
Center for Embedded Computer Systems
University of California, Irvine

Transaction Level Modeling of Computation

Rainer Dömer

Technical Report CECS-06-11
August 17, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-9007

doemer@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

Transaction Level Modeling of Computation

Rainer Dömer

Technical Report CECS-06-11
August 17, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-9007

doemer@uci.edu
http://www.cecs.uci.edu

Abstract

The design of embedded computing systems faces great challenges due to the huge complexity of these sys-
tems. The design complexity grows exponentially with the increasing number of components that have to coop-
erate properly. One solution to address the complexity problem is the modeling at higher levels of abstraction.
However, it is generally not clear which features to abstract (and to what extend), nor how to use the remaining
features to create an executable model that allows meaningful, efficient and accurate analysis of the intended
system.

Transaction Level Modeling (TLM) is widely accepted as an efficient technique for abstract modeling of
communication. TLM offers gains in simulation speed of up to four orders of magnitude, usually however, at the
price of low accuracy. So far, TLM as been used exclusively for communication.

In this work, we propose to apply the concepts of TLM to computation. While the two aspects of embedded
system models, computation and communication, are different in nature, both share the same concepts, namely
functionality and timing. Thus, TLM, which is based on the separation of functionality and timing, is equally
applicable to both, communication and computation. In turn, the tremendous advantages of TLM can be utilized
as well for the abstract modeling of computation.

While traditional work largely has focused on refinement and synthesis tasks, this work addresses the model-
ing of systems towards efficient accurate estimation and rapid design space exploration. The results of this work
will be directly applicable to established design flows in the industry.

http://www.cecs.uci.edu

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Abstract Modeling . 2

1.2.1 Is modeling an art? . 2
1.2.2 What features should be abstracted? . 3
1.2.3 Architecture analogy . 3

1.3 Outline . 3

2 Background 3
2.1 Separation of Concerns . 4

2.1.1 Computation and communication . 4
2.1.2 Orthogonality of concepts . 5

2.2 Transaction Level Modeling of Communication . 5
2.2.1 TLM trade-off . 5
2.2.2 Systematic analysis . 5
2.2.3 Modeling approach . 6
2.2.4 Analysis metrics and measurement setup . 6
2.2.5 Results . 7
2.2.6 Generalization . 8

2.3 Computer-Aided Re-coding . 9
2.3.1 Coding bottleneck . 9
2.3.2 Re-coding approach . 9
2.3.3 Interactive source re-coder . 10
2.3.4 Productivity gains . 10

2.4 Communication Synthesis . 10
2.4.1 Layer-based approach . 10
2.4.2 Automatic model generation . 11

2.5 Other Related Work . 11
2.5.1 TLM of communication . 11
2.5.2 Communication synthesis . 12
2.5.3 Computation abstraction . 12

3 Transaction Level Modeling of Computation 12
3.1 Separation of Functionality and Timing . 13
3.2 Granularity of Timing . 13
3.3 Computation Abstraction . 13
3.4 Result-Oriented Modeling . 13

3.4.1 ROM approach . 14
3.4.2 Airplane arrival analogy . 15
3.4.3 ROM of computation . 15
3.4.4 Initial Experiments . 15
3.4.5 Initial Results . 16

4 Current Status and Future Work 17

i

5 Summary and Conclusion 18

References 18

ii

Transaction Level Modeling of Computation

Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

doemer@uci.edu
http://www.cecs.uci.edu

Abstract

The design of embedded computing systems faces
great challenges due to the huge complexity of these
systems. The design complexity grows exponentially
with the increasing number of components that have
to cooperate properly. One solution to address the
complexity problem is the modeling at higher levels of
abstraction. However, it is generally not clear which
features to abstract (and to what extend), nor how
to use the remaining features to create an executable
model that allows meaningful, efficient and accurate
analysis of the intended system.

Transaction Level Modeling (TLM) is widely ac-
cepted as an efficient technique for abstract model-
ing of communication. TLM offers gains in simula-
tion speed of up to four orders of magnitude, usually
however, at the price of low accuracy. So far, TLM as
been used exclusively for communication.

In this work, we propose to apply the concepts of
TLM to computation. While the two aspects of embed-
ded system models, computation and communication,
are different in nature, both share the same concepts,
namely functionality and timing. Thus, TLM, which is
based on the separation of functionality and timing, is
equally applicable to both, communication and com-
putation. In turn, the tremendous advantages of TLM
can be utilized as well for the abstract modeling of
computation.

While traditional work largely has focused on re-
finement and synthesis tasks, this work addresses the
modeling of systems towards efficient accurate esti-

mation and rapid design space exploration. The re-
sults of this work will be directly applicable to estab-
lished design flows in the industry.

1 Introduction
As we enter the information era, embedded comput-
ing systems have a profound impact on our everyday
life and our entire society. With applications rang-
ing from smart home appliances to video-enabled mo-
bile phones, from real-time automotive applications
to communication satellites, and from portable multi-
media components to reliable medical devices, we in-
teract and depend on embedded systems on a daily
basis.

While embedded systems typically do not look like
computers due to their hidden integration into larger
products, they contain similar hardware and software
components regular computers are made of. More-
over, embedded systems are special-purpose devices,
dedicated to one predefined application and face strin-
gent constraints including high reliability, low power,
hard real-time, and low cost.

Over recent years, embedded systems have gained
a tremendous amount of functionality and processing
power, and at the same time, can now be integrated
into a single System-on-Chip (SoC). The design of
such systems, however, faces great challenges due to
the huge complexity of these systems. The system
complexity grows rapidly with the increasing number
of components that have to cooperate properly. In ad-

1

http://www.cecs.uci.edu

dition, expectations grow while constraints are tight-
ened. Last but not least, customer demand constantly
requires a shorter time-to-market and thus puts high
pressure on designers to reduce the design time for
embedded systems.

1.1 Motivation
The international Semiconductor Industry Associa-
tion ITRS, in its design roadmap [67], predicts a sig-
nificant productivity gap and anticipates tremendous
challenges for the semiconductor industry in the near
future. The 2004 update of the roadmap identifies
system-level design as a major challenge to advance
the design process. System complexity is listed as the
top-most challenge in system-level design. As first
promising solution to tackle the design complexity,
the ITRS lists higher-level abstraction and specifica-
tion. In other words, the most relevant driver to ad-
dress the system complexity challenge is system-on-
chip design using specification at higher levels of ab-
straction.

Higher-level of abstraction is in the ITRS report
[67] also listed as a key long-term challenge for de-
sign verification. As simulation and synthesis, verifi-
cation will have to keep up with the move to higher
abstraction levels. In other words, system models
must be properly abstracted with the intended design
tasks in mind, including verification and synthesis.

1.2 Abstract Modeling
In system level design, the importance of ab-
stract specification and modeling cannot be over-
emphasized. Proper abstraction and modeling is the
key to efficient and accurate estimation and successful
design space exploration. However, in contrast to the
great significance of abstraction and modeling, most
research has focused on tasks after the design specifi-
cation phase such as simulation and synthesis. Little
has been done to actually address the modeling prob-
lem, likely because this problem is not well-defined
yet, and the quality of a model is not straightforward
to measure and compare.

A model is an abstraction of reality. More specif-
ically, an embedded system model is an abstract rep-
resentation of an actual or intended system. Only a

well-designed model will accurately represent and de-
fine the properties of the end product, while allowing
efficient handling and fast examination.

Moreover, most embedded system models are exe-
cutable. Execution of the model allows to simulate the
behavior of the intended system and to measure prop-
erties beyond the immediate ones in the model de-
scription. For example, simulation enables the predic-
tion of properties such as performance and through-
put.

The choice of the proper abstraction level is crit-
ical. Ideally, multiple well-defined abstraction lev-
els are needed to enable gradual system refinement
and synthesis, adding more detail to the design model
with every step. In other words, a perfect model re-
tains only the essential properties needed for the job at
hand, and abstracts away all unneeded features. Then,
as the design process continues, incrementally more
features are added to the model, reflecting the design
decisions taken.

The main objective of this work is to improve
the modeling of embedded systems, in particular the
modeling of computation (as discussed later in Sec-
tion 3). The goal of a ”good” model is, with minimum
modeling effort, to allow fast and accurate prediction
of critical properties of the described system.

To achieve these goals, well-defined metrics and
measurement setups need to be defined. Then, a sys-
tematic analysis of actual system models is necessary,
so that essential properties and proper abstraction lev-
els can be identified and efficient modeling techniques
and guidelines can be developed.

1.2.1 Is modeling an art?
Sometimes, people think that modeling is an art or a
task that requires artistic talents in the model designer.
This may be true for creating a painting or designing
a sculpture, but does not hold for modeling of embed-
ded systems. The quality of a piece of art cannot be
objectively determined, but the quality of an embed-
ded system model can be quantitatively measured and
compared.

To measure the properties of a model (and the prop-
erties of the modeled system), metrics, measurement
setups, and test environments are necessary. How-
ever, these can be clearly defined (as shown later in

2

Section 2.2.4, for example) and used to examine the
model. Thus, embedded system modeling is not an
art, it is a technical task based on scientific principles
and concepts. Further, embedded system modeling
can be learned simply by following technical model-
ing guidelines, the creation of which is one objective
of this work.

1.2.2 What features should be abstracted?
It has been stated before that proper abstraction is
the key to successful modeling of embedded systems.
However, it is generally not obvious which features
in a model are needed, and which can be abstracted
away (and to what extend). Neither is it clear how to
model the essential features in order to create an effi-
cient executable model suitable for fast and accurate
prediction and rapid design space exploration. This
problem is aggravated by the fact that most desired
features typically pose a trade-off, or are even contra-
dictory (e.g. high simulation speed and detailed func-
tionality).

It is the goal of this work to identify and include
only desired features in models for common design
scenarios (and to leave unneeded features out). Thus,
we aim to identify minimal feature sets for effective
models, and also develop modeling guidelines that
maximize the value of a model such that it provides
high simulation speed, accurate functionality and/or
precise timing.

