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Abstract

Within SCE, starting from an initial system specification, an implementation of the system is created
through a series of interactive and automated steps by gradually synthesizing and assembling a system
design using components taken out of a set of databases.

SCE uses four models to reflect design decisions during system-level synthesis: specication mode,
carchitecture model, network model and communication model. The communication model can be pin-
accurate or transaction-level model. This report defines and describes pin-accurate communication model
required for system-on-chip (SoC) design.

Generally, communication models need to represent processing elements (PEs), memories, communica-
tion elements (CEs) and bus wires connecting components. In this report we aim to provide an exhaustive
list of requirements for pin-accurate communication in an automated SoC design flow using the example
of concrete models. Specifically, the communication model in this report is used successfully in our SoC
Design Environment, SCE.
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Figure 1: SCE design flow.

SCE [4] is an environment for capturing the architecture and platform specification of space electronic
equipment. It supports the design of such equipment from the specification down to the communication
model. It does so by capturing of design decisions and automatic generation of new models as shown in Fig-
ure 1. SCE follows a Specify-Explore-Refine methodology. The design flow starts with a model representing
the design functionality (Specify). At each following design step, SCE users first explore the design space
(Explore) and then make design decisions. Integrating those decisions, SCE then automatically generates a
new model at lower abstraction level (Refine).
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In the SCE design flow (Figure 1), five models are used for the representation of a design at different
levels of abstraction. Each design model is executable; it can be simulated to verify the correctness of the
design and obtain design performance metrics at each design step.

The specification model [5] is the most abstract model, which serves the as an input to SCE tools. It is
a purely functional model that captures the functionality of the designed design and should not imply any
implementation details.

The architecture model [6] reflects the allocation of system components and the mapping of the specified
functionality onto the allocated components. The communication between those components is still described
very abstract by message passing channels.

The network model [7] reflects the communication network of the design. It represents the allocation and
selection of network stations and logical links between them. While the communication between components
in the architecture models is captured end-to-end, in the network model this communication is refined down
to point-to-point.

Finally, the communication model incorporates bus protocols into the model. The communication model
can be pin-accurate or a transaction-level model [8]. The transaction level model abstracts away the pin-
accurate protocol details and thereby gains higher simulation speeds.

All models are captured in SpecC [1], therefore they do have to adhere to the syntax and semantics of
the SpecC language. It is recommended that the designer starts with the specification model and later uses
the SCE tools to automatically generate lower level models. However, the SCE tools also support manually
written low level models as long as they obey certain modeling rules. This manual defines the modeling style
required for the a SCE communication models (pin-accurate communication model), which is highlighted in
the Figure 1.

This manual can be used for two purposes. First, it can help user to interpret the code of the communi-
cation model, which is automatically generated by the communication synthesizer. Second, it gives the user
guidelines to manually write a valid communication model that is acceptable to the SCE tools.

The rest of the manual is organized as follows: First, Section 2 shows the overall structure of the commu-
nication model. The major elements of a communication model are described one by one in detail. Section 3
describes the guidelines to model processing elements shown in the communication model. Section 4 de-
scribes the modeling of shared memories in the communication model. Section 5 describes the modeling
of communication elements, such as bridges and transducers in the communication model. Section 6 de-
scribes the modeling of bus wires in the communication model. Finally, Section 7 describes a example of
communication model in SCE.

2 Overview of Communication Model
The communication model is the final result of the system synthesis process and defines the structure of
the system architecture in terms of components and connections. Computation in the specification has been
mapped onto components and communication onto busses. At the top-level of the behavior hierarchy, a
design consists of concurrent, non-terminating system components that communicate through busses.

Inside the components, behavior models of bus drivers and bus interfaces (protocol stacks) describe the
communication functionality of the component, i.e. implementations of all communication layers in the
protocol stacks are inlined into the components in the form of channel adapters and implement the abstract
transaction in architecture model over busses. Those bus adapters (a stack of communication layers) specify
how the component implements the semantics of the abstract transactions by driving and sampling the wires
of the system bus. Behavioral blocks inside the component, in turn, connect to the equivalent message passing
channel interface provided by bus adapters.

Component communication models can be thought of as additional communication layers that wrap

2



Design MonitorStimulus

Main

Figure 2: Top-level structure of a communication model.

around the component behavioral model. A communication model can consist of several layers of behav-
iors that create a hierarchy or tree of behavior instantiations. At minimum, a top level bus functional layer
shell has to exist that provides a pin accurate model of the component. Through this layer and its optional
sublayer instance hierarchy, the bus functional component model describes the communication behavior of
the component at its pins and it has to provide the same computational functionality as the behavioral model
of the component.

Figure 2 and Figure 3 show a template of a valid communication model. A communication model has
to be an executable SpecC model, therefor it has to define a Main behavior. A communication model is
composed of three parts: a stimuli generator, a monitor and a actual design unit as shown in Figure 2. The
stimuli generator (Stimulus) supplies test vector to the input ports of the design. The output produced by
the design unit is observed and validated by the monitor (Monitor). The design unit (Design) is the target
of the design space exploration in SCE environment. SCE tools require the design unit to follow certain
modeling rules and restrictions. Note that the modeling rules and restrictions defined in this manual only
apply to the design unit, since the stimuli generator and monitor will not be considered and touched by SCE
tools. Therefore, the stimuli generator and monitor can be freely described using any valid SpecC code.

In general, it is hard for SCE tools to determine which behaviors are part of the design unit. Thus the user
has to specify the behaviors comprising the design unit. In practice, this is realized by attaching a pre-defined
annotation to the communication model.

Rule 1 A communication model has an annotation SCE TOP LEVEL, which contains the name of the top-
level behavior of the design unit.

For example in Figure 3, the annotation in the line 39, specifies the design unit. Once the top-level behavior
of the design unit is specified, the SCE tools can conveniently figure out all other behaviors that belong to the
design unit.

The design unit of the communication model must obey the following rules.

Rule 2 Design unit has exactly the same set of ports as the corresponding behavior in the specification
model.

Leaving the interface of the design unit unchanged, allows connecting it to the testbench behaviors (stimulus
and monitor) without changing the latter. Thus it allows simulation of the communication model.

