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Abstract

The quality of a system design process is influenced by the semantics and syntax of the System Level Design Language
(SLDL) adopted as the implementation vehicle. SpecC and SystemC are the two most popular SLDLs used today. In this
work, we have demonstrated a system design flow using SpecC by use of a digital camera example. We also discuss how the
choice of SystemC would have influenced the design process. A brief comparison between SpecC and SystemC is provided
as a result. In order to emphasize the powerful design utility of SpecC and the System-on-Chip Environment (SCE), we
have deliberately chosen to use various models of execution in the design model, including sequential, FSM, concurrent and
pipelined execution, and communication using channels.
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Abstract

The quality of a system design process is influenced
by the semantics and syntax of the System Level Design
Language (SLDL) adopted as the implementation vehicle.
SpecC and SystemC are the two most popular SLDLs used
today. In this work, we have demonstrated a system de-
sign flow using SpecC by use of a digital camera example.
We also discuss how the choice of SystemC would have in-
fluenced the design process. A brief comparison between
SpecC and SystemC is provided as a result. In order to em-
phasize the powerful design utility of SpecC and the System-
on-Chip Environment (SCE), we have deliberately chosen to
use various models of execution in the design model, includ-
ing sequential, FSM, concurrent and pipelined execution,
and communication using channels.

1. Introduction

In recent years, growing system complexity and shrink-
ing time-to-market requirements have resulted in a strong
need for new design methods and tools. In order to keep
pace with the increased system complexity, designers must
work at a higher level of abstraction [1]. Depending on
the abstraction level (namely, the number of details used
to model the system) different concerns can be addressed
and solved. At each step of the design process, the key to
cope with complexity is to model the systems, only with
the minimum number of details needed. Abstraction hides
complexity and accelerates design process. Tools support
is needed throughout all steps of the design flow, from the
formal specification of the system to its physical implemen-
tation.

Traditionally, the design of embedded systems has been
carried out by decomposing and allocating the system to
hardware and software, then allowing separate hardware
and software design teams to design their respective parts,
and finally integrating hardware and software. This separa-

tion of design tasks leads to the potential for initial design
mistakes to be carried until the integration phase, where
they are much more difficult and costly to correct. This
issue has been widely addressed by development of high
level languages, that describe both hardware and software,
thus keeping their design flow tightly coupled [2].

Given system functionality the goal is to find the best
architecture and the best partitioning of functionality into
the architectural components. Here, the term architecture
is used to mean not only the set of hardware and software
components forming the system but also their topology.
Starting from the same specification, many different archi-
tectures and functionality-architecture mapping may be pro-
duced. The exploration of all theses alternatives requires the
ability to rapidly estimate the performance resulting from a
particular partitioning. In order to evaluate performance, we
cannot afford to synthesize and simulate at the cycle level,
every possible design alternative. The use of a C/C++ based
methodology simplifies the system modeling task and main-
tains computation time within feasible ranges [3]. As a re-
sult: 1) design assessment can be done much earlier in the
design cycle, and 2) execution time to explore different de-
sign tradeoffs is much shorter. In this project, we have used
C based methodology to model our system.

2. Design Flow

Designing an embedded system requires many capabil-
ities [4]: 1) describing the interaction between the system
and the external environment, 2) describing the system ar-
chitecture, 3) modeling the behavior of hardware and soft-
ware components forming the system, 4) describing system
constraints and requirements, 5) describing the test scenar-
ios used to simulate the system, and 6) defining a set of
gauges to measure various performance metrics during sim-
ulation execution. As a consequence, the complexity of the
design process is determined by the semantic and syntax of
the system level design language (SLDL) adopted as imple-
mentation vehicle. System level design approaches can be



broadly classified into three groups: system-level synthesis,
platform-based design, and component-based design [5]. In
system-level synthesis the design starts by describing sys-
tem behavior. Then system architecture is generated by the
behavior and finally a register transfer level (RTL) model
or an instruction set simulation (ISS) model are generated
depending whether the behavior is going to be mapped on
hardware or software. In platform based design the sys-
tem behavior is mapped to a predefined system architec-
ture, instead of being generated from the behavior as in the
system level synthesis approach. In component-based de-
sign the task of selecting components and combining them
in a proper architecture is not defined a priori. Compared
with platform based design this solution provides a higher
flexibility, however it requires a well developed database of
components (also known as intellectual properties or virtual
components) before it can be effectively implemented.

In general a SLDL requires two essential attributes:
1) it should support modeling at all levels of abstraction,
from purely behavioral un-timed models to cycle accurate
RTL/ISS models, and 2) the models should be executable
and simulatable, so that functionality and constraints can
be validated. The two most commonly used SLDL in em-
bedded system engineering are: SystemC [8] and SpecC
[9]. In this work, we have demonstrated the design flow us-
ing SpecC and have provided a brief comparison between
SpecC and SystemC.

The objective of system level design is to generate sys-
tem implementation from behavior. To that end, we propose
a design process based on the use of finite state machines as
mathematical model of computation to describe behavior,
and either SystemC or SpecC as implementation vehicle. In
order to reduce the complexity of system design a number
of intermediate models are built. Each intermediate model
describes specific design tasks and objectives and can be
independently executed and simulated.

The design process belongs to the system-level synthe-
sis group and is illustrated in Figure 1. Here, we decom-
pose the design process in four main steps: 1) specifica-
tion modeling, 2) architecture modeling, 3) communication
modeling and 4) implementation modeling. The specifica-
tion model is a formal description of the system function-
ality, but does not carry any implementation details, and it
is un-timed in terms of both computation and communica-
tion. After the specification model is analyzed and validated
the system functionality is partitioned and the various parti-
tions are mapped to different components. The architecture
model defines the final set of components into which the
functionality is mapped and its topology. The execution de-
lays of the processes assigned to the components are mod-
eled by means of unit delta delays, while communication
among components is modeled via message passing. Hence

Figure 1. Design Flow [5]

at this level, computation is approximate-timed, while com-
munication is un-timed. The communication model defines
the protocol and the accurate timing followed by the vari-
ous components to exchange information. The implemen-
tation model represents the hardware components in terms
of resister transfers and the software components in terms of
instruction set architecture. At this level, computation com-
ponents as well as communication components are refined
down to individual clock cycles.

Figure 2. FSM for DigiCam
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3. Digital Camera as System under Design

To achieve the goal of design using SpecC, we chose to
design a digital camera [10] as an example. The motiva-
tion, behind choosing digital camera as an example, is its
complexity as an embedded system and it being in vogue.
This year, almost 50M units were sold worldwide, which
is expected to grow to 80M units in the next 4 years. The
first digital camera, offered nothing more to the user, than
being able to take a few low quality images, and store them
for future transfer to a PC. In last few years, digital cam-
eras have reduced in size and grown in complexity. Image
compression algorithms allow more pictures to be taken,
advanced image enhancing features like red eye reduction,
night mode, auto focus, digital as well as optical zoom have
all made the digital camera overtake traditional film cam-
eras in capability.

