C  Center for Embedded Computer Systems
S University of California, Irvine

Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Domer

Technical Report CECS-08-02
February 15, 2008

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697, USA

pramodc@cecs.uci.edu, doemer@-cecs.uci.edu

http://www.cecs.uci.edu/



Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Domer

pramodc@cecs.uci.edu, doemer@-cecs.uci.edu

Technical Report CECS-08-02
February 15, 2008

Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

Abstract

The input SoC specification plays a vital role in determining the quality of end
implementation. Creating a SoC specification acceptable to the synthesis and refinement
tools is immensely time-consuming and often this task dominates the time taken by the
overall synthesis process. To overcome this bottleneck in the synthesis design flow, we
have proposed a source re-coder. Our Source re-coder integrates manual specification
programming with interactive automation. By replacing textual re-coding with automatic
code transformations, our source re-coder makesit possible to create a SoC specification
in significant shorter time.

In this report, we assess the productivity gains that can be achieved using our source re-
coder. We have conducted an experiment on a class of students. The students were asked
to provide the times needed to manually implement some important code transformations,
and also the automatic times needed to implement the same transformations using our
source re-coder. Based on the data collected from the students, we analyze and assess the
productivity gains that can be achieved.

This technical report documents our experiments, analyzes the results, and provides some
insights on potential productivity gains achievable through our source recoder approach.
We conclude that our source re-coder is very effective and time efficient in re-coding SoC
models and that productivity gain of multiple orders of magnitude are possible by use of
automated recoding. We also extract some empirical quantities, such as the number of
lines coded per designer hour, which can serve as reference to estimate manual and
automatic coding times for future experiments.



Contents

R g 11 0o [F o1 oo PSPPSRI
1.1 SOUICE RECOUES ..ottt ettt s ae e e e s nnre e e snneeeas
P (o T= 117 0 SRR
A R (U] o BRSPS TP PRI
P = (0= ] 107 o | A PR
2.3 EXPEIMENE 2.ttt nnneas
P (0= ] 107 o A PRSP
3 CompariSon and ANAIYSIS......ccoiuuii i
3.1 Function to Behavior (F2B) RECOING ........ceeeiiiieiiiieiiiie e
3.2  Analysisof F2B Transformation..........cccceiceeeiiieeiniee e eseee e seee e
3.3  Statement to Behavior (S2B) ReCOUING........cceirueiiiiiieiiieeeiieeenieee e 10
34 AnNalySiS Of S2B OPEIaiON ......c.eeeeiiieeiiiiesiieesieee et e e siee e saae e e 11
3.5  POINtEr RE-COUING....ccitiiiiiiiieiiie ettt 11
3.6  Analysisof Pointer Re-coding Operation...........c.coocueeiiieeeniee e esiee e 12
3.7  Additional FEEADACK..........ccviiiiiiieiie et 12
4  Generalization for FUtUre ESIMatioN.........ccocueiiiiiieniieesiie e 13
5 Challengesin Measuring ProductiVity GaiNS...........ccceeiieeeriiereinieeenieeeseee e 14
LI 0 0ot 111 o SRR 16
7 ACKNOWIEAGEMENLS.......eeiiiiiie e sne e e nnne e e 16
8 REFEIENCE. ... e 17
Al.  Student Instructions for EXPeriment L.........cccooeeiiieeiiieeiniee e eseeeeseee e 18
A2.  Times Reported by Students for Experiment L.........coccoeiiiiiiierinieneniee e 22
A3.  Student Instructions for EXPeriment 2...........cooceeeiieeeiiiee i eseee e seee e 24
A4.  Times Reported by Students for EXperiment 2...........occceeiieeiiienenieeeniiee e 30
A5.  Student Instructions for EXPeriment 3...........ooooeeeiiieeiiiee e esiee e 32
A6.  Times Reported by Students for EXperiment 3..........coccovviieriiennnieeeniee e 38



List of Figures

Figure 1: Plot of Gains for different SUdents...........cccooieririeiniiieceec e 9
Figure 2 Plot of Gains for different StUdents...........cccoeieriiiieiiiee e 11
Figure 4 Plot of gains for different SUdents............cceeeeeeiiieniiiec e 12
Figure 5: Page-1 of Student Instructions for Experiment 1.........cccocoveviieeiiieeenieeennn. 18
Figure 6: Page-2 of Student Instructions for Experiment 1 .........cccocoveiiieniiieeenien e, 19
Figure 7: Page-3 of Student Instructions for EXperiment L ..........cocccevveieeniieneeeieennne. 20
Figure 8: Page-4 of Student Instructions for Experiment 1.........ccccocoveviieeiiienenieeennn. 21
Figure 9: Page-1 of Student Instructions for EXperiment 2 ..........ccocovevieeniieeeniee e, 24
Figure 10: Page-2 of Student Instructions for EXperiment 2 ..........cccoeevieeeiiieeenieeenen. 25
Figure 11: Page-3 of Student Instructions for EXperiment 2 ..........ccccceevveeeniieeenieeenen. 26
Figure 12: Page-4 of Student Instructions for EXperiment 2 ..........ccccveviveeiiieeeniee e, 27
Figure 13: Page-5 of Student Instructions for EXperiment 2 ...........cccoceeieiieenieiieenne. 28
Figure 14: Page-6 of Student Instructions for EXperiment 2 ...........cccocveveiieeneeeieenne. 29
Figure 15: Page-1 of Student Instructions for Experiment 3 ...........ccocveieiiienieeieene. 32
Figure 16: Page-2 of Student Instructions for Experiment 3 ...........cccooveieiiieneeeieenne. 33
Figure 17: Page-3 of Student Instructions for Experiment 3 ...........ccooveieiiienieeieene. 34
Figure 18: Page-4 of Student Instructions for Experiment 3 ...........ccooveieiiienieeieenne. 35
Figure 19: Page-5 of Student Instructions for Experiment 3 ...........ccooveieiiienieeieene. 36
Figure 20: Page-6 of Student Instructions for Experiment 3 ...........cccooveieiiienieneenne. 37



Assessment of Productivity Gains
Achieved through Automated Source Re-Coding

Pramod Chandraiah and Rainer Domer

pramodc@cecs.uci.edu, doemer@-cecs.uci.edu

Center for Embedded Computer Systems

University of California Irvine
Abstract

The input SoC specification plays a vital role in determining the quality of end
implementation. Creating a SoC specification acceptable to the synthesis and refinement
tools is immensely time-consuming and often this task dominates the time taken by the
overall synthesis process. To overcome this bottleneck in the synthesis design flow, we
have proposed a source re-coder. Our Source re-coder integrates manual specification
programming with interactive automation. By replacing textual re-coding with automatic
code transformations, our source re-coder makesit possible to create a SoC specification
in significant shorter time.

In this report, we assess the productivity gains that can be achieved using our source re-
coder. We have conducted an experiment on a class of students. The students were asked
to provide the times needed to manually implement some important code transformations,
and also the automatic times needed to implement the same transformations using our
source re-coder. Based on the data collected from the students, we analyze and assess the
productivity gains that can be achieved.

This technical report documents our experiments, analyzes the results, and provides some
insights on potential productivity gains achievable through our source recoder approach.
We conclude that our source re-coder is very effective and time efficient in re-coding SoC
models and that productivity gain of multiple orders of magnitude are possible by use of
automated recoding. We also extract some empirical quantities, such as the number of
lines coded per designer hour, which can serve as reference to estimate manual and
automatic coding times for future experiments.

1 Introduction

Motivated by the need to meet the time to market and aggressive design goals like low
power, high performance and low cost, researchers have proposed various methodologies
for effective design development, including top-down and bottom-up approaches. All
these technological advances have significantly reduced the development time of
embedded systems. However, design time is still a bottleneck in the production of
systems, and further reduction through automation is necessary.

One critical aspect neglected in optimization efforts so far is the design specification
phase, where the intended design is captured and modeled for use in the design flow.

5



Design flows today assume the availability of a high-quality specification, requiring the
designer to manually create this specification. Today’s design flows do not take
advantage of the availability of reference models of application which can used to create
asuitable quality specification in a System Level Design Languages (SLDL).

In our research, we address this problem of creating the SoC specification. By combining
the manual coding with controlled automation, our re-coding approach aids in faster
creation of aquality SoC specification.

To ad the designer in coding and re-coding, we have proposed a source re-coder. Our
source re-coder is a controlled, interactive approach to implement analysis and code
transformation tasks. Some of the transformations supported by source re-coder have
been discussed in [1, 2, 4, 5]. The details of the source re-coder itself are presented in [3].
One of the main advantages of the source re-coder are the gains in the designer
productivity due to the effective automation (compared to manual programming).

In our previous articles, the gains reported were based on the experiments conducted by a
single experienced designer. In this report, we present the experiments and results
conducted by a class of 15 students using source re-coder. These results not only
corroborate our previous claim of significant productivity gains, but also show the need
for automatic programming tools like our source re-coder.

1.1 Source Re-Coder

Our source re-coder is a controlled, interactive approach to implement analysis and
transformation tasks. In other words, it is an intelligent union of editor, compiler, and
powerful transformation and analysis tools. The conceptual organization of the source re-
coder is shown in [3]. Unlike other program transformation tools, our approach provides
complete control to generate and modify a specification model suitable for the design
flow. By making the re-coding process interactive, we rely on the designer to concur,
augment or overrule the analysis results of the tool, and use the combined intelligence of
the re-coder and the designer for the modeling task. Our re-coder supports re-modeling of
SLDL models at all levels of abstraction.

It consists of 5 main components:

* A textual editor (based on QT and Scintilla) maintaining the textual document
object

* AnAbstract Syntax Tree (AST) of the design model

* Preprocessor and Parser to convert the document object into AST

* Transformation and analysistool set

* Code generator to apply changes in the AST to the document object

The parser and the code generator support C and SpecC source code. The analysis results
of each transformation are remembered in the abstract syntax tree and get carried to the
subsequent transformations automatically. The transformations are performed and
presented to the designer instantly. The designer can also make changes to the code by

6



typing and these changes are applied on-the-fly, keeping it updated all the time. More
details of this interactive environment are discussed in [3].