Rule 3 Design unit has exactly one method, the main() method, which contains exactly one statement that
is a par statement.
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1 i m p o r t ” c d o u b l e h a n d s h a k e ” ;
2
3 b e h a v i o r S t i m u l u s ( i s e n d e r i n p u t ) { / / S t i m u l i c r e a t o r
4 vo id main ( vo id ) {
5 / / w h i l e ( . . . ) { . . . ; i n p u t . send ( . . . ) ; . . . }
6 }
7 } ;
8
9 b e h a v i o r Moni to r ( i r e c e i v e r o u t p u t ) { / / Ou tpu t m o n i t o r

10 vo id main ( vo id ) {
11 / / w h i l e ( . . . ) { . . . ; o u t p u t . r e c e i v e ( . . . ) ; . . . }
12 }
13 } ;
14
15 b e h a v i o r Des ign ( i r e c e i v e r i n p u t , i s e n d e r o u t p u t ) { / / Sys t em d e s i g n
16 / / . . .
17
18 vo id main ( vo id ) {
19 / / f sm { . . . }
20 }
21 } ;
22
23 b e h a v i o r Main ( ) { / / Top l e v e l
24 c d o u b l e h a n d s h a k e i n p u t , o u t p u t ;
25
26 S t i m u l u s s t i m u l u s ( i n p u t ) ;
27 Design d e s i g n ( i n p u t , o u t p u t ) ;
28 Moni to r m o n i t o r ( o u t p u t ) ;
29
30 i n t main ( vo id ) {
31 p a r {
32 s t i m u l u s . main ( ) ;
33 d e s i g n . main ( ) ;
34 m o n i t o r . main ( ) ;
35 }
36 }
37 } ;
38
39 n o t e SER TOP LEVEL = ” Design ” ;

Figure 3: Top-level code of a communication model.
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Note that by the definition of a hierarchical behavior, each sub-behavior instance inside the design unit can be
called at most once in the par statement. For example, having two PE.main() calls in the par statement
is not allowed.

Rule 4 A design unit has a set of sub-behaviors instances and variables in pin-accurate communication
model.

The sub-behaviors of the design unit may be PE behaviors, memory behaviors, or communication elements
behaviors. They are defined in more details in the following sections. In the pin-accurate communication
model, variables represent the bus wires connecting PEs, memories and CEs as shown in Figure 4 and Fig-
ure 5.

Rule 5 A design unit contains a set of PEs, memories, CEs and bus wires at the top-level behavior. They are
connected by wires.

The design unit usually contains finer model elements (system components). Those finer model elements
capture both the computation architecture and the communication network. The system components are:

• Processing element behaviors model the processing elements (PEs) allocated to perform the desired
computation.

• Memory behaviors model the shared memories allocated to store data shared by PEs.

• Communication element behaviors model the bridge and transducer interfacing between different com-
munication protocols.

• Protocol channels or bus wires model the connection between PEs, memories and CEs.

The model elements are defined one by one in the following sections.

2.1 Layered Structure of Communication Model
In order to separate the concerns of modeling different aspects o f a functionality in terms of communication
and computation, we take a layered approach, which is well known in the network community for describing
protocols.

2.1.1 Layers of Protocol Stack

For the communication functionality, we will implement several layers of protocol stack based on OSI refer-
ence model: application layer, presentation layer, session layer, transport layer, network layer, link layer,
media access layer, and protocol layer. The upper part of the protocol stack - from application layer to net-
work layer - is implemented during the network exploration. The remaining part of the protocol stack will
be inserted by communication synthesizer. Due to characteristics of standard bus-based SoC communication,
layers have been tailored specifically to these requirements. For example, in a reliable bus-based communi-
cation architecture, error correction, flow control, buffering or dynamic routing are not required. Therefore,
the transport layer is empty and the network layer is largely simplified. In the following, we will describe and
define each layer in more detail.

The application layer corresponds to the computation functionality of the system, which defines the be-
havior of the application implemented by the system design. The application layers describe the processing
of data in the system components that exchange data by passing messages over channels.
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1 b e h a v i o r Des ign ( vo id )
2 {
3 / / CPUBus w i r e s
4 s i g n a l b i t [ 3 5 : 0 ] GA CPUBus ;
5 s i g n a l b i t [ 7 : 0 ] GBE CPUBus = 00000000 b ;
6 s i g n a l b i t [ 6 3 : 0 ] GDIN CPUBus ;
7 s i g n a l b i t [ 6 3 : 0 ] GDOUT CPUBus ;
8 s i g n a l b i t [ 0 : 0 ] GRD CPUBus = 1b ;
9 s i g n a l b i t [ 0 : 0 ] GWR CPUBus = 1b ;

10 s i g n a l b i t [ 0 : 0 ] GACK CPUBus = 1b ;
11 s i g n a l b i t [ 0 : 0 ] GREQ0 CPUBus = 1b ;
12 s i g n a l b i t [ 0 : 0 ] GGNT0 CPUBus = 1b ;
13 s i g n a l b i t [ 0 : 0 ] GREQ1 CPUBus = 1b ;
14 s i g n a l b i t [ 0 : 0 ] GGNT1 CPUBus = 1b ;
15 s i g n a l b i t [ 1 : 0 ] GINT0 CPUBus = 11b ;
16 s i g n a l b i t [ 1 : 0 ] GINT1 CPUBus = 11b ;
17 s i g n a l b i t [ 1 : 0 ] GINT2 CPUBus = 11b ;
18 s i g n a l b i t [ 1 : 0 ] GINT3 CPUBus = 11b ;
19
20 / / S l a v e B u s w i r e s
21 s i g n a l b i t [ 3 5 : 0 ] GA SlaveBus ;
22 s i g n a l b i t [ 7 : 0 ] GBE SlaveBus = 00000000 b ;
23 s i g n a l b i t [ 6 3 : 0 ] GDIN SlaveBus ;
24 s i g n a l b i t [ 6 3 : 0 ] GDOUT SlaveBus ;
25 s i g n a l b i t [ 0 : 0 ] GRD SlaveBus = 1b ;
26 s i g n a l b i t [ 0 : 0 ] GWR SlaveBus = 1b ;
27 s i g n a l b i t [ 0 : 0 ] GACK SlaveBus = 1b ;
28
29 / / SRAMBus w i r e s
30 s i g n a l b i t [ 1 8 : 0 ] A SRAMBus ;
31 s i g n a l b i t [ 0 : 0 ] CS SRAMBus = 1b ;
32 s i g n a l b i t [ 7 : 0 ] IO SRAMBus ;
33 s i g n a l b i t [ 0 : 0 ] OE SRAMBus = 1b ;
34 s i g n a l b i t [ 0 : 0 ] WE SRAMBus = 1b ;
35
36 Toshiba TX49H2 BF CPU(
37 / / CPUBus m a s t e r i n t e r f a c e
38 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus , GRD CPUBus ,
39 GWR CPUBus , GACK CPUBus ,
40 GREQ0 CPUBus , GGNT0 CPUBus , GREQ1 CPUBus , GGNT1 CPUBus ,
41 GINT0 CPUBus , GINT1 CPUBus , GINT2 CPUBus , GINT3 CPUBus
42 ) ;