Careful measurements and systematic analysis will
be necessary to identify and effectively navigate the
trade-offs involved. For this work, we will focus on
performance and accuracy metrics, and measure these
properties using industry-standard applications such
as MP3 codecs and video processing algorithms.

For most embedded applications, accurate timing
and correct functionality are ”must-have” features
in a model. Other important aspects include struc-
tural composition (such as the number and types of
processing elements) and estimated power consump-
tion (e.g. for battery-powered mobile devices). On
the other hand, implementation details, such as pins,
waveforms and interrupts, are abstracted away in
specification models as these restrict the implemen-
tation, limit the design space, and unnecessarily in-
crease the model complexity.

1.2.3 Architecture analogy

The architectural blueprints of a house can serve as a
good analogy of well-abstracted modeling. An archi-
tect, charged with designing a new building, typically
develops a set of models of her/his intended design in
order to examine, document and exhibit the intended
building features, the general floorplan, room sizes,
etc. For example, to exhibit the aesthetic qualities
of the design, the architect often builds an abstract
paper model of the building that shows the three-
dimensional design in small scale. For the actual
building phase, however, a different model is needed.
Here, the architect draws two-dimensional schematic
blueprints for each floor which accurately show the
location and dimensions of the walls, doors and win-
dows, as well as water and gas pipes, etc.

In this analogy, the purpose of the abstract models
is clear, as is the inclusion or omission of design fea-
tures. Different models serve different purposes and
therefore exhibit different properties. Important as-
pects are included and emphasized, and aspects of no
interest are abstracted away.

Concluding the overview, the contribution of this
work will be a systematic approach to abstraction and
modeling of computation in embedded systems.

1.3 Outline
The remainder of this document further details this
work. Section 2 discusses background material in or-
der to appropriately position this work with respect to
ealier and related work. Section 3 presents the main
idea of modeling computation using TLM and out-
lines the technical approach to be taken. Then, Sec-
tion 4 discusses the current status of this approach and
outlines future work. Finally, Section 5 summarizes
this document and concludes with the expected im-
pact of this work.

2 Background
The following sections present an executive summary
of four research tasks addressed by the author that
build the background for TLM of computation, in the
context of other related work.

3

2.1 Separation of Concerns
One of the fundamental principles in embedded sys-
tem modeling is the clear separation of concerns.
Addressing separate issues independently from each
other very often leads to clear advantages over ap-
proaches where different aspects are intermixed. In
particular, this applies to the design of system-level
description languages (SLDL).

An excellent example of the separation of con-
cerns is the SpecC [28, 31] approach defined in 1997
[82]. The SpecC language and methodology cre-
ated a world-wide impact in industry and academia
so that leading companies started the international
SpecC Technology Open Consortium (STOC) [73] in
1999.

The SpecC language is based upon the clear sepa-
ration of computation and communication, as well as
on an orthogonal structure, which we will both briefly
review in the following two sections.

2.1.1 Computation and communication

Clear separation of computation and communication
is an essential feature of any good system model as
it enables ”plug-and-play”. This feature also distin-
guishes modern SLDLs from traditional hardware de-
scription languages (HDL) such as VHDL [39] and
Verilog [40].

A typical model of two communicating processes
described in a HDL is shown in Figure 1(a). Here it is
important to note that there are two distinct portions
of code in the blocks, containing computation and
communication (shaded), which are intermixed. In
such a model, there is no way to automatically distin-
guish the code for communication from the code used
for computation, because the purpose of the state-
ments cannot be identified. Neither is it possible to
automatically exchange the communication protocol,
nor to switch to a new algorithm to perform the com-
putation.

In order to allow automatic replacement of commu-
nication protocols and computation algorithms, sepa-
ration of communication and computation is needed.
This is supported in form of behaviors and channels
in the SpecC language [27], as shown in Figure 1(b).
Here, the computation is encapsulated in the behav-

P1 P2

v2
v1

v3

(a) Mixed

B2B1

v2
v1

v3

C1

(b) Channel

B2B1

v2
v1

v3

(c) Inlined

Figure 1: Separation of computation and communica-
tion.

iors and the communication is contained in the chan-
nel.

For the implementation of a channel, its functions
are inlined into the connected behaviors and the en-
capsulated communication signals are exposed. This
is illustrated in Figure 1(c). The channel has disap-
peared, the contained signals are exposed, and the
communication protocol has been inlined into the be-
haviors. Note that in this final implementation model,
communication and computation are no longer sepa-
rated. The model again resembles the traditional HDL
model, ready for implementation.

In summary, modern SLDLs clearly separate com-
munication from computation such that both can be
easily replaced if necessary (”plug-and-play”).

It should be emphasized that this separation of
concerns, which originated in SpecC, has also been
adopted in the SystemC [36] SLDL, version 2.0, in
2000 [54]. Today, SystemC is the de-facto industry-
standard SLDL, supported by the Open SystemC Ini-
tiative [56]. Finally, it should be mentioned that the
significance of the separation of concerns has later
been emphasized as well in the Metropolis project at
UC Berkeley [6].

4

2.1.2 Orthogonality of concepts

A second significant principle in system-level design
is the orthogonality of concepts. Again, SpecC is a
good example as it is based on the paradigm of pro-
viding orthogonal constructs for orthogonal concepts.

Before designing the SpecC language, the authors
identified the essential concepts required for system
level design, including concurrency, hierarchy, com-
munication, synchronization, exception handling, and
timing [28]. Since in principle these concepts are in-
dependent of each other, i.e. orthogonal, the SpecC
language was designed to provide exactly one inde-
pendent syntactical construct for each concept. As a
result, the SpecC language largely1 is orthogonal in
its basic constructs. This is extremly beneficial for
CAD applications as this significantly simplifies the
development of the tools working with the language.

In contrast, VHDL [39] can serve as a counter ex-
ample. In VHDL, signals incorporate synchroniza-
tion, data storage and timing. Without additional an-
notations or coding conventions, this makes it hard to
identify for which purpose a particular signal is ac-
tually used, and thus an efficient implementation is
aggravated.

2.2 Transaction Level Modeling of Commu-
nication

Our previous work, Transaction Level Modeling for
Communication [65], can be seen as the counterpart
of the work described in this document. The former
has been applied to the communication, the latter will
be applied to the computation aspects of embedded
systems. As we have seen in Section 2.1.1, embed-
ded system models consist of exactly these two parts,
computation and communication. Thus, the combina-
tion of the former and this work will solve the whole
modeling problem.

1 This author later realized that the goal of orthogonality has
not been completely reached in SpecC. Behavioral and structural
hierarchy are not entirely independently implemented from con-
currency.

2.2.1 TLM trade-off

Accurate communication modeling is an important is-
sue for the design of embedded systems. However,
efficient system level design requires also high execu-
tion performance.

Performance

Ac
cu

rac
y

Low H i g h

I n -
a c c u r a t e

A c c u r a t e

Figure 2: Transaction Level Modeling Trade-Off.

For efficient communication modeling, Transaction
Level Modeling (TLM) has been proposed [36]. TLM
abstracts the communication in a system to whole
transactions, abstracting away low level details about
pins, wires and waveforms [17]. This results in mod-
els that execute dramatically faster than synthesiz-
able, bit-accurate models. This benefit, however, usu-
ally comes at the price of low accuracy.

In general, TLMs pose a trade-off between an im-
provement in simulation speed and a loss in accuracy,
as illustrated in Figure 2. The trade-off essentially
allows models at different degrees of accuracy and
speed. However, having both high speed and high
accuracy at the same time is typically not possible.
High simulation speed is traded in for low accuracy,
and a high degree of accuracy comes at the price of
low speed. Models with this trade-off fall into the
gray area of the diagram. Models in the dark area are
obviously existent, but practically unusable, whereas
models in the white area are highly desirable but typ-
ically not achievable.

2.2.2 Systematic analysis

Although TLM has been generally accepted as one
solution to tackle SoC design complexity, the TLM
trade-off however, has not been examined in detail.
Our aim is to systematically study and analyze the

5

TLM trade-off quantitatively. More specifically, we
quantify the performance gains of TLM and measure
the loss in accuracy for a wide range of bus systems.
As a first step, we define our approach to TLM as
based on the granularity of data and arbitration han-
dling. We then define proper metrics and test setups
for measuring the performance improvement and the
accuracy loss. We apply our TLM abstraction ap-
proach to examples of different bus categories and
create models at different abstraction levels, in par-
ticular two classes of TLMs (ATLM and TLM), and
compare them against a fully accurate Bus Functional
Model (BFM) as a reference.

2.2.3 Modeling approach

TLM allows a wide variety of modeling styles and
abstractions [17]. For our modeling, we focus on
the granularity of data and arbitration handling. We
define three classes of granularity applicable to any
bus protocol, and match these granularity classes to
three model types. Figure 3 shows the granularity
levels with respect to time and indicates the correla-
tion to models and layers. A user transaction is the
most coarse grain element of transferring a contigu-
ous block of bytes with arbitrary length. It is split
into bus transactions, which are bus transfer primi-
tives, such as a word transfer. Each bus transaction is
usually processed in several bus cycles, which repre-
sent the finest granularity in our modeling.

time

U s er T r a n s a c ti o n
B u s T r a n s a c ti o n
B u s C y c l e

M A CT L M
P r o t o c o lA T L M
P h y s ic a lB F M

LayerM o d el D at a G ran u l ari t y

Figure 3: Model classes and their granularity.

Our classes of granularity correlate with the layers
defined in the ISO OSI reference model [41]: the me-
dia access control (MAC), the protocol sublayer, and
the physical layer. Each layer handles data and arbi-
tration at its own granularity. According to our classes
of granularity, we consider models at three different
abstraction levels.

Transaction Level Model (TLM) The TLM is the
most abstract model; it handles user data at the
user transaction granularity and transfers data re-
gardless of its size using a single memcpy and
simulates timing by a single wait-for-time state-
ment. Instead of modeling the bus arbitration, it
resolves concurrent access using a semaphore.