3.1. System Description of Digital Camera

This project aims to design a basic electronic device that
can capture images and store them in digital format. From
a user’s point of view, a simple digital camera works as fol-
lows: The user turns on the camera, points it towards the
object and clicks the shutter button. The user can take im-
ages as long as there is space available in the memory. [10]
has a very simple description of digital camera’s functional-
ity. From a designer’s point of view, the operation of digital
camera can be described as a Finite State Machine, shown
in Figure 2. The camera is turned ON and waits inIdle
state, for the user to click the shutter button. Upon click,
the camera first checks the memory for enough available
free space to store an image, inCheck Memory for Capacity
state. If there is not enough memory, the camera prompts
user to change the memory card of the camera, inError
state. If there is space available, the digital camera goes
into a Processingstate, where it processes the image and
stores it in memory. After the processing is complete, digi-
tal camera goes intoIdle state, waiting for more clicks from
the user.

Let us see theProcessingstate from the perspective of
a designer. At the time of click by user, provided mem-
ory check is successful, the camera is initiated to the task
of taking and storing images. The life of image begins
in the Charge Coupled Device(CCD). A CCD is a spe-
cial light sensor with many light-sensitive silicon solid-state
cells. The light falling on each cell is converted into a small
amount of electric charged, which is measured by CCD
electronics and stored as a number. The number usually
ranges from 0, meaning no light, to 256 or 65,535, mean-
ing very intense light per pixel. The internals of a CCD are
shown in Figure 3. In order to take the image, the CCD must
be initialized. This process is sometimes also called warm-

Figure 3. Charge Coupled Device

ing up. The electromechanical shutter opens briefly, and
allows the light to fall on the CCD. The CCD pixels capture
image as a measure of the light incident on it. The elec-
tronic circuitry dedicated to the operation of CCD, compute
the digital equivalent of the charge produced by CCD cells
and store the numbers in a buffer. The image, at this step,
is just a 8x8 block of numbers. The image can be popped
up from the buffer by other processing elements of the dig-
ital camera for error correction, compressing and saving in
memory.

Figure 4. Zero Bias Adjustment

As shown in Figure 3, some columns of the CCD are
covered with black paint. This prevents any light from
falling on CCD. This is done for Zero Bias Adjustment of
image. Due to inherent manufacturing defects, CCD cells
never measure the incident light accurately. This error is
called Zero Bias error. Usually, it is observed, that the er-
ror is same across all the cells that are arranged in the same
row, but varies with cells in different rows. Since, the ideal
reading for the obscured pixels should be zero, a value other
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than that would indicate the magnitude of error. In our ex-
ample, two columns on the right are used for providing us
with the reference error value. We average the error over
the two columns and subtract from all other values in the
same column. The left array in Figure 4, shows the image
captured by the CCD as a 8 X 8 block of pixels. The right
array, shows the image after zero bias adjustment.

Before the image can be uploaded to a PC, it must
be stored in internal memory of the digital camera. The
internal memory or the on-board memory of digital camera
is limited, hence compression of image is done before
storing in the memory. The hardware needed for this
extra step of compression is justified by the increase in
the capacity of the digital camera to take more number of
pictures. The most popular image compression technique
is the JPEG standard for Joint Photographic Experts
Group [11]. There are many different flavors of image
compression, but we have selected compression using
Discrete Cosine Transformation (DCT). There are three
steps in compressing the image. The first step is to do
Discrete Cosine Transformation (DCT). DCT operation is
mathematically defined as:
C(h) = 1/

√
2 if h = 0, else1.

C(h) being the auxiliary function used in main function
F (u, v) =

1/4 · C(u) · C(v) · Σx=0..7Σy=0..7(Dxy · cos(π(2u +
1)u/16) · cos(π(2y + 1)v/16))

F (u, v) gives the encoded pixel at rowu and column
v, from pixel Dxy. Inverse DCT can be performed by the
PC at its end, using the converse of above formula. The
array on left side of Figure 5 results after DCT on the
image. The second step is to do Quantization. Though
Quantization reduces the quality of the image, it helps in
compressing the image as well. The pixels will occupy less
space, if their representation is by smaller numbers. After
DCT, a pixel may be represented by numbers in the range
of few thousands. We divide the values by an exponent
of 2. This is because, it allows to take advantage of the
simplicity of division by 2 in hardware. A right shift of the
bits, divides the number by 2. In our example, we chose
to divide by 8 to perform quantization. The block after
quantization by 8 is shown in the right side array of Figure
5. The third step is to perform Huffman encoding. Huffman
encoding is a minimal variable-length encoding based on
the frequency of each pixel. The details of constructing
the Huffman tree can be found in relevant literature [12].
The encoded Huffman tree is shown in Figure 6. Once
the Huffman encoded image is available, we can store the
image in the internal memory of the digital camera.

Storing the image in memory involves synchronization

Figure 5. After DCT and Quantization

with the controller-circuit of the memory. The “write” time
of the internal memory may not be equal to the time, taken
by the camera circuit to send data. In other words, the cir-
cuit must send a byte of data to the memory for storing, only
when the memory has finished writing the last byte of data.
This synchronization guarantees prevention of loss of data.
Another advantage is that, this makes the memory as a sepa-
rate component. Another memory with a better technology,
can easily replace existing memory technology, without re-
quiring any change in other circuitry of the camera.

Figure 6. Huffman Encoding

4. Specification Model of Digital Camera

In this section, we include the charts generated by the
System-on-chip (SCE) environment alongside. Figure 7
shows the complete system, which includes test bench and
stimulus generator. The block, “Digicam”, represents our
system under design. Figure 8 shows the FSM inside the
behavior DigiCam. It has four behaviors, each correspond-
ing to a state in the FSM shown in Figure 2.

The processing of the image is a complex sequence of
functions, that start from initializing the charge coupled de-
vice (CCD) to storing the processed image in internal mem-
ory. We define the execution of these functions in pipelined
order. SpecC language provides explicit support for the
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Figure 7. Top Level System Chart

Figure 8. DigiCam behavior FSM

specification of pipelines. Figure 9 shows the pipeline exe-
cution of behaviors inside the behavior “Procs”. In “Procs”,
there are six blocks of behaviors, which execute in pipelined
order. Note the arrows joining these blocks are intersected
by horizontal dashed lines. This is the standard notation for
pipeline execution in SpecC. The blocks correspond to the
six steps of processing:
1. GetImg: Get Image from the buffer, where image is
stored by CCD.
2. ZBA: The block that does Zero Bias Adjustment of the
image.
3. DCT: The block that does Discrete Cosine Transforma-
tion of image.
4. QTZ: Block that does Quantization of image.
5. HFM: Huffman Encoder block.
6. SAVE: Block that saves the compressed image in mem-
ory. Also can be seen, are five piped variablesAdd1,
Add2..Add5. These are the variables, that hold addresses

for the image at different stage of the pipeline.