Figure 4: A design in the pin-accurate communication model (I).
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43 HW Standard DMA BF DMA(
44 / / CPUBus m a s t e r / s l a v e i n t e r f a c e
45 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus , GRD CPUBus ,
46 GWR CPUBus , GACK CPUBus , GINT0 CPUBus , GREQ CPUBus , GGNT CPUBus ,
47 ) ;
48 HW Standard HW BF HW(
49 / / S l a v e B u s s l a v e i n t e r f a c e
50 GA SlaveBus , GDOUT SlaveBus , GDIN SlaveBus , GBE SlaveBus ,
51 GRD SlaveBus , GWR SlaveBus , GACK SlaveBus , GINT1 CPUBus
52 ) ;
53 SRAM BF SRAM(
54 / / SRAMBus s l a v e i n t e r f a c e
55 A SRAMBus , IO SRAMBus , CS SRAMBus , OE SRAMBus , WE SRAMBus
56 ) ;
57 SRAMCtrl BF SRAMCtrl (
58 / / CPUBus s l a v e i n t e r f a c e
59 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus , GRD CPUBus ,
60 GWR CPUBus , GACK CPUBus ,
61 / / SRAMBus m a s t e r i n t e r f a c e
62 A SRAMBus , IO SRAMBus , CS SRAMBus , OE SRAMBus , WE SRAMBus
63 ) ;
64 Bridge BF B r i d g e (
65 / / CPUBus s l a v e i n t e r f a c e
66 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus , GRD CPUBus ,
67 GWR CPUBus ,
68 / / S l a v e B u s m a s t e r i n t e r f a c e
69 GA SlaveBus , GDOUT SlaveBus , GDIN SlaveBus , GBE SlaveBus ,
70 GRD SlaveBus , GWR SlaveBus ,
71 ) ;
72
73 vo id main ( vo id ) {
74 p a r {
75 CPU . main ( ) ;
76 HW. main ( ) ;
77 DMA. main ( ) ;
78 B r i d g e . main ( ) ;
79 SRAM. main ( ) ;
80 SRAMCtrl . main ( ) ;
81 }
82 }
83 } ;

Figure 5: A design in the pin-accurate communication model (II).
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The presentation layer is used to describe the formatting between typed data in the application and type-
less byte-stream transferred through the network. The presentation layer performs the type conversion. If the
data in the application is already untyped, the adapter channels may be omitted.

The session layer establishes a connection between components and is responsible for end-to-end syn-
chronization. The session layer marks the interface between application and operating system. In the session
layer, different streams originating from different sources may be combined, hence messages of different
channels need to be multiplexed on shared streams.

The transport layer is needed to break up the byte stream into smaller packets that will be routed over
the network if a transducer participates in the data transfer. The transport layer is modeled as a hierarchical
behavior. It contains an instantiation of the transport layer behavior. It may also contain a set of adapter
channels that perform the packetization.

The network layer determines routing of data packets from sender to receiver. Assuming reliable sta-
tions and links, routing in SoCs is usually done statically, i.e. all packets of a channel take the same fixed,
pre-determined path through the system. In a standard bus-based communication, a dedicated logical link
is established between two stations for each channel routed through them, assuming the underlying layers
support a large enough number of simultaneous logical links between all pairs of stations. The network layer
may also contain a set of adapter channels that perform the routing.

The link layer provides services to establish logical links between adjacent stations and to exchange data
packets those. The link layer is the highest layer of drivers for external interfaces and peripherals in the
operating system. The link layer defines the type of a station (e.g. master/slave) for each of its incoming
and outgoing links. As a result, it implements any necessary synchronization between stations by interrupt or
acknowledgment. As part of link layer, polling might be required for synchronization, for example, in case
of interrupt sharing.

The media access layer is responsible for slicing blocks of bytes into transfer units available at the physical
interface. In the process, its implementation has to guarantee that the rates of successive transfers within a
block match for all communication partners. Furthermore, the media access layer determines who is allowed
to access a shared medium at a given point in time. In other words, it resolves the simultaneous access of bus
masters by means of arbitration. Depending on the chosen arbitration scheme, additional arbitration stations
are introduced into the system as part of the media access layer.

The protocol layer implements the transfer protocols over a medium in the hardware of component’s in-
terface. It is responsible for driving and sampling the external pins according to the protocol timing diagrams
and thereby matching the transmission timing on the sender and receiver side. As part of the protocol layer,
protocol converters are introduced into the system. Protocol converter connects two busses with different
protocols by translating different protocols.

2.1.2 Layered Shells of PEs

In order to separate the concerns of modeling different aspects of a programmable PE, we also take a layered
approach [9]. From inside out, five layers have to be followed to model a PE: application layer shell, op-
erating system layer shell. hardware abstraction layer shell. hardware layer shell, and bus-functional layer
shell.

The inner-most application layer shell encapsulates the computation required by the application that is
executed on the PE. In general, the application layer shell is hierarchically composed of smaller behaviors,
each contains a piece of the computation assigned to the PE. For inter-behavior communication inside the
application layer, both channels and variables can be connected to the behavior ports. The modeling styles
inside the application layer can be found in SpecC specification model reference manual. However, the
application layer shell can only have interface type ports and no variable ports. Furthermore, only certain
interface types are allowed for the ports.
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Rule 6 An application layer shell has only interface ports and no variable ports. It may contain a set of
channel adapter instances such as application and presentation layer. The interface types allowed are as
follows:

i sender (un-typed)

i receiver (un-typed)

i tranceiver (un-typed)

i send

i receive

memory interfaces

The operating system layer shell encapsulates the communication functionality related to operating sys-
tem on the PE.

Rule 7 The operating system layer shell contains exactly one behavior instance, of the type application layer
shell. It may contain a set of channel adapter instances such session, transport, and network layer.

Same as the application layer shell, the operating system layer shell only has interface ports and obviously,
only untyped interface types are allowed.

Rule 8 An operating system layer shell has only interface ports and no variable ports. The interface types
allowed are as follows:

i sender (un-typed)

i receiver (un-typed)

i tranceiver (un-typed)

i send

i receive

memory interfaces

Rule 9 An operating system layer shell needs to have interrupt handling tasks, which invoke the applications
that are waiting on the corresponding interrupt.

The rest of the shells, such as hardware abstraction layer, hardware layer, and bus-functional layer shell,
are defined in PE database [9]. The refinement tools will insert the shells into the model and connected them
properly.

3 Processing Elements
During the architecture exploration, the processing elements (PEs) are allocated. They perform the compu-
tation part of the specification. A PE can be an off-the-shelf software processor or a synthesizable FPGA or
ASIC hardware unit. During the network exploration, upper layers of the protocol stack are inlined into the
PE.

Rule 10 A PE is represented by a SpecC behavior that must be a hierarchical behavior.

9



A PE is represented by a SpecC behavior and should be instantiated in the top-level behavior. The definition
of hierarchical behavior can be found in specification model report. The composition type of the PE behavior
can be either seq, par, or fsm as defined in LRM.

Rule 11 To declare a behavior as a PE it has to be annotated by AR MAPPED TO.

The PE allocation table contains the names of the allocated PEs. The PE is assigned to one of the allocated
PEs by AR MAPPED TO. This annotation is attached during architecture exploration.

Rule 12 Each PE has only variable ports which are connected to bus wires.

The port type of PE behaviors can be only signal type bit vector, since the port needs to be connected to bus
wires.

Rule 13 A PE communicates to the outside through an implementation of a protocol stack.

Inside each processing element, a protocol stack is implemented to interface with the outside wires. Some
layers in the protocol stack are automatically generated by refinement tools, while others are taken out of bus
database and are inserted into the PE.

