code & Data Partitioning: In this process, the C Reference Model structure will be dis-
mantled. Functions and global variables will be partitioned into reasonalitespte give



more flexibility for the later process. Several typical transformations irclimbp splitting,
cumulative access type analysis, partition of vector dependents anuregizing dependent
variables.

e Creating Explicit Communication: After the code has been divided into small pieces, the
variables are replaced by channels to connect different behaviomripose the whole sys-
tem. The concept of channel is the most significant contribution of systeshrieodeling.
They contain more information than variables, and these information canede laser on,
by compiler or synthesizer to generate lower level representation.

e Recode Pointers After we get the flexible system model, the pointer recoding will be ap-
plied. Pointer is an very common concept in software but sometimes abusexidada. In
the pointer recoding process, these unnecessary pointers are temove

Inside these steps, detailed re-coding techniques are:

Loop Splitting

Cumulative Access-Type Analysis
Partitioning Vector Dependants
Breaking Composite Structures
Synchronizing Dependent Variables
Variable Rescoping

3.22 CUTE

Based on the concept mentioned above, an Interactive Source Rdwml®een implemented.
Working as an union of editor, abstract syntax tree(AST), parsesfttemationer and code genera-
tor, many of the transformations can be done by justing clicking one buttanstfincture of CUTE

is depicted in Fig.7
Document
Object
I I
A

Transformation
Tools

Text Editor

7'y
|

1
| GUI |

Figure 7: CUTE structure
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4 Recoding Integrated Development Environment (RIDE)

To aid the designer in system specification and modeling, we propose gnabeizt Develop-
ment Environment (IDE) for model re-coding. The Recoding IDE (RIBHpports the designer-
controlled interactive approach to automated coding and recoding as dudlioge.

RIDE

CC Model Rep:
(Super Data Structure;

Text Editor

Graphical Editor

GFX

Compiler Compiler Analysis Transformation Synthesis
(Parser) (Code Gen.) Tools Tools Tools
T I

Reference Simulation Estimation Optimization Imple-
Code mentation

Figure 8: Recoding Integrated Development Environment.

RIDE tightly integrates interactive graphical and textual editors with the sytgeel tool chain
for simulation, estimation, refinement, and synthesis. In other words, RIRBE iistelligent union
of editor, compiler and powerful transformation and analysis tools.

RIDE supports re-coding of SLDL models at various levels of abstractiozan be used to re-
code intermediate system design models, as well as the initial C reference imfé&orein order
to produce an optimal system model.

The conceptual structure of the proposed Recoding IDE is shown inéFgjuOn the highest
level, RIDE consists of a user interface frontend, a complex data steufciumodel representation,
and a backend of advanced system design tools. The RIDE is build onlihseg11].

4.1 RIDE Frontend

The RIDE frontend offers two main editors to the system designer, a iged@md a textual
one. The textual editor maintains the SLDL source text of the design modelllamds the usual
navigation, modification, and editing tasks of modern text editors. Advafezddres include syn-
tax highlighting, auto-completion, semantic search, ctags, text folding,nbaks, and undo/redo.
Syntax and semantic support is provided for C-based languages, inel C+a programming lan-
guages, and SystemC [15] and SpecC [10] SLDLs.
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The graphical editor is envisioned to present a hierarchical diagratineoflesign model that
can be used for visualization, navigation, and modification operationspd8ggal visualization
operations include zoomin/zoomout, selection of hierarchy depth, displagrofectivity (ports,
busses, channels), and highlighting of objects. On the other handhicmbediting is supported by
rename, add, move, delete, and cut/copy/paste operations for blockslésibeéhaviors), channels,
interfaces, variables, ports, and connections.

All editors are linked and constantly synchronized. Any change applig¢betaesign in one
editor instantly is reflected in the other editor as well. In other words, bothrseditaintain the
same design model, and just display the model in a different perspectiealteiew, graphical
view). Note that the synchronization of the editors is instantaneous, op-stikke or click of a
button, and is accomplished by use of an advanced super data strsei®ection 4.2 below).

