
 
 
 
 
 
 
 
 
 
 

System-On Chip Modeling and Design 
A case study on MP3 Decoder 

 
Pramod Chandraiah, Hans Gunar Schirner, Nirupama Srinivas and Rainer Doemer 

 
 
 

CECS Technical Report 04-17 
June 21, 2004 

 
Center for Embedded Computer Systems 

University of California, Irvine 
Irvine, CA 92697-3425, USA 

(949) 824-8059 
 
 

pramodc@cecs.uci.edu 
hschirne@uci.edu 
srinivan@uci.edu 

doemer@cecs.uci.edu 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

System-On Chip Modeling and Design 
A case study on MP3 Decoder 

 
Pramod Chandraiah, Hans Gunar Schirner, Nirupama Srinivas and Rainer Doemer 

 
 
 

CECS Technical Report 04-17 
June 21, 2004 

 
Center for Embedded Computer Systems 

University of California, Irvine 
Irvine, CA 92697-3425, USA 

(949) 824-8059 
 
 

pramodc@cecs.uci.edu 
hschirne@uci.edu 
srinivan@uci.edu 

doemer@cecs.uci.edu 
 
 

Abstract 
 

       This document covers the results from a course project of the graduate class "System-on-Chip 
Description and Modeling". It reflects the theoretical knowledge gained during the course lectures as well 
as the practical experiences of the course project. The project goal was to take an existing C code of an 
audio decoder (MPEG 1 Layer 3), convert the code into a system on a chip specification, and follow the 
design paradigm towards a concrete implementation. The design specification, capturing and synthesis 
were performed using the SpecC language and its tools set developed at UC Irvine. 
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1 Abstract 
This document covers the results from a course project of the graduate class “System-on-
Chip Description and Modeling”. It reflects the theoretical knowledge gained during the 
course lectures as well as the practical experiences of the course project. The project goal 
was to take an existing C code of an audio decoder (MPEG 1 Layer 3), convert the code 
into a system on a chip specification, and follow the design paradigm towards a concrete 
implementation. The design specification, capturing and synthesis were performed using 
the SpecC language and its tools set developed at UC Irvine. 

2 Introduction to SoC Design 
Improvements in manufacturing capabilities allow placing of a complete embedded 
system on a single chip. With that it becomes possible to design a system as a mix of 
software running on a generic processor and specialized hardware, which performs 
otherwise expensive computation. This design freedom leads ultimately to highly 
specialized chips and cost efficient production. However the newly gained freedom in 
design places a burden on the SoC designer. The next paragraphs will introduce the 
challenges of system level design, the specification of systems and the design space 
exploration. 

2.1 Challenges of SoC Design 
The design of a SoC has similar goals as an embedded design. The designed system will 
be used in a well-specified environment, and has to fulfill strict requirements. Some 
requirements are clearly defined by the application like the functional requirements of an 
algorithm, e.g. the decoding of an MPEG 1 Layer 3 data stream, which covers certain 
quality restrictions. The environment poses other requirements: e.g. minimizing the cost, 
footprint, or power consumption. However due to the flexibility of a SoC design, 
achieving the set goals, involves analyzing a multi dimensional design space. The degrees 
of freedom stem from the process element types and characteristics, their allocation, the 
mapping of functional elements to the process elements, their interconnection with busses 
and their scheduling.  
To give another perspective of the design space, it is good to look at the levels of 
abstraction. A SoC design has to deal with a wide range: it starts with a functional 
description on system level, where major function blocks are defined and no timing 
information is given. The other end of the spectrum is the result of the design process, 
where all functionalities described before are mapped to hardware and all hardware is 
defined down to the RTL level. At that point in time a cycle accurate model exists, which 
is ready for production. Figure 1 depicts the levels of abstraction. 
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Figure 1 Abstraction Levels In SoC Design (Source [2]) 

 
The goal of SoC design paradigm is to manage the immense size of design decisions in 
the hardware software co-design. This is only possible by following a well-defined flow 
of design steps. Those design steps and their associated models will be described in the 
next paragraphs. 
 