Arbitrated TLM (ATLM) The ATLM simulates the
bus access with bus transaction granularity (e.g.
AHB bus primitives), at the protocol layer level.
The ATLM accurately models the bus arbitration
for each bus transaction.

Bus Functional Model (BFM) The BFM is a syn-
thesizable, bus cycle-accurate and pin-accurate
bus model. It implements all layers down to the
physical layer, covering all timing and functional
properties of the bus. It handles arbitration per
bus transaction and has the capability to take ar-
bitration decisions on a bus cycle granularity.

2.2.4 Analysis metrics and measurement setup

We focus on two aspects for the analysis: the simu-
lation performance, since a performance gain is the
main premise of TLM, and the timing accuracy, as
a loss is expected with abstraction. Our metric for
the performance is the simulation bandwidth. We de-
fine bandwidth as the amount of data transferred in
the simulation per second of real-time, using a mini-
mal scenario with a single master and a single slave.
One aspect of model accuracy is the timing accuracy
for each transmitted user transaction. As one metric,
we utilize the transfer duration per user transaction
and define the duration error as the percentage error
over the bus standard, so that a timing accurate model
exhibits 0% error:

dstd : duration as per standard
dtest : duration in model under test

errori = 100∗ |dtest −dstd |

dstd
(1)

Since the actual experienced timing accuracy
highly depends on the application and architecture
specifics, we define a generic test setup and a proce-
dure that covers a range of applications. The designer

6

High
P r io r it y
M a s t e r

Bus Model

S l a v e # 1 L o w
P r io r it y
M a s t e r

S l a v e # 2

Figure 4: Dual master setup for accuracy measure-
ments.

can then derive the expected accuracy for her/his par-
ticular setup.

In a generic test setup with two masters and two
slaves connected to the same bus (Figure 4), each
master transfers a predefined set of user transactions.
The transactions vary linear randomly in the base ad-
dress, size, and the delay to the next transaction (sim-
ulating the application’s computation). We record the
timing information of each individual transaction for
later analysis. We repeat the analysis over different
levels of bus contention, which allows to infer the ac-
curacy over a range of applications.

2.2.5 Results

We have applied our granularity-based abstraction to
three common bus systems covering diverse com-
munication protocols. We have chosen the AHB of
AMBA [3], as a representative of parallel on-chip bus
systems with centralized industry-accepted standard
for on-chip bus systems. For the second category
of off-chip serial busses with distributed arbitration,
we have selected the Controller Area Network (CAN)
[11]. This bus system dominates in automotive ap-
plications. Third, we analyze the category of custom
processor-specific busses that are typically much sim-
pler than the general purpose standard busses. Here,
we have chosen the Motorola ColdFire Master Bus
[53] that is used by the popular ColdFire MCF5206
processor. We have modeled, validated, and system-
atically analyzed each bus using our performance and
accuracy metrics.

Figure 5 shows the performance results for one ex-
ample, the AMBA AHB. It confirms the TLM expec-
tations: the simulation speed increases significantly
with abstraction. The performance raises with each
TLM abstraction by two orders of magnitude. As ex-
pected, the TLM executes the fastest. The simula-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

Si
m

ul
at

ed
 B

an
dw

id
th

 [M
By

te
/s

ec
]

Transaction Size [bytes]

 TLM
 ATLM (b)
 ATLM (a)
 BFM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

Si
m

ul
at

ed
 B

an
dw

id
th

 [M
By

te
/s

ec
]

Transaction Size [bytes]

 TLM
 ATLM (b)
 ATLM (a)
 BFM

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

Si
m

ul
at

ed
 B

an
dw

id
th

 [M
By

te
/s

ec
]

Transaction Size [bytes]

 TLM
 ATLM (b)
 ATLM (a)
 BFM

Figure 5: Performance for the AMBA AHB models.

tion bandwidth is independent of the transaction size,
since a constant number of operations is executed for
each transfer. The ATLMs are two orders of mag-
nitude slower due to the finer granularity of modeling
individual bus transactions. Starting with the ATLMs,
the graphs exhibit a saw tooth shape due to the non-
linear split of user transactions into bus transactions
(e.g. 3 bytes are transferred in 2 bus transactions:
byte + short, whereas 4 bytes are transferred in 1 bus
transaction: a word). The BFM is again two orders
of magnitude slower than the ATLMs due to the fine
grain modeling of individual wires and additional ac-
tive components (e.g. multiplexers).

On the other hand, the accuracy significantly de-
grades with abstraction. One example, again from the
AMBA AHB, is shown in Figure 6. The x-axis de-
notes the amount of bus contention in percent, each
measurement point for a model reflects the average er-
ror over the analyzed 5000 user transactions. The ac-
tual accuracy depends strongly on the bus contention
in the measurement scenario. Under the absence of
bus contention, all models are accurate. For the ab-
stract models ATLM and TLM, the timing error in-
creases with a rising bus contention. The finer grained
ATLM (irrespective of the (a) and (b) variant that we
have analyzed), is more accurate than the most ab-
stract TLM. The TLM peaks with 45% error at 50%
bus contention due to its coarse grained simulation at
the user transaction granularity and the absence of ar-
bitration.

7

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

Av
er

ag
e

Er
ro

r [
%

]

Bus Contention [%]

 BFM
 ATLM (a)
 ATLM (b)
 TLM

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50

Av
er

ag
e

Er
ro

r [
%

]

Bus Contention [%]

 BFM
 ATLM (a)
 ATLM (b)
 TLM

Figure 6: Individual timing accuracy for the AMBA
AHB models.

2.2.6 Generalization

Combining the performance and accuracy results of
all modeled bus systems, we generalize this data for
a broader perspective on the benefits and drawbacks
of TLM for communication. Figure 7 combines our
measurements and depicts the TLM trade-off for the
three representative bus models. On the x-axis, Fig-
ure 7 denotes the simulation performance in terms of
simulation bandwidth for a 100 byte user transaction.
The y-axis denotes the accuracy as the average error
of individual transfers. The error is measured for the
low priority master for a contention of 40%. Note that
the error inceases towards the x-axis (downwards),
hence a measurement point on the top signifies 100%
accuracy.

The graph confirms the expected results as depicted
earlier in Figure 2. Abstract modeling poses a trade-
off, with either fast or accurate results. The accurate
BFMs are slow with less than 0.2 MByte/s bandwidth.
On the other hand, the fast TLMs with a bandwidth
of up to 100 MByte/s produce an average error from
32% to 47%. The ATLMs are found in the middle,
simulating at about 1 MByte/s bandwidth. Some are
accurate, since the modeled granularity matches the
granularity of the actual protocol. If the granularity
does not match, or in case of additional feature ab-
straction, the ATLM generate an average error from
18% to 39%.

Based on the analysis results of the individual ex-

0
5

10
15
20
25
30
35
40
45
50
0.0001 0.01 1 100

Simulation Bandwidth [MByte/s]

Er
ro

r [
%]

AHB
Locked
AHB
Unlocked
CAN

ColdFire

ATLM
TLMBFM

BF
M

AL
TM

TL
M

Figure 7: TLM trade-off summary.

amples, we have then derived general conclusions.
Abstraction based on a decreasing (coarsening) gran-
ularity yields at least an order of magnitude improve-
ment per granularity level. On the other hand, ab-
stracting features at the same granularity level only
yields marginal performance improvements. In other
words, proper model granularity is the key to efficient
communication abstraction.

However, TLM of communication results in a se-
rious loss in accuracy if the modeled granularity is
more coarse grain than the granularity present in the
actual bus protocol. This defines the TLM trade-off.
In general, a model is either fast or accurate. Our fast
TLMs with up to 100 MBytes/s bandwidth show an
error of up to 47%. Accurate models, on the other
hand, are slow. Our BFMs simulate with less than
0.2 MByte/s bandwidth.

In summary, our systematic quantitative analysis of
performance and accuracy in communication TLM,
based on a diverse set of major bus architecture stan-
dards, confirms the TLM promise of high simulation
speed. We can identify conditions for abstract and ac-
curate models. As a result, we can provide general
guidelines that allow the system designer to navigate
the TLM trade-off effectively. Successful navigation
is beneficial in two aspects, first, for the designer of
abstract communication in selecting features and an
abstraction method. Second, the user of communica-
tion profits from our analysis when choosing the most
suitable model for the given application with fast and
accurate results. More detailed information and the
individual results can be found in [66, 61, 62].

8

2.3 Computer-Aided Re-coding
We have stated already that creating and optimizing
the model of an embedded system is a critical task to-
ward successful SoC design, that we want to improve
in this work. We will now present a new technique,
called re-coding, that reduces the time of modeling
through interactive automation.

2.3.1 Coding bottleneck

One critical aspect neglected in CAD efforts so far
is the design specification phase, where the intended
design is captured and modeled for use in the design
flow. Each design methodology expects a specific
type of input model (and most methodologies also de-
pend on intermediate models) for interaction between
tools and the designer. These models need to be either
hand-written from scratch, or modified from a refer-
ence model. While much of the research has focused
on synthesis and refinement tools, little has been done
to support the designer in forming these models.

Figure 8 shows a generic top-down system design
methodology [28]. Using this design flow, we have
studied several industry-size design examples, includ-
ing a MP3 audio decoder [23] and a GSM voice codec
[34]. For the MP3 design example, Figure 8 shows the
design time spent for creating the specification model
in comparison to the refinement time using automated
synthesis tools. Manually re-coding the reference im-
plementation into a proper specification model took
12-14 weeks, whereas the following implementation
was completed in less than one week of time.

All these examples indicate that about 90% of the
system design time is spent on coding and re-coding
of the SLDL models, even in the presence of initial
algorithms given in the form of C code. Moreover,
we need to emphasize that specification capturing is
not a one time task. When a change in the design
model is required for a refinement step down in the
design flow, it is often necessary to modify or re-code
the input model.

2.3.2 Re-coding approach

Creating a well-written embedded system model in-
volves separation of communication and computa-

Specification Model

Refinement-1

Intermediate Model-1

Refinement-N

Intermediate Model-N

Implementation Model

Capture/Re-Coding

Less than 1
week

12-14 weeks

...