2 Experiments

In the past, we have measured the productivity gains achieved using source re-coder by
comparing the times taken by a single experienced designer to implement certain
transformations manually, over times to implement the same transformations on the same
examples using source re-coder. To get more diverse and realistic results, we conducted
experiments on a set of students instead of a single experienced designer.

2.1 Setup

A class of 15 students enrolled in the graduate course “System-on-Chip Description and
Modeling” [6] offered in the Department of Electrical Engineering and Computer
Science at University of Californialrvine, were given a MP3 audio decoder application in
SpecC SLDL [7]. As an assignment, the students were asked to implement 3 kinds of
transformations, both manually and automatically using our source recoder. We focused
on creating behaviors [5], and recoding pointers [1]. These transformations are related in
the sense that they are necessary in creating analyzable SoC models with definite
structure which is necessary for architecture exploration.

The experiments were conducted over 4 weeks and were split into three assignments. In
the first two assignments, the transformations were conducted manually, and in the third
assignments, the same transformations on the same example were conducted using the
source re-coder.

In the following sections, we will describe the experiments in detail and summarize the
results reported by the students.

2.2 Experiment 1

In the first experiment, the students were given the source code of a MP3 audio decoder
in SpecC language and were asked to convert two function calls into behaviors. For the
first behavior, the designers were given detailed instructions to implement the
transformation. For the second behavior, only brief instructions were provided. The
detailed instructions given to the students are listed in Appendix-Al.

Since the main idea behind this assignment was to measure the manual time needed to
implement the transformation, the students were asked to provide the time to correctly
implement the transformations. The complete timing data provided by the students is
givenin Table 11 in Appendix-A2.

2.3 Experiment 2

In this part of the experiment, the students were given the source code of a MP3 audio
decoder in SpecC language and were asked to implement two types of transformations.

* Towraptwo setsof C statements into behaviors.

7



» To perform pointer recoding on four pointers

For creating the first behavior, the designers were given detailed instructions to
implement the transformation. For the second behavior only brief instructions were
provided. Similarly, the procedure to recode one pointer was explained in detail and brief
instructions were provided to recode the three other pointers. The detailed assignment
description is given in Appendix-A3.

Since the main idea behind this assignment was to measure the manual time needed to
implement the transformation, the students were asked to provide the time to correctly
implement these transformations. The complete timing data provided by the designers is
givenin Table 12 and Table 13 in Appendix-A4.

2.4 Experiment 3

After completion of the two manual assignments, the source re-coder was introduced to
the students. The students were asked to implement the same transformations (previously
implemented manually) using the source re-coder. At the end of the experiment, the
students provided the time taken to implement these transformations using the source re-
coder.

The detailed assignment description is given in Appendix-A5. The times reported for this
experiment are given in Table 14 and Table 15 in Appendix-A6.

3 Comparison and Analysis

The detailed results provided by the students for each experiment are listed in the tables
Table 11, Table 12, Table 13, Table 14, and Table 15 (in the appendix). In this section,
we will summarize those results and compare the manual times from Experiments 1 and 2
with the automatic times obtained from the Experiment 3.

3.1 Function to Behavior (F2B) Recoding

The comparison of manual and the automatic times for two function-to-behavior
transformations is reported in Table 1 for 15 students. Clearly, the manual times for
implementing these transformations varied widely across designers from 3 hrs 50 mins
(student 9) to 26 mins (student 14). The average manual time across 15 studentswas 1 hr
and 17 mins. On the other hand, using the source re-coder, the students were able to
implement the transformations rather quickly. The automatic times varied from 15 min
(student 8) to 1 min (student 3). The average automatic time was 5 mins. The gain in
productivity across different students (Figure 1) varied from 57.5 (student 9) to 3.7
(student 14) with an average gain of factor 18.9. Though it just takes a couple of clicks in
the source re-coder to realize these transformations, it still took minutes for many
students as they had to familiarize themselves with the tool and simultaneously read the
instructions provided. We believe, as the designer gets comfortable with the editor and
the tools in the re-coder, automatic transformations can be realized even faster.
Comparing the average manual time (1 hr 17 mins) with the fastest automatic time (1



min), the gain that can be potentially achieved is about two orders of magnitude (factor
7).

Manual | Automatic
Student h:min h:min Gain Productivity gain for F2B transformations for
1 1:02 0:11 56 different students
2 1:39 0:09 11.0 60.0 -
3 0:49 0:01 49.0 igg ]
4 1:00 0:04 15.0 Gain 300
5 1:21 0:04 20.3 200 {
6 0:55 0:04 13.6 ool ﬂ [l U a ﬂ .
7 058 005 116 123456 7 8 9101112131415
- - - Student
8 1:26 0:15 57 o
9 : : . . . .
0 i_ig 8_82 i; Z Figure 1: Plot of Gains for different students
11 0:32 0:02 16.0
12 1:02 0:03 20. 7
13 1:21 0:05 16.2
14 0:26 0:07 3.7
15 1:37 n/a n/a
Average 1:17 0:05 18.9
Std.Dev 0.033 0.003 15.6
Max 3:50 0:15 57.5
Min 0:26 0:01 3.7

Table 1: Comparison of manual and automatic times for re-coding 2 functionsinto
behaviors (F2B transfor mation)

3.2 Analysis of F2B Transformation

Table 1 shows the time for 2 Function-to-Behavior transformations. From this table and
Table 11 (Appendix-A2), the following derivations can be made. The Table 2 lists the
minimum, average, and maximum values observed for different quantities. Besides the
observed quantity, the potential maximum gain is obtained by comparing the average
manual time observed (1:17) to the fastest automatic time (1 min), which evaluates to
factor 77.

Minimum | Average | Maximum
Quantities Observed | Observed | Observed | Potential
Manual time for 1 F2B 0:26 1:17 3:50 --
Automatic time for 1 F2B 0:01 0:05 0:15 --
Gain 3.7 18.9 57 77

Table 2: Analysis of F2B oper ations




3.3 Statement to Behavior (S2B) Recoding

The comparison of manual and automatic times for 2 statement-to-behavior
transformations is reported in Table 3 for 15 students. The data for each transformation is
reported separately. For the first transformation, where detailled instructions were
provided, the manual times varied across designers from 1 hr 18 mins (student 8) to 17
mins (student 10). The average manual time across 15 students was 41 mins. For the
second transformation, where only brief instructions were provided, the manual times
varied from 3hrs 30 mins to 20 mins with an average time of 1 hr and 7 mins.

On the other hand, using the re-coder, designers were able to implement the
transformations quickly with times varying between 21 mins down to 3 mins for the first
transformation, and 1 hr 16 mins down to 2 mins for the second transformation. The
automatic times were higher than expected as the designers had to deal with some cases
of tool crashes. For example, student 14, who reported atime of 1 hr and 16 mins, took
the tool crash into account. The maximum productivity gain of 60 was reported by
student 14. We believe, as the tool stabilizes and the designer gets comfortable with the
editor and the tools in the re-coder, automatic transformations can be realized even faster.
Comparing the average manual time (1 hr 7 mins) and the fastest automatic time (2 min),
the gain that can potentially achieved will be 67.

Statement to Behavior -1 Statement to Behavior -2
Manual-1 | Automatic-1 Manual-2 | Automatic-2
Student hr:min hr:min Gain-1 hr:min hr:min Gain-2
1 0:33 0:12 2.8 0:23 0:16 1.4
2 0:45 0:12 3.5 0:35 0:13 2.5
3 0:19 0:05 3.8 0:44 0:04 11.0
4 0:34 0:05 6.8 1:00 0:04 15.0
5 0:51 0:21 2.4 0:38 0:15 2.5
6 0:45 0:08 5.6 0:35 0:13 2.7
7 0:24 0:09 2.7 0:33 0:10 3.3
8 1:18 0:09 8.7 1:28 0:10 8.8
9 0:47 0:05 9.4 2:00 0:02 60.0
10 0:17 0:09 1.9 1:09 0:05 13.8
11 0:21 0:07 3.0 0:20 0:14 1.4
12 0:34 0:03 11.3 1:00 0:05 12.0
13 0:39 0:08 4.9 1:10 0:06 11.7
14 0:59 0:19 3.1 1:51 n/a n/a
15 1:16 n/a n/a 3:30 n/a n/a
Average 0:41 0:09 5.0 1:07 0:09 11.2
Std.Dev. 0.013 0.004 3.0 0.034 0.003 15.5
Max 1:18 0:21 11.3 3:30 0:16 60.0
Min 0:17 0:03 1.9 0:20 0:02 1.429

Table 3: Comparison of manual and automatic times of re-coding 2 sets of statementsinto
behaviors (S2B transfor mation)

10



Productivity Gains for S2B-1 Productivity gains for S2B-2

12.0 4 70.0

100 60.0
50.0
_ o 400
3 300

BN 818 ata e a evuTa T e et | e

12 3 4 5 6 7 8 9 10 11 12 13 14 1 2 5 6 7 9 10 11 12 13

8.0

6.0

Gains
|

Student Student

Figure 2 Plot of Gains for different students

3.4 Analysis of S2B operation

The above table shows the time for 2 Statement to Behavior transformations. From the
above table and the Table 12 (Appendix-A4), the following experimental derivations can
be made. Table 4 lists minimum, average and maximum values observed for different
quantities.

Minimum Average Maximum
Quantities Observed Observed Observed
Manual time for 1 S2B 0:17 0:54 3:30
Automatic time for 1 S2B 0:02 0:09 0:21
Gain 1.4 8.1 60.0

Table4: Analysisof S2B operations

3.5 Pointer Re-coding

The comparison of manual and automatic pointer re-coding times for 4 pointers is
reported in Table 5 for 15 students. The manual times varied across designers from 1 hr
22 mins (student 4) to 23 mins (student 7). The average manual time across 15 students
was 50 mins. However, the automatic pointer re-coding using source re-coder took less
time, as expected. The automatic times varied from 15 mins down to 2 mins. The gain
varied between 16.4 and 3.4, and the average gain was 9.79.