3.1 Programmable PEs
For a programmable PE with flexible computation behavior, (i.e. no functionality provided in the PE behavior)
but fixed, pre-defined interfaces and communication functionality, the bus-functional PE model has to provide
a hierarchy with three layer shells: a top-level bus-functional layer shell, hardware layer shell and hardware
abstraction layer (HAL) shell as shown in Figure 6.

As described in database manual [9], a pin-accurate programmable PE model in the database can be
thought of as additional communication layers that wrap around the PE behavioral model which comes from
architecture model.

A PE is considered programmable in terms of its computation if the bus-functional PE model provides a
hardware abstraction layer.

Rule 14 The bus functional implementation of a programmable PE must have PE HAL MODEL annotation.

As part of the design process in SCE, communication synthesis will use the HAL of the bus-functional PE
model as a template and modify it to implement computation on the PE on top of the services provided
by the HAL model. In terms of services, the HAL defines the insertion point for implementing the PE’s
computation and it provides communication services for stream and memory I/O and interrupt handling as
shown in Figure 7.

The HAL together with the outer hardware layer shell models the corresponding capabilities of the pre-
defined PE implementation (e.g. number and type of external interfaces, amount and level of interrupts,
etc.). The HAL shell describes the interface for accessing the PE’s communication implementation from the
programmable computation.

Rule 15 The hardware layer shell between HAL shell and BF layer shell of a programmable PE must imple-
ment an interface for interrupt handling if it has interrupt pins.

The interrupt handling is accomplished in HAL layer of the programmable PE. The HAL layer needs to
provide interrupt service routines. The methods in the implementation interface of the PE will be called by
the synchronization channels as shown in Figure 8.

10



ISR

P
ro

to
co

l
A

rb
itr

a
tio

n

PIC

intA
intB
intC
intD

ARBITER

req1
ack2
req2
ack2

A[31:0]
D[31:0]
BE[3:0]
nRD
nWD

PE_HW

intA

IH1 IH2 IH3 IH4

intB intC intD

M
A

C


M
E

M


PE_HAL
PE_OS

PE M
1


M

2


L2


L1


PE_BF

B1

Bn

P
n

P
2

P
1

Figure 6: An example of programmable PE in communication model.
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Rule 16 The hardware layer shell of the programmable PE has to contain an implementation of a protocol
layer for each connected bus.

Rule 17 The hardware layer shell must have one instance of the HAL shell of the programmable PE and one
interrupt handling behavior.

As shown in Figure 8, the hardware layer shell contains the HAL shell of the programmable PE and interrupt
handling behavior.

Rule 18 The bus-functional layer shell of the programmable PE contains an arbiter and an interrupt con-
troller.

The bus-functional layer shell describes the PE pin interface to the outside and contains an interrupt controller
for interrupt handling and an arbiter for arbitrating concurrent bus accesses to a bus. The programmable PE
is associated with interrupts for synchronization with other components. The interrupt controller usually is
a part of the programmable PE. Also, an arbiter is necessary to resolve the multiple bus accesses on a bus.
Figure 9 shows the hardware layer shell of the programmable PE, which contains an arbiter and an interrupt
controller.

Rule 19 The BF shell of the programmable PE must contain one instance of a hardware layer shell.

As shown in Figure 9, the hardware layer shell is instantiated in BF layer shell of the programmable PE.

3.2 Hardware PEs
Programmable PEs are general purpose processors. Hardware PEs on the other hand are application specific
hardware devices that need to be synthesized. Figure 10 shows a typical hardware PE in the communication
model. The protocol stack implementation is instantiated and connected to others at the interface of the
hardware PE. Hardware PEs can be synthesized by backend tools.

3.2.1 Hardware PE with local memories

A hardware component may contain a local memory, which other components can access by I/O operations.
The local memory model need to provide read/write methods so that its contents are accessed by the PE and
other PEs. Thus local memory is modeled as a behavior with interfaces as shown in Figure 11

Rule 20 A hardware PE with local memory must have memory a sub-behavior running concurrently with the
rest of sub-behaviors.

The local memory must run concurrently with other sub-behaviors in the HW PE, because they need to be
accessed by the PEs without the help of synchronization.

Rule 21 The local memory sub-behavior in the HW PE must implement the read/write interfaces, which can
be used by the sub-behaviors in the HW PE and can be accessed by other PEs.

The memory behavior inside the hardware PE provides read/write interfaces, so that the PE can access the
local memory by interface method calls.

Figure 12 and Figure 13 shows SpecC code of a hardware PE with local memory.
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1 b e h a v i o r Toshiba TX49H2 HAL (
2 ITosh ibaGBusMas te r mac ,
3 i n o u t b i t [ 3 1 : 0 ] SR ,
4 i n o u t b i t [ 3 1 : 0 ] CR) implemen t s I T o s h i b a T X 4 9 H 2 I n t V e c t o r s
5 {
6 / / MAC l a y e r a d a p t e r s
7 ToshibaGBusMas te rLinkAccess l i n k ( mac ) ;
8 ToshibaGBusMasterMemAccess mem( mac ) ;
9

10 / / o p e r a t i n g s y s t e m l a y e r s h e l l
11 Toshiba TX49H2 OS c p u o s ( l i n k , mem) ;
12
13 / / i n t e r r u p t h a n d l e r s
14 vo id i n t 0 h a n d l e r ( u n s i g n e d i n t num ) {
15 c p u o s . DMAHandler ( ) ;
16 }
17 vo id i n t 1 h a n d l e r ( u n s i g n e d i n t num ) {
18 c p u o s . HWHandler ( ) ;
19 }
20 vo id i n t H a n d l e r ( vo id ) {
21 u n s i g n e d i n t num ;
22 i f (CR[ 1 1 ] ) {
23 num = mac . LoadDoubleword (0 + 1) ;
24 i n t 1 h a n d l e r ( num ) ;
25 }
26 e l s e i f (CR[ 1 0 ] ) {
27 num = mac . LoadDoubleword (0 + 0) ;
28 i n t 0 h a n d l e r ( num ) ;
29 }
30 }
31
32 vo id main ( vo id ) {
33 c p u o s . main ( ) ;
34 }
35 } ;

