
Center for Embedded Computer Systems
University of California, Irvine

Modeling, Simulation and Synthesis in an
Embedded Software Design Flow for an ARM Processor

Gunar Schirner, Gautam Sachdeva, Andreas Gerstlauer, Rainer Dömer

Technical Report CECS-06-06
May 25, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625, USA

(949) 824-8059

{hschirne, gsachdev, gerstl, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

Modeling, Simulation and Synthesis in an
Embedded Software Design Flow for an ARM Processor

Gunar Schirner, Gautam Sachdeva, Andreas Gerstlauer, Rainer Dömer

Technical Report CECS-06-06
April 10, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{hschirne, gsachdev, gerstl, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract
System level design is one approach to tackle the complexity of designing a modern System-on-Chip. One

major aspect is the capability of developing the system model irrespectable of the later occurring hardware
software split, with the goal to develop both hardware and software seamlessly at the same time and to merge
the traditionally separated development flows.

Hardware/software co-simulation is needed for an efficiently integrated design flow. Depending on the design
phase, this co-simulation can be performed at different levels of abstraction. Early in the design phase, a a very
abstract simulation at the unpartitioned specification level yields fast functional results. On the other end, the
cycle accurate simulation of RTL hardware and instruction set simulated software allows an accurate insight to
the final system performance.

This report focuses on the software perspective of a co-design/co-simulation environment. In form of a case
study, we address three major tasks necessary to build an integrated embedded software design flow: modeling
of a processor core (including an instruction set simulator), porting of a RTOS to the selected processor core,
and the embedded software generation that includes RTOS targeting of the generated code.

In particular, we have modeled a popular ARM core, the ARM7TDMI, at an abstract level, as well as on
a cycle-accurate level using SWARM, an Instruction Set Simulator (ISS) for the ARM core. Furthermore, we
have ported MicroC/OS-II, a Real-Time Operating System (RTOS), to run on top of the SWARM ISS. Finally, we
implemented a software generation tool. It automatically synthesizes C code, targeted to the selected Real-Time
Operating System (RTOS), from the refined design captured in the a system level design language.

We demonstrate our embedded software development flow by use of an automotive application. An example of
anti-lock breaks uses a distributed architecture of sensors and actuators connected via a Controller Area Network
(CAN). We undergo all steps of the design flow starting with the capturing of the specification model, down to
validation of the implementation with an ISS based co-simulation. Our results show that the co-design/co-
simulation environment is feasible. All refined models, including the ISS based cycle-accurate model, show a
functional correct behavior.

http://www.cecs.uci.edu

Contents
1 Introduction 2

1.1 Problem Statement . 3
1.2 Related Work . 3
1.3 Outline . 4

2 Processor 4
2.1 ARM7TDMI . 4

2.1.1 Instruction Pipeline . 4
2.1.2 Architecture . 5
2.1.3 Bus Architecture . 5

2.2 Abstract Processor Modeling . 6
2.2.1 Behavioral Model . 6
2.2.2 OS Model . 7
2.2.3 Bus Functional Model . 7

2.3 Cycle-Accurate Instruction Set Simulator . 9
2.3.1 Selection of an ISS . 9
2.3.2 SWARM (Software ARM) . 10
2.3.3 Cycle-Accurate PE Model . 12

3 Real-Time Operating System 13
3.1 RTOS Selection . 13
3.2 MicroC/OS-II . 14

3.2.1 MicroC/OS-II Structure . 15
3.2.2 Kernel and Kernel Services . 16
3.2.3 Adapting MicroC/OS-II for an ARM core . 16
3.2.4 Interrupt Handling and Timer Integration . 17

4 Embedded Software Generation 18
4.1 Scheduling Refinement . 19
4.2 Embedded Software Generation and RTOS Targeting . 19

5 Experiments 20
5.1 Example Application . 20
5.2 Refinement . 20
5.3 Results . 21

6 Conclusions 21

References 22

i

List of Figures
1 Software synthesis. 3
2 ARM7TDMI instruction pipeline . 4
3 ARM7TDMI processor core . 5
4 AMBA bus architecture . 6
5 ARM7TDMI behavioral model. 6
6 ARM7TDMI bus functional model overview. 8
7 Instruction-set simulators for ARM core. 11
8 SWARM memory accesses. 11
9 SWARM implementation. 11
10 SWARM instruction set model. 13
11 RTOS survey (source Jinhwan Lee). 15
12 MicroC/OS-II hardware/software architecture. 15
13 Setup for µC/OS-II. 16
14 Task level context switch. 18
15 System design flow. 19
16 Anti-lock break example architecture. 20
17 Anti-lock break simulation. 22

ii

List of Acronyms
AHB Advanced High-performance Bus. System bus definition within the AMBA 2.0 specification. Defines a

high-performance bus including pipelined access, bursts, split and retry operations.

AMBA Advanced Microprocessor Bus Architecture. Bus system defined by ARM Technologies for system-on-
chip architectures.

APB Advanced Peripheral Bus. Peripheral bus definition within the AMBA 2.0 specification. The bus is used
for low power peripheral devices, with a simple interface logic.

ASB Advanced System Bus. System bus definition within the AMBA 2.0 specification. Defines a high-
performance bus including pipelined access and bursts.

ATLM Arbitrated Transaction Level Model. A model of a system in which communication is described as
transactions, abstract of pins and wires. In addition to what is provided by the TLM, it models arbitration
on a bus transaction level.

BFM Bus Functional Model. A wire accurate and cycle accurate model of a bus.

FCFS First Come First Serve. A scheduling policy in which the job are executed in their arrival order.

HAL Hardware Abstraction Layer. A layer in the BF model, which provides insertion point for implementing
PE computation and communication services.

CAN Controller Area Network. A serial communications protocol with a focus for automotive application.

ISA Instruction Set Architecture. The part of the processor architecture visible to the programmer. It sits between
the hardware and software.

ISS Instruction Set Simulator. A simulation model that models the datapath of a processor at instruction set
level.

IRQ Interrupt Request.

MAC Media Access Control. Layer within the OSI layering scheme.

OSI Open Systems Interconnection. An communication architecture model, described in seven layers, devel-
oped by the ISO for the interconnection of data communication systems.

PC Program Counter. A register in a processor that points to the memory location of the instruction in execution.

PE Processing Element. A system component with computation capability, like programmable processor, cus-
tom hardware, controller, and IPs.

PIC Programmable Interrupt Controller. An programmable multiplexer that maps from many external interrupts
to few internal interrupts. It is available as a slave on the processor bus.

SoC System-On-Chip. A highly integrated device implementing a complete computer system on a single chip.

TLM Transaction Level Model. A model of a system in which communication is described as transactions,
abstract of pins and wires.

iii

RTOS Real-Time Operating System. An operating system designed for embedded application and having de-
terministic nature.

SLDL System Level Design Language.

1

Modeling, Simulation and Synthesis in an
Embedded Software Design Flow for an ARM Processor

Gunar Schirner, Gautam Sachdeva, Andreas Gerstlauer, Rainer Dömer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{hschirne, gsachdev, gerstl, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract
System level design is one approach to tackle the com-
plexity of designing a modern System-on-Chip. One
major aspect is the capability of developing the sys-
tem model irrespectable of the later occurring hard-
ware software split, with the goal to develop both
hardware and software seamlessly at the same time
and to merge the traditionally separated development
flows.

Hardware/software co-simulation is needed for an
efficiently integrated design flow. Depending on the
design phase, this co-simulation can be performed at
different levels of abstraction. Early in the design
phase, a a very abstract simulation at the unparti-
tioned specification level yields fast functional results.
On the other end, the cycle accurate simulation of
RTL hardware and instruction set simulated software
allows an accurate insight to the final system perfor-
mance.

This report focuses on the software perspective of
a co-design/co-simulation environment. In form of a
case study, we address three major tasks necessary to
build an integrated embedded software design flow:
modeling of a processor core (including an instruc-
tion set simulator), porting of a RTOS to the selected
processor core, and the embedded software genera-
tion that includes RTOS targeting of the generated
code.

In particular, we have modeled a popular ARM
core, the ARM7TDMI, at an abstract level, as well as

on a cycle-accurate level using SWARM, an Instruc-
tion Set Simulator (ISS) for the ARM core. Further-
more, we have ported MicroC/OS-II, a Real-Time Op-
erating System (RTOS), to run on top of the SWARM
ISS. Finally, we implemented a software generation
tool. It automatically synthesizes C code, targeted to
the selected RTOS, from the refined design captured
in the a system level design language.

We demonstrate our embedded software develop-
ment flow by use of an automotive application. An
example of anti-lock breaks uses a distributed archi-
tecture of sensors and actuators connected via a Con-
troller Area Network (CAN). We undergo all steps of
the design flow starting with the capturing of the spec-
ification model, down to validation of the implemen-
tation with an ISS based co-simulation. Our results
show that the co-design/co-simulation environment is
feasible. All refined models, including the ISS based
cycle-accurate model, show a functional correct be-
havior.

1 Introduction
System-On-Chip (SoC) design faces a gap between
the production capabilities and time-to-market pres-
sures. The design space, to be explored during the
SoC design, grows with the improvements in the pro-
duction capabilities, while at the same time shorter
product life cycles force an aggressive reduction of
the time-to-market. Addressing this gap has been the

2

http://www.cecs.uci.edu

aim of recent research work. System-level design is
one approach that aims to reduce the time-to-market,
accelerate the design process and increase the pro-
ductivity. It allows for a seamless co-design of hard-
ware and software without special attention to the fi-
nal hardware software split.

Throughout the system level design flow, the soft-
ware concerns have to be taken into account. For val-
idation, hardware software co-simulation is needed at
different levels of abstraction, starting from the speci-
fication level down to the level of cycle accurate sim-
ulation of a system using cycle accurate hardware and
an Instruction Set Simulator (ISS).

1.1 Problem Statement
In order to reduce time-to-market, designers utilize
system level design that reduces the complexity by
moving to higher level of abstraction. The system
level design process starts with a specification in an
System Level Design Language (SLDL) and performs
step-wise refinement using a system synthesis tool.
Time and cost of software development can be dra-
matically reduced when it is integrated into the sys-
tem level design flow.