Student | Manual | Automatic Gain
1 0:51 0:15 3.4
2 1:11 0:12 5.6
3 0:33 0:05 6.6
4 1:22 0:05 16.4
5 n/a 0:12 n/a
6 1:07 0:06 11.2
7 0:23 0:05 4.6
8 1:12 0:07 10.3
9 n/a 0:05 n/a

11



10 0:44 0:03 14.7 Productivity gain for Pointer Re-coding

11 0:29 0:02 14.5 transformation for different students

12 0:37 0:03 12.3 200

13 0:53 0:05 10.6 -

14 0:44 0:06 7.3 150

15 n/a n/a n/a Gain 10.0
Average | 0:50 0:06 9.8 50 1 T ﬁ U W
Std.Dev. 0.013 0.003 4.3 0O T T e T .

12345678 9101112131415
Max 1.22 0:15 16.4 Student
Min 0:23 0:02 3.4

Figure 3 Plot of gains for different students
Table 5: Comparison of manual and automatic pointer re-coding times

Clearly, some of the students who could not complete the manual pointer re-coding were
able to perform the recoding using source re-coder.

3.6 Analysis of Pointer Re-coding operation

The above table shows the time for 4 pointer re-coding transformations. From the above
table and Table 13 (Appendix-A4), the following experimental derivations can be made.
The table lists Minimum, average and maximum values observed for different quantities.

Quantities Min. Observed | Avg. Observed Max. Observed
Manual time for 1 PR 0:23 0:12 1:22
Automatic time for 1 PR 0:02 0:06 0:15
Gain 3.4 9.8 16.4

Table 6: Analysis of Pointer recoding oper ations

Comparing the average manual time of 50 mins with the fastest automatic time (2 min),
the gain that can potentially be achieved will be 25. Note that the potential gain is low as
in our experiment the instructions included the source for the recoded pointers, In reality,
the designer will have to determine the source of pointers manually by reading the code.
Thus, the manual times will be much higher, as will be the productivity gain.

3.7 Additional Feedback

Besides the timing details, the students also provided suggestions to improve the tools.
The task of converting a function to a behavior and statements to a behavior first required
re-scoping some local variables to the class scope so that they become available for port-
mapping. The transformation to do this operation was also available in the re-coder, but
required explicit invocation by the students for every variable that required re-scoping.
Designers had to look at the variables and check if they are local and they re-scope them.
Based on the suggestions provided by the students, this re-scoping of variables was made
part of the function-to-behavior and statement-to-behavior transformations. These
transformations were modified so that al the variables that are needed for port-mapping
are automatically moved into the class scope.

12



This improvement is shown in Table 7 below. The number of interactions earlier
depended on the number of variables that need to be re-scoped. These were changed to
just 1 interaction based on the feedback received.

Further, some system crashes reported by the designers helped to fix a couple of
implementation issues in the tool. We are confident that, after these changes to the source
re-coder, the productivity gains will be much higher.

Number of interactions
Tool in Re-coder
Before this experiment After incorporating designer suggestions
Function to Behavior 1 + (n * rescope variables) 1
Statement to Behavior | 1 + (n* rescope variables) 1
Pointer Analysis 1 1
Pointer Re-coding 1 1

Table7: Reduced number of inter actions needed to invoke differ ent tools after
incor porating student feedback

4 Generalization for Future Estimation

Conducting these types of experiments is very expensive in terms of time and resources.
Therefore, we attempt to generalize our observations and experimental results. We
derived some more empirical results which we may use in future for estimating manual
and automatic times.

Irrespective of the type of transformation, the most primitive empirical result needed to
estimate manual programming time would be the number of Lines of Code (LoC)
generated per hour. Based on the 3 types of transformations implemented by the students
in Experiment 1 and 2, we obtained the number of lines of code that changed. Using the
manual times provided by the students for those transformations, we estimated the LoC
written per hour.

Using the minimum, average, and the maximum values of the manual times, we
computed 3 values of LoC per hour. These results are tabulated in Table 8 below.
Obviously, the variability in the manual times also reflects in the LoC written per hour.
One should note that these numbers are quite optimistic as we consider only re-coding
time, not the decision making time. The students were given amost line-by-line
instructions to implement the code. If the students/designers have to code all by
themselves, then the result will be much lower than these numbers. Moreover, these
numbers do not account for errors introduced into the design, which would require
tedious debugging and thereby drastically reduce the LoC written per hour further.

13




Manual time (hr:min)
Min. Avg. Max.
Task LoC | Manual time | Manual time | Manual time Comment
F2B-1 102 0:09 0:29 1:20 Experiment-1
F2B-2 214 0:15 0:47 2:30 Experiment-1
S2B-1 162 0:17 0:41 1:18 Experiment-2
S2B-2 158 0:20 1:07 3:30 Experiment-2
PR -1 70 0:10 0:21 1:03 Experiment-2
PR-2,3,4 112 0:13 0:28 0:58 Experiment-2
Total 818 1:24 3:56 10:39
LoC per hour
Considers pure re-
coding, no decision
LoC per hour 584 208 77 making

Table 8 Lines of Code per manual hour estimation

Similarly, the most primitive quantity to measure the automatic time using source recode
is the number of interactions for each transformation. By restricting most of the
transformations to just 1 user interaction, it becomes easier to estimate the automatic
time. As described in Section 3.7, based on the student’s feedback, we modified the
transformations to regtrict the number of interactions to just one. At the time of this
experiment, since pointer recoding was the only transformation that had 1 interaction, we
can take the minimum time for pointer recoding as an optimistic estimate for all
transformations that require 1 interaction. The minimum time to recode a pointer using
source re-coder is 2 mins from Table 6. Based on this argument, we can assume that the
time for realizing a 1 interaction transformation using source re-coder is about 2 mins.
Considering the variability, the 3 values (minimum, average, maximum) are given in
Table 9 below.

Transformation type

Min. Automatic
time (hr:min)

Avg. Automatic
time(hr:min)

Max. Automatic
time(hr:min)

One-interaction
transformation

0:02

0:06

0:15

Table9 Automatic time for 1 interaction transfor mation

5 Challenges in Measuring Productivity Gains

Conducting a real life experiment to measure the productivity gain achievable using a
tool is a challenging task, as such experiments are limited by resource and time
constraints. Some of the issues we encountered in our experiment are listed below:

1. The variations in the times provided by different designers make it hard to arrive
at a common measure of manual time. Besides the variation in the manual time,
the automatic times provided by the students also varied widely. This, we believe,
can be attributed to some of the software crashes encountered by the users, and
also the time it took to read the instructions from the assignment and get

14



acquainted with the recoder. These issues resulted in the variations in productivity
gains. These variations are shown in Table 10 below.

. Though the MP3 design example used for the experiment was a representative of
commonly used embedded applications, the example transformations manually
conducted by the students did not necessarily represent an average case of
programming. Due to the time constraints, students could not be asked to conduct
more manual transformations. This was one of the larger limitations of our
experiment.

. An Ideal experimental setup would be to have 2 groups of students conducting
manual and automatic experiments simultaneously, and then compare the time
taken by each group. However, due to the resource constraints such an experiment
could not be conducted.

In our experiment, the students were asked to implement a fewer set of
transformations on a bigger application. Another option would be to work on a
smaller application, but implement more transformations to derive a complete
specification model.

. The students were asked to conduct the manual experiments first, and then used
automatic recoding to implement the same transformations using the source re-
coder. So the automatic part of the experiment was benefited by the knowledge of
the MP3 code that was acquired during the manual experiment.

. The learning curve that is achieved using the source re-coder would make the
subsequent re-coding faster. However, this could not be accounted as students had
very limited time available for this experiment.

. The experiment was conducted with a class of graduate students and not regular
designers.

Finally, we believe the productivity gains measured from our experiment are still
conservative compared to what can be achieved in reality. This is because the
errors made by the designers during manual programming are not taken into
account in this experiment. In the absence of errors, the designers can direct all
the effort and attention towards structuring the model instead of actually working
on textual recoding. This improves the quality of the model and further increases
the productivity gains.

Gains achieved by
different tools Minimum Average Maximum
F2B Gain 3.7 18.9 57.0
S2B Gain 1.4 8.1 60.0
PR Gain 3.4 9.8 16.4

Table 10: Variability in the gains

15




6 Conclusions

Tools like our source re-coder are intuitively able to help the designer in faster creation of
a good SoC specification. Experiments to quantitatively measure the extent to which
such atool can be useful to designers of varying abilities were not conducted in the past.

With the help of a real class of 15 graduate students, we conducted experiments on
creating a SoC specification for areal-life design example. The students were first given
instructions to manually implement 3 kinds of re-coding tasks on an MP3 decoder
specification, and were asked to measure the time taken to program. Following that, the
same students were introduced to our automatic source re-coder, and were asked to
implement the same transformations using the automatic tools available in the source re-
coder.

Comparing the manual and the automatic times provided by different designers, we were
able to estimate the gains that can be achieved using our interactive source re-coder. The
gains achieved varied depending on the designer and the type of transformation. Some
variability also resulted from the still immature source re-coder. Despite this variability, it
was conclusive that our source re-coder results in significant productivity gains and
effective help in reducing the overall system design time.

There were some aspects, which could not be accounted for in this experiment. For
example, due to time and resource constraints, for manual implementation the designers
were given line-by-line instructions to implement the manual transformation. However,
in reality when designers themselves have to analyze and implement the code, it would
take more time and errors before correctly realizing the transformations.

We derived certain empirical quantities such as, Lines of code per hour and time for one
interaction transformation, which can serve as reference in estimating the productivity
gains in future experiments.

In future, we would organize such experiments differently to even out some variables.
One idea is to have one set of designers working manually, and another set of designers
(of the same capability and quality) working automatically using source re-coder. If these
two independent groups implement different transformations on a smaller design example
and create a complete SoC model, we can compare the times taken these two groups and
better estimate the productivity gains.

In summary, our Source re-coder relieves the designers from complex re-coding work
and lets them think about structuring and creating parallel and analyzable models instead
of worrying about implementing the transformations. Such automation will go along way
in helping designers in creating high quality specifications faster.