...

Manual

Automatic

Reference
Model

Figure 8: Design time and extent of automation in
todays’ refinement-based design flow.

tion, introducing proper granularity, and exposing
concurrency. These tasks typically consist of (and are
accompanied by) smaller tasks such as adding ports to
a block, routing a signal through the design hierarchy,
re-scoping a variable, etc. Regardless of their com-
plexity, these operations are usually performed by the
designer manually, using a plain text editor to manip-
ulate the model described in a SLDL, such as Sys-
temC [36], SpecC [28] or SystemVerilog [74].

Note that there is a large discrepancy between the
task the designer wants to perform, and the commands
a regular text editor offers (i.e. adding and deleting
characters and lines, etc.). Thus, automation of such
re-coding operations is desired. Textual re-coding
operations, such as introducing blocks, changing the
scope of variables, and grouping of functions, can be
performed automatically, if the decision to apply the
operation is made (and required parameters are pro-
vided) by the designer. This way, the designer is re-
lieved from mundane text editing tasks and can focus
on actual modeling decisions.

9

2.3.3 Interactive source re-coder

To aid the designer in coding and re-coding, we have
implemented a source re-coder. Our source re-coder
is a controlled, interactive approach to implement
analysis and refinement tasks. In other words, it is
an intelligent union of editor, compiler, and power-
ful transformation and analysis tools. Unlike other
program transformation tools, our re-coder keeps the
designer in the loop and provides complete control
to generate and modify a model suitable for her/his
design flow. By making the re-coding process inter-
active, we rely on the designer to concur, augment
or overrule the analysis results of the tool, and use
the combined intelligence of the re-coder and the de-
signer for the modeling tasks.

Document
Object Parser

Text
Editor

Transformation
Tools

Preproc

GUI

Code Generator

AST

Figure 9: Conceptual Structure of the Source Re-
Coder.

The conceptual structure of our source re-coder is
shown in Figure 9. It consists of 5 main components,
a text editor, a complex data structure (abstract syntax
tree, AST), a preprocessor and parser, a code gener-
ator, and a set of analysis and transformation tools.
The AST data structure [77] is needed for analyzing
and transforming the design model. It is created by
the preprocessor and parser when the design file is ini-
tially loaded. Subsequently, it is incrementally main-
tained and synchronized with the designer’s actions in
the text editor. The transformation and analysis tool
set is the heart of our source re-coder. All re-coding
tasks invoked by the user are implemented by these
refinement tools. When the designer points to an ob-
ject in the source window, a node corresponding to the
pointed co-ordinates is located in the AST, and a list
of available and possible operations is provided in a
context menu. For example, when the designer points
to a global variable, then the list of possible trans-

formations includes renaming, deleting, changing the
scope, and finding dependents.

2.3.4 Productivity gains

To assess the productivity gains resulting from the au-
tomated re-coding approach, we have applied it to a
set of design examples, as listed in Table 1. For each
example, we have used the re-coder to create SoC de-
sign models with computation and communication as-
pects separated. This task of exposing communica-
tion in SoC models involves three main operations,
localizing variable accesses, creating explicit connec-
tivity, and introducing synchronization channels.

Table 1: Productivity gain for different examples
Properties JPEG MP3 GSM

Global Variables localized 8 70 83
New Ports added 2 146 163

New Channels added 1 6 2
Re-coding time (secs) 27 246 260

Estimated Manual time (mins) 53 497 585
Productivity gain 117x 121x 135x

Table 1 shows the times measured using the re-
coder in comparison to the times we estimated for
manual editing. Table 1 also shows the productivity
gains achieved for the three examples, all more than
a factor 100. Using our source re-coder, the complex
transformations can be realized instantly with a click
of button. Thus, tedious time consuming tasks like
exposing communication can be achieved in the order
of seconds instead of hours.

2.4 Communication Synthesis
The fourth background topic relevant to this work is
synthesis of communication architectures [33]. This
work goes hand in hand with the modeling of com-
munication discussed in Section 2.2 as both projects
are based on the same well-defined abstraction levels
for communication.

2.4.1 Layer-based approach

Automated system-level communication design with
efficient design space exploration capabilities is be-
coming increasingly important. We have developed

10

a system-level design environment for the generation
of bus-based SoC communication architectures. Our
approach supports a two-stage design flow with au-
tomated communication refinement [69, 70, 71] to-
wards custom, network-oriented communication ar-
chitectures beyond a traditional single shared bus.
Starting from an abstract specification of the desired
communication channels, our environment automati-
cally generates tailored implementations of bus net-
works at various levels of abstraction. At its core,
a systematic, layer-based refinement approach is uti-
lized.

We use a layering of communication functionality
within each stage of the design flow [32]. In other
words, we divide the SoC communication into sev-
eral layers based on separation of concerns, grouping
of common functionality, dependencies across lay-
ers, and early validation of critical issues for rapid
and efficient design space exploration. Our layers
are stacked on top of each other where one layer
provides services to the next higher layer by build-
ing upon and using the services provided by the next
lower layer. In general, at its interface to higher lay-
ers, each layer provides services for establishing com-
munication channels and for performing transactions
over those channels.

2.4.2 Automatic model generation

Our communication design environment automati-
cally generates models and implementations of sys-
tem communication through refinement from an ab-
stract description of a system architecture. Automatic
refinement tools are used to produce communication
models at various levels of abstraction in order to
trade-off simulation accuracy and speed. Our com-
munication design flow is targeted to support com-
plex, non-traditional architectures with communica-
tion over a heterogeneous network of buses or other
communication media.

Figure 10 shows a design model at TLM abstrac-
tion generated by our environment. The model ac-
curately describes the communication architecture of
the design down to the level of individual bus pro-
tocol transactions. As such, it abstracts away pin-
related protocol details. Instead, the system compo-
nents communicate via instances of TLM channels in-

CPU_BF

TX_BF

MEMCtrl

MEM_BF HW2_BF

B4

ISR

PIC

L1

mac

char[4k]

m
ac m

ac

HW1_BF

Bus1
TLM

M
Bu

s
TL

M

Bus2
TLM

OS Model

M L3L1 intA

mac intA intB

B1 B2
B3

L3 M

mac

CPU_HAL
CPU_OS

Figure 10: Automatically generated TLM design.

serted from the bus database. Inside the components,
protocol stacks (shown as connected half-channels)
down to the media access layer have been generated
and inserted.

We have demonstrated the feasibility and benefits
of our communication synthesis approach using sev-
eral industrial-strength examples. Our models and
layers have been systematically defined such that they
can be automatically generated. Automating the te-
dious and error-prone process of refining high-level
communication abstractions into an actual implemen-
tation results in significant gains in productivity, thus
enabling rapid, early exploration of the communica-
tion design space.

2.5 Other Related Work
We will now briefly review other related work rele-
vant to this work.

2.5.1 TLM of communication

Using TLM [36] for capturing and designing com-
munication architectures has received much attention.
Cai and Gajski [17] provide an initial taxonomy of
TLM. Sgroi et al. [68] address SoC communication
with a Network-on-Chip approach that follows the
OSI structure. [72] describes SystemCSV , an exten-
sion to SystemC with three different abstraction levels
and a CAN example in [14]. Coppola et al. [25] pro-

11

pose abstract communication modeling in the IPSIM
framework. Gerstlauer et al. [32] describes abstrac-
tion based on a decreasing number of OSI [41] layers.
Abstract communication is also used in Ptolemy as
presented in [47] and in [38] with an extension of dy-
namic switching between abstraction levels. In [20]
Caldari et al. describe the results of capturing the
AMBA rev. 2.0 bus standard in SystemC at two lev-
els of abstraction. A common point for all solutions
is the loss in accuracy with abstraction. OCP-IP [37]
provides three TLM with increasing abstraction, with
only the TL-1 being cycle accurate.

2.5.2 Communication synthesis

There are several approaches dealing with automatic
generation, synthesis and refinement of communica-
tion [22, 75], which however do not provide inter-
mediate models breaking the design gap into smaller
steps required for rapid, early exploration of criti-
cal design issues. Furthermore, even in more recent
work [43], only specifically crafted target implemen-
tations are supported. Historically, a lot of work has
focused on automating the decision making process
for communication design [79, 30, 29, 55, 44] with-
out, however, providing corresponding design models
or a path to implementation. More recently, work has
been done to target automatic generation [10], refine-
ment [51, 21] or estimation [46, 84, 48] of commu-
nication, but in all cases, the approaches are usually
limited to specific target architecture templates or nar-
row input model semantics.

2.5.3 Computation abstraction

At the very high abstraction level of application mod-
eling, Ptolemy [15] uses a modeling environment that
integrates different models of computation (such as
petri nets and boolean dataflow) in a hierarchically
connected graph.

Traditionally Instruction Set Simulators play an im-
portant role in software simulation [24, 16, 52, 58].
Significant research effort has been spent to improve
the performance of ISS [49, 59, 85, 83, 13, 19]. The
traditional approach of an ISS based co-simulation
is provided by several commercial vendors, such as
ARM’s SoC Designer with MaxSim Technology [2],

VaST Systems’ [76] virtual system prototyping tools
and CoWare’s [26] Virtual Platform Designer. In ad-
dition, ISS based co-simulation is used in many aca-
demic projects, such as the MPARM [8] platform and
in [78].

Estimation and profiling of target specific software
performance, as a necessary step towards faster sim-
ulating models, has been the aim of multiple projects
[18, 7, 50]. More recent research work focuses on
abstraction of a CPUs in the system level design.
Bouchhima et al. [12] describe an abstract CPU sub-
system that allows execution of target code on top of
a hardware abstraction layer that simulates the pro-
cessor capabilities. Kempf et al. [42] introduce their
Virtual Processing Unit for analysis of task mapping
and scheduling effects using a quantitative model.