2.2 SoC Specification 
Hardware/Software co-design is an integral aspect of the SoC design. It requires a 
language with is capable of capturing the requirements of an hardware design from wire 
allocations do complex timing requirements, as well as the complexities of current 
software design. During the lecture different alternatives languages for system level 
design were presented: the C++ library extension SystemC [5], some extensions to the 
UML capturing. The main focus was on the SpecC language, which is an extension of the 
ANSI-C language. It uses the ANSI-C for description of software requirements and adds 
features needed for system design. It allows grouping of functionality to behaviors, which 
later can be freely mapped to processing elements. In order to allow this free mapping the 
computation has to be separated from the communication. Therefore communication 
between the behaviors is abstractly defined as channels. The channel specific 
implementation (e.g. a PCI bus protocol) will be filled in during later refinement stages. 
The specification model is free of such implementation detail (and constrain).  
The SpecC language further introduces many concepts from hardware description 
languages like VHDL and Verilog. It introduces the concept of capturing scheduling 
information in the language, such as sequential, parallel and pipelined execution.  
The SpecC language very much supports the goals of specification capturing. It allows 
describing a fully functional model that incorporates design constrains and is testable 
against a set of test vectors.  
The next section describes the exploration and refinement steps to transform the system 
specification into a manufacturable description. 
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2.3 SoC Exploration 
Together with the SpecC language a design paradigm was introduced, which tries to 
formalize individual refinements steps and gives the designer guidelines how to handle 
efficiently the immense design space. Figure 2 shows an overview of the design flow, it 
also indicates the integration of the validation flow. The tool suite provided with the 
SpecC language closely follows the outlined design flow. The following paragraphs will 
describe the steps of the design flow. 

 
Figure 2 SoC Design Methodology (Source [2]) 

 
The SoC design starts with the specification model, which is a purely functional model 
free of any implementation details. It focuses on capturing the algorithmic behavior and 
allows a functional validation of the description. The model is untimed and allows only 
for causal ordering. Once the specification model is finished it will serve as a “golden 
model”, to compare to during the design cycle. 
Architecture information is added during the Architeture refinement. During this step 
processing elements are inserted into the system and functional behaviors are mapped to 
them. The processing elements can be standard components such as generic processor 
cores or DSPs,  as well as specific hardware. Parameters, such as clock frequency, of the 
inserted elements can be adjusted to the application needs. Based on internal statistics, 
first estimations about the runtime performance can be made, which gives the designer 
the first feedback about the design decisions. Once the architecture refinement is finished, 
the architecture model that captures the decisions is created. This model is the first timed 
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model. It takes only computing time into account; all communication between the 
processing elements execute in zero time. 
A further step in the refinement, the Scheduling Refinement, is not shown in this graph. 
This refinement allows the designer to select suitable scheduling mechanisms to its 
processing elements. The scheduling capabilities range from a preset static scheduling, 
which allows the most predictability, to a priority based dynamic scheduling. 
The communication refinement allows the user to select busses and protocols. Later the 
abstract communication channels of the Specification Model can be mapped to physical 
busses and protocols. Detailed information about the protocols will be added. The 
resulting Communication Model will include specific instructions for the particular bus 
type and will be a bus functional model. 
The last step in the design flow is the synthesis. Here the RTL code for the hardware will 
be generated after the RTL component allocation, their functional mapping and 
scheduling. As a result of the hardware synthesis a cycle accurate of each hardware-
processing element is created. Similar activities take place for the software synthesis. 
Here specific code for the selected RTOS is created and a target specific assembly code 
compiled. The result is a cycle accurate model of each software-processing element, 
which can be simulated on an instruction set simulator and executed on the target 
processor. The combination of both synthesis parts is captured in the Implementation 
model, which gives a cycle accurate description of the system. 
This chapter has introduced the theoretical background of system design. It described the 
individual models and the refinement steps needed to reach an implementation. The next 
chapter will introduce the surrounding information for the practical work on the MP3 
decoder. It will also derive the design constraints. 
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3 Design Example 

3.1 Overview of MPEG-1 Audio Layer 3 
Digital compression of audio data is important due to the bandwidth and storage 
limitations inherent in networks and computers. Regular algorithms are ineffective 
towards data intensive audio files, MP3 on the other hand provides significant 
compression through lossy compression applying the perceptual science of psycho 
acoustics. The Psycho acoustic model implemented by MP3 algorithm takes advantage of 
the fact that the exact input signal does not need to be retained. Since the human ear can 
only distinguish a certain amount of detail, it is sufficient that the output signal sounds 
identical to the human ears.  
The course project involves the system specification and design exploration of an MP3 
decoder. In the following section the generic structure of an MP3 decoder is presented. 