7 Acknowledgements

We very much thank the graduate students in class EECS-222A of Fall’ 07 for conducting
the experiments. We also would like to thank Embedded Systems Methodology group at
the Center for Embedded Systems (CECS) for fruitful discussions and providing valuable

16



feedback on the experiments, results and suggestions to improve such experiments in the

future.

8 Reference

1.

Pramod Chandraiah, Rainer Domer: "Pointer Re-coding for Creating Definitive
MPSoC Models', Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis, Salzburg, Austria,
September 2007.

Pramod Chandraiah, Rainer Domer: "Designer-Controlled Generation of Parallel
and Flexible Heterogeneous MPSoC Specification”, Proceedings of the Design
Automation Conference 2007, San Diego, California, June 2007.

Pramod Chandraiah, Rainer Domer:"An Interactive Model Re-Coder for Efficient
SoC Specification”, Proceedings of the International Embedded Systems
Symposium, "Embedded System Design: Topics, Techniques and Trends" (ed. A.
Rettberg, M. Zanella, R. Domer, A. Gerstlauer, F. Rammig), Springer, Irvine,
California, May 2007.

Pramod Chandraiah, Junyu Peng, Rainer Domer: "Creating Explicit
Communication in SOC Models Using Interactive Re-Coding”,

Proceedings of the Asia and South Pacific Design Automation Conference 2007,
Y okohama, Japan, January 2007.

Pramod Chandraiah, Rainer Domer: "Automatic Re-coding of Reference Code
into Sructured and Analyzable SoC Models’,

Proceedings of the Asia and South Pacific Design Automation Conference 2008,
Seoul, South Korea, January 2008.

“System-on-Chip (SoC) Description and Modeling”, Rainer Doemer, Lecture
Notes for graduate-level course EECS 222A, Fall 2007.
https.//eee.uci.edu/07f/18430/

A. Gerstlauer, R. Domer, J. Peng, and D. D. Gajski: “System Design: A Practical
Guide with SpecC”. Kluwer Academic Publishers, 2001.

17



Appendix

Al. Student Instructions for Experiment 1

EECS 222A
System-on-Chip Description and Modeling
Fall 2007

Assignment 4

Posted: November 2, 2007 (week 8)
Due: November 9, 2007 (week 7)
Task: Creating Behaviors in C Code
Instructions: (by Pramod Chandraiah)

As you might know by this time, behaviors in SpecC act as a basic unit of
computation. Because of their explicit syntax. compared to functions and plain C
statements, the analysis and the refinement tools can sasily analyze and conduct
refinement tasks. such as partitioning and mapping.

In this document, we briefly describe how to encapsulate functions and C
statements inte behaviors, followed by precise directions to create behaviors in
an MP23 decoder example.

Encapsulating Functions in Behaviors

1 sehavior B (i int pt, in inf p2, out it result) 1 behavior B_f1( in intw, in int x[10], inint i, ;mout int 5, outint c) {
2 woid main)
3 voic main{ ) 3 { c=1funciw, xfi], &s;
4 : 4 ]
5 inti1, a, bf10], s; *pa; 5 int 714 int we, int x, int *p)
& a=pl+p; 6 {"p = wi+'p
s =pip2 T return *g;
g pa= &s: 8 }
o 9 %
10. resull = f1{a, b{it], pal; 10. behavior B (inint p1, in int p2, outint  result) {
11. 11. int a, b{10], i1, s;
12 } 12.  #Mnstamiate child behavior here
13 int F4{ int w, int x, int *p) 13. I_B_f1{a. b, i1 s, result);
14, {*p =w+u="p; 14, voud maing )
15 return *p; 15 {
16 ¥ 1a. int *pa;
17. '} AT, a=pl+p2;
1a. s = p1-p2;
19. pa = &g
20.
21 I_ B_f.maini);
22,
3. I
24. };
{a) Criginal mode! (Mode! 1) (b} Function encapsulated in behavior (Model 2)

The explicit port list that defines the interface of the behaviors is what makes
behaviors easily analyzable. As shown in the figure above, encapsulating a
function into a behavior involves creating a behavior body, creating the instance
of the newly created behavior and replacing the function call with the call to the
instance. Note that, creating the behavior body requires first determining the port
list. Creating the instance reguires first creating the port map list.

Figure 4: Page-1 of Student I nstructions for Experiment 1

18



Initial Setup

The imtial setup files are in the tar file home/doemerEECS222A FO7/mp3 vl,.tar.gz.

Untar thas file using the command:

gtar xvzel mpl vli.Lar.gz

A directory by name mp3 v1 will be created. Change into thas directory

cd mp3_ Wl

The entire MP3 source code is n single file mp3decoder . so. There is a Makefile to compile and test
the decoder for a ser of MP3 streams. There are two directones reference/ and test St ream/ which
vou don’'t have to worry about ai this stage,

You need to set the path for the SpecC compiler. Source the setup shell seript as below:

source jopt/eoe-20060301/binssetup.osh

Mow compile and test the decoder by ninmng following commands

make clean

make

make LCest

The setup should compule and simmlate without errers, Please just ignore anv "Can't step kback™ and
"read length less than max" messages.

Given MP3 Code

The MP3 code 1s a basic SpecC code. It has 4 behaviors: Stimulus [at hne 5724]. Monstor [at line 5692].
DUT [at line 5640] and MP3Decoder [at line 2755]. Use text editor to view the source code and find these
Lehaviors.

We want o mtroduce more behaviors in MP3Decoder to enable explotation. In the next section, we
describe the changes you have 1o do to convert a finction call into a behavior, Wote that the line numbers
we refer to are the unmodified lines n the oniginal source file.

Task 1: Encapsulate decodeMP3 function call in behavior MP3Decoder.

1. We will give a set of mstroctions o comvert a function to behavior. We would also like to

measure the time it takes to perform thus conversion.

Please make a note of the start time T0.

decodeMP3 () 15 a function m behavior MP3Decoder. The global functien 15 defined ar line

2873 and 15 declared at 2724 There are 2 calls to thes function. first call at lme 2778 and second at

hine 2792, For this exercise, we are only inferested n encapsulating the function call at line 2778,

3. Furst we have to create the behavior bodv, Create a new empty behavior (say at line 2734) wath
the signature:

t

kehavior B decodeMP3(

in struct mpstr *mp,
in ¢har *input.

in int isize,;

in char *output,

in int osize,

inout int *dons,

out int ret port) |

¥q

Note that this signature can be denived from the function signature. You could copy the function
signature of decodeMP3 and modify 1t. or copy this signature from this document directly, or else
Just type 1t.

Figure5: Page-2 of Student I nstructions for Experiment 1

19




4. Copy the global function decodeMP3 (] mto behavior B_decodeMP3 {retamn the global function,
don’t delete 1£).

& . Inthebehavior B decodeMP3 create an empty mam functionvoid main (veoid) {}

&. Add this function call in the empty mam function
ret port = decodeMP3 (mp, input, isize, output, osize, done);

7. Save the file and do: make and make test and check if the tests run fine.
Note the time T1.

9. Now we have to create the instance of this newly created behavior in the parent behavior. First,
create new temporary variables in the scope of behavior MP3Decoder. We explam later the need
for these variables.

struct mpetr *t_ dummy:
char *t dummy O0;

char *‘t:dum'fy:1 i

int *t_ dummy 2;

10. Create an instance of the new behavior m the parent behavior MP3Decoder before the mam body.
B decodeMP2 [ B decodeMP3 (t_dummy, t dummy 0, len, t dummy 1, i8192),
t_dummy 2,ret);

The portmap needed for creating the mstance 15 obtained from the function call. The function call
13 ret = decodeMP3( &mp, buf, len, output, 8192, &size);

Suice the portmaps can only be variables (not expressions). temporary variables are used to store
the argument expressions. So. before we make a call to the mstance. we need to iutialize these
remporary variables with the argument sxpressions.

11. Replace the firstcall to function decodeME?2 () m the behavior MP3Deacoder with the call 1o
the instance

I B decodsMP3.main(]
12. Add following assignment statements 1o mitialize the temporary variables i the behavor
MP2Decodar before the call to the instance.
L dummy = &up;
t _dummy 0 = buf;
€t dumny 1 = output;
t_dummy 2 = &size;
13. Save the file and do: make and make test and check if the tests run fine.
14. Make a note of the time T2

Task 2: Encapsulate do _layer32 function call in behavior B_decodeMP3

¢

b

-

For perfornung this task. unlike the previous case. we will not grve the detailed directions. We will
briefly outline the steps needed. You will use the source file resulting from the changes done m the
previous step.

Please male a note of the start time T3.

You have to encapsulate the function call do_layer3 () which s located in the member function
decodeMP3() wluch 13 a member of the behavior B decodeMP3.

First create the behavior signature with an empty body. Use the behavior name B_do layer3. To
derive the signature vou can use the function call signature of Ao layer3 (1. To determine the
direction of the ports (IN, OUT, INOUT)vou have to analvze the program and deternune the
accesses, Since this 15 complicated vou could skip this and not specify any port direction. By default
these ports will be treated as INOUT.

Copy the de_laver3() function to the behavior body and add the function call to the do layera()
function from the main () , just like the previous example.

Save the file and do make and make tegt and check if the tests run fine.

Note the time T4.

Figure 6: Page-3 of Student I nstructions for Experiment 1

20




7. Now create the mstance of the behavior B do_layvers m the parent behavior B decodeMP32. Use
the temporary variables 1f you need for the port map. Replace the call to function do layer? (which
1: lecated m the member function B decodsMP2 : : decodsMP2) with the call to the mstance. If you
have used remporary variables. then introduce the necessary assignment statements before the mstance
call,

Save the file and do make and make test and check if the tests run fine.

9, Mlake a note of the time T5

-

Deliverables:
+ l-paragraph description about the two tasks above
{l.e. how far you got, what were the problems, how did you solve it}
« Please also report the times TO, T1, T2, T3, T4 and TS (in minutes).