3 Transaction Level Modeling of
Computation

Transaction Level Modeling (TLM) has been pro-
posed and is widely accepted as an efficient technique
for abstract modeling of communication. TLM en-
ables high-speed system simulation and rapid design
space exploration. We have shown in Section 2.2 that
industry-standard communication protocols, carefully
designed using TLM, offer performance gains in sim-
ulation speed of up to four orders of magnitude. Due
to an inherent trade-off, however, the speed-up comes
usually at the price of lower accuracy. Up to now,
TLM as been used exclusively for communication.

In this work, we propose to apply TLM to compu-
tation. As we have seen in Section 2.1.1, embedded
system models clearly separate computation and com-
munication aspects to enable automatic replacement,
but both are still described using the same SLDL con-
cepts and constructs. It is therefore surprising to see
the benefits of TLM applied only to one half of the
model. In other words, transferring the successful ab-
straction techniques of TLM also to the other half of
embedded system models promises the tremendous
benefits again.

12

Commu-
n i c a ti on

f un c ti o n a l i ty
ti mi n g

me mc p y (x)
t = Ft(x)
w a i tf o r (t)

f un c ti o n a l i ty

ti mi n g
Comp u-
ta ti on

F(x)
t=Ft(x)
w a i tf o r (t)

Figure 11: Two level separation of concerns.

3.1 Separation of Functionality and Timing

During our in-depth analysis of TLM for communica-
tion, we have gained the necessary insights to apply
TLM also to computation. One key aspect is a sec-
ond level of separation of concerns, namely the clear
separation of functionality and timing. Figure 11 il-
lustrates the two levels of separation, first communi-
cation and computation, then functionality and tim-
ing. Communication TLM is modeled as a function
call containing the functionality of a data transfer, i.e.
one memcpy operation, and the timing of this trans-
fer in form of computation of the duration (Ft(x)) and
a waitfor statement. Computation, on the other
hand, is also modeled as code for functionality, i.e.
a function call, and duration computation followed by
a waitfor statement.

3.2 Granularity of Timing

Given the clear separation of functionality and timing,
we need to identify the proper granularity/abstraction
level. To obtain high simulation speed, the number
of waitfor statements must be minimized because
these usually lead to costly context switches in the
simulator. TLM for communication therefore uses a
single memcpy and waitfor statement to simulate
a whole communciation transaction. Applying this
to the computation counterpart means that, instead of
many small F(x) and waitfor statements (as exe-
cuted by a slow Instruction Set Simulator, ISS), we
need to arrage the code such that large blocks of func-
tionality and few longer waitfor statements are
used (as fast compiled ISS do). Figure 12 illustrates
the more coarse-grained granularity of timing in TLM
of computation compared to traditional instruction-set
simulation. Note that this comparison is a clear indi-

cation that our approach will hold the promise of high
performance gains.

3.3 Computation Abstraction

To apply TLM to computation, proper abstraction lev-
els need to be identified, as discussed earlier in Sec-
tion 1.2. Computation in embedded systems is per-
formed by two different processing elements, namely
programmable processors for software, and dedicated
hardware units.

For software execution, traditional abstraction lev-
els range from C code down to assembly code. Both
extremes can be simulated in a SLDL as native com-
piled code (usually referred to as untimed specifica-
tion) or using an ISS, respectively. Between these,
we find the abstraction levels of host-compiled ISS
and computation TLM, the latter one to be defined in
detail in this work. Figure 13 illustrates these four
abstraction levels for modeling software execution on
programmable processors. For reference, Figure 14
shows the software compilation flows used to gener-
ate the resulting simulation executables by the four
different approaches.

- U n t i m e d S p e c i f i c a t i o n
- C o m p u t a t i o n T L M
- H o s t C o m p i l e d I S S
- I n s t r u c t i o n S e t S i m u l a t o r

Sp
ee

d
Ac

cu
rac

y

Figure 13: Abstraction levels of computation using
programmable processors.

For dedicated hardware, potential abstraction levels
range from behavioral simulation (i.e. C code) down
to the cycle-accurate Register Transfer Level (RTL).
Potential candidates for TLM abstraction are likely
similar to the abstraction level at the software side,
but also include the five different levels defined by the
Accellera semantics [1].

3.4 Result-Oriented Modeling

Towards TLM of computation, we will now describe
a novel technique called Result Oriented Modeling

13

C Code
T a r g e t

Com p i l e r
C1
C2
C3

A S M Code
C1.A S M 1
C1.A S M 2
C1.A S M 3
C2.A S M 1
C2.A S M 2
C2.A S M 3

I S S
R e s u l t

C1.A S M 1
C1.A S M 2
C1.A S M 3

f(C1.A S M 1)
t(C1.A S M 1)
f(C1.A S M 2)
t(C1.A S M 2)
f(C1.A S M 3)
t(C1.A S M 3)

f1()

C Code
C1
C2
C3

f1()
A n a l y s i s +
I n s t r u -

m e n t a t i on

I n s t r u m en t ed C Code
f1();
t=f1t();
w a i tfo r (t);

ISS
Co

mp
.

TL
M

Figure 12: Granularity of timing in TLM of computation vs. traditional ISS.

C Code

H os t
Com p i l e r

H os t B i n a r y

H os t
E x ec u t i o n

(a) Untimed
Spec

Back Annotation
(I ns tr u m e ntation)

Anal y s is
(incl . P r of il e r)

C C od e

I ns tr u m e nte d C

H os t
C o m p i l e r

H os t Binar y

H os t
E x e cu tion

T im ing

(b) Computation TLM

C Code

T a r g e t
Com p i l e r

A S M

H o s t I S S
Com p i l e r

H os t B i n a r y

H os t
E x ec u t i o n

(c) Host Com-
piled ISS

C Code

T a r g e t
Com p i l e r

A S M

I S S
E x ec u t i o n

(d) ISS

Figure 14: Flows for computation simulation.

(ROM) [63, 64] that delivers the same high perfor-
mance as regular TLM, but retains 100% accuracy in
timing. In order to reach these apparently conflict-
ing accuracy goals, ROM relies on the the basic as-
sumption that the effects of the functionality are only
observable at the boundaries of a user transaction.
Therefore ROM can eliminate internal state changes,
rearrange events and avoid costly context switches.

3.4.1 ROM approach

Result Oriented Modeling (ROM) is a general con-
cept for abstract yet accurate modeling of a process.
As such, ROM is similar to the ”black box” concept.
The underlying assumption of ROM is the limited ob-
servability of internal state changes of the modeled
process. It is not necessary to show intermediate re-
sults of the process to the user, as in a ”black box”
approach. The only goal of ROM is to produce the

end result of the process fast. Hiding of intermediate
states gives ROM the opportunity for optimization.
Often, intermediate states can be entirely eliminated.
Instead, ROM can utilize an optimistic approach that
predicts the outcome (e.g. termination time and final
state) of the process already at the time the process is
started.

Throughout the runtime of the process, a disturbing
influence may change the system state, so that the ini-
tially predicted results are no longer accurate. There-
fore, ROM checks at the end of the predicted time
whether such a disturbing influence has occurred. If
so, ROM retroactively adjusts to the new conditions
and takes corrective measures. In other words, a mis-
take of an overly optimistic initial prediction is fixed
at the end. Optimistic prediction of the end result re-
duces the amount of computation and thus increases
performance, if the cost for any corrective measures

14

is low. This approach is in contrast to the traditional
modeling approach of reaching the end result through
a set of incremental state changes. The traditional
approach takes the disturbing influence incrementally
into account and adjusts the intermediate states ac-
cordingly. ROM, on the other hand, records any dis-
turbing influence over the predicted time and makes
any necessary adjustment at the end.

Repeating the ”black box” comparison, ROM is a
”black box” approach that additionally includes inter-
action with other ”black box” instances (as disturbing
influence) and takes corrective measures in case the
interaction is not as predicted.

In contrast to ROM, traditional TLM achieves
speedup by modeling the internal state changes at
a more coarse granularity and reaches the final re-
sult through an incremental approach taking into ac-
count any disturbing influence at each step. ROM on
the other hand, optimistically predicts the end result,
records the disturbing influence and only makes a cor-
rection in the end when it deems necessary.

3.4.2 Airplane arrival analogy

Figure 15 illustrates the ROM approach using the ex-
ample of predicting the arrival time of an airplane.
The real process (a) exhibits continuous changes to
the airspeed dependent on the disturbing influence
wind. The traditional abstract modeling approach (b)
approximates the result by incrementally calculating
the air speed in dependence of the wind in (coarse-
grain) discrete time steps. The ROM approach (c), on
the other hand, does not model the intermediate air-
plane speed. Instead, it makes one initial optimistic
prediction about the arrival time, and finally corrects
its prediction retroactively for the average wind con-
dition.

��� � � � ���	� �
��

�
��
�

��� � � � ���	� �
��

�
��
�

� � ��� �

� � ��� �

��� � � � ���	� �
��� � ��� � ��� � �
��� � � ���

��� � � � � � � ����� � � � � � � ���
� � � ��� � � � ����� � � � � ��� � � �
� � � � � � � �� �� � � �

a) R e al

b) T L M

c) R O M

Figure 15: ROM predicting an airplane arrival time.

3.4.3 ROM of computation

To apply our ROM concept to modeling of compu-
tation, we take advantage of the separation of func-
tionality and timing as described in Section 3.1. For
fastest functionality, we will use direct compilation
of the code, similar to the host compiled approach of
ISS. For the timing, will use the optimistic prediction
of ROM.

Traditionally, the target timing is achieved by us-
ing discrete wait statements with a fixed wait time.
Applying the ROM concept, we can optimistically
calculate the wait time during the simulation, taking
into account the virtual processor state. Interrupts,
pipeline and cache effects can be modeled as disturb-
ing influences. The optimistic prediction of the exe-
cution time will cover a block of code until the next
observable activity on the outside. At the end of the
predicted time interval, the initial calculation is veri-
fied. In case of no disturbing influence, the initial pre-
diction will proof correct, the observable activity can
be committed, and the simulation proceeds. In case
of a disturbing influence, the initially predicted time
will be too short, but can be updated using the now
available status information. The simulation will then
wait for the extended time, after which the process of
prediction updates is repeated.