Besides an SLDL, which is able to capture both
hard and software components, three major elements
are needed in order to support the software aspect of
the design flow:

• Processor models that capture the processor at
different levels of abstraction.

• RTOS support for the processor.

• A software generation tool that synthesizes user
code targeted for the selected RTOS.

This document reports on a case study for each of
these elements as outlined in Figure 1.

1.2 Related Work
System level modeling has become an important is-
sue, as a means to improve the SoC design process.
SLDLs for capturing such models have been devel-
oped (e.g. SystemC [27], SpecC [20]). Different
frameworks for system level design and software syn-
thesis have been developed.

Specification
M od el
I n SL D L

E m b ed d ed
Softw ar e Sy nth es is

(par t of SC E)
P r oces s ing
E l em ent

(A R M 7T D M I)
R T O S

(M icr o/O S-I I)

R T O S tar g eted
SW cod e

C om pil ation /
L ink ing

B inar y I m ag e

E x ecu tion on
T ar g et P r oces s or

E x ecu tion on
I ns tr u ction Set
Sim u l ator (I SS)

Sy s tem M od el
I ncl u d ing I SS

Figure 1: Software synthesis.

Benini et al. [9] introduce MPARM, a platform for
multi-processor SoCs design. It includes processor
models (ARM), SoC bus models (AMBA), memory
models and code development tools (GNU toolchain).
It provides a multi-processor cycle accurate architec-
tural simulator. They integrate a number of instruc-
tion set simulators by encapsulating each ISS in a
SystemC wrapper. The main purpose is system level
analysis, including profiling of system performance,
execution traces, signal waveform, and power estima-
tion.

Herrara et al. [28] describe an approach for embed-
ded software generation from SystemC. The proposed
methodology is based on the redefinition and over-
loading of SystemC class library elements. Their goal
is to use the same SystemC code that allows system-
level specification and verification, and SW/HW co-
simulation and embedded software generation. How-
ever, they impose strict requirements for the specifi-
cation in the input SystemC model.

The POLIS [8] approach is based on a finite state
machine-like representation, called Co-Design Finite
State Machine (CFSM). Each element in the network
of CFSMs represents a component being modeled in
the system. The software synthesis process is per-
formed in two steps, transformation of CFSM spec-
ification into an S-Graph, and generation of C code
from the S-Graph. This work is mainly for reactive
real-time systems and is not designed for general ap-

3

plications.
[11] presents a software refinement flow based on

the SystemC SLDL. It too makes use of integrating
an instruction set simulator for hardware/software co-
simulation.

SoC Designer with MaxSim Technology [6], is a
commercial tool set for fast modeling, simulation and
debugging for complex System-on-Chips designs. It
provides a graphical user interface for interactive sys-
tem design, modeling and simulation. It provides
cycle-accurate and cycle-approximate models with
support for SystemC. VaST Systems [36] offers a sim-
ilar set of tools with a focus on embedded systems.
Furthermore, CoWare [13] presents with the Virtual
Platform Designer an integrated solution for the cus-
tom platform software design.

1.3 Outline
This document is organized as follows, Section 2 de-
scribes modeling of the processor (we selected the
ARM7TDMI [7]). This section will describe the ab-
stract models, as well as the integration of a suiting
ISS (SWARM [14]). Second, Section 3 reports on the
porting of an RTOS (µC/OS-II [29]) toward the se-
lected processor core. Thirdly in Section 4, we will
give an overview how the generated SW code is tar-
geted to the selected processor core.

Combining these three elements enables an integra-
tion of the software development and simulation into
the system level design. The advantages of this in-
tegration are shown with an example of car anti lock
breaks in Section 5.

2 Processor
The first key point for supporting a software develop-
ment flow is to integrate a processor model into the
system flow. By capturing the fundamental character-
istics of the processor it makes the sytem design flow
aware of a processor as a processing element, allows
to map software to it and to estimate the performance.
Therefore we will first describe the selected proces-
sor and its modeleding. We capture processor at two
levels of abstraction. First as an abstract behavioral
model that yields early exploration results and second

as an integration of an Instruction Set Simulator (ISS)
for a cycle accurate execution of the target binaries.

We chose an ARM core as a modeling example,
since ARM is the industry leading provider of 32-
bit embedded RISC microprocessor with almost 75%
of the market [4]. In particular, we focused on the
ARM7TDMI.

2.1 ARM7TDMI
According to [2] the ARM7TDMI core is at the
present the industry’s most used 32-bit embedded
RISC microprocessor. We therefore selected this core
as a basis for the embedded software synthesis. The
core provides high performance with very low power
consumption. It is a RISC architecture, provides
high instruction throughput and real-time interrupt re-
sponse. The ARM7TDMI core is 100% binary com-
patible with other ARM7 family cores and forward-
compatible with the ARM9, ARM9E and ARM10E
families. The processor core is supported by a wide
range of operating systems.

The ARM7TDMI has a Von Neumann architecture,
with a single 32-bit data bus carrying both instruc-
tions and data. Only load, store and swap instructions
can access data from memory and data can be 8-bit
(bytes), 16-bit (halfwords) and 32-bit (words) [7].

2.1.1 Instruction Pipeline

As shown in Figure 2, the ARM7TDMI contains a
three-stage pipeline.

Figure 2: ARM7TDMI Instruction Pipeline (Source
[7]).

The three-stage pipeline allows concurrent opera-
tion of the processing and memory system. While one
instruction is executed, its successor is being decoded

4

at the same time and yet another instruction is being
fetched from the memory. The Program Counter (PC)
refers to the instruction being fetched rather than the
instruction being executed. Therefore, the value of
the PC is usually ahead by two address locations with
respect to the instruction in the execution stage.

2.1.2 Architecture

The ARM7TDMI [2], an implementation of the
ARMv4T architecture, is a 32-bit RISC processor
with a unified 32-bit data and address bus. Figure 3
shows the architecture of the ARM7TDMI processor
core.

For increased memory efficiency, it supports both
the ARM and the Thumb instruction sets. While the
ARM instruction set is 32-bit wide and offers the
full instruction flexibility, the Thumb instruction set
is limited to 16-bit. It only implements the most
frequently used instructions, which according to [7]
cover 65% of typical ARM code.

Each 16-bit Thumb instruction is internally trans-
lated to the corresponding 32-bit counterpart. Thumb
instructions operate on the same register set, the same
32-bit ALU and 32-bit memory address as the 32-bit
ARM instructions. With that, the Thumb instruction
set allows for very compact code, while delivering at
the same time the performance of the 32-bit architec-
ture.

The ARM7TDMI processor can be extended by
custom co-processors. Up to 16 co-processors can
be tightly coupled with the ARM7TDMI core for im-
plementation of highly specialized additional instruc-
tions. Detailed information about cycle counts and
the two instruction sets can be found in [2, 7].

To react to external events, the ARM7TDMI has
two low active, level sensitive interrupts signals
(nIRQ and nFIQ). nIRQ triggers the general purpose
interrupt and nFIQ the Fast Interrupt Request (FIQ)
with a higher priority that the nIRQ. In addition to the
higher priority, the FIQ is optimized for faster execu-
tion. It uses a reduced number of registers that are
exclusively available during interrupt execution. A
lower number of registers, minimizes the overhead of
context switching and reduces the interrupt overhead.

Figure 3: ARM7TDMI processor core (source [7]).

2.1.3 Bus Architecture

The ARM7 Thumb family processor cores are de-
signed for use with AMBA on-chip bus architecture.
ARM defined with the Advanced Microprocessor Bus
Architecture (AMBA) [3] a widely used on-chip bus
system standard. It contains a group of busses, which
are used hierarchically as shown in Figure 4. The Ad-
vanced High-performance Bus (AHB) is a system bus
designed for connecting high-speed components in-
cluding ARM processors.

Although the initial ARM7TDMI design did not
include a direct connection to the Advanced High-
performance Bus (AHB), it can be connected through
a wrapper, provided with the AMBA Design Kit [2],
to the AMBA AHB.

The AHB is a multi-master bus that operates on
a single clock edge. High performance is achieved

5

Figure 4: AMBA bus architecture (Source [3]).

by a pipelined operation that overlaps arbitration, ad-
dress, and data phases, and by the usage of burst trans-
fers. Split and retry transfers allow the slave to free
the bus if the requested data is temporary unavailable.
The AHB also employs a multiplexed interconnection
scheme to avoid tri-state drivers.

2.2 Abstract Processor Modeling

In order to perform software synthesis in our design
and refinement flow, based on the System-on-Chip
Environment (SCE) [1], the target processor has to
be captured as a Processing Element (PE) [22]. A PE
is a system component that processes data (performs
computation) by executing application specific algo-
rithms. Examples for a PE are custom designed hard-
ware or a programmable element (e.g. a processor).
Each PE is captured at multiple levels of abstraction.
Throughout the design process a model with an in-
creasing amount of detail will be used.

A Behavioral Model of a PE is the most abstract
model, which describes only the basic characteristics.
It is used for the PE allocation and mapping of com-
putation behaviors of the specification model during
architecture exploration.

Later in the design flow the OS Model is used as
a template for inserting an RTOS model for abstract
scheduling.

The Bus Functional Model is a pin-accurate model,
that adds communication layers describing com-
munication behavior of the component. For a
programmable PE, a cycle-accurate Instruction Set
Model is also used for clock cycle-accurate simula-
tion of the PE.

Next sections describe in more detail each model
for the selected processor, the ARM7TDMI.

2.2.1 Behavioral Model

A PE behavioral model is used for PE allocation
during architecture exploration and defines the basic
characteristics of a PE. It enables the refinement flow
to map user behaviors to it and to analyze the perfor-
mance in various aspects.

The ARM7TDMI behavioral model contains three
aspects. It contains annotations for general database
management, attributes and weight tables.

The annotations for the database management con-
tain the basic information needed for managing the
PE in the database. For example it includes a catego-
rization of the ARM7TDMI PE as a general purpose
core that is a 32-bit RISC. It also contains references
to the more detailed models (OS Model, Bus Func-
tional Model and Cycle Accurate Model). Further-
more it contains the bus connectivity of the processor
and its address range.

Figure 5 shows the behavioral model of
ARM7TDMI. The ARM7TDMI is connected
through an AHB wrapper to the AMBA AHB. For
simplicity however, we integrated this wrapper into
our ARM7TDMI model as if the processor had a
direct interface to the AHB bus.