Due: Week 7 (Nov 9, 2007)

Rainer Doemer (ET 444C, x4-2007, doemer@uci.edu)

Figure 7: Page-4 of Student | nstructions for Experiment 1

21




A2. Times Reported by Students for Experiment 1

The results submitted by the students for the 2 tasks are given in Table 11. Time stamps
TO to T5 was the primary feedback expected from the students. However, some of the
students only turned-in the durations between these stamps, which are as good. Task 1 is
the time to recode the function into behavior given the complete instructions. Task 2 is
the time to recode the 2™ function into behavior. time (TO, T1), time(T1, T2) congtitute
Taskl and time(T3, T4) time(T4, T5) together constitute Task2.

Task Task
Student TO T1 T2 T3 T4 T5 time(T0,T1) time(T1,T2) time(T3,T4) time(T4,T5) 1 2 Total
1 9:30 9:40 9:55 10:13 10:30 10:50 0:10 0:15 0:17 0:20 0:25 0:37 1:02
2 1:40 1:48 2:02 2:25 3:11 3:42 0:08 0:14 0:46 0:31 0:22 1:17 1:39
3 17:35 17:40 17:44 17:46 17:52 18:26 0:05 0:04 0:06 0:34 0:09 0:40 0:49
4 8:24 8:35 8:50 9:03 9:13 9:37 0:11 0:15 0:10 0:24 0:26 0:34 1:00
5 10:14 10:21 10:50 11:07 11:24 11:52 0:07 0:29 0:17 0:28 0:36 0:45 1:21
6 8:20 8:30 8:45 8:50 9:15 9:20 0:10 0:15 0:25 0:05 0:25 0:30 0:55
7 9:20 9:30 9:43 9:45 9:53 10:20 0:10 0:13 0:08 0:27 0:23 0:35 0:58
8 n/a n/a n/a n/a n/a n/a 0:30 0:15 0:18 0:23 0:45 0:41 1:26
9 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1:20 2:30 3:50
10 10:23 10:43 11:06 11:07 11:28 11:43 0:20 0:23 0:21 0:15 0:43 0:36 1:19
11 n/a n/a n/a n/a n/a n/a 0:10 0:05 0:10 0:07 0:15 0:17 0:32
12 0:00 0:17 0:28 0:00 0:18 0:34 0:17 0:11 0:18 0:16 0:28 0:34 1:02
13 2:59 3:09 3:34 8:59 9:40 9:45 0:10 0:25 0:41 0:05 0:35 0:46 1:21
14 10:36 10:45 10:47 11:01 11:06 11:16 0:09 0:02 0:05 0:10 0:11 0:15 0:26
15 8:56 9:05 9:15 9:23 10:02 10:41 0:09 0:09 0:39 0:39 0:19 1:18 1:37
Average 0:11 0:13 0:20 0:20 0:29 0:47 1:17
MAX 0:30 0:29 0:46 0:39 1:20 2:30 3:50
MIN 0:05 0:02 0:05 0:05 0:09 0:15 0:26

Table 11: Timesreported by studentsto manually recode functions “ decodeM P3” (Task1)
and “do_layer3’ (Task?2) into behaviors

Note 1: The time stamps not provided by the students are indicated by “n/a’. For
example, student 8 and student 10 provided durations and not the time stamps. Student 9
only provided the times for Taskl and Task2.

Note 2:

« time(TO,T1) isthe time to create the behavior body including the portlist for 1%
F2B transformation

* time(T1,T2) isthe time to create the behavior instance including the portmap for
1¥ F2B transformation

« time(T3,T4) isthe time to create the behavior body including the portlist for 1%
F2B transformation

22



* time(T4, T5) isthe time to create the behavior instance including the portmap for
1¥ F2B transformation

23



A3. Student Instructions for Experiment 2

EECS 222A
System-on-Chip Description and Modeling
Fall 2007

Assignment 5

Posted: November 9, 2007 (week 7)
Due: November 16, 2007 (week 8)
Tasks: Part 1. Creating Behaviors in C Code

Part 2: Pointer Elimination

Instructions: (by Pramod Chandraiah)

Part1 - Converting Statements to Behavior

In the previous assignment, we converted functions into behaviors. In this
assignment, we will encapsulate a set of C statements into behaviors.

Encapsulating Statements in Behaviors
behavior B { in int p1, inint p2, out intresuity 1 behavior B_child1{inint p1, i int o2, out int 2, outints) {

q
2 i 2 yoid mamt)
3 void main| ) 3 { a=pl+p2;
4 { - s=ptp2;
= intil, a; b{10], s "pa; § i
& a=pl+pZ 6 1
: T 10.  behavior B (in int p1, in int p2, cutist resuit) (
g ’ 1. inta, s
an i P— - " 12.  Mnstamiate child behavior here
s S =9 1) 13 |_B_childt(pl, p2. a, 55,
.iz' 3 14. void maind |
; LA - A
B ’I.“,‘Ff“z',:‘::-_l';_’-- ot *p) 16, int i1, b[10], “pa;
.i,;' ¥ b Yo : 17. I_B_child1.maini}:
16 ¥ - 14, pa = &s;
7 19, S R
20. result = f(a, bli1], pak
21,
&£ |
23 )
(a) Crginal model (Model 1) (b} Statements encapsulated in behavior (Model Z)

The idea behind encapsulating statements into behavior is same as that of
encapsulating functions, i.e. to create a new computation block with explicit
interface.

As shown in the figure above, encapsulating statements into a behavior involves
creating a behavior body, creating the instance of the newly created behavior,
and replacing the statements with the call to the instance. Note that, creating the
behavior body requires analyzing expressions in the statements. determining
their access type, and determining the port list. Creating the instance requires
creating the port map list.

Figure 8: Page-1 of Student I nstructions for Experiment 2

24



Initial Setup

The mutial setup files are in the tar filemp3 v2.tar.gz. Untar this file using the command:
gtar xvaf mp3 va.tar.gz

A directory by name mp3_v2 will be created. Change mto this directory

cd mp3 w2

You will see following files:

mpidscoder 2. so - Complete source of a floating point MP3 decoder (same as the one provided for
previous assigmment but with two new behaviors).

Makefile — To compile and test the sources.

mp3 fixpt.so— Complete source of fix-pomt MP3 decoder (This 1s needed for part-2 of the
assigmment)

huffwan.<, huftman.h-Nesded for fix powmt MP3 decoder. You can ignore these files as theuwr
nchuston and compilation 15 taken care in the Makefile.

There are 3 directones (reference/, refersnce-fix/, teatftream/)that contamn test
streams and reference output. You don’t have to worry about these at thus stage.

You need to set the path for the SpecC compuler. Source the setup shell script as below:

B e fopt5906—2006UBOljbinjsetup,cgh

Now comple and test the decoder by runmung following commands

make <lsan

malke

make test

The setup should compile and sirmulate without errors. (ignore "Can't step back™ and "read
length less than max" messages)

Given MP3 Code

The MP3 code is a basic SpecC code. It has 7 behaviors: Stimmlus [at lme 3179]. Monstor [at line 3147].
DUT [at line 3095]. MP3Decoder [at line 3041]. B_decodeMP3 [at hne 2952]. B_do_laver3 [at line 2770]
and behasior Main [at line 3221]. Use text editor to view the source code and find these behaviors. We
want to mtroduce more behaviors m B _do_layer3. In the next section, we describe the changes you have to
do to encapsulate statements mnta behavior. Note that the line numbers we specify refer to the unmodified

original source file (mp2deceder 2.s8a).

Task 1: Encapsulate Statements in lines 2792-2823 in behavior B_dc_layer3.

1. Wewill give a set of instructions fo encapsulate these statements mto bebavior. We would also
like to measure the time it takes to perform this conversion.
Please make a note of the start time T0.
do layer3 () is a function m behavior B de_ layer?. Tlus function is defined at line 2776.
We will encapsulate the statements from line 2792 to Ime 2823 {inclusive).
First we have to create the behavior body, Create a hew empty behavior (sav at line 2769) with the
sgnature:
behavior Bechildl B do layer3|

inocut int sterso,

in gtruct frame *fr,

incut int sfreq,

incut int single,

incut int etersol,

ingut int mes sterso,

imogt int i_Et arec,

incut int granules,

in struct 111 sldeinfo sideinto)

{

-3

Figure 9: Page-2 of Student I nstructions for Experiment 2

25




¥i

Note that this signature 1s obtamed by analvzing the lines 2792 — 2823 and determining the
variables and their access types.
. Inthe behavier B decodeMP3 create an empty mam funcion void main (veid) {}
. Capy the C statements (2792-2823) mto the main( ) of the Bchildl B de layer3.
Save the file and do: make and make test and check if the tests run fine.
Note the time T1.

oo e w

=

Now we have to create the instance of this newly created behavior in the parent behavior. First,
we have to move any local variables accessed by the statements info parent behavior’s scope.

8  Move vanables, eterec, sterecl, single, i1 stereo, ms sterso, sfreq,
sideinfo, gramiles wmto parent behavior B do layer . These vanables are declared at
the begmmning of the function Ao layer 3, After moving change the name to:

K sterso, R sterenl, K slngle, R 1 stereo, R ms_stereq, R sfreq,
R _sideinfeo, B granules sothat there are no nammg clashes.

9. Create an instance of the new behavior in the parent behavior B do_layer? after the above
variable declaration and before the main body,
Bchildl B do layer3 1 Bechildl B do layer3(R stereo, fr, R sfreq,
R_single, R sterecl, R ms_stereo, R_i stereo, R granules,
E sideinfol ;

The portmap needed for creating the instance 1s obtamed from the previous analysis of the
statements function call,

10. Now that you have renamed some of the relocated vanables. vou have to change the references to
the old names with the new names, There are 7 references to variable sideinfo m the function
do layer3{ ), change them to usethe new name R_sideinfo. There s 1 reference to
gramiles, changsitto B granules. Smularly, rename the access to other vanables
sfreq, stereo, stersol, ms steieo, 1 sterec, granules.

11. Replace the statements with the call to the instance

I_B decodeMP3.main ()
2. Save the file and do: make and make test and check if the tests run fine.