Figure 9. Procs behavior pipelined execution

Figure 10 shows the details of behaviorGetImg. GetImg
is responsible for initializing the CCD, capturing image
with CCD and storing the image in buffer. It has three func-
tions CCDInit, CCDCap, CCDPop, that correspond to the
above three tasks, and are executed sequentially.GetImg
pops up the image into memory and stores its location ad-
dress in variableAdd1.

Figure 11 shows the details of behaviorZBA. It has four
instancesZBR0an 1, ZBR2an 3, ZBR4an 5, ZBR6an 7,
which are executed in parallel. Each instance does Zero
Bias Adjustment for two rows. These processes are inde-
pendent of each other and there is no need to synchronize
their parallel execution. Note that, there are no arrows be-
tween these blocks and only dashed lines separate them.
This is the standard SOCE notation for parallelism. The
block ZBA takes the image stored at address locationAdd1,
does zero bias adjustment in parallel, and stores resultant
image array at locationAdd2.

The blockDCT takes the image stored at address loca-
tion Add2, does Discrete Cosine Transformation, and stores
resultant image array at locationAdd3. The blockQTZ
takes the image stored at address locationAdd3, put there by
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Figure 10. GetImgbehavior

Figure 11. ZBAbehavior

DCT, does Quantization, and stores the image array at loca-
tion Add4. Similarly, the Huffman Encoding is performed
in HFM block and stored at locationAdd5.

Figure 12 shows the details of behaviorSAVE. It has two
blocks,Send2Mem, which send the encoded image from ad-
dress locationAdd5 to the memory for storage, and block
MemGet, which receives this data and performs the actual
write operation on the memory. This block hides the com-
plexity of circuits for writing data into memory. However,
memory writing might be slower than the rate at which
Send2Memcan send data. This is overcome by using a
channel,Chan1, which encapsulates a handshake protocol.
This synchronizes flow of data between the two blocks.

The complete hierarchy of the design, is shown in Fig-
ure 13. Let us observe the symbolic notations in the figure,
to be able to appreciate the semantic depth of the environ-
ment. The “green leaves” indicate, a clean behavior with
simple execution statements. Behaviors are defined hierar-
chically, each behavior can also contain a number of behav-
ior instantiations of other behaviors. In clean leaf behavior,

Figure 12. SAVEbehavior

there are only sequence of statements, without any behavior
instances [13]. The round symbol, next to DigiCam, repre-
sents a Finite State Machine. The two small dots like sym-
bol, next to Procs, represents a behavior with pipeline exe-
cution. The two vertical squares, next to GetImg, represent
sequentially executed behavior. The two vertical bars, next
to ZBA, represent a behavior with parallel execution. The
capsule shaped symbol, next to Chan1, indicates a channel
for communication with a pre-defined protocol.

5. Profiling

The System on Chip Environment (SCE) can profile the
system for us [14]. In this section, we present the profiling
charts generated by SCE. Figure 14, shoes the profile for
DigiCam. The profile shows code, computation, connectors
and member variables. Observe that there are 611 code ex-
pressions, 89K computation operations, and 29 connections
in DigiCam. Detailed profile of code of Digicam is shown
in Figure 15. Detailed profile of computation of Digicam is
shown in Figure 16. The charts are self-explanatory. Con-
nections in Digicam are shown in Figure 17. Profiles for
“Procs” and “Save” are shown in Figures 18 and 19.

6. C/C++ Based Design Methodologies

SystemC is a modeling platform consisting of C++ class
libraries and a simulation kernel for designing at the system
and register transfer level. Besides, providing a common
high-level language, for modeling, analyzing and simulat-
ing an embedded system, it can be also linked to commer-
cial tools such as Synopsys design compiler [15], for hard-
ware synthesis. SpecC is a super-set of the C language. It
is a complete language, not just a library, and it was specif-
ically conceived for the specification and design of digital
embedded systems. Detailed information on the syntax and
semantics of SpecC and SystemC is available in ref. [9] and
[8] respectively.

In this section, based on our experience with SystemC
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Figure 13. Hierarchy of Behaviors in System

[4], we briefly compare C++ based methodology (SystemC)
and C based methodology (SpecC) with respect to three as-
pects: 1) capability of modeling functionality, 2) capabil-
ity of modeling the transfer of information between func-
tional blocks, and 3) capability of modeling the execution
sequence among functional blocks [13].

Both SpecC and SystemC support hierarchical modeling
of system behavior. In SpecC the term behavior indicates
a consolidate representation of both functionality and struc-
ture. Behavior and structure of the system are represented
by a hierarchy of behaviors. A leaf behavior may contain
hierarchical calls to functions but it does not contain any
further sub instance. SystemC isolates functionality and
structure into processes and modules respectively.

SpecC [6],[7] is more versatile and suited for system
level deign. This is evident by the fact that, SpecC supports
interrupts liketry andtrap. SystemC, it may be argued that,
also has a feature of defining the sensitivity list for a func-
tion, which can simulate similar to interrupts. However, at
system level design, designers use interrupts and the sensi-
tivity list of SystemC is specified at the transaction level.

SpecC models data transfer among behaviors through the

Figure 14. Digicam Profile

Figure 15. Digicam Code Profile

use of variables or channels. SystemC supports data transfer
by connecting module ports through either signals or chan-
nels. A channel is a class that encapsulates communication.
In SpecC a channel consists of a set of variables and func-
tions (also called methods) which operate on the variables
and define the communication protocol. Similarly, in Sys-
temC, a channel consists of a set of signals and methods
that operate on them. The difference in using variables and
signals is that changes on variables are scheduled immedi-
ately, while changes on signals are queued and scheduled at
the occurrence of the next event (i.e., the value of the sig-
nal is updated only after a delta delay). SystemC does not
allow binding of variables to ports of modules, thus the use
of variables for data transfer between processes in different
modules is not permitted.

In SpecC the order of execution is by default sequential,
however two mechanisms are provided to alter the execu-
tion sequence: 1) static scheduling and 2) dynamic schedul-
ing. In static scheduling the sequence of execution is ex-
plicitly specified using dedicated constructs par (for paral-
lel execution), pipe (for pipelined execution), fsm (for Fi-
nite State Machine execution). For dynamic scheduling,
SpecC rely on the data type event and the wait and notify
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Figure 16. Digicam Computation Profile

statements for synchronization between behaviors. Sys-
temC supports only dynamic scheduling. In SpecC, static
scheduling permits to precisely determine the execution se-
quence and as a consequence make architecture exploration
much easier than with SystemC. In addition, since SystemC
is a C++ library extension, the computation needs of the
system under design are tightly coupled with the computa-
tional needs of the SystemC kernel, so the profiling of the
model becomes prohibitive.

At the hardware level, in order to specify cycle-accurate
finite state machines SpecC provides the construct fsm,
while SystemC provides two mechanisms: 1) implicit mod-
eling using the class SCTHREAD and wait statement, and
2) explicit modeling using the class SCMETHOD and
switch statement.

At the software level, in order to obtain C code compil-
able and executable on the target microprocessor, users need
to remove from the software written in SpecC all SpecC
specific constructs (par, pipe, fsm, wait, etc.). The equiva-
lent task in SystemC needs the additional step of converting
the C++ code to C code.