Figure 7: An example of a programmable PE in SpecC (HAL shell).
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36 / / hardware s h e l l o f p r o c e s s o r
37 b e h a v i o r Toshiba TX49H2 HW (
38 o u t s i g n a l b i t [ 3 5 : 0 ] GA,
39 o u t s i g n a l b i t [ 6 3 : 0 ] GDOUT,
40 i n s i g n a l b i t [ 6 3 : 0 ] GDIN ,
41 o u t s i g n a l b i t [ 7 : 0 ] GBE,
42 o u t s i g n a l b i t [ 0 : 0 ] GRD,
43 o u t s i g n a l b i t [ 0 : 0 ] GWR,
44 i n s i g n a l b i t [ 0 : 0 ] GACK,
45 o u t s i g n a l b i t [ 0 : 0 ] GREQ,
46 i n s i g n a l b i t [ 0 : 0 ] GGNT,
47 i n s i g n a l b i t [ 5 : 0 ] GINT )
48 {
49 b i t [ 3 1 : 0 ] CR = 00000000000000000000000000000000 b ;
50 b i t [ 3 1 : 0 ] SR = 00000000010000001111111100000101 b ;
51
52 / / a r b i t r a t i o n
53 ToshibaGBusAccess a c c e s s (GREQ, GGNT) ;
54
55 / / m a s t e r i n t e r f a c e ( p r o t o c o l and MAC l a y e r )
56 ToshibaGBusMaster m a s t e r (GA, GDOUT, GDIN , GBE, GRD, GWR, GACK) ;
57 ToshibaGBusMAC mac ( mas te r , a c c e s s ) ;
58
59 / / HAL s h e l l
60 Toshiba TX49H2 HAL h a l ( mac , SR , CR) ;
61
62 / / i n t e r r u p t h a n d l e r
63 Tosh iba TX49H2 In t i n t r ( GINT , CR, SR , SR , SR , h a l ) ;
64
65 vo id main ( vo id ) {
66 t r y {
67 h a l . main ( ) ;
68 }
69 i n t e r r u p t ( GINT , GHAVEIT) {
70 i n t r . main ( ) ;
71 }
72 }
73 } ;

Figure 8: An example of a programmable PE in SpecC (HW layer shell).
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74 / / bus− f u n c t i o n a l l a y e r s h e l l o f p r o c e s s o r
75 b e h a v i o r Toshiba TX49H2 BF (
76 i n o u t s i g n a l b i t [ 3 5 : 0 ] GA,
77 i n o u t s i g n a l b i t [ 6 3 : 0 ] GDOUT,
78 i n o u t s i g n a l b i t [ 6 3 : 0 ] GDIN ,
79 i n o u t s i g n a l b i t [ 7 : 0 ] GBE,
80 i n o u t s i g n a l b i t [ 0 : 0 ] GRD,
81 i n o u t s i g n a l b i t [ 0 : 0 ] GWR,
82 i n o u t s i g n a l b i t [ 0 : 0 ] GACK,
83 i n s i g n a l b i t [ 0 : 0 ] GREQ,
84 o u t s i g n a l b i t [ 0 : 0 ] GGNT,
85 i n s i g n a l b i t [ 0 : 0 ] GSREQ,
86 o u t s i g n a l b i t [ 0 : 0 ] GSGNT,
87 i n s i g n a l b i t [ 1 : 0 ] GINT0 ,
88 i n s i g n a l b i t [ 1 : 0 ] GINT1 ,
89 i n s i g n a l b i t [ 1 : 0 ] GINT2 ,
90 i n s i g n a l b i t [ 1 : 0 ] GINT3 )
91 {
92 s i g n a l b i t [ 3 : 0 ] GINT = 1111 b ;
93 s i g n a l b i t [ 0 : 0 ] GNT = 1b ;
94 s i g n a l b i t [ 0 : 0 ] REQ = 1b ;
95
96 / / a r b i t e r
97 Tosh iba TX49H2 Arb i t e r a r b i t e r (
98 REQ, GNT, REL , HAVEIT , GREQ, GGNT, GSREQ, GSGNT) ;
99

100 / / hardware s h e l l f o r p r o c e s s o r
101 Toshiba TX49H2 HW hw (
102 GA, GDOUT, GDIN , GBE, GRD, GWR, GACK, REQ, GNT, GINT ) ;
103
104 / / i n t e r r u p t c o n t r o l l e r
105 Toshiba TX49H2 IC i c (
106 GA, GDOUT, GDIN , GBE, GRD, GWR, GACK, GINT ,
107 GINT0 , GINT1 , GINT2 , GINT3 ) ;
108
109 vo id main ( vo id ) {
110 p a r {
111 a r b i t e r . main ( ) ;
112 hw . main ( ) ;
113 i c . main ( ) ;
114 }
115 }
116 } ;

Figure 9: An example of a programmable PE in SpecC (BF layer shell).
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Figure 10: An example of a hardware PE in the communication model.
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Figure 11: An example of hardware PE with local memory in communication model.
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1 b e h a v i o r Local Mem TLM (
2 IToshibaGBusSlaveMemAccess shm ) implemen t s I AR HW Standard
3 {
4 c h a r mem[ MEM SIZE ] ; / / a r r a y or s t r u c t t y p e v a r i a b l e
5
6 / / memory a d a p t e r
7 l ong i n t r e a d v 1 ( vo id ) {
8 l ong i n t ∗ p t r ;
9 p t r = ( long i n t ∗ ) mem+OFS v1 ;

10 r e t u r n ∗ p t r ;
11 }
12 vo id w r i t e v 1 ( long i n t d a t a ) {
13 l ong i n t ∗ p t r ;
14 p t r = ( long i n t ∗ ) mem+OFS v1 ;
15 ∗ p t r = d a t a ;
16 }
17
18 vo id main ( vo id ) {
19 w h i l e ( t r u e ) {
20 shm . s e r v e (ADDR MEM, mem, MEM SIZE ) ;
21 }
22 }
23 } ;
24 b e h a v i o r HW Standard (
25 i t r a n c e i v e r L1 ,
26 IToshibaGBusSlaveMemAccess shm )
27 {
28 / / l i n k l a y e r a d a p t e r
29 c h w c p u d o u b l e h a n d s h a k e c1 ( L1 ) ;
30
31 / / l o c a l memory b e h a v i o r
32 Local Mem TLM LM( shm ) ;
33
34 / / o r i g i n a l hardware b e h a v i o r
35 B2 b2 ( c1 , LM) ;
36
37 vo id main ( vo id ) {
38 p a r {
39 b2 . main ( ) ;
40 LM. main ( ) ;
41 }
42 }
43 } ;

Figure 12: An example of a hardware PE with local memory in SpecC (application layer shell).
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44 b e h a v i o r HW Standard BF (
45 i n s i g n a l b i t [ 3 5 : 0 ] GA CPUBus ,
46 i n s i g n a l b i t [ 6 3 : 0 ] GDOUT CPUBus ,
47 o u t s i g n a l b i t [ 6 3 : 0 ] GDIN CPUBus ,
48 i n s i g n a l b i t [ 7 : 0 ] GBE CPUBus ,
49 i n s i g n a l b i t [ 0 : 0 ] GRD CPUBus ,
50 i n s i g n a l b i t [ 0 : 0 ] GWR CPUBus ,
51 o u t s i g n a l b i t [ 0 : 0 ] GACK CPUBus ,
52 o u t s i g n a l b i t [ 1 : 0 ] In t r1 CPUBus )
53 {
54 / / i n t e r r u p t g e n e r a t o r
55 T o s h i b a G B u s I n t G e n e r a t e I n t r G e n ( In t r1 CPUBus ) ;
56
57 / / CPUBus p r o t o c o l l a y e r a d a p t e r
58 ToshibaGBusSlave s l a v e (
59 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus , GRD CPUBus ,
60 GWR CPUBus , GACK CPUBus ) ;
61
62 / / CPUBus MAC l a y e r a d a p t e r f o r g e n e r a l da ta a c c e s s
63 Tosh ibaGBusSlaveLinkAccess a c c e s s ( s l a v e ) ;
64
65 / / CPUBus l i n k l a y e r a d a p t e r f o r g e n e r a l da ta a c c e s s
66 ToshibaGBusSlaveLink L1 ( a c c e s s , i n t r A , ADDR HW) ;
67
68 / / CPUBus MAC l a y e r a d a p t e r f o r memory a c c e s s
69 ToshibaGBusSlaveMemAccess shm ( s l a v e ) ;
70
71 HW Standard HW( L1 , shm ) ;
72
73 vo id main ( vo id ) {
74 HW. main ( ) ;
75 }
76 } ;