13, Alake a note of the time T2

Task 2: Encapsulate statements in lines 2863 to 2887 in behavior B_de_layer3

1.

I3

For performung thas task. unlike the previous case. we will not grve the detailed directions. We will
briefly outline the steps needed. You will use the source file resulting from the changes done m the
previous step.

Please make a note of the start time T3.

You have to encapsulate the statements from line 2863 1o 2887 (both lines inclusive). The lines refer to
the origmmal fmal mp3decodsr 2. gc and are located 1n the fimction do_layer3 ( ) whichisa
member of the behavior B do_layer3. These will be approximately located at lines 2896 to 2921 m
the file thar was saved in step-11 m previous section.

Fuirst create the behawvior signature with an empiy body. Use the behavior name

B child2do layer3. To denve the signature, analyze the statements and determmne the variables
and thewr accesses. To deternune the direction of the-ports (IN, OUT, INOUT)yvou have to analyze
the program and deternune the accesses. It is recommended to determine these directions. However, if
1t 15 too complicated for vou, vou can skap thes and not specify any port direction. By default these
ports will be wreated as INOUT.

Copy the statements into the main ofthe B child2de layer3 behavior, just like the previous

example.

Figure 10: Page-3 of Student I nstructions for Experiment 2
26




Save the file and do make and make test and check if the tests nn fine.

Note the time T4.

Now create the mstance of the behavior B child2do layer? in the parent behavior

B do layer3. If necessary. move the vanables into the scope of the behavior. Replace the
statements with the call to the newly created mstance.

2. Save the file and do make and make teat and check if the tests run fine.

9. Make a note of the time T5

= & L

At the end, please report the imes T0, T1, T2, T3, T4 and T5.

Part2 - Pointer Replacement

As we know. pomters in the C code create ambiguity and malke the code unanalvzable and unsyvnthesizable
by automatic tools. In this part, vou will see how to replace mdirect variable access through pomters with
direct vaniable access.

Pointer re-coding example

1, inta[30], ab{3C][16]; 1.t af30]. ab{30][16];
2, mtvl.vlx ¥y 2. mtvl vl e
1. imt *pl *p2. *pd. *pd. (*pI)[16]. pé: 3. intip3. ipd. ipS. iph;
4. pl=&x 4. Mothing here
3. Hpl=y¥l S m==yHl;
6. iffcondition) p2 = &vl: 6 iffcondition) p2 = &vi:
T. elsepl =&%2; 1. elsep? =Rv2;
B *pl=3 g *p2=3;
8. p3=&ab[40][10%: 8 ip3=ih
10. *p3 =100; 10, ab{40)ip3] = 104
I1. pd=x 11. ipd=0:
12, pi++; 12 ipd+
13. *pir+=1 13 afipa++]=1;
14, p3=&ab{5]: 14 ipS=35;
15 pb=pi+vl: 15, ip6 =ipd+vl:
(a) Code with pointers (b) Code with pl. p3. pd, p7, pb substituted

Powter re-coding 15 a 2 step process. First, vou have to deternmune the vanable 1o which the powmter powts to
and second. replace the pointer accesses with the direct access to the target vanable. The figure above
shows some examples of pomnter recoding. Note that pointers to the scalar varrables are completely
removed. and m place of pomter to the arrays. mteger variables that act as indices o the array are created
(e.z. lme3). Expressions of the pointers that pomt to arrays are replaced wath the array access expression
formed by the acmal variable the newly created index variable (e.g. line 10). Pomnter p2 15 not recoded as
1t could pome to more than 1 vanable,

Initial Setup

You will use the same set up as the part-1 of tlus assignment, except that vou will vse fix-pont MP3
decoder implementation whach 15 contaned in the smgle source file mp3_ fixpt.so.

As usual. vou need to set the path for the SpecC conypiler. Source the setup shell senpt as below:

source Jopt/sce-20080201/bin/setup.acsh

Now compile and test the decoder by mnmng following commands (note that commands are different from
before)

make clean

make all fix

make test fix

Figure 11: Page-4 of Student I nstructions for Experiment 2

27




Given Fix-point MP3 Code

This 13 3 fix-peint 3P3 mnplementation m SpecC. It has many behaviors. including Mad St imalue [at
line 13681]. Mad Menitor [at line 13533]. MP2Dacoder [at line 13717] and behavior Main [at line
13746]. Use text editor to view the source code and find these behaviors: We will replace couple of
pomters i the behavior Cale sample located at hine 13177 In the next section. we describe the changes
vou have to do 1o replace a pointer. Note that the line numbers we refer wo are the unmodified lines m the
onginal source file (mp2 fixpt.sa)

Task 3: Replace pointer £e in behavior cale sample

L

We will now give a set of nstrucnions to replace the pomrer expressions, We wonld also like 10
measure the nme 1t takes to perform thes conversion.

Please make a note of the start time TO,

Poumer int (*fe) [8] is declared at line 13202 i the main body of Cale sample
behavior and this pointer points fo nmln-dimensional array £ilcer [2] [2] [16] [8] winchis
a port of the behawior. More specifically, fe powmns to the dimension

(filter) [0] [phase & 1].

We have to teplace all accesses to £& with the direct access to the array vanable filter Asa
first step. create an integer variable winch acts as an mndex varable (1 £ mto the array w place
of the pomter £2. You can remove the pointer declaration.

Replace the pomter ietialization statement (fe = & (filter) [0] [phase & 1] [0] ;)at
line 13214 with the minalizanon of the index vanable i_fe (i_fe = 0)

. Replace the expressions involving £ with the direct access to f£ilter. For example, replace

the expression af line 13229 which 1s

(11a) #= (( *fe) [0]) * {(pExr[0]))

(1o} += {{ *fa) [1]) * {ptxrila]));:

with

({lo} += [(((filter) [0] [phase & 1] [1 fe])([0]) * (ptx[0]}):
({lo} += {((ifilter} [0] [phase & 1] [i:fe]h[l]:l * (ptxf14a] ¥}
and soon. ..

Stmilarly, replace all the other expression involving fe mthe main () body,

Anthmetic Expressions involving £e such as the one at line 13242:

#+Le;

15 replaced with

++1 Fey

Save the file and do: make all fixand make test £ix and check if the tests rua fine.
Alake a note of the time T2

Task 4. Replace pointer £x, fo and Dptr in behavior Cale sample

We will note mive complete mstructions to recode these pomters. These pointers can be recoded on
simular lines as pointer f& .

Pomter £x is declared at line 13204 and 1ts untiahization 1s at line 13215, Note that this pomter
pownts to dimension (filter) [0] [ ~phase & 1].

Replace this pointer and make a note of the start and the end time to perform the task (T3, T4)

Pomter fo is declared at line 13203 and tts imtialization 15 at line 13216, Note that this pomter
pownts to dimension (£ilter) [1] [ ~phass & 1],

Replace thus pointer and make a note of the start and the end tume to perform the task (T5, T6)

Figure 12: Page-5 of Student I nstructions for Experiment 2

28




6. Powmter Dptr 15 declared at lme 13205 and tts mtialization 15 at line 13217, Note that this pomter
ponrs to array D
7. Replace this pomnter and make a note of the start and the end time 1o perform the task (T6, T7)

At the end, please report the ttmes T0 trough T7.

Deliverables:
« 1-paragraph description about each of the tasks above
{i.e. how far you got, what were the problems, how did you solve it)
» Flease also report the times for part 1 (TO to TS, in minutes), and for part 2
(TOto T7, in minutes).

Due: Week 8 (Nov 16, 2007)

Rainer Doemer (ET 444C, x4-3007, doemer@uci.edu)

Figure 13: Page-6 of Student I nstructions for Experiment 2

29




A4. Times Reported by Students for Experiment 2

The results submitted by the students for the part-1 are presented below in Table 12. The
time stamps TO to T5 refer to the time stamps given the description Appendix-A3. Task
1 is the time taken for 1% Statement-to-Behavior transformation. Columns time (TO, T1),
time (T2, T2) together constitute Task 1. Task 2 (time (T3, T4) + time (T4, T5)) isthe time
taken for the 2™ Statement-to-Behavior transformation. Total is the time for Task 1 and
Task 2.

Task Task
Student TO T1 T2 T3 T4 T5 time(T0,T1) time(T1,T2) time(T3,T4) time(T4,T5) 1 2 Total
1 10:50 11:04 11:23 11:23 11:40 11:46 0:14 0:19 0:17 0:06 0:33 0:23 0:56
2 0:00 0:16 0:45 1:02 1:25 1:37 0:16 0:29 0:23 0:12 0:45 0:35 1:20
3 16:57 17:01 17:16 17:23 17:40 18:07 0:04 0:15 0:17 0:27 0:19 0:44 1:03
4 0:00 0:14 0:34 0:00 0:10 1:00 0:14 0:20 0:10 0:50 0:34 1:00 1:34
5 11:55 12:04 12:46 1:24 1:37 2:02 0:09 0:42 0:13 0:25 0:51 0:38 1:29
6 8:00 8:17 8:45 8:50 9:15 9:25 0:17 0:28 0:25 0:10 0:45 0:35 1:20
7 8:16 8:20 8:40 8:45 9:00 9:18 0:04 0:20 0:15 0:18 0:24 0:33 0:57
8 0:00 0:30 1:18 0:00 1:04 1:28 0:30 0:48 1:04 0:24 1:18 1:28 2:46
9 0:00 n/a 0:47 0:00 n/a 2:00 n/a n/a n/a n/a 0:47 2:00 2:47
10 9:16 9:22 9:33 9:34 9:49 10:43 0:06 0:11 0:15 0:54 0:17 1:09 1:26
11 0:00 0:03 0:21 0:00 0:12 0:20 0:03 0:18 0:12 0:08 0:21 0:20 0:41
12 n/a n/a n/a n/a n/a n/a 0:09 0:25 0:15 0:45 0:34 1:00 1:34
13 5:26 5:41 6:05 6:34 6:55 7:44 0:15 0:24 0:21 0:49 0:39 1:10 1:49
14 8:36 8:55 9:35 10:09 10:10 12:00 0:19 0:40 0:01 1:50 0:59 1:51 2:50
15 5:15 5:32 6:31 11:00 11:00 14:30 0:17 0:59 0:00 3:30 1:16 3:30 4:46
Average 0:12 0:28 0:17 0:46 0:41 1:07 1:49
MAX 0:30 0:59 1:04 3:30 1:18 3:30 4:46
MIN 0:03 0:11 0:00 0:06 0:17 0:20 0:41

Table 12: Timesreported by studentsto manually recode the statementsin lines 2792-2823
into behavior “Bchildl B_do_layer3’ (Taskl) and recode the statementsin lines 2863-2887
into behavior “Bchild2do_layer 3" (T ask2)

Notel: The time stamps not provided by the students are indicated by “rn/a’. For example,
student 12 and student 10 provided only durations and not the time stamps.