7. Results and Conclusion

The effectiveness of the two methodologies has been
evaluated with respect to many facets. SpecC and SystemC
are comparable in terms of time required to complete the
design, and time taken to execute the system model. Al-
though both C and C++ design methodologies have many
similarities, we observed that C based methodology is eas-
ier to use, and is better suited for architecture exploration.
This results in smaller design time and better design qual-

Figure 17. Digicam Connections

ity, especially when there are many design alternatives to
consider. On the other hand, currently, C++ methodology is
better linked with commercial hardware synthesis tools.

During the implementation of this project, we were able
to get a first hand experience of the design flow, shown in
Figure 1. The first step was to come up with a design exam-
ple, that offers scope for abstraction and manageable imple-
mentation complexity. Fortunately, the example of digital
camera had enough space for including modules with al-
most all the models of computation. We consciously mod-
eled the system to include parallel execution, sequential ex-
ecution, pipelined execution, finite state machine execution,
and communication using channels. This aided in under-
standing all the models of computation of SpecC. In order
to avoid spending too much time in coding actual image
processing algorithms, the behavior was substituted by a
computation load of nearly same complexity.

The biggest academic and intellectual contribution of
this project, System Design of Digital Camera Using
SpecC, was to give the students an opportunity to learn a
new SLDL. Since SpecC has the same syntax as C language,
we were able to tackle design issues early on, instead of first
trying to get used to a new syntax and grammar.

Though, some bugs in the tool prevented us from pro-
ceeding to the step of architecture refinement, we were able
to simulate, profile, and even generate a C file for target
Microprocessor from the specification model of the system.
The fact that the tool is still under development justifies
these errors. In future, new versions of the tool will be more
versatile.

We also learnt that, synchronous communication be-
tween parallel blocks, is difficult to implement, without us-
ing an in-built communication protocol provided by SpecC.
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SpecC should also include a debugging tool to help not
only to debug the specification model, also for closer analy-
sis of the system.
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Appendix

A. Simulation Results

Time = 0 : Idle active...
click = 1 in stimuli

Time = 100 : CTick!
Time = 100 : MemoryCheck active...
Time = 200 : CTick!
Time = 200 : CCD Initialization ..
Time = 300 : CTick!
Time = 300 : CCD Capture ..
Time = 400 : CTick!
Time = 400 : CCD Popping Pixels ..
Time = 500 : CTick!
Time = 500 : Bias Adjustment for two Rows
Time = 500 : Bias Adjustment for two Rows
Time = 500 : Bias Adjustment for two Rows
Time = 500 : Bias Adjustment for two Rows
Time = 500 : DCT ...
Time = 600 : CTick!
Time = 600 : Quantize...
Time = 700 : CTick!
Time = 700 : Huffman Encoding...
Time = 800 : CTick!
Time = 800 : Saving to Memory...
Time = 900 : CTick!
Time = 1000 : CTick!
Time = 1100 : CTick!
Time = 1200 : CTick!
Time = 1300 : CTick!
Time = 1400 : CTick!
[aseemg@alpha ˜]$
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B. Code for Digital Camera Specification
//
// Digital.sc
// -------
//
// author: Aseem Gupta
// last update: 25/11/2004

#include <sim.sh> #include <stdio.h>

// definition of states as child behaviors

interface IS {
void Send(float);

};

interface IR {
float Receive(void);

};

channel C() implements IS,IR {
event Req;
float Data;
event Ack;

void Send(float x)
{

Data = x;
notify Req;
wait Ack;

}
float Receive(void)
{

float y;
wait Req;
y = Data;
notify Ack;
return y;

}
};

behavior S(IS Port, in bit[8] x) {
//float x;
void main(void)
{ int i,z;

z = (int)x;
printf("Time =%5s : Saving to Memory...\n", time2str(now()));
for(i=0;i<64;i++)
{

//printf(" SENDING x = %d \n",x);
Port.Send(x);
z = z + 1;
// Right now, i am sending x as if x is data, bt I could send real data, ix x was address of data

}
}

};

behavior R(IR Port) {
int y;
void main(void)
{

int i;
for(i=0;i<64;i++)
{

y = Port.Receive();
//printf(" RECEIVING y = %d \n",y);

}
}

};

behavior CCDInitialize (event clk) {
void main(void)
{
int i,a = 1;
printf("Time =%5s : CCD Initialization ..\n", time2str(now()));
// Assume that the way to initialize the 8 X 10 CCD is to send a bit to each one pixel, so execute a statement 80 times
for (i=0;i<82;i++)
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{
a = a + a;

}
wait(clk);
}

}; behavior CCDCapture (event clk) {
void main(void)
{
int i,a = 1;
printf("Time =%5s : CCD Capture ..\n", time2str(now()));
// Assume that the way to capture the 8 X 10 CCD is to send a bit to each one pixel, so execute a statement 80 times
for (i=0;i<(80+8);i++)
{

a = a + a;
}
wait(clk);
}

};

behavior CCDPopPixel (out bit[8] Add1, event clk) {
void main(void)
{
int i,a = 1;
printf("Time =%5s : CCD Popping Pixels ..\n", time2str(now()));
// Assume that the way to pop the 8 X 10 CCD is to read a Byte from, so execute a statement 640 times
for (i=0;i<(640+64);i++)
{

a = a + 2;
}
Add1 = 10101010b;
wait(clk);
}

};

behavior GetImage (out bit[8] Add1, event clk) {
CCDInitialize CCDInit(clk);
CCDCapture CCDCap(clk);
CCDPopPixel CCDPop(Add1, clk);
void main(void)
{
CCDInit.main();
CCDCap.main();
CCDPop.main();
}

};

behavior ZBOneRow(
in bit[8] Row,
out bit[8] Add2,
event clk)

{
void main(void)
{
int a,i;
printf("Time =%5s : Bias Adjustment for two Rows \n", time2str(now()));
// It is for one row, so first compute Bias
a = 2;
a = a * 2;
a = a / 2;
// in 8 operations & then do biasing in other elements
for (i = 0;i<10;i++)
{

a = a+2;
}
}

};

behavior ZeroBiasing (in bit[8] Add1, out bit[8] Add2, event clk) {
ZBOneRow ZBR0_an_1(Add1, Add2, clk);
ZBOneRow ZBR2_an_3(Add1, Add2,clk);
ZBOneRow ZBR4_an_5(Add1, Add2,clk);
ZBOneRow ZBR6_an_7(Add1, Add2,clk);
void main(void)
{
par
{

ZBR0_an_1.main();
ZBR2_an_3.main();
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ZBR4_an_5.main();
ZBR6_an_7.main();

}
}
// Takes in data stored in Add1
// Does Zero Biasing
// Puts data at address Add2