Figure 13: An example of a hardware PE with local memory in SpecC (BF layer shell).
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4 Memories
Memory is represented in SpecC by behaviors and should be instantiated in the top-level behavior. The bus
functional implementation of the memory behavior is stored in the PE database. Figure 14 shows an example
of shared memory in communication model.

The SCE tools require that memory behaviors follow the rules outlined below.

Rule 22 A memory is represented by a SpecC behavior, which must be a leaf behavior.

Rule 23 A memory has only signal bit vector type ports.

The port type of memories has to be of signal type, because the port needs to be connected to the bus wires
of memory interface bus.

Rule 24 The memory behavior contains one array variable that the variables of the architecture model are
mapped onto.

The size of memory is the same as the size of the array variable. The memory behavior provides methods to
read/write the array variable.

Rule 25 The memory behavior must contain an instance of a MAC layer and a protocol layer implementation
of the associated memory interface protocol.

The memory behavior instantiates the MAC layer implementation of the slave memory interface protocol
from the bus database.

Rule 26 The memory behavior must be a slave on the bus. Thus, the memory behavior invokes the serve
method in its main method.

The serve method is defined in the bus database and provides accesses to the array variable in the memory
behavior. The serve method takes the base address of the memory, the array variable, and the size of the
memory as arguments.

Figure 15 show the SpecC code of the shard memory.
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1 b e h a v i o r SRAM BF(
2 i n s i g n a l b i t [ 1 8 : 0 ] A,
3 i n o u t s i g n a l b i t [ 7 : 0 ] IO ,
4 i n s i g n a l b i t [ 0 : 0 ] CS ,
5 i n s i g n a l b i t [ 0 : 0 ] OE,
6 i n s i g n a l b i t [ 0 : 0 ] WE)
7 {
8 c h a r mem[ MEM SIZE ] ;
9

10 / / SRAMBus p r o t o c o l l a y e r a d a p t e r
11 SlaveKM684002A p r o t o c o l (A, IO , CS , OE, WE) ;
12
13 / / SRAMBus MAC l a y e r a d a p t e r
14 KM684002AMemServe shm ( p r o t o c o l ) ;
15
16 vo id main ( vo id ) {
17 w h i l e ( t r u e ) {
18 shm . s e r v e (ADDR MEM, mem, MEM SIZE ) ;
19 }
20 }
21 } ;

Figure 15: An example of shared memory in SpecC.

5 Communication Elements
Communication elements such as transducers and bridges are represented by SpecC behaviors. They
should be instantiated in the top-level behavior. Mapping an behavior to a CE is done by the annotation
CR MAPPED TO. The CE allocation table contains the names of all allocated CEs.

Rule 27 A CE is represented by a SpecC behavior, which is hierarchical behavior.

Rule 28 A CE has only signal type ports and no interface ports.

The signal type ports of an CE are connected to the wires of the bus.

Rule 29 A CE must have CE BF MODEL and CE BF BUS annotation.

The CE BF MODEL indicates the bus function implementation of the CE in the CE database and
CE BF BUS contains the two interface bus protocols of the CE.

In addition to bridges and transducers, an arbiter and an interrupt controller are implemented in the com-
munication model, if necessary.

Rule 30 Arbiter and interrupt controller are stored in the bus-functional model of a programmable PE.

The arbiter and interrupt controller are instantiated in the hardware shell of the bus-functional implementation
of the programmable PE model. The connection between the arbiter and other master components on the bus
are defined with connection parameters by users during communication synthesis.
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Figure 16: An example of bridge in communication model.

5.1 Bridges
During the communication synthesis, the bridge in the network model is replaced with new bridge taken out
of CE database.

Rule 31 Bridges need to implement the MAC layer and protocol layer of the protocol stack.

Figure 16 shows an example of bridge and the corresponding SpecC code is shown in Figure 17 and
Figure 18.

1 b e h a v i o r Br idge BF (
2 / / cpu i n t e r f a c e
3 i n s i g n a l b i t [ 3 5 : 0 ] GA CPUBus ,
4 i n s i g n a l b i t [ 6 3 : 0 ] GDOUT CPUBus ,
5 o u t s i g n a l b i t [ 6 3 : 0 ] GDIN CPUBus ,
6 i n s i g n a l b i t [ 7 : 0 ] GBE CPUBus ,
7 i n s i g n a l b i t [ 0 : 0 ] GRD CPUBus ,
8 i n s i g n a l b i t [ 0 : 0 ] GWR CPUBus ,
9 o u t s i g n a l b i t [ 0 : 0 ] GACK CPUBus ,

10 / / s l a v e i n t e r f a c e
11 i n o u t s i g n a l b i t [ 3 5 : 0 ] GA SlaveBus ,
12 i n o u t s i g n a l b i t [ 6 3 : 0 ] GDOUT SlaveBus ,
13 i n o u t s i g n a l b i t [ 6 3 : 0 ] GDIN SlaveBus ,
14 i n o u t s i g n a l b i t [ 7 : 0 ] GBE SlaveBus ,
15 i n o u t s i g n a l b i t [ 0 : 0 ] GRD SlaveBus ,
16 i n o u t s i g n a l b i t [ 0 : 0 ] GWR SlaveBus ,
17 i n o u t s i g n a l b i t [ 0 : 0 ] GACK SlaveBus ,
18 i n o u t s i g n a l b i t [ 0 : 0 ] GREQ SlaveBus ,
19 i n o u t s i g n a l b i t [ 0 : 0 ] GGNT SlaveBus )
20 {
21 / / CPUBus s l a v e i n t e r f a c e ( p r o t o c o l and MAC l a y e r a d a p t e r )
22 ToshibaGBusSlave s l a v e ( GA CPUBus , GDOUT CPUBus , GDIN CPUBus ,
23 GBE CPUBus , GRD CPUBus , GWR CPUBus , GACK CPUBus ) ;
24 ToshibaGBusAccess a c c e s s ( GREQ SlaveBus , GGNT SlaveBus ) ;
25 ToshibaGBusMAC cpuBus ( s l aveBus , s l a v e A c c e s s ) ;
26
27 / / S l a v e B u s m a s t e r i n t e r f a c e ( p r o t o c o l and MAC l a y e r a d a p t e r )
28 ToshibaGBusMaster m a s t e r ( GA SlaveBus , GDOUT SlaveBus , GDIN SlaveBus ,
29 GBE SlaveBus , GRD SlaveBus , GWR SlaveBus , GACK SlaveBus ) ;
30 T o s h i b a G B u s A r b i t e r s l a v e A c c e s s ( GREQ SlaveBus , GGNT SlaveBus ) ;
31 ToshibaGBusMAC mac ( mas te r , s l a v e A c c e s s ) ;