ARM7TDMI
ARM7TDMI

Behavioral Model

PortA
AMBA AHB

master0
0x0FFFFFFF – 0xFFFFFFFF

AMBA AHB
BUS

Figure 5: ARM7TDMI behavioral model.

Attribute annotations describe the basic character-
istics of a PE. The attributes include, clock frequency,
MIPS (million instructions per second), power con-
sumption, instruction width, data width, data mem-
ory and program memory. These attributes of the
ARM7TDMI have been defined according to the doc-
umentation [7, 2, 4]. Some of the attributes are de-
fined as ranges, to adapt the processor to the current
design needs. As one example, the clock frequency
can be set between 12.5 MHz and 75 MHz to meet
the application demands.

The main information of an PE behavioral model is
captured in form of weight tables. The weight tables
are used for interpretation of the generic profiling re-

6

sults. The profiler collects generic profiling informa-
tion during simulation for each PE. It counts the exe-
cution times for each basic block and determines the
amount of instructions for each block. The generic re-
sults are then interpreted for a particular PE using the
PE’s weight tables. This interpretation yields the first
application and target specific performance data. The
interpreted profiling results are then used for compar-
ative analysis of different design alternatives.

The ARM7TDMI behavioral model contains two
weight tables. The computation weight table contains
number of cycles to execute each possible operation
per data type. The second weight table contains pa-
rameters for calculating the code size. Each item in
the latter weight table indicates the number of instruc-
tions required to perform an operation with a certain
data type.

Using the weight tables for an interpretation of the
profiling results dramatically simplifies the process.
Despite this simplification, the results are useful for
exploration. When comparing the performance es-
timation of two alternative designs the relation be-
tween these results is of interest for design decision.
As long as the estimation fulfills the fidelity property
[19], which requires the relation between the estima-
tion results of the two designs to be identical to the re-
lation in a real implementation, an absolute accuracy
is not required. For simplicity, we made the following
assumptions for populating the weight tables.

1. ARM7TDMI has a three-stage pipeline in which
an instruction is first fetched, then decoded and
finally executed. We assumed for the clock-cycle
count that the instruction is in the execution stage
with fetching and decoding already performed in
the previous cycles. Hence, fetch and decode cy-
cles are not included in the cycle count.

2. We assume all operands to be are available in
registers and furthermore the absence of data
hazards. Hence, our cycle count metric captures
the best case results.

3. The weight tables reflect the cycle count without
any co-processor1.

1 For the ARM7TDMI, a Vector Floating Point (VFP) co-
processor is needed for a hardware support of floating point oper-
ations.

4. The number of instructions required for float-
ing point operation highly depends on the float-
ing point emulation library or the hardware sup-
port. To have some estimation, we assumed a
four times longer execution for float data types
over an integer data type. Operations on double
data types are assumed to be eight times longer.
For example, we captured a float addition to re-
quire four instructions in four cycles.

In summary, we assume best case conditions in the
weight tables.

2.2.2 OS Model

If more than one behavior is mapped to a PE, the
mapped behaviors have to be scheduled. A pro-
grammable PE allows only sequential execution at a
time. One scheduling approach is dynamic schedul-
ing as executed by an RTOS on the target system.
However, it is not desirable to execute a complete
RTOS at an early design stage due to the simula-
tion overhead. Therefore, an abstract RTOS model as
described in [23] is used for exploration of different
scheduling policies.

The ARM7TDMI OS model provides a template.
Later, the refinement tools fill this template based on
the selected scheduling policies and parameters. The
RTOS model is not a complete RTOS, but implements
the necessary concepts including task management,
real-time scheduling, task synchronization and inter-
rupt handling. The PE’s OS model is inserted as an-
other layer around the behavioral model.

2.2.3 Bus Functional Model

The Bus Functional Model is a pin-accurate model,
which contains information about the PE’s commu-
nication interfaces and describes the communication
behavior. Additionally, it contains a template for
computation functionality that will be filled by adding
communication layers on top of the behavioral model.
The general requirements for the PE Bus Functional
Model (BFM) can be found in [22].

The ARM7TDMI BFM consists of a behavior hi-
erarchy as shown in Figure 6. The outer shell is the

7

ARM7T D MI
B u s F u n c t i o n a l Mo d e l

H a r d w a r e S h e l l
C o r e

H AL

I RQ

AMBA AHB
Ma s t e r
P r o t o c o l

P r o t o c o l
W r a p

MAC L i n k
MAC
L i n k

MAC
L i n k

nIRQ
nF IQ

AMBA AHB

P I C

AMBA AHB
S l a v e
P r o t o c o l

MAC
L i n k

I n t e r r u p t
D e t e c t

I n t e r r u p t
C o n t r o l
L o g i c

I n t r . S o u r c e
I n t r . S t a t u s
I n t r . Ma s k

T i m e r

AMBA AHB
S l a v e
P r o t o c o l

MAC
L i n k

I n t .
G e n .

T i m e r
C o n t r o l
L o g i c

T MC
T MV
T ML

Figure 6: ARM7TDMI bus functional model
overview.

bus functional shell that defines all pins of the pro-
cessor. It contains three parallel executing behaviors:
the processor core, a Programmable Interrupt Con-
troller (PIC) and a timer. The processor core models
the bare core as described in the ARM documentation.
The PIC is an interrupt controller that maps 32 exter-
nal interrupts to the two core interrupt lines (nIRQ,
nFIQ). The timer, disabled by default, can generate
periodic interrupts. The BFM communicates to the
outside via the AMBA AHB and interrupts can be
triggered by one of the 32 external interrupt lines.

The bus implementation of the AMBA AHB itself
is taken from the bus database. The layer based im-
plementation is realized in channels as described in
[35]. Each layer is implemented in a separate chan-
nel. In order to communicate, the according channel
is instantiated inside the behavior.

The processor core contains two behaviors that
are executing in parallel. The Hardware Abstraction
Layer (HAL) shell acts as a template. Throughout the
synthesis the template will be filled with the user com-
putation behaviors. The Interrupt Request (IRQ) be-
havior contains an interrupt handling logic that com-
municates with the PIC and triggers execution of the
interrupt handlers.

Both behaviors the Hardware Abstraction Layer
(HAL) and the IRQ communicate through the AHB
master interface. The protocol layer interface is
wrapped by the the protocol wrap channel before it
connects to the HAL shell. The wrapper disables

the interrupt handling while a bus transaction is in
progress. Doing so avoids preemption of a partially
finished transaction and is needed to maintain accu-
rate protocol timing.

The IRQ behavior has two connections to the out-
side, it terminates the nIRQ and nFIQ lines that sig-
nal an interrupt from the PIC and a media access layer
link channel for the data connection to the PIC. This
connection is used for communicating with the PIC,
in order to determine the actual source of an interrupt
and to clear the interrupt after handling it.

The PIC behavior is connected as a AHB slave
to the AHB bus, which is implemented through the
AMBA AHB Slave Protocol channel. For a Media
Access Control (MAC) layer access it uses the slave
version of the link layer. Additionally a channel for
the interrupt detection is instantiated inside the PIC
that performs the recognition of an interrupt from an
external source. The Interrupt Control Logic behav-
ior listens to the interrupt detection logic, sorts the
incoming interrupts by priority and signals an aggre-
gated interrupt to the core.

For the bus functional model, we captured a Pro-
grammable Interrupt Controller (PIC) according to
NEC’s System-on-Chip Lite+ definition in [25], with
a few simplifications. The PIC provides 32 maskable
interrupts, with a 2-level programmable priority. It is
build out of 4 basic blocks: low level interrupt de-
tection modules, the interrupt control logic, register
behaviors and the slave channels for the bus inter-
face. The interrupt detect modules are responsible for
recognizing the interrupt condition on PE’s interrupt
lines and to change the interrupt status register (Intr.
Status) according to the detected state.

The control logic behavior combines the interrupt
information of all detect modules, sorts them by pri-
ority and signals the interrupt condition to the pro-
cessor core through nIRQ and nFIQ if a non-masked
interrupt is active. It then provides in Intr. Source
the highest priority active interrupt, which the proces-
sor evaluates to select the interrupt service routine to
execute. The PIC also contains a mask behavior, so
that the core as the possibility to mask individual in-
terrupts through the Intr. Mask register. For a clean
startup, all interrupts are disabled by default.

Additionally, we modeled a programmable timer

8

unit also following NEC’s System-on-Chip Lite+ def-
inition in [25]. The timer can be programmed to gen-
erate periodic interrupts. It is used in the later de-
scribed cycle accurate model for the actual RTOS to
keep track of time. The timer’s activity (reset, count-
up, count-down) is controlled by the Timer Control
Register (TMC) and the period through the Timer
Load Register (TML). These registers are available
via the AHB interface. The timer is disabled by de-
fault. It will be enabled by the RTOS running in the
cycle accurate model as described in Section 3.2.4.

2.3 Cycle-Accurate Instruction Set Simula-
tor

After the final stage of the embedded software syn-
thesis the generated binaries have to be tested and the
final system performance has to be evaluated. For
that purpose an Instruction Set Simulator (ISS) is re-
quired, that provides an accurate model of a processor
(besides execution on the actual target processor) and
accepts the binary code of the target processor.

The embedded C code is generated in the software
synthesis as the final step of software refinement (see
Section 4). The C code is then compiled and linked
against all required libraries (e.g. RTOS library) to
yield the final target binary. For the validation of
the final target binary, co-simulation of hard and soft-
ware can be used, which requires an ISS in the sys-
tem level design flow. The ISS model, as part of the
database, then replaces parts of the bus functional pro-
cessor model. A bus functional model of the target
design with an integrated ISS offers true hardware/-
software co-simulation capabilities and yields cycle
accurate timing information for all aspects: software
execution, hardware execution2 and communication.

Next we will describe the selection of an ISS from
multiple candidates and cover its integration into the
database.