};

behavior Quantize (in bit[8] Add3, out bit[8] Add4,event clk) {
void main(void)
{
int a,i;
printf("Time =%5s : Quantize...\n", time2str(now()));
//includes a division step, one for each pixel, so 64 divisions
// 2 loops one inside another have more overhead than just one loop, because of comparisons etc.
for (i=0;i<(64+6);i++)
{

a = a / 2;
a = a * 2;

}
wait(clk);
// Takes in data stored in Add2
// Does Quantization
// Puts data at address Add3
}

};

behavior DCTblock (in bit[8] Add2, out bit[8] Add3,event clk) {
void main(void)
{
int i,a=2;
printf("Time =%5s : DCT ...\n", time2str(now()));
// DCT is just a lookup out of 64 values. The number to lookup is generated by multilplication and rounding off
// Assume it takes 1 operation to multiply, 3 operations to round off, and log_2(64) = 6 operations to lookup
//Total 10 operations, add overhead of 2, so total 12 operations per pixel, so total 64 X 12 = 786
for (i=0;i<(786+78);i++)
{

a = a + 2;
}
wait(clk);
// Takes in data stored in Add3
// Does DCT
// Puts data at address Add4
}

};

behavior Huffman (in bit[8] Add4, out bit[8] Add5,event clk) {
void main(void)
{
int a,i;
printf("Time =%5s : Huffman Encoding...\n", time2str(now()));
// Complexity of Huffman is O(nlgn) = 64(lg 64) = 384
// The complexity hides all constants etc. lets say they were 5, hence 384 * 5 = 1920
// lets make it computationally expensive
for (i=0;i<(1920+192);i++)
{
for (i=0;i<(1920+192);i++)
{
for (i=0;i<(1920+192);i++)
{
for (i=0;i<(1920+192);i++)
{
for (i=0;i<(1920+192);i++)
{
for (i=0;i<(1920+192);i++)
{

a = a + 2;
a = a - 2;
a = a * 2;
a = a / 2;

} } } } } }
wait(clk);
// Takes in data stored in Add4
// Does Huffman encoding
// Puts data at address Add5
}
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};

behavior SaveMemory (in bit[8] Add5,event clk) {
C Chan1;
S Send2Mem(Chan1,Add5);
R MemGet(Chan1);
void main(void)
{
//printf("Time =%5s : Saving to Memory...\n", time2str(now()));
// Assume each pixel takes up 1 byte or 8 bits, so total 512 bits
// Let us use a channel to send send data to memory
// Why?, because memories are slow and processors are fast.
// Lets send 4 sample values 9,10,11,12
par
{

Send2Mem.main();
MemGet.main();

}
//wait(clk);
}

};

behavior Process (
event clk)

{
int i;
piped bit[8] Add1;
piped bit[8] Add2;
piped bit[8] Add3;
piped bit[8] Add4;
piped bit[8] Add5;
GetImage GetImg(Add1, clk);
ZeroBiasing ZBA(Add1, Add2, clk);
Quantize QTZ(Add3, Add4,clk);
DCTblock DCT(Add2, Add3,clk);
Huffman HFM(Add4, Add5,clk);
SaveMemory SAVE(Add5,clk);
void main(void)
{
pipe(i=0;i<1;i++)
{

GetImg.main();
ZBA.main();
DCT.main();
QTZ.main();
HFM.main();

SAVE.main();
}
}

};

behavior CardFull (event clk) {
void main(void)
{

printf("Time =%5s : Change Memory Card!! \n", time2str(now()));
wait(clk);

}
};

behavior MemoryCheck (
event clk,
out bit[1] MemFul,
out bit[1] click
)

{
void main(void)
{
// Here, you undo click, so that FSM does not fire up again
click = 0;
//let us assume that 1 image takes 1000KB
printf("Time =%5s : MemoryCheck active...\n", time2str(now()));
// Assume that for now, space is available
// if (MemoryStaus > 1000)
MemFul = 0;
wait(clk);
}

};
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behavior Idle (event clk) {
void main(void)
{

printf("Time =%5s : Idle active...\n", time2str(now()));
wait(clk);

}
};

behavior FSM (
inout bit[1] click,
event clk)

{
bit[1] MemFul;
Idle Idl(clk);
CardFull CFull(clk);
MemoryCheck MemChk(clk,MemFul,click);
Process Procs(clk);

void main(void)
{
fsm
{

Idl:
{

if (click)
goto MemChk;
if(!click)

goto Idl;
}
MemChk:
{

if (MemFul)
goto CFull;

if (!MemFul)
goto Procs;

}
CFull:
{

break;
}
Procs:

{
break;

}
}
}

};

behavior Stimuli(
inout bit[1] click,
event clk)

{
void main(void)
{

printf(" click = 1 in stimuli \n");
click = 1;
wait(clk);
//printf(" click = 0 in stimuli \n");
//click = 0;

}
};

// definition of the clock generator

behavior Clock (event clk) {
void main(void)
{
int i;
for(i=1; i<15; i++) // the demo shouldn’t run forever
{

waitfor(100);
printf("Time =%5s : CTick!\n", time2str(now()));
notify(clk);

}
}

};
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// the testbench

behavior Main(void) {
bit[1] click;
event SystemClock;
Clock ClockGen(SystemClock);
FSM DigiCam(click,SystemClock);
Stimuli Stimulus(click,SystemClock);

int main(void)
{

par
{

ClockGen.main();
DigiCam.main();
Stimulus.main();

}
}

};
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C. C-Source file Generated by SpecC for Motorola68HC11
/ *

C source file generated by SpecC V2.2.b
Design: Digital
Root : Motorola_68HC11
File: Motorola_68HC11.c
Time: Sun Dec 22 23:44:48 1935

* /

#include "/home/aseemg/Motorola_68HC11.h"

/ * Global Variables * /

/ * Global Function Definitions * /

/ * Global Functions * /

struct Idle {
event ( * clk) / * port(data) * /;

};

struct CCDInitialize {
bit<_BITLEN(0,0),false> ( * CCDInitDone) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct CCDCapture {
bit<_BITLEN(0,0),false> ( * CCDCapDone) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct CCDPopPixel {
bit<_BITLEN(0,0),false> ( * CCDPopDone) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct Default {

int a; / * just not to compiler complain * /
};

struct GetImage {
event ( * clk) / * port(data) * /;
bit[0:0] CCDCapDone;
bit[0:0] CCDInitDone;
bit[0:0] CCDPopDone;

struct CCDCapture CCDCap;
struct CCDInitialize CCDInit;
struct CCDPopPixel CCDPop;
struct Default This;

};

struct ZBInitial {
bit<_BITLEN(7,0),false> ( * Row) / * port(data) * /;
bit<_BITLEN(7,0),false> ( * Col) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct ZBCompBias {
bit<_BITLEN(7,0),false> ( * Row) / * port(data) * /;
bit<_BITLEN(7,0),false> ( * Col) / * port(data) * /;
bit<_BITLEN(7,0),false> ( * Bias) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct ZBNextRow {
bit<_BITLEN(7,0),false> ( * Row) / * port(data) * /;
event ( * clk) / * port(data) * /;