Figure 17: An example of bridge in SpecC (I).
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33 vo id main ( vo id ) {
34 b i t [ 3 5 : 0 ] add r ;
35 b i t [ 6 3 : 0 ] d ;
36 u n s i g n e d b i t [ 1 0 ] t ;
37 w h i l e ( t r u e ) {
38 add r = 0 x00000000 ;
39 t = cpuBus . L i s t e n (& addr , 0 x00000000 ) ;
40 i f ( ( ( u n s i g n e d i n t ) add r ) == ADDR HW) {
41 s w i t c h ( ( u n s i g n e d i n t ) ( t [ 1 : 0 ] ) ) {
42 c a s e 1 : / / cpu read
43 d = mac . LoadCycle ( addr , t [ 9 : 2 ] ) ;
44 cpuBus . W r i t e C y c l e ( d ) ;
45 b r e a k ;
46 c a s e 2 : / / cpu w r i t e
47 d = cpuBus . ReadCycle ( ) ;
48 mac . S t o r e C y c l e ( addr , d , t [ 9 : 2 ] ) ;
49 b r e a k ;
50 }
51 }
52 }
53 }
54 } ;

Figure 18: An example of bridge in SpecC (II).
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Figure 19: An example of a transducer in the communication model.

5.2 Transducers
During the communication synthesis, transducers are treated like PEs. The protocol stack at the interface of
the transducers needs to be implemented. In the communication model, transducers implement the network
layer, link layer, MAC layer and protocol layer of the protocol stack, while PEs implement all layers of the
protocol stack.

Rule 32 Transducers need to implement the network, link, MAC layer and protocol layer of the protocol
stack.

Rule 33 Transducers need to implement a synchronization scheme.

As part of the link layer implementation, the synchronization by interrupt is necessary in the transducer.
Figure 19 shows an example of a transducer and the corresponding SpecC code is shown in Figure 20 and

Figure 21.
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1 / / Network model f o r t r a n s d u c e r
2 b e h a v i o r Tx NET (
3 i s e n d e r l ink GBus ,
4 i r e c e i v e r l i n k S I O )
5 {
6 vo id main ( vo id ) {
7 c h a r buf [ 1 2 8 ] ; / / b u f f e r
8 u n s i g n e d long i n t l e n ;
9 w h i l e ( t r u e ) {

10 l i n k S I O . r e c e i v e (& len , s i z e o f ( l e n ) ) ;
11 l i n k S I O . r e c e i v e ( buf , l e n ) ;
12 l i nk GBus . send ( buf , l e n ) ;
13 }
14 }
15 } ;

Figure 20: An example of transducer in SpecC (network model).

5.3 Arbiter
If the bus supports multiple masters connected to the bus, it has to supply an arbitration protocol that is used to
regulate accesses to the shared bus wires. In a centralized arbitration scheme, the master side of the arbitration
protocol instantiated in each master communicates with the slave side of the arbitration protocol instantiated
in an additional arbiter component attached to the bus. In a distributed arbitration scheme, there is no slave
side of the arbitration protocol and the master sides of the protocol in each master regulate accesses among
themselves.

In order to support complex arbitration capabilities with different priorities and arbitration schemes, the
PE database needs to include arbiter as part of bus-functional PE models. Arbiters sit in front of the basic PE
core model and are modeled by adding another layer to the bus-functional PE model between the processor
core and the outer bus-functional layer. Typically, the arbiter provides a set of request/acknowledge lines at
the pins of the top-level bus-functional layer. The MAC layer adapter of the master components will use the
arbitration protocol to get bus accesses.

Figure 22 shows the arbiter example in SpecC.

5.4 Interrupt Controller
In order to support more complex interrupt capabilities with more than one source of interrupts, different
priorities and masking the PE database needs to include interrupt controllers as part of the bus-functional PE
models. Interrupt controllers sit in front of the basic PE core model and are modeled by adding another layer
to the bus-functional PE model between the processor core and the outer bus-functional layer.

Typically, the interrupt controller provides a set of interrupt lines at the pins of the top-level bus-functional
layer while internally communicating with the core via the PE bus and the core’s interrupt condition input.
The core then interrupts normal computation and executes the appropriate handler depending on the inputs
received from the interrupt controller. Overall, the combination of layers has to simulate the proper interrupt
behavior while maintaining the relationship between interrupt pins at the bus-functional layer and interrupt
handlers in the HAL required by the database format for SCE.

Figure 23 shows the interrupt controller example in SpecC.
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17 / / BF model f o r t r a n s d u c e r
18 b e h a v i o r Tx BF (
19 / / CPUBus s l a v e i n t e r f a c e
20 i n s i g n a l b i t [ 3 5 : 0 ] GA CPUBus ,
21 i n s i g n a l b i t [ 6 3 : 0 ] GDOUT CPUBus ,
22 o u t s i g n a l b i t [ 6 3 : 0 ] GDIN CPUBus ,
23 i n s i g n a l b i t [ 7 : 0 ] GBE CPUBus ,
24 i n s i g n a l b i t [ 0 : 0 ] GRD CPUBus ,
25 i n s i g n a l b i t [ 0 : 0 ] GWR CPUBus ,
26 o u t s i g n a l b i t [ 0 : 0 ] GACK CPUBus ,
27 o u t s i g n a l b i t [ 1 : 0 ] IntrA CPUBus ,
28 / / RS232 m a s t e r i n t e r f a c e
29 i n s i g n a l b i t [ 0 : 0 ] TXD RS232 ,
30 o u t s i g n a l b i t [ 0 : 0 ] RXD RS232 ,
31 i n s i g n a l b i t [ 0 : 0 ] RTS RS232 ,
32 o u t s i g n a l b i t [ 0 : 0 ] CTS RS232 )
33 {
34 / / CPUBus s l a v e i n t e r f a c e ( p r o t o c o l , MAC and l i n k l a y e r )
35 T o s h i b a G B u s I n t G e n e r a t e I n t r G e n ( IntrA CPUBus ) ;
36 ToshibaGBusSlave cpuBus (
37 GA CPUBus , GDOUT CPUBus , GDIN CPUBus , GBE CPUBus ,
38 GRD CPUBus , GWR CPUBus , GACK CPUBus
39 ) ;
40 Tosh ibaGBusSlaveLinkAccess cpuAccess ( cpuBus ) ;
41 ToshibaGBusSlaveLink cpuLink ( cpuAccess , i n t r A , ADDR SIO ) ;
42
43 / / RS232 m a s t e r i n t e r f a c e ( p r o t o c o l , MAC and l i n k l a y e r )
44 RS232 DCE RS232 ( TXD RS232 , RXD RS232 , RTS RS232 , CTS RS232 ) ;
45 RS232BusLinkAccess s i o A c c e s s ( s i o B u s ) ;
46 RS232BusMasterLink s i o L i n k ( s i o A c c e s s ) ;
47
48 / / ne twork model o f t r a n s d u c e r
49 Tx NET Tx ( cpuAccess , s i o A c c e s s ) ;
50
51 vo id main ( vo id ) {
52 Tx . main ( ) ;
53 }
54 } ;