2.3.1 Selection of an ISS

An Instruction Set Simulator (ISS) is a simulation
model that models the micro architecture of a proces-
sor at the instruction set level. An ISS reproduces the

2 Assuming the custom hardware has been refined to RTL.

execution behavior of the actual processor by read-
ing binary instructions, decoding and executing them
while incrementally maintaining all relevant internal
state information of the processor. It emulates all
components accessible to the target assembly code,
such as registers, program counter and processor sta-
tus flags. Additionally, it can provide debug access
to internal state information of the processor that are
usually hidden in a real hardware (e.g. detailed status
of the pipeline). Using an ISS eases software devel-
opment and debugging by providing a deterministic
execution; especially useful for analyzing race condi-
tions.

For integration into the system level design flow,
we considered several instruction set simulators for
the ARM7 core:

1. SimpleScalar [10]

2. GDB ARMulator [15]

3. SWARM [14]

4. ARM ARMulator [5]

The selection process of the ISS was guided by
the requirements of the development and simulation
environment. Especially the integration into the co-
simulation environment poses some restrictions. For
example, an ISS is typically implemented to run as a
stand alone process. However, for a co-simulation it
has to run within the context of the co-simulation en-
gine. We have considered the following requirements
for the ISS selection:

1. Cycle-accurate simulation of ARM7 micro-
architecture.

2. Cycle callable interface (API) for cycle-by-cycle
simulation.

3. Access to the bus interface of the ISS.

4. Ability to handle interrupts and optionally to
provide an interrupt controller.

5. Availability of source code for the ISS.

6. Availability without license cost.

9

A key requirement for the ISS is a cycle callable
API, to call it cycle-by-cycle while simulating along
with other components within the design. The ARM7
core will be connected to different system-on-chip
components through the AMBA bus. Therefore, the
ISS has to provide an access to the bus interface to in-
tegrate with our AHB bus model. For synchronization
with other components, the ISS has to implement in-
terrupt handling from different sources. For an easier
integration and adaptation the source code of the ISS
should be available.

Figure 7 compares each considered simulator ac-
cording to the defined criteria. The following para-
graphs discuss each simulator individually.

SimpleScalar [10] is a tool set consisting of
compiler, assembler, linker, simulator and visual-
ization tools. The SimpleScalar simulator supports
the ARM7 instruction set, but models the SA-1100
micro-architecture. Both StrongARM SA-1 core and
ARM7 core are based on ARMv4 ISA but have dif-
ferent micro-architectures. While StrongARM SA-1
core has a five-stage pipeline, the ARM7 implements
a three-stage pipeline. Therefore SimpleScalar’s
StrongARM model would yield inaccurate timing in-
formation for the ARM7.

The GNU Project debugger (GDB) [15] contains
an ARM emulator called GDB ARMulator. The GDB
ARMulator emulates ARMv4T and ARMv5ET, and
supports both Thumb and DSP extension. However,
it lacks support for the interrupts. Furthermore it is
an instruction-by-instruction simulator that only sim-
ulates the functionality and not the micro architecture.
Therefore it does not offer accurate cycle count infor-
mation.

SWARM (Software ARM) [14] is a C++ based
model of the ARM7 processor’s datapath at the bus
level. It supports ARMv4 Instruction Set Architec-
ture (ISA), and has the acceptable limitation of requir-
ing binaries generated from gcc (in the COFF format).
The simulator does not support the 16-bit Thumb ex-
tension. SWARM implements a cycle callable inter-
face and provides cycle accurate simulation. Further-
more, is supports interrupt handling.

ARM itself offers an ISS, called ARMulator [5],
for its processor cores as a part of its RealView De-
veloper Suite. The ARMulator supports many ARM

core processor families, including ARM7, ARM9E
and ARM10E. It provides a cycle accurate simulation
with support for interrupts and exceptions. However,
it requires a license and is not freely available.

Weighting the features of each ISS candidate, we
selected SWARM for our work. SWARM provides
a cycle accurate simulation for the ARM7 processor
core and models the ARM processor core data path
at the bus level. It provides a cycle-by-cycle callable
interface and supports handling interrupts and excep-
tions (it even includes a interrupt controller). Being a
university research project, SWARM is freely avail-
able in source code. Additionally, SWARM is the
only simulator that individually simulates the ARM
processor core, while the remaining three simulators
are a part of a larger tool set and support ISAs of other
processor cores not needed. We expect an easier inte-
gration due to the reduced complexity.

2.3.2 SWARM (Software ARM)

SWARM [14] is a modular constructed simulator for
the ARM processor’s datapath at the bus level. It
has been implemented as a hierarchy of C++ classes,
which allows selective use of either the simple core
only or of a core with cache. SWARM models the
internal datapath based on the ARM7 core. External
elements, such as the interrupt controller, are based
on definitions of StrongARM. Since it models access
to external elements, the SWARM includes a bus in-
terface, which can be used for connecting additional
components.

The instructions from the binary stream are de-
coded into control signals that contain information
for managing the internal datapath and the bus inter-
face. SWARM supports most of the instructions of
the ARMv4, including data processing, data transfer,
load/store and co-processor register transfer. How-
ever, it does not completely implement the ARM in-
struction set and does not support the Thumb instruc-
tion set. SWARM requires a COFF binary image pro-
duced by gcc. It includes a timer, LCD and UART
controller, which are modeled after the specification
of the Intel SA-1110 processor [12]. It also includes
rudimentary support for a basic system co-processor
to aid extending the ISA.

SWARM implements two interrupt signal lines

10

ISS
Processor Core /
Microarcitecture

supported
ISA Modeled ISA complete

Thumb suppport
Cycle-by-

cycle Callable Interrupt Handling Cost License

SimpleScalar SA-1 core
SA-11xx ARMv4T Yes

Thumb support Yes No but can be
extended to include Free

SimpleScalar LLC license
Acad. Non-comm. & comm.
Academic.non-comm:free

GDB ARMulator ARM 6,7 ARMv4T,5TE Yes
Thumb Support

No
Instr-by-Instr

No/Yes
Stops on interrupt Free GNU General Public License

SWARM ARM 6,7 ARMv4
Binaries compiled with

gcc
No Thumb Extension

Yes Yes
Interrupt Controller Free GNU General Public License

ARM ARMulator ARM 7,9,9E,10E ARMv4T,5T,6 Yes Yes Yes "$" ARM Limited
Academic License

Figure 7: Instruction-set simulators for ARM core.

(IRQ and FIQ) to interrupt the core and basic inter-
rupt handling. It also includes an 32-bit interrupt con-
troller based on the Intel SA-1110 [12] for synchro-
nization with external peripheral devices.

SWARM attempts to realistically simulate the
memory hierarchy for a ARM machine and even in-
cludes a cache model. However, the external mem-
ory bus interface is not complete. It provides an ab-
stract untimed bus interface with 32-bit address and
data values. SWARM utilizes an internal memory of
12 MB, starting at address zero, where the COFF bi-
nary file is loaded into during initialization and where
the execution starts from.

Figure 8 depicts the decisions during a write and
a read memory access in SWARM. Accessing the
memory is divided into three levels: the ARM core
interface, the ARM processor interface that contains
cache, and the main memory. In case of a read cache
miss, the ARM processor halts the core, fetches the
data from the main memory into the cache and then
releases the core. In case of a read cache hit, the data
is available in the next cycle and the core execution is
not halted. Memory writes are implemented as write
through that immediately appear in the external mem-
ory.

SWARM has been implemented as a hierarchy of
C++ classes as outlined in the Figure 9. SWARM, be-
ing a research project at the University of Glasgow,
has not been completely implemented. However, the
current version is sufficient to execute binaries com-
piled with gcc. Even so, the implementation contains
some restrictions.

(a) Read (b) Write

Figure 8: SWARM memory accesses (Source [14]).

Core

Cache

Coprocessor

ARM7

LCD Ctrl.

UART Ctrl.

Timer Interrupt
Ctrl.

SA-1110

IR
Q

FI
Q

IR
Q

FI
Q

M
E
M
O
R
Y

SWARM

AD
DR

DA
TA

0 31...... 0 31......

Figure 9: SWARM implementation (source [14]).

11

Our work includes some changes to SWARM in or-
der better to match the real ARM core. We have per-
formed three main alterations.

First, the interrupt lines nIRQ and nFIQ in the
SWARM core have been incorrectly modeled as edge
sensitive. Thus, an interrupt will not be detected if the
interrupt is disabled during the actual interrupt event.
Even after enabling the interrupt, the according inter-
rupt service routine is not executed. The ARM7TDMI
core, on the other hand, is level sensitive to the two
interrupt signal lines. Hence, enabling the interrupts
after the occurance of an interrupt, with the interrupt
line still being active, will trigger execution of the in-
terrupt handler. We modified the SWARM core to im-
plement level sensitive interrupts.

Second, we changed SWARM to avoid preemption
of an nIRQ interrupt. An interrupt triggered through
nFIQ has higher priority than an nIRQ triggered in-
terrupt. Thus, an nFIQ interrupt can preempt an nIRQ
interrupt. However, this preemption of an nIRQ inter-
rupt is not handled correctly in SWARM, which loses
the order of execution. As a workaround we have dis-
abled the nFIQ during execution of an nIRQ interrupt.
Although this does not yield timing accurate results,
it allows correct execution. As future work we plan to
investigate fixing the FIQ interrupt handling.

Third, the interrupt controller included in SWARM
is incomplete. For reasons of future optimization we
have decided not to use the included PIC, but modeled
a PIC as a part of the bus functional model external to
SWARM and disabled the SWARM internal PIC.

2.3.3 Cycle-Accurate PE Model

A cycle-accurate model of a programmable PE pro-
vides cycle accurate simulation of the PE’s instruc-
tion set and is called the instruction set model. The
instruction set model replaces parts of the bus func-
tional model. Therefore, the interface of the cycle-
accurate model must exactly match the interface of
the corresponding bus-functional model [22]. In other
words, the cycle-accurate model is a SpecC behav-
ior with identical external ports as the bus-functional
model, it adds a refined cycle-accurate timing.

In order to reach the cycle-accurate execution we
integrate the SWARM ISS into the database of our
refinement flow. The refinement tool flow uses the

SLDL SpecC [20] for capturing the design and the
database elements. While SpecC is a superset of C
language, SWARM, on the other hand, is based on
C++ classes. To integrate SWARM, we first created a
C wrapper around the ISS (SWARM) that provides a
C-level API, which can be called from SpecC behav-
ior.