};
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struct BiasAdjustment {
bit<_BITLEN(7,0),false> ( * Row) / * port(data) * /;
bit<_BITLEN(7,0),false> ( * Col) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct ZeroBiasing {
event ( * clk) / * port(data) * /;
bit[7:0] Bias;
bit[7:0] Col;
bit[7:0] Row;

struct BiasAdjustment BiasAdj;
struct ZBCompBias CompBias;
struct ZBInitial ZBInit;
struct ZBNextRow ZBNxtRow;

};

struct DCTblock {
event ( * clk) / * port(data) * /;

};

struct Quantize {
event ( * clk) / * port(data) * /;

};

struct Huffman {
event ( * clk) / * port(data) * /;

};

struct SaveMemory {
event ( * clk) / * port(data) * /;

};

struct Stage1 {
int ( * p1) / * port(data) * /;
int ( * p2) / * port(data) * /;
int ( * p3) / * port(data) * /;
int Stage1ExecCount;

};

struct Stage2 {
int ( * p1) / * port(data) * /;
int ( * p2) / * port(data) * /;
int Stage2ExecCount;

};

struct Stage3 {
int ( * p1) / * port(data) * /;
int ( * p2) / * port(data) * /;
int ( * p3) / * port(data) * /;
int Stage3ExecCount;

};

struct CardFull {
event ( * clk) / * port(data) * /;

};

struct Clock_PE1 {

int a; / * just not to compiler complain * /
};

struct END_OF_FSM {

int a; / * just not to compiler complain * /
};

struct MemoryCheck {
event ( * clk) / * port(data) * /;
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bit<_BITLEN(0,0),false> ( * MemFul) / * port(data) * /;
bit<_BITLEN(0,0),false> ( * click) / * port(data) * /;

};

struct Process {
int ( * a) / * port(data) * /;
int ( * b) / * port(data) * /;
event ( * clk) / * port(data) * /;
int From1To2;
int From1To3;
int From2To3;
int i;

struct DCTblock DCT;
struct GetImage GetImg;
struct Huffman HFM;
struct Quantize QTZ;
struct SaveMemory SAVE;
struct Default This;
struct ZeroBiasing ZBA;
struct Stage1 s1;
struct Stage2 s2;
struct Stage3 s3;

};

struct FSM {
bit<_BITLEN(0,0),false> ( * click) / * port(data) * /;
event ( * clk) / * port(data) * /;
bit[0:0] MemFul;
bit[0:0] ProcDone;
int i;
int o;

struct CardFull CFull;
struct Idle Idl;
struct MemoryCheck MemChk;
struct Process Procs;
struct END_OF_FSM ar_end;

};

struct Stimuli {
bit<_BITLEN(0,0),false> ( * click) / * port(data) * /;
event ( * clk) / * port(data) * /;

};

struct C_Motorola_68HC11 {
event ( * SystemClock) / * port(data) * /;
bit[0:0] click;

struct Clock_PE1 ClockGen;
struct FSM DigiCam;
struct Stimuli Stim;

};

void Idle_main(struct Idle * This) {
printf("Time =%5s : Idle active...\n", time2str(now()));
WAIT(clk);

}

void CCDInitialize_main(struct CCDInitialize * This) {
int a = 1;
int i;

printf("Time =%5s : CCD Initialization ..\n", time2str(now()));
for(i = 0; i < 82; i++ )
{
a = a + a;
}
( * (This->CCDInitDone)) = 1;
WAIT(clk);

}

void CCDCapture_main(struct CCDCapture * This) {
int a = 1;
int i;
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printf("Time =%5s : CCD Capture ..\n", time2str(now()));
for(i = 0; i < (80 + 8); i++ )
{
a = a + a;
}
( * (This->CCDCapDone)) = 1;
WAIT(clk);

}

void CCDPopPixel_main(struct CCDPopPixel * This) {
int a = 1;
int i;

printf("Time =%5s : CCD Popping Pixels ..\n", time2str(now()));
for(i = 0; i < (640 + 64); i++ )
{
a = a + 2;
}
( * (This->CCDPopDone)) = 1;
WAIT(clk);

}

void Default_main(struct Default * This) { }

void GetImage_main(struct GetImage * This) {
CCDInitialize_main(&(This->CCDInit));
CCDCapture_main(&(This->CCDCap));
CCDPopPixel_main(&(This->CCDPop));

}

void ZBInitial_main(struct ZBInitial * This) {
printf("Time =%5s : ZBInitialize...\n", time2str(now()));
( * (This->Row)) = 1;
( * (This->Col)) = 1;
WAIT(clk);

}

void ZBCompBias_main(struct ZBCompBias * This) {
printf("Time =%5s : ZBCompute Bias for Row %d .\n", time2str(now()),
(int)( * (This->Row)));
( * (This->Bias)) = 2;
( * (This->Bias)) = 3;
( * (This->Bias)) = 4;
( * (This->Bias)) = 5;
( * (This->Col)) = 1;
WAIT(clk);

}

void ZBNextRow_main(struct ZBNextRow * This) {
( * (This->Row)) = ( * (This->Row)) + 1;
printf("Time =%5s : ZB Next Row %d ..\n", time2str(now()), (int)( * (This->Row)));
WAIT(clk);

}

void BiasAdjustment_main(struct BiasAdjustment * This) {
int a;

printf("Time =%5s : Bias Adjustment .for Row %d .\n", time2str(now()),
(int)( * (This->Row)));
a = a + 2;
( * (This->Col)) = ( * (This->Col)) + 1;
WAIT(clk);

}

void ZeroBiasing_main(struct ZeroBiasing * This) {
int i;

ZBInitial_main(&(This->ZBInit));
for(i = 0; i < 8; i++ )
{
PAR
{

ZBCompBias_main(&(This->CompBias));
BiasAdjustment_main(&(This->BiasAdj));
ZBNextRow_main(&(This->ZBNxtRow));

}
}

}
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void DCTblock_main(struct DCTblock * This) {
int a = 2;
int i;

printf("Time =%5s : DCT ...\n", time2str(now()));
for(i = 0; i < (786 + 78); i++ )
{
a = a + 2;
}
WAIT(clk);

}

void Quantize_main(struct Quantize * This) {
int a;
int i;

printf("Time =%5s : Quantize...\n", time2str(now()));
for(i = 0; i < (64 + 6); i++ )
{
a = a / 2;
a = a * 2;
}
WAIT(clk);

}

void Huffman_main(struct Huffman * This) {
int a;
int i;

printf("Time =%5s : Huffman Encoding...\n", time2str(now()));
for(i = 0; i < (1920 + 192); i++ )
{
for(i = 0; i < (1920 + 192); i++ )
{

for(i = 0; i < (1920 + 192); i++ )
{
for(i = 0; i < (1920 + 192); i++ )
{

for(i = 0; i < (1920 + 192); i++ )
{
for(i = 0; i < (1920 + 192); i++ )
{

a = a / 2;
a = a * 2;

}
}

}
}

}
}
WAIT(clk);