In summary, we are confident that the ROM idea
is applicable to TLM of computation, and we expect
highest simulation speeds with high accuracy.

3.4.4 Initial Experiments

To estimate the benefits of our proposed modeling
concept, we have applied the generic ROM approach
to a bus system [64], the AMBA AHB [3].

As in TLM, the main idea for speeding up the sim-
ulation is to replace the sequence of wait operations
and arbitration checks with one single wait-for-time
statement. Reducing the number of wait operations
is the biggest contributor to increased execution per-
formance. This avoids running the scheduling algo-
rithm in the simulation engine and thus also reduces
the number of context switches.

When a bus master requests a user transaction, the
earliest finish time for this transfer is calculated and
the master waits until that time. The time prediction

15

takes the current state of the bus into account. In case
a higher-priority transaction is already active, the wait
time is increased for its duration. After the calculated
time has passed, the master verifies whether the pre-
dicted time is still accurate. If so, the transaction is
complete. Note that in this best case scenario only a
single wait statement is used.

With a disturbing influence of a higher priority
master accessing the bus during a transaction, the pre-
dicted time will be too short. Then, ROM recalculates
the predicted time and waits for it. This process is re-
peated until the prediction is verified to be correct.

Note that an optimistic (short) prediction algorithm
is necessary to allow for corrections. With a pes-
simistic (too long) prediction, a correction would
need to go back in time, which obviously is not pos-
sible.

preemption

timet ! t " t # t$

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

preemption

timet ! t " t$t % t #

preemption

timet ! t " t # t$t %

Low
P r i or i t y
M a s t e r

H i g h
P r i or i t y
M a s t e r

(a)
 BF

M
(b)

 TL
M

(c)
 R
OM

Figure 16: Preemption in BFM, TLM, ROM

To compare ROM against other modeling ap-
proaches, we will analyze the case of bus preemption
in more detail, as shown in Figure 16. In (a) BFM,
a burst transaction starting at t0 is preempted at t1.
The higher priority transfer completes at t3 when the
preempted transfer resumes, terminating finally at t4.
Both masters perform arbitration checks for every bus
cycle, a total of 32 in this example.

In (b) traditional TLM, the low priority transaction
is not properly preempted and still ends at t2 (not at
t4). Instead, the high priority transaction is delayed
until t2 and ends at t4 (not at t3). Clearly, the ab-

stract TLM is highly inaccurate in the finish times of
both transfers, but executes fast. Only two arbitration
checks are performed.

In (c) ROM, the inaccuracies of the TLM are cor-
rected by 3 additional arbitration checks. The low pri-
ority transfer is initially predicted to finish at t2. Then,
it detects that it has been preempted at t1 and recalcu-
lates its finish time for t3−t1 time units later at t4. The
high priority master wakes up at t3 and terminates its
transaction, since it was not preempted. At t4, the low
priority master wakes up, verifies that no other pre-
emption has occurred, and thus completes its transfer.

3.4.5 Initial Results

Our initial results for the ROM are extremely promis-
ing. ROM executes as fast as the most abstract tra-
ditional TLM, however it is 100% accurate. Thus it
completely eliminates the trade-off as it exists for tra-
ditional TLM.

We have examined the performance with prediction
updates using two masters and two slaves. The high
priority master puts an equally distributed base load
of 33% on the bus by sending 8-beat burst transac-
tions. The low priority master issues transactions of
increasing size without a delay in between, as before2.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

Si
m

ul
at

io
n

Ti
m

e
[m

se
c]

Transaction Size [bytes]

Bus Functional Model
Arbitrated TLM
ROM
TLM

Figure 17: ROM performance comparison.

Figure 17 shows the time to simulate the low prior-
ity master over an increasing message size while the

2For a fair comparison, we also ensure that all models transfer
the same amount of user transactions.

16

high priority master is running at the same time. It re-
veals that both ROM and TLM are equally fast, three
orders of magnitude faster than the BFM, and one or-
der of magnitude faster than the ATLM.

Knowing that ROM is equally fast as TLM, we
need to validate whether ROM meets the target of
100% timing accuracy. We use the same setup and
metrics as in Section 2.2.2. Our analysis confirmes
that ROM for the AMBA AHB is 100% accurate re-
gardless of the bus-contention. In that respect it is
identical to the BFM. We omit the actual measure-
ment graph for space reasons, since it is identical to
Figure 6, with the exception of a second fully accurate
model on top of the x-axis, ROM.

0
5

10
15
20
25
30
35
40
45
0.0001 0.001 0.01 0.1 1 10

Simulation Bandwidth [MByte/s]

Er
ro
r [
%]

AHB
Locked

AHB
Unlocked

CAN

ATLM ROMBFM

TL
M

Figure 18: ROM beats the TLM Trade-Off.

We have also implemented the ROM approach for
the Controller Area Network (CAN). The results of
this second example are similarly exciting. Figure 18
combines our results for both the AMBA AHB and
the CAN modeling. It shows on the x-axis the band-
width of the low priority master in a two master setup
with 50% utilization of the bus. The y-axis denotes
the average error in transfer duration for the low pri-
ority master.

Our experimental results demonstrate the tremen-
dous benefits of ROM. While the traditional TLM
suffers from a significant speed/accuracy trade-off, as
Figure 18 shows for the models in the ATLM and the
TLM category, only ROM delivers highest speed and
100% accuracy at the same time, lying in the hot-spot
top right area of the trade-off graph.

These exciting initial results strongly support the
proper direction of our research, allowing high expec-
tations for ROM applied to computation. Our goal

is to reach 100% accurate communication and com-
putation at highest speeds. Achieving that goal, or
even only approaching it, will significantly increase
our abilities in designing embedded systems more ef-
ficiently. This will allow us to explore a larger design
space more rapidly, leading to ”better” embedded sys-
tems in the end.

4 Current Status and Future Work
Our work on TLM for computation, as outlined in the
previous sections, is at this point still in it’s infancy.
In fact, this work is still in the “idea” state. The main
idea of applying the concepts of TLM to computation
is clear, and we have shown some very promising ini-
tial results, but most work still lies ahead. Much more
research is necessary in order to really understand the
concept, to put it to work for real-world applications,
to back it up with actual and accurate experimental
results, and, last but not least, to deploy it such that
it benefits the actual design process of embedded sys-
tems.

Looking back (see Section 2), we have based this
research on a solid foundation, namely the work on
SpecC featuring the separation of concerns (see Sec-
tion 2.1), the systematic analysis of TLM of commu-
nication (see Section 2.2), the automation of modeling
through re-coding (see Section 2.3), and finally the
work on communication synthesis (see Section 2.4).

Looking forward, much research and development
work needs to be performed to bring this idea to real
fruition. The following is a rough attempt at listing
the tasks ahead.

• We need to start with the identification of model
features suitable for abstraction, and the defini-
tion of promising abstraction levels. Results of
these tasks can then be used to define proper
modeling techniques.

• Next, actual example models will be required.
Modeling, describing and validating these mod-
els using a SLDL will require a significant
amount of time, based on past experience [23,
35, 80]. As soon as models become available,
suitable metrics and measurements need to be

17

defined such that inherent trade-offs can be an-
alyzed in detail (compare Section 2.2.2).

• Then, the concepts developed before can be ap-
plied toward synthesis. Well-designed models
are expected to be easier synthesizable and will
lead to better implementations.

• The next step can then focus on defining, build-
ing, and testing a suitable synthesis flow.

• Finally, to demonstrate the success of the pro-
posed approach, we need to finally develop and
build a prototype system of a real-world applica-
tion such as an MP3 player or video codec.

Eventually, in order to generate an impact in the
real world, technology transfer to industry is essen-
tial. This should begin as soon as successful results
become available and show sufficient maturity.

5 Summary and Conclusion
In this work, we have introduced and outlined our re-
search on transaction level modeling (TLM) of com-
putation. We have shown that TLM for communi-
cation enables simulation speeds of up to four or-
ders of magnitude faster than pin-accurate bus func-
tional models. Usually, however, this performance
gain comes at the price of low accuracy.

This work now applies the successful techniques
of TLM to the computation aspects in embedded sys-
tems. This has not been done before. Moreover, the
exciting advantages experienced with TLM for com-
munication strongly indicate a similar impact when
applied for computation.

The initial results of TLM for computation outlined
in this document support this high expectation. Our
analysis has shown that the use of a novel modeling
approach, called result-oriented modeling (ROM), en-
ables the same high speed simulation as traditional
TLM, yet achieves 100% accuracy in timing. This
eliminates the speed/accuracy trade-off, allowing to
utilize both advantages in a model at the same time.

While traditional work largely has focused on anal-
ysis, refinement and synthesis tasks starting from a
given system model, this project addresses the cre-
ation and optimization of input models for effective

use in existing design processes, including accurate
estimation, rapid design space exploration, and effi-
cient synthesis and implementation. The results of
this work are directly applicable to established design
flows in the industry.

Just like the quality of an architectural blue-print
determines the quality of the resulting building, the
model of an embedded system is the key to its suc-
cessful implementation. Thus, the better modeling
techniques proposed in this work will directly im-
prove the technical systems around us and the qual-
itity of life for everyone in our society.

Acknowledgement
I would like to thank Pramod Chandraiah and Gunar
Schirner for helping to prepare this document.

References
[1] Accellera, C/C++ Class Library Standardization

Working Group. RTL Semantics, February 2001.
Draft Specification, Version 0.8.

[2] Advanced RISC Machines Ltd. (ARM).
SoC Developer with MaxSim Technology.
http://www.arm.com/products/DevTools/MaxSim.html.

[3] ARM. AMBA Specification (Rev. 2.0), ARM IHI
0011A. Advanced RISC Machines Ltd. (ARM),
1999.

[4] I. Bacivarov, S. Yoo, and A. Jerraya. Timed
HW-SW Cosimulation Using Native Execution
of OS and Application SW. In International
High-Level Design Validation and Test work-
shop, Cannes, France, October 2002.