The SWARM with its C wrapper is embedded into
a SpecC behavior ARM7TDMI ISS. The wrapping be-
havior ARM7TDMI ISS calls the ISS cycle by cycle
and interfaces with the remaining design (e.g. exter-
nal slaves on the same bus). It uses the C-API to trans-
late between SWARM events and external events. As
such it detects a SWARM bus access on the SWARM
abstract bus interface and calls the channel of the
bus functional model to execute the requested bus
transfer. On the other hand it monitors the inter-
rupt inputs and triggers an SWARM internal inter-
rupt, should an interrupt occur. The wrapping behav-
ior ARM7TDMI ISS advances the time in the SpecC
simulation according to the clock definition of the uti-
lized ARM7 processor core.

Figure 10 shows the instruction set model of the
ARM7TDMI. It looks very similar to the bus func-
tional model and reuses the same programmable in-
terrupt controller. However, instead of the previously
used core shell for abstract execution, it instantiates
wrapping behavior ARM7TDMI ISS that contains the
SWARM. The ARM7TDMI ISS connects to the AHB
via the AMBA AHB master protocol channel. Note
that due to the incomplete state of the SWARM in-
ternal PIC and for future optimization, we do not use
the SWARM internal PIC. We neither use the LCD,
UART controller or the internal timer.

As shown in Figure 10, the instruction set
model has the identical pin level interface as the
ARM7TDMI bus functional model including wires
for the AMBA AHB master and slave interface as
well as the interrupt wires. As in the BFM, the AHB
wires are connected to the inlined master and slave
protocol channels, which in turn are used by the me-
dia access layer channels (AMBA Master MacLink
and AMBA Slave MacLink).

The two low active interrupt wires nIRQ and nFIQ
directly connect the PIC to the ARM7TDMI ISS. The
PIC signals a non-masked interrupt from any of the 32

12

ARM7T D MI
B u s F u n c t i o n a l Mo d e l
H a r d w a r e S h e l l

P I C

C o r e I S S AMB A AH B
Ma s t e r
P r o t o c o l

AMB A AH B
S l a v e
P r o t o c o l

MAC
L i n k

I n t e r r u p t
D e t e c t

Interrupt
C o ntro l
L o g i c

Intr. S o urc e
Intr. S ta tus
Intr. M a s k

AMBA AHB

ARM7T D MI _I S S

nIRQ
nF IQ

S W ARM I S S

T i m e r

AMB A AH B
S l a v e
P r o t o c o l

MAC
L i n k

I n t .
G e n .

T i m er
C o ntro l
L o g i c

T M C
T M V
T M L

Figure 10: SWARM instruction set model.

incoming interrupt wires to the ISS behavior through
the either the nIRQ or the nFIQ line. The wrapping
behavior ARM7TDMI ISS checks both lines for each
cycle of the ISS. It forwards the interrupt signal to
the SWARM ISS by calling the C-level API for set-
ting and clearing the IRQ/FIQ request. This triggers
execution of the interrupt service routine within the
SWARM simulated code, which in turn then commu-
nicates through the AMBA AHB with the PIC to de-
termine the interrupt source.

Upon startup the wrapping behavior
ARM7TDMI ISS initializes the SWARM, which
loads the binary file of the user program into the
SWARM internal memory. Execution starts then
at address zero (SWARM internal memory). The
wrapper ARM7TDMI ISS calls the SWARM cycle-
by-cycle in an endless loop. For each iteration, the
ARM7TDMI ISS behavior checks external interrupts,
drives the ISS’s asynchronous inputs and drives the
external bus interface if an according I/O instruction
is executed within the SWARM ISS.

In a non-I/O processor cycle, the ARM7TDMI ISS
advances SpecC time for one processor clock period
and advances the ISS by a single cycle. In case of
external bus read or write, the ARM7TDMI ISS sim-
ulates the bus by calling the bus protocol channel
AMBA AHB Master Protocol imported from the bus
database. Calling the protocol channel advances the
simulation time depending on the bus state and the
selected slave, the ARM7TDMI ISS then advances the

ISS internal cycle count accordingly. It updates the
PE ports for every external I/O operation according to
the processor state and bus state. The instruction set
model is clock-cycle accurate and integrates with ex-
ternal components in the design through the bus func-
tional interface and interrupts.

3 Real-Time Operating System
During the refinement process the designer may as-
sign multiple behaviors to one software processing
element (CPU). Due to the inherent sequential ex-
ecution nature of a processor, behaviors have to be
scheduled either statically or dynamically. An RTOS
is needed to run on the target processor for dynamic
scheduling.

In the software synthesis stage, C code is generated
from the behaviors representing the software applica-
tion running on the PE. The generated C code is cross
compiled to the target processor’s instruction set us-
ing a cross compiler. The final executable is generated
by linking it against a customized RTOS. In the RTOS
targeting stage, an actual RTOS is selected from the
database and is inserted in the code for providing nec-
essary scheduling services.

In order to target an RTOS to a particular processor,
the RTOS needs to be first adapted for the selected
target processor. This chapter starts with the selection
of an RTOS for the target ARM core. It then focuses
on the integration of the selected RTOS.

3.1 RTOS Selection
An RTOS is an operating system that has been de-
signed for real time applications. The RTOS, through
its scheduling algorithms and deterministic nature,
guarantees that the system deadlines can be met. Or
to be more accurate, an RTOS provides services tim-
ing deterministic so that it does not hinder the system
from meeting the deadlines. Deterministic execution
times are a strict requirement, an additional goal is to
minimum response time for interrupts. An RTOS pro-
vides the system with the basic services of scheduling,
multitasking and synchronization.

Many RTOSs are available, ranging from cost free
to commercial ones. Therefore, we describe first our

13

selection process. We have considered the following
RTOSs for our work:

1. RTEMS [30]

2. TinyOS [31]

3. eCos [16]

4. µC/OS-II [29]

Almost any RTOS can be adapted for targeting on
the ARM core. Therefore, based on the target proces-
sor we have no strict requirement for the RTOS. How-
ever, while considering the concurrency and map-
ping performed in the refinement flow, there were few
requirements that we considered while selecting the
RTOS. The requirements that we took in to account
are listed below:

1. The RTOS should be able to support multitask-
ing or concurrency.

2. It should have some mechanism for intertask
communication and synchronization.

3. Priority and first-come-first-serve scheduling has
to be supported.

4. The source code should be easy to adapt for an
ARM core.

5. The size for the RTOS should be small.

6. It should be freely available with detailed docu-
mentation.

The first three requirements were the most impor-
tant, although very basic, requirements for the RTOS.
The remaining requirements were considered for an
easy adaptation to the ARM core.

Figure 11 shows a comparison of the four consid-
ered RTOSs. It contains the information based on our
metrics mentioned above.

Note that even though, µC/OS-II is no longer freely
available, we considered this RTOS in an older ver-
sion available with source code in the book [29].

TinyOS [31], is an event-driven architecture and
offers only a limited concurrency. It supports only
a single process, therefore does not include process

management. Tasks are scheduled with a simple FIFO
scheduler and cannot preempt other tasks. Only inter-
rupts can preempt a task.

The three RTOSs - RTEMS, eCOS and µC/OS-II
are suitable for our work as they supported multitask-
ing and have some mechanism for intertask communi-
cation. Even though RTEMS offers more features as
compared to the other two, we selected µC/OS-II for
our work due to the following reasons. The µC/OS-II
has a very small footprint, yet at the same time it does
provide all necessary features. Its source code is well
organized, understandable and can be adapted easily
to the ARM core. In addition to that we had previous
experience with this RTOS.

3.2 MicroC/OS-II
µC/OS-II [29] is a multitasking real-time kernel that
provides an execution environment for many tasks,
where each task can utilize system resources. It pro-
vides transfer of execution from one task to the other,
so that resources can be used efficiently and timing
deadlines can be achieved. µC/OS-II provides low la-
tencies for the kernel services. In order to achieve
timeliness, priority scheduling is supported. Each
task is assigned a priority and is scheduled according
to it. Furthermore, preemption is supported, a higher
priority task may preempt execution of a lower prior-
ity task in order to perform a time-critical function.

µC/OS-II is ROMable - it can execute as firmware
from the ROM of an embedded systems. It is portable
since it has been implemented mostly in ANSI C and
contains only a small amount of assembly code for
adaptation to a particular processor core. In fact, it has
been ported to more than 40 different processor archi-
tectures ranging from 8- to 64- bit microprocessors,
microcontrollers and digital signal processors [29].

µC/OS-II provides a fully preemptive real-time
kernel and priority scheduling that always executes
the highest priority ready task. It supports multitask-
ing, where the application software can define up to
56 tasks (8 tasks are reserved for µC/OS-II). Being
a real-time kernel, the execution time of most of the
µC/OS-II functions and services is deterministic. In
other words, the time it takes to execute a function can
be estimated, which is necessary to make any real-
time guarantees.

14

RTOS Cost Footprint Portable
to ARM Scheduling Concurrency IPC Debug API

RTEMS Free 64K~128K Yes SCHED_RR,
SCHED_FIFO pThreads

Semaphores,
Mutexes, Condition-
variable, Pqueues

GDB, DDD,
Debug over-
ethernet,

serial, BDM

RTEID/ORKID,
uITRON ,
POSIX

TinyOS Free 400bytes Yes FIFO,
Premptive

Limited - Two
Threads of Execution:
Tasks & Hardware
event handler

Exclusive shared
memory

TOSSIM
(simulator +
Debugger)

Custom

eCos Free 20K~200K Yes SCHED_RR,
SCHED_FIFO Yes

Semaphores,
Mutexes, Condition-

variable
GDB uITRON,

POSIX

µC/OS-II $ 2K~20K Yes Fixed Priority,
Preemptive Yes Semaphares,

Mutexes GDB POSIX

Figure 11: RTOS survey (source Jinhwan Lee).

µC/OS-II is a small real-time kernel with a memory
footprint of about 20KB. It is a good candidate for ap-
plication specific RTOS configuration, since it can be
scaled down in footprint if the application does re-
quire fewer features (down to 2K bytes of code space
according to [29]).