}

void SaveMemory_main(struct SaveMemory * This) {
int a;
int i;

printf("Time =%5s : Saving to Memory...\n", time2str(now()));
for(i = 0; i < (512); i++ )
{
a = a / 2;
a = a * 2;
}
WAIT(clk);

}

void Stage1_main(struct Stage1 * This) {
int t1;
int t2;

(This->Stage1ExecCount)++ ;
printf("Stage1 execution #%d at time %s\n", (This->Stage1ExecCount),
time2str(now()));
printf("Stage1 input: p3 = %d\n", ( * (This->p3)));
t1 = ( * (This->p3)) + 1000 + 10000 * (This->Stage1ExecCount);
t2 = ( * (This->p3)) + 2000 + 10000 * (This->Stage1ExecCount);
printf("Stage1 output: p1 = %d, p2 = %d\n", t1, t2);
WAITFOR((5));
( * (This->p1)) = t1;
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( * (This->p2)) = t2;
}

void Stage2_main(struct Stage2 * This) {
int t;

(This->Stage2ExecCount)++ ;
printf("Stage2 execution #%d at time %s\n", (This->Stage2ExecCount),
time2str(now()));
printf("Stage2 input: p1 = %d\n", ( * (This->p1)));
t = ( * (This->p1)) + 100000 * (This->Stage2ExecCount);
printf("Stage2 output: p2 = %d\n", t);
WAITFOR((10));
( * (This->p2)) = t;

}

void Stage3_main(struct Stage3 * This) {
int t;

(This->Stage3ExecCount)++ ;
printf("Stage3 execution #%d at time %s\n", (This->Stage3ExecCount),
time2str(now()));
printf("Stage3 input: p1 = %d, p2 = %d\n", ( * (This->p1)), ( * (This->p2)));
t = ( * (This->p1)) + ( * (This->p2));
printf("Stage3 output: p3 = %d\n", t);
WAITFOR((7));
( * (This->p3)) = t;

}

void CardFull_main(struct CardFull * This) {
printf("Time =%5s : Change Memory Card!! \n", time2str(now()));
WAIT(clk);

}

void Clock_PE1_main(struct Clock_PE1 * This) { }

void END_OF_FSM_main(struct END_OF_FSM * This) { }

void MemoryCheck_main(struct MemoryCheck * This) {
( * (This->click)) = 0;
printf("Time =%5s : MemoryCheck active...\n", time2str(now()));
( * (This->MemFul)) = 0;
WAIT(clk);

}

void Process_main(struct Process * This) {
pipe((This->i) = 0; (This->i) < 1; (This->i)++ )
{
GetImage_main(&(This->GetImg));
ZeroBiasing_main(&(This->ZBA));
DCTblock_main(&(This->DCT));
Quantize_main(&(This->QTZ));
Huffman_main(&(This->HFM));
SaveMemory_main(&(This->SAVE));
}

}

void FSM_main(struct FSM * This) {
FSM {
goto Idl;
Idl:

Idle_main(&(This->Idl));
if (( * (This->click))) goto MemChk;
if ( !click) goto Idl;
goto MemChk;

MemChk:
MemoryCheck_main(&(This->MemChk));
if ((This->MemFul)) goto CFull;
if ( !MemFul) goto Procs;
goto CFull;

CFull:
CardFull_main(&(This->CFull));
goto ar_end;

Procs:
Process_main(&(This->Procs));
if ((This->ProcDone)) goto ar_end;
goto ar_end;

ar_end:
END_OF_FSM_main(&(This->ar_end));
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break;
}

}

void Stimuli_main(struct Stimuli * This) {
printf(" click = 1 in stimuli \n");
( * (This->click)) = 1;
WAIT(clk);

}

int Motorola_68HC11_main(struct C_Motorola_68HC11 * This) {
PAR
{
Clock_PE1_main(&(This->ClockGen));
FSM_main(&(This->DigiCam));
Stimuli_main(&(This->Stim));
}

}

/ * port of the software ROOT Behavior * / bool _scc_true = 1; bool
_scc_false = 0;

#ifdef __SPECC__ / * SpecC structure initilization,for simulation
only * / / * BIG structure initilization generated from behavior
instance tree * / struct C_Motorola_68HC11 c_PE1= {0/ * click * /,
{0}/ * ClockGen * /, {0/ * port click * /,0/ * port
SystemClock * /,0/ * MemFul* /,0/ * ProcDone * /,0/ * i * /,0/ * o* /, {0/ * port
clk * /}/ * CFull * /, {0/ * port clk * /}/ * Idl * /, {0/ * port clk * /,0/ * port
MemFul* /,0/ * port click * /}/ * MemChk* /, {0/ * port i * /,0/ * port o * /,0/ *
port clk * /,0/ * From1To2 * /,0/ * From1To3 * /,0/ * From2To3 * /,0/ * i * /, {0/ *
port clk * /}/ * DCT* /, {0/ * port
clk * /,0/ * CCDCapDone* /,0/ * CCDInitDone * /,0/ * CCDPopDone* /, {0/ * port
CCDCapDone* /,0/ * port clk * /}/ * CCDCap* /, {0/ * port CCDInitDone * /,0/ *
port clk * /}/ * CCDInit * /, {0/ * port CCDPopDone * /,0/ * port
clk * /}/ * CCDPop* /, {0}/ * This * /}/ * GetImg * /, {0/ * port clk * /}/ * HFM* /,
{0/ * port clk * /}/ * QTZ* /, {0/ * port clk * /}/ * SAVE* /, {0}/ * This * /, {0/ *
port clk * /,0/ * Bias * /,0/ * Col * /,0/ * Row* /, {0/ * port Row * /,0/ * port
Col * /,0/ * port clk * /}/ * BiasAdj * /, {0/ * port Row * /,0/ * port Col * /,0/ *
port Bias * /,0/ * port clk * /}/ * CompBias * /, {0/ * port Row * /,0/ * port
Col * /,0/ * port clk * /}/ * ZBInit * /, {0/ * port Row * /,0/ * port
clk * /}/ * ZBNxtRow* /}/ * ZBA* /, {0/ * port From1To2 * /,0/ * port
From1To3 * /,0/ * port a * /,0/ * Stage1ExecCount * /}/ * s1 * /, {0/ * port
From1To2 * /,0/ * port From2To3 * /,0/ * Stage2ExecCount * /}/ * s2 * /, {0/ *
port From1To3 * /,0/ * port From2To3 * /,0/ * port
b* /,0/ * Stage3ExecCount * /}/ * s3 * /}/ * Procs * /,
{0}/ * ar_end * /}/ * DigiCam * /, {0/ * port click * /,0/ * port
SystemClock * /}/ * Stim * /};