[5] I. Bacivarov, S. Yoo, and A. Jerraya. Fast and
Accurate Timed Execution of High Level Em-
bedded Software using HW/SW Interface Sim-
ulation Model. In Proceedings of the Asia and
South Pacific Design Automation Conference
(ASPDAC), Yokohama, Japan, January 2004.

[6] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, and Y. Watanabe.

18

http://www.arm.com/products/DevTools/MaxSim.html

Metropolis: An Integrated Environment for
Electronic System Design. IEEE Computer,
36(4), April 2003.

[7] J. R. Bammi, W. Kruijtzer, L. Lavagno, E. Har-
court, and M. T. Lazarescu. Software per-
formance estimation strategies in a system-
level design tool. In Proceedings of Interna-
tional Workshop on Hardware/Software Code-
sign (CODES), San Diego, CA, 2000.

[8] L. Benini, D. Bertozzi, A. Bogoliolo,
F. Menichelli, and M. Olivieri. MPARM:
Exploring the Multi-Processor SoC Design
Space with SystemC. Journal of VLSI Signal
Processing, 41(2):169–184, 2005.

[9] L. Benini and G. D. Micheli. Networks on chips:
A new SoC paradigm. IEEE Computer, January
2002.

[10] I. Bolsens, H. D. Man, B. Lin, K. V. Rompay,
S. Vercauteren, and D. Verkest. Hardware/Soft-
ware co-design of the digital telecommunication
systems. Proceedings of the IEEE, March 1997.

[11] Bosch. CAN Specification. Robert
Bosch GmbH, 2.0 edition, 1991.
http://www.can.bosch.com/.

[12] A. Bouchhima, I. Bacivarov, W. Yousseff,
M. Bonaciu, and A. Jerraya. Using Abstract
CPU Subsystem Simulation Model for High
Level HW/SW Architecture Exploration. In
Proceedings of the Asia and South Pacific De-
sign Automation Conference (ASPDAC), Shang-
hai, China, January 2005.

[13] G. Braun, A. Nohl, A. Hoffmann,
O. Schliebusch, R. Leupers, and H. Meyr.
A universal technique for fast and flexible
instruction-set architecture simulation. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23(12):1625–
1639, 2004.

[14] D. Brem and D. Müller. Interface based system
modeling of a can using sve. In Proceedings
of the EkompaSS Workshop, Hanover, Germany,
April 2003.

[15] J. Buck, S. Ha, E. A. Lee, and D. G. Messer-
schmitt. Ptolemy: A framework for simu-
lating and prototyping heterogeneous systems.
International Journal of Computer Simulation,
4(2):155–182, April 1994.

[16] D. Burger and T. M. Austin. The simplescalar
tool set, version 2.0. ACM SIGARCH Computer
Architecture News, 25(3):13–25, 1997.

[17] L. Cai and D. Gajski. Transaction Level
Modeling: An Overview. In Proceedings of
the International Conference on Hardware/Soft-
ware Codesign and System Synthesis, Newport
Beach, CA, October 2003.

[18] L. Cai, A. Gerstlauer, and D. D. Gajski. Re-
targetable profiling for rapid, early system-level
design space exploration. In Proceedings of
the Design Automation Conference (DAC), San
Diego, CA, June 2004.

[19] H. W. Cain, K. M. Lepak, and M. H. Lipasti.
A dynamic binary translation approach to archi-
tectural simulation. ACM SIGARCH Computer
Architecture News, 29(1):27–36, 2001.

[20] M. Caldari, M. Conti, M. Coppola, S. Curaba,
L. Pieralisi, and C. Turchetti. Transaction-level
models for AMBA bus architecture using Sys-
temC 2.0. In Proceedings of the Design, Au-
tomation and Test in Europe (DATE) Confer-
ence, Munich, Germany, March 2003.

[21] W. O. Cesario, A. Baghdadi, L. Gauthier, D. Ly-
onnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A.
Jerraya, and M. Diaz-Nava. Component-baed
design approach for multicore SoCs. In Pro-
ceedings of the Design Automation Conference
(DAC), pages 789–794, June 2002.

[22] W. O. Cesário, D. Lyonnard, G. Nicolescu,
Y. Paviot, S. Yoo, A. A. Jerraya, L. Gauthier, and
M. Diaz-Nava. Multiprocessor SoC platforms:
A component-based design approach. IEEE
Design and Test of Computers, 19(6), Novem-
ber/December 2002.

19

http://www.can.bosch.com/

[23] P. Chandraiah and R. Dömer. Specification
and design of an MP3 audio decoder. Techni-
cal Report CECS-TR-05-04, Center for Embed-
ded Computer Systems, University of Califor-
nia, Irvine, May 2005.

[24] B. Cmelik and D. Keppel. Shade: a fast
instruction-set simulator for execution profiling.
In In Proceedings of the ACM SIGMETRICS
conference on Measurement and modeling of
computer systems, Nashville, Tennessee, United
States, 1994.

[25] M. Coppola, S. Curaba, M. Grammatikakis, and
G. Maruccia. IPSIM: SystemC 3.0 enhance-
ments for communication refinement. In Pro-
ceedings of the Design, Automation and Test in
Europe (DATE) Conference, Munich, Germany,
March 2003.

[26] CoWare. Virtual Platform Designer.
www.coware.com.

[27] R. Dömer, A. Gerstlauer, and D. Gajski.
SpecC Language Reference Manual, Version
2.0. SpecC Technology Open Consortium,
http://www.specc.org, December 2002.

[28] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer,
and S. Zhao. SpecC: Specification Language
and Design Methodology. Kluwer Academic
Publishers, 2000.

[29] M. Gasteier and M. Glesner. Bus-Based Com-
munication Synthesis on System-Level. In Pro-
ceedings of the International Symposium on Sys-
tem Synthesis, San Diego, CA, USA, November
1996.

[30] M. Gasteier, M. Münch, and M. Glesner. Gen-
eration of interconnect topologies for communi-
cation synthesis. In Proceedings of the Design,
Automation and Test in Europe (DATE) Confer-
ence, pages 36–42, March 1998.

[31] A. Gerstlauer, R. Dömer, J. Peng, and D. D.
Gajski. System Design: A Practical Guide with
SpecC. Kluwer Academic Publishers, 2001.

[32] A. Gerstlauer, D. Shin, R. Doemer, and
D. Gajski. System-Level Communication Mod-
eling for Network-on-Chip Synthesis. In Asia
and South Pacific Design Automation Confer-
ence, Shanghai, China, January 2005.

[33] A. Gerstlauer, D. Shin, J. Peng, R. Dömer, and
D. Gajski. Systematic, Layer-based Generation
of System-on-Chip Bus Networks. IEEE Trans-
actions on Computer Aided Design of Integrated
Circuits and Systems, submitted, May 2006.

[34] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M.
Horak. Design of a GSM vocoder using SpecC
methodology. Technical Report ICS-TR-99-11,
Information and Computer Science, University
of California, Irvine, March 1999.

[35] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M.
Horak. SpecC system-level design methodology
applied to the design of a GSM vocoder. In Pro-
ceedings of the Workshop of Synthesis and Sys-
tem Integration of Mixed Information Technolo-
gies, Kyoto, Japan, April 2000.

[36] T. Grötker, S. Liao, G. Martin, and S. Swan. Sys-
tem Design with SystemC. Kluwer Academic
Publishers, 2002.

[37] A. Haverinen, M. Leclercq, N. Weyrich, and
D. Wingard. SystemC based SoC Communi-
cation Modeling for the OCP Protocol, October
2002. http://www.ocpip.org.

[38] K. Hines and G. Borriello. Optimizing Commu-
nication in Embedded System Co-simulation. In
Proceedings of Codes/CACHE, Braunschweig,
Germany, March 1997.

[39] IEEE. IEEE Standard VHDL Language Refer-
ence Manual, IEEE Std. 1076-1993. IEEE, revi-
sion 1993 edition, 1993.

[40] IEEE. Hardware Description Language Based
on the Verilog Hardware Description Language,
IEEE Std. 1364-1996. IEEE, 1996.

[41] ISO. Reference Model of Open System In-
terconnection (OSI). Internation Organization

20

www.coware.com
http://www.specc.org
http://www.ocpip.org

for Standardization (ISO), second edition, 1994.
ISO/IEC 7498 Standard.

[42] T. Kempf, M. Dörper, R. Leupers, G. Ascheid,
H. Meyr, T. Kogel, and B. Vanthournout. A
Modular Simulation Framework for Spatial and
Temporal Task Mapping onto Multi-Processor
SoC Platforms. In Proceedings of the Design,
Automation and Test in Europe (DATE) Confer-
ence, Munich, Germany, March 2005.

[43] W. Klingauf, H. Gädke, and R. Günzel. TRAIN:
A virtual transaction layer architecture for
TLM-based HW/SW codesign of synthesizable
MPSoC. In Proceedings of the Design, Au-
tomation and Test in Europe (DATE) Confer-
ence, March 2006.

[44] K. Lahiri, A. Raghunathan, and S. Dey. Efficient
exploration of the SoC communication architec-
ture design space. In Proceedings of the Inter-
national Conference on Computer Aided Design
(ICCAD), pages 424–430, November 2000.

[45] K. Lahiri, A. Raghunathan, and S. Dey.
System-level performance analysis for de-
signing on-chip communication architectures.
IEEE Transactions on Computer-Aided Design
of Intergrated Circuits and Systems (TCAD),
20(6):768–783, June 2001.

[46] K. Lahiri, A. Raghunathan, and S. Dey. System-
Level Performance Analysis for Designing On-
Chip Communication Architectures. In IEEE
Transactions on Computer-Aided Design of In-
tergrated Circuits and Systems (TCAD), vol-
ume 20, pages 768–783, June 2001.

[47] M. Lajolo, C. Passerone, and L. Lavagno.
Scalable Techniques for System-level Co-
Simulation and Co-Estimation. IEE Pro-
ceedings - Computers and Digital Techniques,
150(4):227–238, July 2003.