Note 2:
« time(TO,T1) isthe time to create the behavior body including the portlist for 1%

S2B transformation

* time(T1,T2) isthe time to create the behavior instance including the portmap for
1% S2B transformation

* time(T3,T4) isthe time to create the behavior body including the portlist for 1%
S2B transformation

30




* time(T4, T5) isthe time to create the behavior instance including the portmap for
1% S2B transformation

The results submitted by the students for part-2 of the assignment are presented below in
Table 13. Task 1(=time(T0,T1)) is the time to recode the 1% pointer given the detailed
instructions. time(T2,T3), time(T4,T5) and time(T6,T7) is the time to recode each
remaining pointer. Task 2 is the accumulated time to recode the 3 pointers. Total is the
time to recode all the 4 pointers.

Task Task
Stu. T0 T1 T2 T3 T4 T5 T6 T7 time(T0,T1) | time(T2,73) | time(T4,75) | time(T6,77) 1 2 Total
1 11:52 12:10 12:15 12:21 12:21 12:28 12:30 12:50 0:18 0:06 0:07 0:20 0:18 0:33 0:51
2 0:00 0:13 0:32 0:48 1:06 1:25 1:42 2:05 0:13 0:16 0:19 0:23 0:13 0:58 1:11
3 18:03 18:19 18:31 18:36 18:36 18:41 18:41 18:48 0:16 0:05 0:05 0:07 0:16 0:17 0:33
4 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 1:03 0:19 1:22
5 2:33 2:47 2:47 2:48 3:11 3:43 3:43 n/a 0:14 0:01 0:32 n/a 0:14 n/a n/a
6 9:30 9:55 10:13 10:20 10:30 10:44 10:50 11:11 0:25 0:07 0:14 0:21 0:25 0:42 1:07
7 9:30 9:40 9:40 9:45 9:45 9:49 9:50 9:54 0:10 0:05 0:04 0:04 0:10 0:13 0:23
8 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0:27 0:45 1:12
9 0:00 0:20 0:00 0:30 n/a n/a n/a n/a 0:20 0:30 n/a n/a 0:20 n/a n/a
10 10:54 11:13 11:14 11:20 11:21 11:29 11:30 11:41 0:19 0:06 0:08 0:11 0:19 0:25 0:44
11 n/a n/a n/a n/a n/a n/a n/a n/a 0:11 0:04 0:04 0:10 0:11 0:18 | 0:29
12 0:00 0:16 0:00 0:12 0:00 0:04 0:00 0:05 0:16 0:12 0:04 0:05 0:16 0:21 0:37
13 8:32 9:05 9:12 9:28 9:30 9:32 9:35 9:37 0:33 0:16 0:02 0:02 0:33 0:20 0:53
14 2:02 2:20 2:27 2:35 2:35 2:43 2:43 2:53 0:18 0:08 0:08 0:10 0:18 0:26 0:44
15 9:08 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Average 0:17 0:09 0:09 0:11 0:21 0:28 0:50
MAX 0:33 0:30 0:32 0:23 1:03 0:58 1:22
MIN 0:10 0:01 0:02 0:02 0:10 0:13 0:23

Table 13: Timesreported by studentsto manually recode 4 pointers

Notel: Some of the students (Student 5, 9, 15) could not complete the experiment and
these are indicated as “n/a’.

31




A5. Student Instructions for Experiment 3

EECS 222A
System-on-Chip Description and Modeling
Fall 2007

Assignment 6

Posted: November 16, 2007 (week 8)
Due: November 30, 2007 (week 10)

Tasks: Part 1. Creating Behaviors in C Code using Source Re-coder
Part 2: Pointer Elimination using Source Re-coder

Instructions: (by Pramod Chandraiah)

Part1 — Create behaviors using Source Re-Coder

In the last two assignments you introduced behaviors and replaced pointers
manually. As you have experienced, this manual conversion is very time
consuming and error-prone. Compared to the time taken by the automatic
exploration using SCE, this time is very large. You might have also noticed that
some of these manual re-coding tasks can be automated to speed-up the averall
process of specification development.

So we introduce source re-coder. Source re-coder is an integration of various
automatic code transformations teools and an interactive editor. With source re-
coder you can not only manually type in code, but also invoke automatic tools to
create to automatically re-code specification.

For this assignment, you will use the source re-coder to repeat the tasks that
were performed manually in the previous assignments.

Initial Setup

The initial setup files are in the tar file mps v3.tar.gz. Untar this file using the
command:

gtar ®vzf mp3 v3.tar.gz

A directory by name mp3_v3 will be created. Change into this directory

cd mp3 w3

The entire floating point MP3 source code is in single file mp3decoder . s« and
the fix-point code is inmp3 fixpt.ac. Thereis a Makefile to compile and test
the decoder for a set of MP3 streams. There are two directories reference/ and
testsStream/ which you don't have to worry about at this stage.

You need to set the path for the SpecC compiler. Source the setup shell script as
below:

source /opt/cars/scc/bin/setup.csh

MNow compile and test the decoder by running following commands

make clean

make all

make test

make all fix

Figure 14: Page-1 of Student I nstructions for Experiment 3
32



make EesBt fix
The setup should compile and simulate without errors. {ignore "Can't step
back” and "read length less than max' messages)

Given MP3 Code

The MP3 code (mp2decoder.sc, mp3 fixpt.sc)given are the same
sources you received for your previous assignments.

Source re-coder

Run the source re-coder by typing: J/opt/cars/cute/bin/cute & from
mp3 w3 directory.

An editor comes up. There are 3 views in the editor. the main wview which is
initially blank, a side view which lists the directories and files and a message
panel at the bottom with different tabs for each message type.

Open the file mp3decader.sc from File=Open and selecting
wp 3decoder . s, The code will appear in the main view. Now enable the line
numbers from Vview—2>Line numbers. Scroll down and you will see the following
4 behaviors in the code: stimulus [at line 5724], Monitor [at line 5692], DuT
[at line 5840] and MP3Decoder [at line 2755]. Notice that bodies of behaviors
are colored in blue and channels in light brown and all the global entities are
uncolored.

Source re-coder has 2 tool bars. The first one consists of basic editing tools
copy/paste and so on. The 2™ tool bar consists of tools to perform the code
transformations. If you hover the mouse over these icons, you can see the
names of each of these tools.
For this part of the assignment you only need to be aware of following tools:
e cCurrent Positien (cP): 2™ button from the left (Icon: Bulb)
e Build Design (BD): 3™ button from the left (lcon: Green recycle symbol)
e Function 2 Behavior (F2B): 47 button from the right (lcon: Blue
rectangle with rounded edges)
» Statement 2 Behavior (828B). 3™ button from the right (lcon: Lines
and Blue rectangle)
* EBeScope Variakle te Class Scope (RCS) (leon:3 red vertical
triangles)

Now on, these tools will be referred as cp, BD, F2B, S2B and RCS.

Before we start. we have to compile the code and build the design. Use can you
the BD button to build the main design.

The tools are invoked by placing the cursor at the desired point of interest in the
code and by clicking on the appropriate button in transformation tool bar. The
source re-coder invokes the tool on the object at the current cursor position.
Since the design is sparser than the source code, not every cursor position
points to an object (variable/behavior/function/statement) in the design. So before
you invoke F2B/sS2B/RCS tool. place the cursor at the point of interest and

Figure 15: Page-2 of Student I nstructions for Experiment 3

33




invoke cp. This will display different possible objects corresponding to this cursor
position and the result will appear in the SpecOut tab of the Message Panel.
Usually, this list will contain the variable and the statement at that position. For
example, if you put the cursor on line 2778 next to function call decodeMP3 ()
(specifically, to the left of letter 'd’) and invoke P, you will see 2 entries in the
message panel. 1% entry for the function symbol decodemp3, and 2nd for the
whole function call statement. If you see your object of interest in this panel then
you can invoke the necessary tool. If you don't see the object of interest, then the
current cursor position is not valid and you have to re-position the cursor to a
different position where the same variable is again used.

Now you will invoke the tools from the transformation tool bar to introduce some
behaviors including those which you introduced manually in the previous 2
assignments. Note that you will re-build the design by through BD button after
invoking any transformation that changes to the code.

Task set 1:

1. Please make a note of the start time TO.

2. Open the file mp3idecoder.ac as explained above in the source re-coder.
Build the design using BD button.

3. First, we will encapsulate one of the calls to the function decodeMP2() in a
behavior. In the source recode navigate to the line number 2778 and place
the cursor next to the function decodeMP3( ). Specifically, place the cursor to
the left of letter ‘d’. Now invoke the F2B tool and realize the transformation
instantly. The cursor will be re-positioned following the changes. You will see
a behavior B_decodeMP3 at line number 2764. Navigate around to see the
changes to the code.

Re-build the design by clicking on BD

Scroll down to line 2833 to the function call do_layerz( ), position the cursor

appropriately and invoke F2B . New behavior B_do layers will appear

starting at 2770.

Re-build the design by clicking on BD

7. Save the file by File—?gaveas and choose the filename mpidecoder.sc.
Note that this is the only way to save changes. the other ways through
Save/Saveill buttons do not work.