3.2.1 MicroC/OS-II Structure

µC/OS-II is small with about 5,500 lines of code,
mostly in ANSI C. The source code is well orga-
nized. Figure 12 shows µC/OS-II the file structure and
includes the hardware/software architecture as well.
The kernel code is organized into three segments:

Application Specific Code contains the user specific
application software as well some code related to
the µC/OS-II. This includes initializing and start-
ing the kernel as well as using the kernel specific
API for task management, synchronization and
communication.

Processor-Independent Code is the main code of
the µC/OS-II kernel and is independent of the
actual target processor. It provides the ker-
nel services for task management, time manage-
ment, semaphores, scheduling policy and mem-
ory management.

Processor-Specific Code contains an adaptation
layer: the port to the selected target proces-
sor, which varies with processors. This code

typically manipulates directly individual pro-
cessor registers, for example in order to switch
contexts.

Figure 12: MicroC/OS-II hardware/software architec-
ture (Source [29]).

15

3.2.2 Kernel and Kernel Services

The kernel, the heart of the operating system, pro-
vides multitasking services so that the application can
be divided into smaller manageable tasks that share
the same processor. Based on the scheduling policy,
the kernel decides which task to run and switches be-
tween tasks (context switch). It saves the context (i.e.
the CPU registers) of the current task onto the it’s
stack, loads the context of the new task and contin-
ues executing the new task.

µC/OS-II kernel provides a number of system ser-
vices, for a detailed description including their imple-
mentation please refer to 12.

Task Management. µC/OS-II supports a multitask-
ing environment with up to 56 application spe-
cific tasks. In order to manage these tasks,
µC/OS-II kernel provides services for creation,
deletion, to change a task’s priority, to suspend
and resume a task and to get more runtime infor-
mation about a task.

Time Management. By use of a system timer inter-
rupt, application specific between every 10ms to
100ms, µC/OS-II keeps track of the real-time by
incrementing a 32-bit tick counter. It allows the
user to set and query the time, as well as to sus-
pend a task for a user specified time. Internally
µC/OS-II runs the scheduler for each timer tick.

Semaphore Management. µC/OS-II promotes inter
task communication through shared data struc-
tures. It simplifies the exchange of large amounts
of data, but requires synchronization. Exclusive
access to the data is needed avoid corruption of
data. µC/OS-II contains a semaphore implemen-
tation and provides an API for the essential op-
erations: creation, deletion, obtaining, querying
and returning of a semaphore.

Mutual Exclusion Semaphore Management. In
addition to generic semaphores µC/OS-II pro-
vides a specialized mutual exclusion semaphore
(mutex). This is a binary semaphore that allows
to gain exclusive access to the resources and
provides additional features that reduce the
priority inversion problem.

Memory Management µC/OS-II provides support
for dynamic memory allocation. It uses a fixed
block size allocation scheme to avoid fragmen-
tation, as available memory is typically small in
embedded applications. An application can allo-
cate and deallocate these memory blocks.

The kernel also manages interrupts, it disables the
interrupts while entering the critical sections of the
code, e.g. the manipulation of kernel internal data
structures, and re-enables the interrupt when leaving
the critical section. This prevents that multiple tasks
enter the critical section simultaneously and corrupt
data. An interrupt can suspend or resume execution
of a task. In case the resumed task is the highest pri-
ority ready task, then it will execute as soon as the
interrupt handler has finished.

As mentioned for the Time Management services,
µC/OS-II requires a periodic timer interrupt to keep
track of time delays and timeouts. This periodic inter-
rupt is referred to as the clock tick. It should be pro-
vided with a frequency of 10 to 100 times a second.
A higher frequency allows more fine grained timing
decisions, however it results in a higher overhead.

3.2.3 Adapting MicroC/OS-II for an ARM core

µC/OS-II has already been ported to large number of
processors. Several ports are available at the µC/OS-
II web site [32]. We based our processor adaptation
on an ARM port [33] and adjusted it according to the
SWARM ISS. Figure 13 depicts the RTOS as it runs
within t he ISS in our co-simulation environment.

ARM7T D MI B u s F u n c t i o n a l Mo d e l
H a r d w a r e S h e l l

P I CC o r e I S S

ARM7T D MI _I S S

nIRQ
nF IQ

S W ARM I S S

µC/O S – I I A R M P o r t
µC/O S – I I

U s e r A p p l i c a t i o n

T i m e r

Figure 13: Setup for µC/OS-II.

16

The existing port for the ARM core mainly needs
adjustments for the gcc cross compiler and the work-
ing environment. As part of adaptation to the utilized
compiler, we adjusted the sizes of the data types and
the resulting stack layout. The corrections for the
working environment include the address map, the
communication with the PIC and the timer.

The µC/OS-II port contains the processor-specific
code of the operating system. The processor-
independent code calls the specific code as C func-
tions. The processor-specific code is implemented in
C and/or in assembly code to perform register opera-
tions.

This section discusses some key functions of the
processor-specific code. A more detailed description
can be found in the µC/OS-II book [29].

To protect the kernel internal data structures,
µC/OS-II uses the concept of a critical section. Dur-
ing execution of a critical section the interrupts have
to be disabled. This avoids preemption by an inter-
rupt service routine, thus avoids unwanted schedul-
ing events and makes execution of the critical section
atomic. For this purpose, the port defines two func-
tions that mark the start OS ENTER CRITICAL())
and the end OS EXIT CRITICAL() of a critical sec-
tion. These functions disable and re-enable the
interrupts respectively. They make use of two
assembly level functions OS CPU SR Save() and
OS CPU SR Restore() that modify the CPSR regis-
ter. OS CPU SR Save() disables all interrupts and
returns the list of the previously enabled interrupts.
OS CPU SR Restore() restores the previous interrupt
state by enabling all interrupts in the list.

In order to perform a task level context switch, the
port includes the OSCtxSw() function. The sched-
uler performs a context context switch to change the
task running on the CPU whenever a higher priority
task becomes ready or, when the current task transi-
tions to the waiting state. Figure 14 shows the op-
erations performed during context switch. For that
the OS saves the current program counter as a re-
turn address on the currents task stack. It stores the
values of all registers onto the stack and updates the
stack pointer in the TCB of the current task as refer-
enced by OSTCBCur. Then it loads the context of the
new task, the high ready task with the TCB pointer

OSTCBHighRdy, by performing the same steps in re-
verse order. It ends with a return instruction that reads
the program counter of the new task from its stack and
execution of the new task resumes.

The OS port contains more functions, e.g. OS-
StartHighRdy() for starting the highest priority task,
OSTaskStkInit() to initialize the task stack and there
fore the registers at startup, and OSTaskCreateHook()
that is called when a task is created. Please refer to
ARM port documentation [33] for more detailed in-
formation on the functions in the ARM port.

Next, we describe the integration to the simulation
environment, namely the interaction with the PIC and
the timer.

3.2.4 Interrupt Handling and Timer Integration

The port provides interrupts handling. In order to re-
duce the amount of code that needs to be adapted for
integrating µC/OS-II to a particular setup, the inter-
rupt handling is split into two portions. The initial
step prepares for executing an interrupt handler and
is independent of the PIC, while the second step com-
municates with the PIC and executes the user interrupt
handler.

In the first step, OS CPU IRQ ISR() is called when
an IRQ arrives. Its implementation is independent
of the address map and can be used irrespective of
whether an interrupt controller is present or not.

OS CPU IRQ ISR(), implemented in assembly,
only prepares for the actual interrupt handling. It per-
forms register operations to save the current processor
state, switches to the interrupt execution mode and
calls OS CPU IRQ ISR Handler() for further pro-
cessing. After this function finished, it restores the
saved processor state, returns to the user execution
mode and returns to the preempted user code. Note
that a different task may be switched in as a result
of a scheduling decision during the interrupt execu-
tion. Therefore, the implementation has to be consis-
tent with the context switch implementation.

OS CPU IRQ ISR Handler() is written in C is de-
pendent on the address map and the PIC. We adapted
the OS CPU IRQ ISR Handler() according to the
PIC present in the instruction set model. The PIC
multiplexes from many external interrupts to a few

17

CPSR
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
L R
PC

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
SP
L R
PC

CPSR
SPSR

CPSR
R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
L R
PC

A f t e r

B e f o r e

B e f o r e

A f t e r

SP
O S T CB

SP
O S T CB

O ST CB Cu r O ST CB H i g h Rd y

SVC
M o d e

Cu r r e n t t a s k s t a c k H i g h r e a d y t a s k s t a c kA RM Re g i s t e r s

Figure 14: Task level context switch (source [33]).

internal interrupts. In order to determine which ex-
ternal interrupt has caused execution of the IRQ,
OS CPU IRQ ISR Handler() reads the Interrupt Sta-
tus register of the PIC and calls a the registered inter-
rupt handler containing the actual user interrupt han-
dler code. We defined and implemented a generic
function UserIrqRegister() for registering a user func-
tion as an interrupt handler for particular interrupt.

In order to keep track of time and for scheduling
purposes, µC/OS-II requires a periodic timer inter-
rupt. This timer interrupt is generated by an exter-
nal timer implemented in the bus functional model.
The timer was implemented, like the PIC, according
to NEC’s System-on-Chip Lite+ specification [25].

The registers of the timer are available via the AHB
through an AHB slave interface. The timer inter-
rupt is connected to an interrupt line of the PIC. Dur-
ing the software startup, the function OSTimeTick is
registered as an interrupt handler associated with the
timer interrupt, the timer is enabled and programmed
to generate a periodic interrupt every 10ms. There-

fore, the OS scheduling and time management func-
tions are executed on a periodic basis.

4 Embedded Software Generation

Figure 15 shows an overview of the design flow. The
system level design process is composed of a grad-
ual refinement, starting with the most abstract speci-
fication model. Then the designer adds implementa-
tion specific information and explores different alter-
natives. With each refinement step more implemen-
tation detail gets added to the system model. One re-
finement step is the Architecture Refinement, which
introduces processing elements and maps behaviors
to them. Another refinement step is the scheduling re-
finement, which schedules execution on each process-
ing element. The final refinement step, with respect to
software, is the the embedded software generation.