[48] M. Lajolo, C. Passerone, and L. Lavagno.
Scalable Techniques for System-level Co-
Simulation and Co-Estimation. In IEE
Proceedings–Computers and Digital Tech-
niques, volume 150, pages 227–238, July
2003.

[49] R. Leupers, J. Elste, and B. Landwehr. Genera-
tion of interpretive and compiled instruction set
simulators. In Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-
DAC), Jan. 1999.

[50] Y.-T. S. Li, S. Malik, and A. Wolfe. Perfor-
mance estimation of embedded software with
instruction cache modeling. ACM Transactions
on Design Automation of Electronic Systems,
4(3):257–279, 1999.

[51] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A.
Jerraya. Automatic generation of application-
specific architectures for heterogeneous multi-
processor system-on-chip. In Proceedings of the
Design Automation Conference (DAC), Las Ve-
gas, NV, June 2001.

[52] N. Manjikian. Multiprocessor enhancements of
the simplescalar tool set. ACM SIGARCH Com-
puter Architecture News, 29(1):8–15, 2001.

[53] Motorola. MCF5206 ColdFire Integrated Mi-
croprocessor User’s Manual, 1997.

[54] Open SystemC Initiative,
http://www.systemc.org. Functional Specifi-
cation for SystemC 2.0, 2000.

[55] R. B. Ortega and G. Borriello. Communication
synthesis for distributed embedded systems. In
Proceedings of the International Conference on
Computer Aided Design (ICCAD), pages 437–
444, November 1998.

[56] Open SystemC Initiative.
http://www.systemc.org.

[57] S. Pasricha, N. Dutt, and M. Ben-Romdhane.
Fast Exploration of Bus-based On-chip Com-
munication Architectures. In CODES and ISSS,
Stockholm, Sweden, September 2004.

[58] W. Qin and S. Malik. Flexible and formal mod-
eling of microprocessors with application to re-
targetable simulation. In Proceedings of the De-
sign, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2003.

21

http://www.systemc.org
http://www.systemc.org

[59] M. Reshadi, P. Mishra, and N. Dutt. Instruc-
tion set compiled simulation: a technique for
fast and flexible instruction set simulation. In
Proceedings of the Design Automation Confer-
ence (DAC), Anaheim, USA, June 2003.

[60] A. Sarmento, W. Cesario, and A. A. Jerraya.
Mixed-Level Cosimulation for Fine Gradual Re-
finement of Communication in SoC Design. In
Proceedings of the Design, Automation and Test
in Europe (DATE) Conference, Munich, Ger-
many, March 2001.

[61] G. Schirner and R. Dömer. Abstract Com-
munication Modeling: A Case Study Using
the CAN Automotive Bus. In A. Rettberg,
M. Zanella, and F. Rammig, editors, From
Specification to Embedded Systems Application,
Manaus, Brazil, August 2005. Springer.

[62] G. Schirner and R. Dömer. System Level Mod-
eling of an AMBA Bus. Technical Report
CECS-TR-05-03, Center for Embedded Com-
puter Systems, University of California, Irvine,
March 2005.

[63] G. Schirner and R. Dömer. Accurate yet fast
modeling of real-time communication. In Pro-
ceedings of the International Conference on
Hardware/Software Codesign and System Syn-
thesis, Seoul, Korea, October 2006.

[64] G. Schirner and R. Dömer. Fast and Accu-
rate Transaction Level Models using Result Ori-
ented Modeling. In Proceedings of the Inter-
national Conference on Computer Aided Design
(ICCAD), San Jose, California, November 2006.

[65] G. Schirner and R. Dömer. Quantitative Anal-
ysis of the Speed/Accuracy Trade-off in Trans-
action Level Modeling. ACM Transactions on
Embedded Computing Systems, submitted, June
2006.

[66] G. Schirner and R. Dömer. Quantitative Analy-
sis of Transaction Level Models for the AMBA
Bus. In Proceedings of the Design, Automation
and Test in Europe (DATE) Conference, Mu-
nich, Germany, March 2006.

[67] SEMATECH Inc. International technology
roadmap for semiconductors (ITRS), 2004 up-
date, design. http://www.itrs.net/, 2004.

[68] M. Sgroi, M. Sheets, M. Mihal, K. Keutzer,
S. Malik, J. Rabaey, , and A. Sangiovanni-
Vincentelli. Addressing the System-on-a-
Chip interconnect woes through communication
based design. In Proceedings of the Design
Automation Conference, Las Vegas, NV, USA,
June 2001.

[69] D. Shin, A. Gerstlauer, R. Doemer, and D. D.
Gajski. Automatic generation of communication
architectures. In A. Rettberg, M. C. Zanella, and
F. J. Rammig, editors, From Specification to Em-
bedded Systems Application. Springer, August
2005.

[70] D. Shin, A. Gerstlauer, R. Dömer, and D. D.
Gajski. Automatic network generation for
system-on-chip communication design. In Pro-
ceedings of the International Conference on
Hardware/Software Codesign and System Syn-
thesis, September 2005.

[71] D. Shin, A. Gerstlauer, J. Peng, R. Dömer,
and D. D. Gajski. Automatic generation of
transaction-level models for rapid design space
exploration. In Proceedings of the Interna-
tional Conference on Hardware/Software Code-
sign and System Synthesis, Seoul, Korea, Octo-
ber 2006.

[72] R. Siegmund and D. Müller. SystemCSV : An ex-
tension of SystemC for mixed multi-level com-
munication modeling and interface-based sys-
tem design. In Proceedings of the Design, Au-
tomation and Test in Europe (DATE) Confer-
ence, Munich, Germany, March 2001.

[73] SpecC Technology Open Consortium.
http://www.specc.org.

[74] S. Sutherland, S. Davidmann, P. Flake, and
P. Moorby. System Verilog for Design: A Guide
to Using System Verilog for Hardware Design
and Modeling. Kluwer Academic Publishers,
Norwell, MA, USA, 2004.

22

http://www.itrs.net/
http://www.specc.org

[75] K. van Rompaey, D. V. I. Bolsens, and H. D.
Man. CoWare: A design environment for het-
erogeneous hardware/software systems. In Pro-
ceedings of the European Design Automation
Conference (Euro-DAC), Geneva, Switzerland,
September 1996.

[76] VaST Systems. VaST tools and mod-
els for embedded system design.
www.vastsystems.com.

[77] I. Viskic and R. Dömer. A flexible, syn-
tax independent representation (SIR) for system
level design models. In Proceedings of Eu-
roMicro Conference on Digital System Design,
Dubrovnik, Croatia, August 2006.

[78] A. Wieferink, M. Doerper, T. Kogel, R. Leupers,
G. Ascheid, and H. Meyr. Early iss integration
into network-on-chip designs. In In Proceed-
ings of International Workshop on Systems, Ar-
chitectures, Modeling and Simulation (SAMOS),
Samos, Greece, July 2004.

[79] T.-Y. Yen and W. Wolf. Communication syn-
thesis for distributed embedded systems. In
Proceedings of the International Conference on
Computer Aided Design (ICCAD), San Jose,
CA, November 1995.

[80] H. Yin, H. Du, T.-C. Lee, and D. D. Gajski. De-
sign of a JPEG encoder using SpecC methodol-
ogy. Technical Report ICS-TR-00-23, Informa-
tion and Computer Science, University of Cali-
fornia, Irvine, July 2000.

[81] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jer-
raya. Automatic Generation of Fast Timed Sim-
ulation Models for Operating Systems in SoC
Design. In Proceedings of the Design, Automa-
tion and Test in Europe (DATE) Conference,
Paris, France, March 2002.

[82] J. Zhu, R. Dömer, and D. D. Gajski. Syntax and
semantics of the SpecC language. In Proceed-
ings of the International Symposium on System
Synthesis, Osaka, Japan, December 1997.

[83] J. Zhu and D. D. Gajski. A retargatable, ultra-
fast instruction set simulator. In Proceedings

of the Design, Automation and Test in Europe
(DATE) Conference, Munich, Germany, March
1999.

[84] X. Zhu and S. Malik. A hierarchical modeling
framework for on-chip communication architec-
tures. In Proceedings of the International Con-
ference on Computer Aided Design (ICCAD),
pages 663–670, November 2002.

[85] V. Zivojnvic, S. Tjiang, and H. Meyr. Com-
piled simulation of programmable dsp architec-
tures. In In Proceedings of the IEEE Workshop
on VLSI Signal Processing, Sakai, Japan, 1995.

23

www.vastsystems.com

	1 Introduction
	1.1 Motivation
	1.2 Abstract Modeling
	1.2.1 Is modeling an art?
	1.2.2 What features should be abstracted?
	1.2.3 Architecture analogy

	1.3 Outline

	2 Background
	2.1 Separation of Concerns
	2.1.1 Computation and communication
	2.1.2 Orthogonality of concepts

	2.2 Transaction Level Modeling of Communication
	2.2.1 TLM trade-off
	2.2.2 Systematic analysis
	2.2.3 Modeling approach
	2.2.4 Analysis metrics and measurement setup
	2.2.5 Results
	2.2.6 Generalization

	2.3 Computer-Aided Re-coding
	2.3.1 Coding bottleneck
	2.3.2 Re-coding approach
	2.3.3 Interactive source re-coder
	2.3.4 Productivity gains

	2.4 Communication Synthesis
	2.4.1 Layer-based approach
	2.4.2 Automatic model generation

	2.5 Other Related Work
	2.5.1 TLM of communication
	2.5.2 Communication synthesis
	2.5.3 Computation abstraction

	3 Transaction Level Modeling of Computation
	3.1 Separation of Functionality and Timing
	3.2 Granularity of Timing
	3.3 Computation Abstraction
	3.4 Result-Oriented Modeling
	3.4.1 ROM approach
	3.4.2 Airplane arrival analogy
	3.4.3 ROM of computation
	3.4.4 Initial Experiments
	3.4.5 Initial Results

	4 Current Status and Future Work
	5 Summary and Conclusion
	References