The RIDE frontend also controls the backend design tools using a demvegraphical user
interface (GUI) with the usual tool bars, menu structures, and dialogomisdMoreover, the RIDE
backend tools can be called directly from the design objects shown in theseditbius, when
the designer points to and highlights any object, such as a channel icon gnapleical editor
or a channel name in the textual interface, a context menu pops up withapelend available
operations.

For example, when the designer points to a channel instance, the listsilblpagperations con-
tains renaming, copying, deleting, changing the scope, and finding dexpisrand connected ports.

4.2 RIDE Super Data Structure

At the core of the Recoding IDE, we plan a complex data structure that mardatompre-
hensive, coherent, and consistent (CCC) model representationC@@emodel representation is
a super data structure that combines three dedicated data structurésabredel representation
(TXT), a graphical model representation (GFX), and a syntax-inudga representation (SIR).

The textual model representation(TXT), also known as the document object, represents the
design model as program text specified in a system-level descriptiondged®LDL). We plan
to support both SystemC [15] and SpecC/[10] SLDLs. In other wordsT¥XT representation is
implemented by use of a regular text data structure used in a text editantiabgeonsisting of
lines of text, and augmented by support for ctags, syntax-highlightinboter advanced features.

The graphical model representation (GFX) is a complex object-oriented data structure that
describes the graphical hierarchy chart of the design in form of itedawates, sizes, colors, and so
on.

12



The syntax-independent representatior(SIR) [24, 9] is the central data structure for compila-
tion, analysis, and transformation tools. It contains an abstract syn@xA®T) of the design
model that corresponds to the textual representation (TXT). In additienSIR contains full-
fledged type and symbol tables, necessary to support compiler tagksasygarsing, semantic
checking, static analysis, and optimization. Note that this data structure alsmimsisource code
comments and position information so that a code generator can re-gehersteirce code for use
in the TXT representation.

Most notably, the SIR data structure is the basis for analysis tools towdydsgatem estima-
tion, for transformation tools toward re-coding, modeling and optimizationf@nslynthesis tools
toward the final system implementation.

The three basis data structures, TXT, GFX and SIR(including the MD8)¢@mbined into a
RIDE super data structure that will keep the design model accuratelgtegfland updated in each
representation. Synchronization functiosgr{chin Figure 8) are used for this purpose. Any change
to one of the three data structures is immediately synchronized with the othenghat after each
modification or transformation, all data structures consistently reflect sdtirey model.

We would like to emphasize that this instant synchronization of the diffeleat structures is a
key contribution of RIDE. While it is ambitious to maintain a comprehensive, retteand consis-
tent super data structure, it is certainly feasible, even if synchronizlasismo occur frequently, i.e.
after every key stroke in the text editor. As we have seen in [2], an pestptype implementation
of two synchronized data structures showed sufficient resporesigeaven though a brute-force file
interface was used for the synchronization operations.

4.3 RIDE Backend

The RIDE backend is planned as a powerful set of analysis and dramation tools that the de-
signer can invoke directly from the two editors. The results of these tipesaare directly reflected
in the editors as well.

We would like to emphasize that the strength of RIDE lies in this system desiggarihcin other
words, the analysis and transformation tools build the core of the re-cedingnment.

To provide an overview about expected analysis and transformatios, taskcan conceptually
categorize our re-coding operations into three classes.

Analysis functions provide static analysis, such as dependency information, on the objects in th
model without introducing any changes to it. As such, analysis can, tmpbe, provide
information to the designer about potential for parallel execution of blaokkor functions.
Conceptually, analysis function include

e revealing dependencies,
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e check for potential concurrency, and
e general analysis for program comprehension.

Example operations in this category include determining the usage of varigieducing
concurrency, and generating dependency graphs.
Structural transformations change the structure of the design model by introducing and/or re-
moving computational blocks, channels, and functions. In this categeryusther distin-
guish

granularity transformations,

composition transformations,

re-organizing transformations, and

connectivity transformations.

Introducing new blocks (modules/behaviors), composing hierarchicaks, splitting
and/or merging blocks (to adjust the design granularity) are some exanhptesaural trans-
formations.