Figure 21: An example of transducer in SpecC (BF layer shell).
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1 b e h a v i o r Tosh iba TX49H2 Arb i t e r (
2 i n s i g n a l b i t [ 0 : 0 ] REQ,
3 o u t s i g n a l b i t [ 0 : 0 ] GNT,
4 i n s i g n a l b i t [ 0 : 0 ] GREQ,
5 o u t s i g n a l b i t [ 0 : 0 ] GGNT,
6 i n s i g n a l b i t [ 0 : 0 ] GSREQ,
7 o u t s i g n a l b i t [ 0 : 0 ] GSGNT)
8 {
9 T o s h i b a G B u s A r b i t e r c o r e (REQ, GNT, REL , HAVEIT) ;

10 T o s h i b a G B u s A r b i t e r sm (GSREQ, GSGNT, GREL, GHAVEIT) ;
11 T o s h i b a G B u s A r b i t e r m(GREQ, GGNT, GREL, GHAVEIT) ;
12
13 vo id main ( vo id ) {
14 w h i l e ( t r u e ) {
15 i f ( ! GSREQ) {
16 sm . g r a n t ( ) ;
17 w a i t (GHPREQ f a l l i n g , GHPSREQ f a l l i n g , GSREQ r i s i n g ) ;
18 sm . r e l e a s e ( ) ;
19 }
20 e l s e i f ( !GREQ) {
21 m. g r a n t ( ) ;
22 w a i t (REQ f a l l i n g , GSREQ f a l l i n g , GHPREQ f a l l i n g ,
23 GHPSREQ f a l l i n g , GREQ r i s i n g ) ;
24 m. r e l e a s e ( ) ;
25 }
26 e l s e {
27 c o r e . g r a n t ( ) ;
28 w a i t (GREQ f a l l i n g , GSREQ f a l l i n g , GHPREQ f a l l i n g ,
29 GHPSREQ f a l l i n g ) ;
30 c o r e . r e l e a s e ( ) ;
31 }
32 }
33 }
34 } ;

Figure 22: An example of arbiter.
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1 b e h a v i o r Toshiba TX49H2 IC (
2 i n s i g n a l b i t [ 3 5 : 0 ] GA,
3 i n s i g n a l b i t [ 6 3 : 0 ] GDOUT,
4 o u t s i g n a l b i t [ 6 3 : 0 ] GDIN ,
5 i n s i g n a l b i t [ 7 : 0 ] GBE,
6 i n s i g n a l b i t [ 0 : 0 ] GRD,
7 i n s i g n a l b i t [ 0 : 0 ] GWR,
8 o u t s i g n a l b i t [ 0 : 0 ] GACK,
9 o u t s i g n a l b i t [ 5 : 0 ] GINT ,

10 i n s i g n a l b i t [ 1 : 0 ] GINT0 ,
11 i n s i g n a l b i t [ 1 : 0 ] GINT1 ,
12 i n s i g n a l b i t [ 1 : 0 ] GINT2 ,
13 i n s i g n a l b i t [ 1 : 0 ] GINT3 )
14 {
15 s i g n a l b i t [ 1 : 0 ] f l a g 0 ;
16 s i g n a l b i t [ 1 : 0 ] f l a g 1 ;
17 s i g n a l b i t [ 1 : 0 ] f l a g 2 ;
18 s i g n a l b i t [ 1 : 0 ] f l a g 3 ;
19
20 ToshibaGBusSlave bus (GA, GDOUT, GDIN , GBE, GRD, GWR, GACK) ;
21 Tosh iba TX49H2 IC Detec t i n t 0 d e t e c t ( GINT0 , f l a g 0 ) ;
22 Tosh iba TX49H2 IC Detec t i n t 1 d e t e c t ( GINT1 , f l a g 1 ) ;
23 Tosh iba TX49H2 IC Detec t i n t 2 d e t e c t ( GINT2 , f l a g 2 ) ;
24 Tosh iba TX49H2 IC Detec t i n t 3 d e t e c t ( GINT3 , f l a g 3 ) ;
25 Tosh iba TX49H2 IC Cont ro l c o n t r o l 0 ( bus , GINT , f l a g 0 , (0 u ) ) ;
26 Tosh iba TX49H2 IC Cont ro l c o n t r o l 1 ( bus , GINT , f l a g 1 , (1 u ) ) ;
27 Tosh iba TX49H2 IC Cont ro l c o n t r o l 2 ( bus , GINT , f l a g 2 , (2 u ) ) ;
28 Tosh iba TX49H2 IC Cont ro l c o n t r o l 3 ( bus , GINT , f l a g 3 , (3 u ) ) ;
29
30 vo id main ( vo id ) {
31 p a r {
32 c o n t r o l 0 . main ( ) ;
33 c o n t r o l 1 . main ( ) ;
34 c o n t r o l 2 . main ( ) ;
35 c o n t r o l 3 . main ( ) ;
36 i n t 0 d e t e c t . main ( ) ;
37 i n t 1 d e t e c t . main ( ) ;
38 i n t 2 d e t e c t . main ( ) ;
39 i n t 3 d e t e c t . main ( ) ;
40 }
41 }
42 } ;

Figure 23: An example of interrupt controller.
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6 Bus Wires
In the pin-accurate communication model, bus wires are represented by signal bit vector type variables and
should be declared in top-level behavior.

Rule 34 Bus wires on a bus are taken out of the bus database and need to be connected to the components
on the bus.

The type of bus wires is defined in the bus channel of the bus database. The wire name will be the concatena-
tion of the bus name and the wire name out of the database. If the wire has a initial value on the bus database,
the wire will be initialized to the initial value in its declaration.

Rule 35 Bus wires on a bus are identified by the naming convention like pin name bus name.

For example, the address line A on the bus Bus0 is defined to A Bus0 in the model.

7 Example
Figure 24 shows an example of communication model. The logical link channels in the network model are
inlined and connected to next higher layer (presentation layer). MAC and protocol layer channel adapters
are taken out of media protocol library and inserted into the bus functional model of the corresponding
components and connected to the corresponding inlined logical link adapters.

The shaded parts (the shells SW HW and SW BF for SW including PIC and Arbiter models, the protocol
adapter channels, the MemCtrl model and the bus-functional model MEM BF for the memory) in the figure
indicate that they are taken out of the database instead of being generated by the tool.
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