18

Architecture Model

Architecture R ef in em en t

S p ecif ica tion Model

S chedulin g R ef in em en t

S cheduled Model

C ModelE m b edded S of tw a re

C ros s C om p ila tion a n d
L in k in g

T a rg et E x ecuta b le B in a ry

E m b edded S of tw a re
S y n thes is

N etw ork R ef in em en t

N etw ork Model

T ra n s a ction L ev el
ModelB us F un ction a l Model

E m b edded S of tw a re
S y n thes is

Figure 15: System design flow [21].

4.1 Scheduling Refinement
The software synthesis is divided into two refinement
steps. The first step is the Scheduling Refinement.
Here the designer specifies the scheduling parame-
ters for processing elements to which multiple behav-
iors have been mapped. Options are static and dy-
namic scheduling. Within the dynamic scheduling ei-
ther First Come First Serve (FCFS) or priority based
scheduling are selectable. In case of priority schedul-
ing, the designer has to define the priority of each
task.

As a result of the scheduling refinement, behaviors
are mapped to a processing element with a notion of
tasks. For dynamic priority based scheduling a pri-
ority is defined for each task. Tasks are scheduled

based on an abstract RTOS that is implemented as
a separate channel instantiated in the processing ele-
ment (see [24, 23]). The output model, the scheduled
model, is still completely implemented in the SLDL.

4.2 Embedded Software Generation and
RTOS Targeting

The second refinement step is the Embedded Software
Synthesis, which generates the target C code and per-
forms the RTOS targeting. The software generation
approach is based on the work outlined in [38, 37].
The software synthesis tool generates a set of software
tasks from a partitioned design specification, the bus
functional model, captured in an SLDL, which in turn
is the result of the scheduling refinement. The gener-
ated software tasks implemented in target C code are
then scheduled by an real time kernel.

During the generation, the SLDL code of a behav-
ior, which is mapped to a software task, is converted
to C code. All communication primitives are replaced
with plain C code as well. Task and synchronization
primitives are replaced with calls to a generic RTOS
wrapper, a thin RTOS abstraction layer. The C syn-
thesis tool also generates interrupt handlers in case
interrupts are used for synchronization with external
components. It generates start-up code that registers
these interrupt handlers to the operating system.

The output of the embedded software generation is
twofold. For one, the generated C code is reintegrated
into the input model (the bus functional model). Here
it replaces the original SLDL behaviors that have been
mapped to software tasks. It integrates into the re-
maining system design with an abstract RTOS that
has been implemented on top of the SLDL [38]. The
C Model can be used for a fast validation of the gen-
erated C code. It co-simulates with the remaining sys-
tem design, usually containing custom hardware. Al-
though the functional correctness can be validated, it
does not yield accurate timing results.

Secondly, a flat C code, the Embedded Software,
is generated for each programmable processing ele-
ment. This code is designed for execution on the tar-
get processor. The refinement step of Cross Compila-
tion and Linking uses a target specific cross compiler
to compile the generated C code and link it against

19

target and RTOS specific libraries. It produces a bi-
nary for execution on the target processor.

We extended the refinement database to include
software components. For the integration of the
ARM7TDMI we populated the software database
with the RTOS µC/OS-II, a µC/OS-II wrapper that
provides RTOS abstraction API, the RTOS porting
code that contains the processor-specific code of the
µC/OS-II, a software HAL that implements the MAC
layer communication routines, which communicate
with the PIC and the timer. Additionally we included
an ISS specific libc that provides standard output rou-
tines for debugging purposes.

We devised a generic file structure for the software
database to maximize reuse between SW components.
As an example, we ensured that the communication
with the PIC, implemented in C, is independent from
the selected RTOS, the processor and the cross com-
piler. Therefore, the same PIC communication code
can be used on all processors that are able to connect
to the particular PIC, i.e. that can connect to the AHB
in this case.

5 Experiments

In order to show the feasibility of the design flow, with
respect to the embedded software generation, we im-
plemented a real life example and executed each step
of the refinement flow.

5.1 Example Application

Our example stems from the automotive industry. We
implemented an anti lock break system as shown in
Figure 16. It contains a single processor, an ARMv7,
that runs the control application. The processor com-
municates through an Advanced Microprocessor Bus
Architecture (AMBA) AHB with a Controller Area
Network (CAN) controller. The CAN controller, a
transducer, is accessible from the CPU through mem-
ory mapped I/O. Five devices are connected on the
simulated CAN bus. One sensor that measures the
break paddle position, a sensor for each wheel that
senses the wheel’s rotation and a actuator for each
wheel that controls the asserted break pressure.

����������	�

���

������� ����������� �"!����#�%$&�

����'(��)+* , -)�. . /+-
021 � 1+343

5��%67���8�

9 - /4:4;�<�/+*2=�)4- > /�? ,4@BA2/4/�.
	C)2, :�, D)+*
<�/+*2=�)4-

>�/�? ,2@EA /4/�.
9 - /4:4;�FC:�. ��/

	�D G+A�,2@(A2/4/�.
	C)2, :2, D)+*
<�/+*2=�)4-

	�D G+A�,4@(A2/4/+.
9 - /2:+;�F�:�. ��/

HJI%K4L L M N O P Q N RTS

U�I
K4V W Q X P O Q N RYSZ [\

] \�^+H

_2X N ` a X W

Figure 16: Anti-lock break example architecture.

5.2 Refinement

We first captured the specification model of the ex-
ample system. Then, we used the existing refinement
flow to perform the refinement steps until the genera-
tion of the bus functional model. Throughout the pro-
cess, we used refinement decisions that match the de-
sired target architecture (Figure 16).

The refinement tools use the database entries for
the ARM7TDMI processor for synthesizing the sys-
tem models. The Architecture Model makes use of
the abstract processor model (see Section 2.2.1). The
Scheduling Refinement includes the OS model as de-
scribed in Section 2.2.2. The bus functional commu-
nication model contains the BFM of the ARM7TDMI
(see Section 2.2.3) as well as the model of the bus
system AHB [35].

We then used the extended software synthesis tool
sc2c (see Section 4) to generate the C code targeted
towards the RTOS. We cross compiled the generated
C code with a gcc cross compiler [26] that produces
binaries in the COFF format and linked against the
necessary database components (RTOS, RTOS wrap-
per, RTOS port, HAL and libc). The result is a binary
in the COFF format that can be executed using the
SWARM ISS.

We manually exchanged the bus functional model
of the ARM7TDMI in the systems BFM with the in-
struction set model as described in Section 2.3.3. As a
result we achieved a bus-functional system model that
co-simulates hard and software and provides cycle ac-

20

curate execution of the software, communication and
hardware3.

5.3 Results

We validated correct functional execution of all cre-
ated models. All models exhibit correct functionality.
An example of an emergency stop maneuver with an
initial speed of 20 meters

second (45mph, 72 km
h) is shown in

Figure 17.
The left graph, Figure 17(a), shows the correla-

tion between the break request (Break In) as it is read
from the break paddle and the adjusted break pressure
Break Out asserted by the front left break actuator.
The output Break Out is set depending on the rotation
speeds of the wheels. The right graph, Figure 17(b),
shows the speeds of both front wheels. It is notice-
able that the left wheel locks, starting at normalized
break pressure of 50 units. Therefore the anti lock
break algorithm reduces the break pressure until the
wheel rotates freely again. After which in increases
the break pressure again until the next locking of the
wheel occurs. The cycle repeats until the car comes
to a full stop.

Next, we measured the execution time and the lines
of generated code as an indicator of complexity. The
results are summarized in Table 1.

Model Lines Simulation
of Code Time

Spec 238 0.018sec
Architecture 10670 0.009sec

Schedule 11760 0.020sec
Network 14474 0.014sec

TLM 22035 0.153sec
BFM 22048 125min

BFM + C 23330 123min
BFM(ISS) + C 22390 + 1416 208min

Table 1: Model complexity in lines of code and sim-
ulation time.

The results in Table 1 show that up to the transac-
tion level model the execution time is negligible, sig-
nificantly less than a single second of execution time.

3Assuming RTL synthesis has been performed as well.

Starting with the BFM, the execution time dramati-
cally increases to over two hours. This dramatic in-
crease is due to the application. Each 20ms of sim-
ulated time, the status of all sensors is queried and
the output is calculated. Therefore only a minimum
computation is performed. The simulation is mostly
busy simulating the idle bus systems. Both, the AHB,
running at 25 MHz, and the 1 MHz CAN use explicit
clocks. The CAN especially contributes to the slow-
down since each of the six simulated CAN nodes op-
erates on an own local clock and the CAN standard re-
quires oversampling the bus4 for synchronization with
clock of the sending CAN node.

The bus-functional model with the re-integrated C
code executes as fast as the bus-functional model due
to the low amount of computation. Finally the ISS
based bus-functional model is 66% slower than the
bus-functional model. The SWARM ISS is executed
as well with a simulated frequency of 25 MHz and
therefore adds an significant overhead.

In summary, all models are functionally correct.
The execution time analysis shows, that the simula-
tion effort dramatically increases with an increased
accuracy. Although it has to be noted that the particu-
lar example was limited by simulating explicit clocks
during the idle times of the system.

6 Conclusions
In this document we presented an extension of a sys-
tem level refinement flow to include hardware soft-
ware co-development and co-simulation. In form of
a case study, based on the widely used processor
ARM7TDMI, we described three major tasks nec-
essary for a software support throughout the design
flow.

First, we described modeling of the processor at
different levels of abstraction. Capturing a proces-
sor for the refinement flow allows to map behaviors
to programmable processing elements (processors), to
co-simulate the model and to estimate the system per-
formance. We described different levels of abstrac-
tion, starting from an abstract, weight table based ap-
proach ranging to a cycle accurate execution of the

4Each bit on the bus is oversampled (e.g. 12 times, [17])

21

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
Time [sec]

No
rm

al
iz

ed
 B

re
ak

 P
ow

er Break In
Break Out

(a) Break Power

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3
Time [sec]

Sp
ee

d
[m

/s
ec

]

Left Wheel Speed
Right Weel Speed

(b) Wheel Speed

Figure 17: Anti-lock break simulation.

target binaries on an Instruction Set Simulator (ISS).
We successfully integrated SWARM, an ARM7 ISS,
into our refinement and co-simulation flow.

Second, we analyzed the needs for an Real-Time
Operating System (RTOS). We described our selec-
tion criteria for the chosen RTOS µC/OS-II and cov-
ered insight about the performed adaptation to the se-
lected processor.