Functional transformations modify computational blocks, functions, and variables. This cate-
gory can be further subdivided into
e transformations to contain communication,
e transformation to break dependencies, and
e pruning transformations.
Localizing global variables, breaking composite data types into smaller das, tgpd trim-

ming the width of wider data types into optimized bit vectors, are some examplesefdr-
mations in this category.
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5 Implementation Details

We use the Eclipse framework [11] to implement RIDE. Eclipse is a softwatipiato provide
a basement for integrated development environment (IDE) developmastwiitten in Java, and
IDE developers can extend its functions by installing plugins written for it.

Eclipse itself is not a single monolithic program.The basement is called the runtstegy
which is based on Equinox[12]. The runtime system is very light weightadiride other functions
are implemented as plugins on top of it. Each plugin can use the functions thieamdugin, and
also provide functions which can be used by other plugins.

Simulator & Synthesi Verifier &
|mg e yn. Ll Text & Graphic Mixed Editor Equivalence
with Result Viewer Checker

( Eo?e ) Code Recod raphic raphic
Parser Generator bl Parser Generator,

( gavalizeper(Jl) < ConcurrentC Model 5
W AVA
SystemC SpecC
Generator Generator
Java Wrapper (JNI)
SystemC SpecC

Simulator & Simulator &
Synthesizer Synthesizer

Eclipse
Plugin(Ul)

Eclipse
Plugin(Internal)

External Library

Figure 9: Internal Software Architecture of RIDE

The software architecture of RIDE is depicted in [Fig.9. As shown, the Ribftend (4.1) is
implemented as a plugin in the Eclipse environment. The editor can be deromedttie editor
offered in Eclipse, while other components need to be written from scratch.

For the RIDE super data structure (4.2), we would like to reuse the reposi&ba structure
SIR. However, due to that the SIR was originally written in C++, we havedatera wrapper for
this data structure. The tool we use to automaticly generate this wrapper t S#kS [23]. The
wrapper generation flow is depicted in Fig.10. After the wrapper is geawréhe SIR functions
can be used in Eclipse by calling the Java interface.

For the RIDE backend (4.3), some of the tools are implemented in the same &y sigper
data structure. The repository code in C++ can be reused, and thperiaplava is generated to
make it possible be called in the Eclipse plugin.
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1 example.c | jni.h

Swig

goc gge \J/ \|/ \]/

[exampleﬁwrap.c) [exampleJNI.java J (example.java)

javac
example.o example_wrap.o
Id

| libexample.so |< ———————————————— example.class

D input file
D intermedia file
C) output file MAIN.class

Figure 10: The SWIG wrapper generation flow

For some other tools with no good repository code, there are two choirstds fivrite the new
tools in Java. This is an easier way, but the consistency is broken,dsepatt of the tools are Java
while part of the tools are in C++. The second choice is still use C++ to writettaols and use
SWIG to create a wrapper for them. This method can keep the consistetiey mject, but takes
longer time. And the cross-platform feature of Java cannot be used icetbes because the code in
C++ is not cross-platform.

For a more detailed documentation of the implementation of the RIDE softwarerpiatitease
refer to the Appendix.
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6 Conclusion

In this report, we have addressed the gap between C referencerab@tBL. New tool struc-
tures are proposed with the consideration of time, quality and cost. With bdtlartexgraphic
interface in the proposed RIDE framework, the flexibility of the design entras increased. The
designer can apply the transformations in either text form or graphic.tN@sformation tools can
be offered with higher quality code generated. New analysis tools cafeaititate the understand-
ing of the model.

Similar to the RTL languages 10 years ago, SLDL will be the standard in theefutMore
applications will be designed from SLDL, and more mature tools will come outhdrong term,
the design of embedded systems may be so simple that even the initial algoritiymede=n
implement their own system from pure C code without having any knowleéigeeohardware
details. However, this progress do not happen automatically without ED&eer's work.
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A RIDE Implementation

A.1 Introduction

As depicted in Fig.9, we have implemented an Eclipse-based text editor withkgyigtdighting.
A snapshot of this editor is shown in Fig/11. This editor derives from thig&eceditor with syntax
highlight function added. It uses a scanner to scan all the keywor8p&dtC in the file and uses
color to print them in the editor.