void _scc_port_mapping(void) { c_PE1.DigiCam.click=&(c_PE1.click);
c_PE1.DigiCam.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.CFull.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Idl.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.MemChk.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.MemChk.MemFul=&(c_PE1.DigiCam.MemFul);
c_PE1.DigiCam.MemChk.click=&(c_PE1.click);
c_PE1.DigiCam.Procs.a=&(c_PE1.DigiCam.i);
c_PE1.DigiCam.Procs.b=&(c_PE1.DigiCam.o);
c_PE1.DigiCam.Procs.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.DCT.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.GetImg.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.GetImg.CCDCap.CCDCapDone=&(c_PE1.DigiCam.Procs.GetImg.CCDCapDone);
c_PE1.DigiCam.Procs.GetImg.CCDCap.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.GetImg.CCDInit.CCDInitDone=&(c_PE1.DigiCam.Procs.GetImg.CCDInitDone);
c_PE1.DigiCam.Procs.GetImg.CCDInit.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.GetImg.CCDPop.CCDPopDone=&(c_PE1.DigiCam.Procs.GetImg.CCDPopDone);
c_PE1.DigiCam.Procs.GetImg.CCDPop.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.HFM.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.QTZ.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.SAVE.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.ZBA.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.ZBA.BiasAdj.Row=&(c_PE1.DigiCam.Procs.ZBA.Row);
c_PE1.DigiCam.Procs.ZBA.BiasAdj.Col=&(c_PE1.DigiCam.Procs.ZBA.Col);
c_PE1.DigiCam.Procs.ZBA.BiasAdj.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.ZBA.CompBias.Row=&(c_PE1.DigiCam.Procs.ZBA.Row);
c_PE1.DigiCam.Procs.ZBA.CompBias.Col=&(c_PE1.DigiCam.Procs.ZBA.Col);
c_PE1.DigiCam.Procs.ZBA.CompBias.Bias=&(c_PE1.DigiCam.Procs.ZBA.Bias);
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c_PE1.DigiCam.Procs.ZBA.CompBias.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.ZBA.ZBInit.Row=&(c_PE1.DigiCam.Procs.ZBA.Row);
c_PE1.DigiCam.Procs.ZBA.ZBInit.Col=&(c_PE1.DigiCam.Procs.ZBA.Col);
c_PE1.DigiCam.Procs.ZBA.ZBInit.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.ZBA.ZBNxtRow.Row=&(c_PE1.DigiCam.Procs.ZBA.Row);
c_PE1.DigiCam.Procs.ZBA.ZBNxtRow.clk=&(c_PE1.SystemClock);
c_PE1.DigiCam.Procs.s1.p1=&(c_PE1.DigiCam.Procs.From1To2);
c_PE1.DigiCam.Procs.s1.p2=&(c_PE1.DigiCam.Procs.From1To3);
c_PE1.DigiCam.Procs.s1.p3=&(c_PE1.DigiCam.i);
c_PE1.DigiCam.Procs.s2.p1=&(c_PE1.DigiCam.Procs.From1To2);
c_PE1.DigiCam.Procs.s2.p2=&(c_PE1.DigiCam.Procs.From2To3);
c_PE1.DigiCam.Procs.s3.p1=&(c_PE1.DigiCam.Procs.From1To3);
c_PE1.DigiCam.Procs.s3.p2=&(c_PE1.DigiCam.Procs.From2To3);
c_PE1.DigiCam.Procs.s3.p3=&(c_PE1.DigiCam.o);
c_PE1.Stim.click=&(c_PE1.click);
c_PE1.Stim.clk=&(c_PE1.SystemClock); }

#else / * BIG structure initilization generated from behavior
instance tree * / struct C_Motorola_68HC11 c_PE1= {0/ * click * /,
{0}/ * ClockGen * /,
{&(c_PE1.click),&(c_PE1.SystemClock),0/ * MemFul* /,0/ * ProcDone * /,0/ * i * /,0/ * o* /,
{&(c_PE1.SystemClock)}/ * CFull * /, {&(c_PE1.SystemClock)}/ * Idl * /,
{&(c_PE1.SystemClock),&(c_PE1.DigiCam.MemFul),&(c_PE1.click)}/ * MemChk* /,
{&(c_PE1.DigiCam.i),&(c_PE1.DigiCam.o),&(c_PE1.SystemClock),0/ * From1To2 * /,0/ * From1To3 * /,0/ * From2To3 * /,0/ * i * /,
{&(c_PE1.SystemClock)}/ * DCT* /,
{&(c_PE1.SystemClock),0/ * CCDCapDone* /,0/ * CCDInitDone * /,0/ * CCDPopDone* /,
{&(c_PE1.DigiCam.Procs.GetImg.CCDCapDone),&(c_PE1.SystemClock)}/ * CCDCap* /,
{&(c_PE1.DigiCam.Procs.GetImg.CCDInitDone),&(c_PE1.SystemClock)}/ * CCDInit * /,
{&(c_PE1.DigiCam.Procs.GetImg.CCDPopDone),&(c_PE1.SystemClock)}/ * CCDPop* /,
{0}/ * This * /}/ * GetImg * /, {&(c_PE1.SystemClock)}/ * HFM* /,
{&(c_PE1.SystemClock)}/ * QTZ* /, {&(c_PE1.SystemClock)}/ * SAVE* /,
{0}/ * This * /, {&(c_PE1.SystemClock),0/ * Bias * /,0/ * Col * /,0/ * Row* /,
{&(c_PE1.DigiCam.Procs.ZBA.Row),&(c_PE1.DigiCam.Procs.ZBA.Col),&(c_PE1.SystemClock)}/ * BiasAdj * /,
{&(c_PE1.DigiCam.Procs.ZBA.Row),&(c_PE1.DigiCam.Procs.ZBA.Col),&(c_PE1.DigiCam.Procs.ZBA.Bias),&(c_PE1.SystemClock)}/ * CompBias * /,
{&(c_PE1.DigiCam.Procs.ZBA.Row),&(c_PE1.DigiCam.Procs.ZBA.Col),&(c_PE1.SystemClock)}/ * ZBInit * /,
{&(c_PE1.DigiCam.Procs.ZBA.Row),&(c_PE1.SystemClock)}/ * ZBNxtRow* /}/ * ZBA* /,
{&(c_PE1.DigiCam.Procs.From1To2),&(c_PE1.DigiCam.Procs.From1To3),&(c_PE1.DigiCam.i),0/ * Stage1ExecCount * /}/ * s1 * /,
{&(c_PE1.DigiCam.Procs.From1To2),&(c_PE1.DigiCam.Procs.From2To3),0/ * Stage2ExecCount * /}/ * s2 * /,
{&(c_PE1.DigiCam.Procs.From1To3),&(c_PE1.DigiCam.Procs.From2To3),&(c_PE1.DigiCam.o),0/ * Stage3ExecCount * /}/ * s3 * /}/ * Procs * /,
{0}/ * ar_end * /}/ * DigiCam * /,
{&(c_PE1.click),&(c_PE1.SystemClock)}/ * Stim * /};

#endif

#ifdef __SPECC__ int main(void) {
_scc_port_mapping();
Motorola_68HC11_main(&c_PE1);

} #else int main() {
Motorola_68HC11_main(&c_PE1);
return 1;

} #endif

/ * End of file Motorola_68HC11.c * /
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