Thirdly, we reported on the embedded software
synthesis and described an extension that now in-
cludes the synthesis of target C code. For the effec-
tive use of the generated target code, we covered the
extension of the refinement flow’s database to con-
tain software components, such as the RTOS and the
Hardware Abstraction Layer (HAL) defining the bus
driver.

Using an automotive example system of anti-lock
breaks, we have validated the extension of the refine-
ment flow. We performed an step-by-step refinement
through all stages of the design and utilized the three
introduced elements: the processor models, the RTOS
and the embedded software synthesis.

The experimental results show the functional cor-
rectness of all models, including the cycle-accurate
simulation based on the SWARM ISS. With that we
have for the first time reached with automatic refine-
ment the final stage of embedded software synthesis
and cycle-accurate co-simulation.

However, our experimental results also show that
the execution speed dramatically reduces with an in-
creased detail level. Whereas the abstract models exe-
cute in less than a second, the ISS based co-simulation
requires more than three hours. Analyzing the results,
yielded that the particular example is limited by sim-
ulating the busses during the idle time of the system
and that the actual computation contributes only min-
imally.

In summary, we have shown the feasibility for a
hard/software co-design and for an automatic refine-
ment flow. We have demonstrated hardware software
co-simulation capabilities a each stage of the design.

In future work, we will show the cycle accurate ex-
ecution timing. We will implement more software
components. Furthermore, we will investigate into
improving the simulation speed of the co-simulation
environment.

References
[1] Samar Abdi, Junyu Peng, Haobo Yu, Dong-

wan Shin, Andreas Gerstlauer, Rainer Dömer,
and Daniel Gajski. System-on-chip environ-
ment (SCE version 2.2.0 beta): Tutorial. Tech-
nical Report CECS-TR-03-41, Center for Em-
bedded Computer Systems, University of Cali-
fornia, Irvine, July 2003.

22

[2] Advanced RISC Machines Ltd. (ARM).
ARM7TDMI (Rev 3) Product Overview. www.
arm.com/pdfs/DVI0027B_7_R3.pdf.

[3] Advanced RISC Machines Ltd (ARM). AMBA
Specification (Rev. 2.0), ARM IHI 0011A.
www.arm.com/products/solutions/
AMBA_Spec.html.

[4] Advanced RISC Machines Ltd. (ARM). PRO-
CESSOR CORE OVERVIEW. www.arm.
com/products/CPUs/index.html.

[5] Advanced RISC Machines Ltd. (ARM).
RealView Developer Suite Instruction Set
Simulator. www.arm.com/products/
DevTools/RealViewISS.html.

[6] Advanced RISC Machines Ltd. (ARM).
SoC Developer with MaxSim Technology.
http://www.arm.com/products/
DevTools/MaxSim.html.

[7] Advanced RISC Machines Ltd. (ARM).
ARM7TDMI (Rev 4) Technical Reference
Manual, 2001. www.arm.com/pdfs/
DDI0210B7TDMIR4.pdf.

[8] Felice Balarin, Massimiliano Chiodo, Paolo
Giusto, Harry Hsieh, Attila Jurecska, Lu-
ciano Lavagno, Claudio Passerone, Alberto
Sangiovanni-Vincentelli, Ellen Sentovich, Kei
Suzuki, and Bassam Tabbara. Hardware-
Software Co-Design of Embedded Systems: The
POLIS Approach. Kluwer Academic Publishers,
1997.

[9] Luca Benini, Davide Bertozzi, Alessandro
Bogliolo, Francesco Menichelli, and Mauro
Olivier. ”mparm: Exploring the multi-processor
soc design space with systemc”. VLSI Signal
Processing, 41:169–182, 2005.

[10] Doug Burger and Todd M. Austin. The Sim-
pleScalar Tool Set, Version 2.0. Computer
Sciences Department, University of Wisconsin-
Madison, June 1997.

[11] Jrôme Chevalier, Maxime de Nanclas, Luc Fil-
ion, Olivier Benny, Mathieu Rondonneau, Guy

Bois, and El Mostapha Aboulhamid. A Sys-
temC Refinement Methodology for Embedded
Software. IEEE Design and Test of Computers,
99(99):148–158, 2006.

[12] Intel Corporation. Intel StrongARM SA-
1110 Microporcessor Developer’s Manual.
developer.intel.com/design/
strong/manuals/278240.htm, October
2001.

[13] CoWare. Virtual Platform Designer.
www.coware.com.

[14] Michael Dales. SWARM 0.44 Documentation.
Department of Computer Science, University of
Glasgow, November 2000. www.cl.cam.ac.
uk/˜mwd24/phd/swarm.html.

[15] GDB Developers. GDB User Man-
ual. www.gnu.org/software/gdb/
documentation/.

[16] eCOS Community. eCOS home page.
ecos.sourceware.org.

[17] Armin Bassemir Florian Hartwich. The
configuration of the can bit timing.
www.can.bosch.com/, 1999.

[18] A. Gerstlauer; D. Shin; R. Doemer; D. Gajski.
System-Level Communication Modeling for
Network-on-Chip Synthesis. In Asia and South
Pacific Design Automation Conference, Shang-
hai, China, January 2005.

[19] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan,
and Ji Gong. Specification and Design of Em-
bedded Systems. Prentice Hall, 1994.

[20] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer,
Andreas Gerstlauer, and Shuqing Zhao. SpecC:
Specification Language and Design Methodol-
ogy. Kluwer Academic Publishers, 2000.

[21] Andreas Gerstlauer, Rainer Dömer, Junyu Peng,
and Daniel D. Gajski. System Design: A Practi-
cal Guide with SpecC. Kluwer Academic Pub-
lishers, 2001.

23

www.arm.com/products/solutions/ AMBA_Spec.html
www.coware.com
ecos.sourceware.org
www.can.bosch.com/

[22] Andreas Gerstlauer, Gunar Schirner, Dongwan
Shin, Junyu Peng, Rainer Dömer, and Daniel D.
Gajski. System-on-chip component models.
Technical Report CECS-TR-06-10, Center for
Embedded Computer Systems, University of
California, Irvine, May 2006.

[23] Andreas Gerstlauer, Haobo Yu, and Daniel D.
Gajski. RTOS modeling for system level de-
sign. In Ahmed A. Jerraya, Sungjoo Yoo, Nor-
bert Wehn, and Diedrik Verkest, editors, Embed-
ded Software for SoC. Kluwer Academic Pub-
lishers, 2003.

[24] Andreas Gerstlauer, Haobo Yu, and Daniel D.
Gajski. RTOS Modeling for System Level De-
sign. In Proceedings of the Design, Automation
and Test in Europe (DATE) Conference, Mu-
nich, Germany, March 2003.

[25] NEC Electronics (Europe) GmbH. System-on-
Chip Lite +. User’s Manual. www.eu.necel.
com/_pdf/A17158EE2V0UM00.PDF,
April 2005.

[26] GNU. gcc (gcc-arm-coff version 2.95.3).
ftp://ftp.gnu.org/gnu/gcc.

[27] Thorsten Grötker, Stan Liao, Grant Martin, and
Stuart Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[28] F. Herrera, H. Posadas, P. Snchez, and E. Villar.
Systematic Embedded Software Generation
from SystemC. In Proceedings of the Design,
Automation and Test in Europe (DATE) Con-
ference, 2003. http://csdl.computer.
org/comp/proceedings/date/2003/
1870/01/18701% 0142abs.htm.

[29] Jean J. Labrosse. MicroC/OS-II: The Real-Time
Kernel. CMP Books, 2002.

[30] RTEMS Steering Committee Members. Real-
Time Operating System for Multiprocessor Sys-
tems home page. www.rtems.com.

[31] TinyOS Committee Members. TinyOS home
page. www.tinyos.net.

[32] Micriµm. µC/OS-II Home Page.
www.ucos-ii.com/arm/index.
html#rtosports.

[33] Micriµm. µC/OS-II and The ARM Processor,
Application Note, 2004.

[34] Gautam Sachdeva. Integration of an arm core in
a system design flow. Master’s thesis, Electrical
Engineering and Computer Science, University
of California, Irvine, March 2006.

[35] Gunar Schirner and Rainer Dömer. Quantita-
tive Analysis of Transaction Level Models for
the AMBA Bus. In Proceedings of the Design,
Automation and Test in Europe (DATE) Confer-
ence, Munich, Germany, March 2006.

[36] VaST Systems. VaST tools and mod-
els for embedded system design.
www.vastsystems.com.

[37] Haobo Yu. Software Synthesis for System-
on-Chip. PhD thesis, Electrical Engineering
and Computer Science, University of California,
Irvine, June 2005.

[38] Haobo Yu, Rainer Dömer, and Daniel Gajski.
Embedded software generation from system
level design languages. In Proceedings of the
Asia and South Pacific Design Automation Con-
ference (ASPDAC), Yokohama, Japan, January
2004.

24

ftp://ftp.gnu.org/gnu/gcc
www.rtems.com
www.tinyos.net
www.vastsystems.com

	1 Introduction
	1.1 Problem Statement
	1.2 Related Work
	1.3 Outline

	2 Processor
	2.1 ARM7TDMI
	2.1.1 Instruction Pipeline
	2.1.2 Architecture
	2.1.3 Bus Architecture

	2.2 Abstract Processor Modeling
	2.2.1 Behavioral Model
	2.2.2 OS Model
	2.2.3 Bus Functional Model

	2.3 Cycle-Accurate Instruction Set Simulator
	2.3.1 Selection of an ISS
	2.3.2 SWARM (Software ARM)
	2.3.3 Cycle-Accurate PE Model

	3 Real-Time Operating System
	3.1 RTOS Selection
	3.2 MicroC/OS-II
	3.2.1 MicroC/OS-II Structure
	3.2.2 Kernel and Kernel Services
	3.2.3 Adapting MicroC/OS-II for an ARM core
	3.2.4 Interrupt Handling and Timer Integration

	4 Embedded Software Generation
	4.1 Scheduling Refinement
	4.2 Embedded Software Generation and RTOS Targeting

	5 Experiments
	5.1 Example Application
	5.2 Refinement
	5.3 Results

	6 Conclusions
	References