= Java- ITI ~_hw3_pipel.sc - Eclipse SDK -0 x
Fle Edit Navigate Search Project Bun PAPI Window Help
rEHG 0% Q BHFG |0 |8+ |8 F e P i |&ava
[% Package ¢ 1z Hierarchy| = B || 5} mp3decoder_hwa_pipel.sc &3 = 8| F TaskList = =8
- SeNa_portT.senaloUT, LbIsdl; = = =
¢ &lps|w ’ | 5@ e e
printf('Finished\n");
fclose(file_handle); Find: b Al
waitfor 20000000;
exit(0); (; Uncategorized
¥

k

a;m

c_double_handshake x;
_double_handshake y
stimulus stimulus(x):
Monitor monitor(y);

DUT dut(x, y): J 2= outline 52 =0

int mainfint argc, char *argv(l) P
char *np3file_nane; An outline Is not avallable
char *pcnfile nane;

if farge 1= 3)
i

printf(* Usage : %s <MP3 FILE> <PCH Files\n\n*, argvi0]);
printf("Calls the design system under test (mp3 decoder)\n"):
printf(*reads from <MP3 FILE» and writes PCH strean to <PCH FILE

return -1;
1 =l
151 o}
[£ Problems 32 @ Javadoc | [2, Declaration | e 778
0 errors, 0 warnings, 0 infos
Description | Resource [Path | Location
[0 o}
(g Writable Insert 3309:1

Figure 11: RIDE editor

A.2 Environment Setup
A.2.1 Eclipse 3.3 Setup

Step 1: Download the Eclipse 3.3 from the following website:
http://archive.eclipse.org/eclipse/downloads/

Step 2: Extract the tar ball by the following command:
gunzip < eclipse-SDK-3.3-linux-gtk.tar.gz | tar xvf -

Step 3: Eclipse is ready to be used in the eclipse folder (No other plug-itedge
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A.2.2 Java Runtime Enviroment Setup

Step 1: Download the JRE 1.6 from the following website:
http://java.sun.com/javase/downloads/index.jsp

Step 2: Install the JRE by the following command:
.ljre-6y13-1inux-i586.bin

A.3 Project Description

After the enviroment setup, we can build our Eclipse plug-in. The sowde can be found in the
subfolderworkspace Currently, only the syntax highlighting is working in the project.

This project is developed in the Eclipse 3.3. After the project is opened iEdlijgse enviro-
ment, the file tree can be on the left of the IDE (shown in Figure 12).

= 600
File Edit Source Refactor Navigate Search Project Run Window Help
B0 | Ewe o

i3 Package Explorer 5 % Hierarchy E % 7 = 0| netstsigns.pugin 3 0 [0

! Actvate this plugin when one of s classes is loaded

05/04/2000 5:11 AM woodeater ronments required
63 05/04/2000 5:11 AM woodeater Testing
jerRepairerjava 63 05/042009 5:11 AM woodeater Add

nAction java 63 05/04/2009 5:11 AM woodeater

63 05/04/2000 5:11 AM woodeater Remove

gStrategy java 63 05/04/2009 5:11 AM. woodeater
werConfiguration java 63 05/04/2009 5:11 AM woodeater e
63 05/01/2000 5:11 AM woodeater

java 63 05/04/2009 5:11 AM woodeater

\java 63  05/04/2000 5:11 AM woodeater
5/04/2000 5:11 AM woodeater

java 63 05/04/200 511 AM woodeater

rel.6.0_13] Overview  Dependencies Runtime Extensions | Extension Points| Build MANIFEST.MF plugin.xml
(2. Problems 82 @ Javadoc|[& Declaration ¥ =8
30 error
Desci
b i Enors (0 tems)

b 1% Wamings (37 tems)

jamings, 0 infos

Resource | Path Location

{53 buid.properties 63 05/04/2009 5:11 AM woodeater
[ Changelog 63 05/04/2000 5:11 AM woodeater

5 pluginxml 63 05/04/2009 5:11 AM woodeater
README 63 05/04/2009 5:11 AM woodeater

i signs 63 05/04/2000 5:11 AM woodeater
£4TODO 63 05/04/2009 5:11 AM woodeater

Figure 12: Project Overview

As shown, there are 12 classes in this project. The most important classarofeet is "Spec-
CEditor”. In this class, the highlight keywords are defined.