8. Re-build the design by clicking on BD

9. Note the time T1.

o b

o

10.Now we would like to wrap the statements from line 2792 to 2823 into
behavior. Before that, we have to move the variables to the behavior scope.
This can be done using RCS tool. If you analyze these statements, you will
realize that following local variables must be rescoped. sterec, stereol,
single, 'sideinfo, 'sfreq, ms stereo, 1 stereo, granules.

Figure 16: Page-3 of Student I nstructions for Experiment 3

34




Flace the cursor to the left of these variable names in the code, sither at their
line of declaration, or at the lines they are used and click on rce button.
When not sure if the cursor is pointing to the right symbol, place the cursor
and click on cp button. rcs must be invoked on each of the above listed
variables one at a time. You do not need to use the BD button in-between
successive RS invocation as this is taken care by BD.

11. Re-build the design by clicking on BD
12.Save the file by File—2>gaveas and choose the filename mp3decoder . ac.
13. Re-bulld the design by clicking on BD

14.To wrap the statements from 2792 to 2823, select the lines (by pressing and
holding the left-mouse button or using shift key and screlling down) from 2793
to 2812 and invoke s2B. New behavior B child B do laver3 will be
created at line 2781 with all the lines from 2792 to 2823 selected. Note that
we are not highlighting all the lines till 2823. This is because, as we
mentioned before, there do not exist exact one to one correspondence
between the cursor position and the objects in the main design. This is an
exception and applies only to these set of lines.

15. Re-build the design by clicking on BD
16.Save the file by File—2saveais and choose the filename mp3decoder. ac.
17. Re-build the design by clicking on BD

18. Note the time TZ2.

19. Rescope the variables used between lines 2896 to 2921 (hybkridin,
ecalefaca, gr info, gr)

20. Now wrap the statements from line 2898 to 2925 into a behavior (lines
numbers slightly changed after re-scoping) using s2g. After this, the
statements are wrapped and replaced with instance call
I B ¢child B do layer4 atline 2927.

21.BD, File—?SavelAs, ED
22. Note the time T3.

Task set 2:

23.In addition to the 4 behaviors, we will introduce couple of more behaviors.,
Note the time T4

24 Wrap statements from line 2941 to 2988 into behavior. Highlight from 2941-
2963 and call S2B. I Bchild B do layerS.main () will be intfroduced
at line 2985.

25. BD, Savels, BD

26.Encapsulate function call 111 _antialias at line 2992 into behavior using
F2B. Do not forget to re-scope gr info before doing this.

Figure 17: Page-4 of Student I nstructions for Experiment 3

35




27.BD, SaveAs, BD

28. Repeat the same for function Il _hybrid{ ) which is now at line 3050, Do not
forget to re-code ch, hybridout, before daing so. |_B_llIl_hybrid.main() will
appear at line 3139.

29.BD, 8aveAs, BD

30.Close the file.

21.Note time T5

32.Test the changes by running following commands from your terminal:

make clean

make all

make test

At the end, please report the times T0, T1, T2, T3, T4 and T5.

Part2 - Pointer Replacement

Just llke the way behaviors can be created with a click of a button using source
re-coder, pointers can also be recoded.

Given Fix-point MP3 Code

This is the same fix-point MP3 implementation you used for the previous
assignment.

Source recoder

Run the source re-coder by typing: /opt/cars/cute/bin/cute & from
mp3_ w3 directory.
Note the 2 more tools in the transformation tool bar.
e Points-to List (PL): 9" button from right (Icon: Pointer with a
question mark)
» Recode Pointer (RP):8" button from right{lcon: Pointer with crossing
line
Now on thése tools will be referred to as pL and rP

Open the file mp3_fixpt.sc from File—2open menu. The code will appear in
the main view. Now enable the line numbers from view—2Line numbers. Scroll
down and notice the following 4 behaviors in the code: Mad 2timulus [atline
13681]. Mad_Monitor [at line 13533]. MP3Decoder [at line 13717] and behavior
Main [at line 13746]. We will replace couple of pointers in the behavior

Calc sample located at line 13177.

Build the design using BD.

Replace pointers (fe, fx, fo, Dptr) in behavior Calc_sample
1. Note the time TO

Figure 18: Page-5 of Student I nstructions for Experiment 3

36




W M

8

Build the design using BD

Place the cursor next to fe (say at line 13202 next to letter 'f') and click on
PL. This will display the target variable the pointer points-to in the
message panel. If the pointer points to only one variable (as in the case of
fe) then you can recode it. If the PL. does not display any target variable,
then it means that source re-coder failed to analyze the code.

. Invoke rP and observe the changes to the code.
. Re-build the design through BD.

4
5
6.
7
8

Repeat these steps 3 to 5 for £x, fo, and Dptr.

. BD, BavelAs, BD

make clean
make all fix

10. make test fix
11.Note the time T1

Deliverables:

Due:

1-paragraph description about each of the tasks above

(i.e. how far you got, what were the problems. how did you solve it)
Please also report the times for part 1 (TO to TS, in seconds/minutes), and
for part 2 (TO to T1, in seconds/minutes).

Week 10 (Nov 30, 2007)

Rainer Doemer (ET 444C, x4-9007, doemer@uci.edu)

Figure 19: Page-6 of Student I nstructions for Experiment 3

37




A6. Times Reported by Students for Experiment 3

The results provided by students for the part-1 of the assignment are consolidated in the
Table 14 below. The time stamps TO to T5 refer to the time stamps given the description
Appendix-A5. Task 1 is the time taken for 2 Function-to-Behavior and 2 Statement-to-
Behavior transformations. Columns time(TO, T1), time(T1, T2), and time(T3,T4) give the
break-up of Task 1. Task 2(=time(T4,T5)) is the time taken to implement additional
transformations (not conducted manually before) 2 Function-to-Behavior and 1
Statement-to-Behavior.

Stu. T0 T1 T2 T3 T4 T5 time(TO,T1) | time(T1,T2) | time(T3,T4) | time(T4,T5) Task 1 Task 2 Total
1 23:21 23:32 23:44 0:00 0:40 1:09 0:11 0:12 0:16 0:29 0:39 0:29 1:08
2 0:00 0:09 0:22 0:36 0:46 0:59 0:09 0:12 0:13 0:12 0:36 0:12 0:48
3 17:23 17:24 17:29 17:33 17:38 17:41 0:01 0:05 0:04 0:03 0:10 0:03 0:13
4 n/a n/a n/a n/a n/a n/a 0:04 0:05 0:04 0:15 0:13 0:15 0:28
5 9:35 9:39 10:00 10:15 10:15 10:31 0:04 0:21 0:15 0:16 0:40 0:16 0:56
6 9:15 9:19 9:27 9:40 n/a n/a 0:04 0:08 0:13 n/a 0:25 n/a n/a
7 12:40 12:45 12:54 13:04 n/a n/a 0:05 0:09 0:10 n/a 0:24 n/a n/a
8 n/a n/a n/a n/a n/a n/a 0:15 0:09 0:10 0:15 0:34 0:15 0:49
9 n/a n/a n/a n/a n/a n/a 0:04 0:05 0:02 0:10 0:11 0:10 0:21
10 10:30 10:34 10:43 10:48 10:58 11:05 0:04 0:09 0:05 0:10 0:18 0:10 0:28
11 n/a n/a n/a n/a n/a n/a 0:02 0:07 0:14 0:09 0:23 0:09 0:32
12 n/a n/a n/a n/a n/a n/a 0:03 0:03 0:05 0:10 0:11 0:10 0:21
13 10:26 10:31 10:39 10:45 10:49 10:56 0:05 0:08 0:06 0:04 0:19 0:04 0:23
14 2:18 2:25 2:44 4:00 4:04 4:08 0:07 0:19 1:16 0:04 1:42 0:04 1:46
15 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Average 0:05:37 0:09:29 0:13:51 0:11:27 0:28:57 0:11:27 0:41:08
MAX 0:15 0:21 1:16 0:29 1:42 0:29 1:46
MIN 0:01 0:03 0:02 0:03 0:10 0:03 0:13
Table 14: Timesreported by students for conducting 4 F2B operations and 3 S2B
oper ations automatically using sour ce re-coder
Note 1:

» Some of the time stamps TO — T5 were not provided by the students and these are
indicated as “n/a’. Instead, these students provided only the durations

*  Student 15 did not conduct the experiment

e Student 6 and 7 did not provide the time(T4, T5), which is a measure of the time
to conduct the additional transformation (2 F2B + 1 S2B)

Note 2:
» time(TO, T1) isthe time to automatically recode 2 functions into behaviors
 time(T1, T2) isthe time to automatically recode 1% set of statements
* time(T3, T4) isthe time to automatically recode 2™ set of statements

38



* time(T4, T5) isthe time to do additional tasks (2 F2B and 1 S2B)
Note 3:

* The time time(T3, T4) reported by student 14 is unusually high, as the student
encountered software crash and took even that time into account. So, we decided
not to consider this data for comparison of automatic and manual times.

The results provided by students for the part-2 (Pointer Recoding) of the assignment are
consolidated in the Table 15 below. In the table, Task 1 is same as time(TO, T1).

Student | TO T1 |time(TO,T1)| Task1l Total
1 1:15 | 1:30 0:15 0:15 0:15
2 0:00 | 0:12 0:12 0:12 0:12
3 17:43 | 17:48 0:05 0:05 0:05
4 n/a n/a 0:05 0:05 0:05
5 10:23 | 10:35 0:12 0:12 0:12
6 10:13 | 10:19 0:06 0:06 0:06
7 1:21 | 1:26 0:05 0:05 0:05
8 n/a n/a 0:07 0:07 0:07
9 n/a n/a 0:05 0:05 0:05
10 12:00 | 12:03 0:03 0:03 0:03
11 n/a n/a 0:02 0:02 0:02
12 n/a n/a 0:03 0:03 0:03
13 5:30 | 5:35 0:05 0:05 0:05
14 9:39 | 9:45 0:06 0:06 0:06
15 n/a n/a n/a n/a n/a

Average 0:06:33 0:06:33 0:06:33
MAX 0:15 0:15 0:15
MIN 0:02 0:02 0:02

Table 15: Times reported by students for conducting 4 pointer re-coder oper ations using
sour ce re-coder

39