After the keywords are defined, the next step is to associate the file witlextension. This
association process can be done in the MANIFEST.MF file, ExtensiongFigbre 13). Find
the "org.eclipse.ui.editors” on the left side, and associate the extension difying the "SpecC
Editor” property.

After the project has been properly set up, the project can be testditkiyng the "Launch an
Eclipse application” button in the Overview Tab of MANIFEST.MF file (Figud.1A new eclipse
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4 net.sf.signs.plugin &2 [J) OpenDeclarationActio | [J] SignsEditor.java | 1] SignsReconcilingStra | [J] SpecCScannerjava | ™1 =8

% Extensions

All Extensions 14 @  Extension Detils
Define extensions for this plugn in the following section. Set the properties of the selected extension. Required fields are denoted by **".
D

Name:

b <= org.eclipse.ui.editors

Edit.
b <= org.eclipse.ui perspectives
g eclpee.ulperspe & Show extension point description

b =org.eclipse.core.resources. builders

Up 4 Open extension point schema
b ==org.eclipse.core.resources.natures

% Find declaring extension point

b <=org.eclipse.core.resources.markers Down

b = org.eclipse.core.resovrces markers

b <= org.eclipse.vi.newWizards

b < org.eclipse.uiviews

b s-org.eclipse.vi.perspectiveExtensions

b <=org.eclipse.ui.popupMenus

b <= org.eclipse.ui.editorActions

b <= org.eclipse.ui.commands

b s=org.eclipse.Li.bindings

b <= org.eclipse.debug,core.Jaunc hConfigurationTypes

b <= org.eclipse.debug.uilaunchC onfigurationTypelmages

b <= org.eclipse.debug.uiJaunchConfigurationTabGroups

Overview | Dependencies | Runtime  Extensions | Extension Points | Build| MANIFEST.MF | plugin.xml  build.properties

Figure 13: File Extension Association

with the syntax highlight plug-in is opened. We can open a SpecC file withés&nsion to test
wether the syntax highlight works or not. (Figure 11)

4 net.sf.signs.plugin % [¥) OpenDeclarationActio | [1] SignsEditor.java | [1] SignsReconcilingStra | [J] SpecCScannerjava | ™1 =8
3 Overview

General Information Plug-in Content
This section describes general information about this plug-in.
The content of the plug-in is made up of two sections:

D: [/ Dependencies  lists all the plugins required on this plug-in's classpath to
Version 064 compile and un.

Name: Signs Eclipse Plug-n [/ Runtime: lists the libraries that make up this plug-n's runtime.

Provider Signs Project

Extension / Extension Point Content
Platfom Fiter

This plug-in may define extensions and extension points
Activator et st.signs. plugin. SignsPlugin Browse... y
[ Extensions: declares contributions this plug-in makes to the platform.

| Activate this plug-in when one of its classes is loaded [/ Extension Points: declares new function points this plug-in adds to the

platfom.
Execution Environments
Specify the minimum execution environments required to un this plug-in. Testing
Add... Test this plug-in by launching a separate Eclipse application
© Launch an Eclipse application
Remave %5 Launch an Eclipse application in Debug mode
Up =
Exporting
Down To package and export the plug-in
Configure IRE associations... 1. Organize the plug-in using the Organize Manifests Wizard
Update the classpath settings 2. Specify what needs to be packaged i the deployable plug-in on the Build

Configuration page 5
Overview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | plugin.xml  build. properties

Figure 14: Project Testing

B Reference Project
In this design, we use the framework of the Signs project developed lepnt&uBartsch from

University of Stuttgart. The information of the Signs project can be fourtdgrwebsite:
http://www.iti.uni-stuttgart.de/~bartscgr/signs/wiki/index.php/Main_Page
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