3.2 Brief Description of MP3 Decoder 
The MP3 decoder for our design will use a complete MP3 stream as an input. Before 
presenting more details about the actual decoding process, a short overview of the MP3 
bit stream is given. The MP3 stream is organized in frames. The frame length depends on 
the bit rate (~quality) of the encoded data. Since the bit rate may vary in variable rate 
encoded streams, the frame size may also vary within a single stream. Therefore the 
frame header contains information for the frame detection. The basic frame format is 
shown in the figure below:  
 

 
Figure 3 MPEG 1 Layer 3 Frame Format (Source [3]) 

 
 
The elements of a frame are: 
1. Header 4 bytes long, contains sync word to indicate start of frame. 
2. Side information contains information to decode main data. 
3. Main data the main data contains the coded scale factors and the Huffman 

coded frequency lines. 
4. Ancillary data  Intended for user defined data (e.g. ID3 tag containing author and 

name of the song) 
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Figure 4 Block Diagram of MP3 Decoder  (Source[3]) 

The above block diagram shows the data flow within the MPEG1 Layer 3 decoder. The 
incoming data stream is first split up into individual frames and the correctness of those 
frames is checked. Further, the side information containing the scale factors is decoded. 
The main data of the frame is encoded as a Huffman stream with variable table 
information for the decoding. Thus in order to decode the main data first the Huffman 
tables have to be recreated and later the main data decoded. After decoding, a frame 
contains 1152 samples (subdivided into two granules of 576 samples each). However in 
order to optimize space usage in the frame, the reconstruction may refer to previous 
frames’ main data. This allows sharing of bandwidth between frames and yields smaller 
stream sizes. However, this requires storing of additional frame information on the 
decoder. The Huffman Decoding stage does refer to the previous frames for it’s decoding. 
The next step after Huffman decoding is the requantization. The requantizer converts the 
Huffman symbols to original spectral values using scale factors. The requantized data is 
reordered for the scale factor bands. The requantized output is fed to the stereo decoder, 
which supports both MS stereo as well as Intensity stereo formats. The alias reduction 
block is used to reduce the unavoidable aliasing effects of the encoding polyphase filter 
bank. The IMDCT block converts the frequency domain samples to frequency subband 
samples. The frequency subbands were introduced by the encoder. This allows treating 
samples in each subband differently according to the different abilities of the human ear 
over different frequencies. Hence it allows a higher compression rate. Finally, the 
polyphase filter bank transforms the data from the individual frequency subbands into 
PCM samples. The PCM samples can now be fed to a loudspeaker or any other output 
device through appropriate interface. 
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3.3 C implementation of MP3 decoder 
To develop the specification model we referred to the C implementation of the MP3 
decoder available at [4]. In this section we will describe statistical characteristics of the 
source C program.  
 
The original project contains 66 source files, they include the actual decoding algorithm 
as well as supporting user interface code, contributing to 12K lines of code. Fortunately 
the project contained another subdirectory, which only contained the necessary decoding 
algorithm and a simple IO spread over 10 source files comprising 3K lines of code. We 
focused just on these 10 source files as a base for our implementation. The source is split 
up into 30 functions. A call graph of the major functions is shown below. 

 
Figure 5  Call Graph of major MP3 Decoder Functions 

3.4 Design Constraints 
MP3 allows 3 different output sampling rates – 32 KHz, 44.1 KHz, and 48 KHz. 
However, we restricted to support only 44.1 KHz sampling rate, which eases the 
definition of timing requirements. This sampling rate requires the decoder to produce at 
least 44100 samples per second. With 1152 samples per frame, the decoder has to decode 
a frame every 26.12245ms. 
Apart from this functional requirement, we set additional goals of low power and cost. 
Low power is an important requirement due to the fact that MP3 decoder on portable 
embedded devise limited by the battery capacity. Since, MP3 is computationally 
algorithm it becomes important to make right choices to optimize for power. 
Finally, for a product to be successful and viable in market, the cost has to be reasonable. 
Thus, during our exploration, we explored many possible architectures with the available 
PE’s to arrive at the final design, which satisfies these constraints.
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4 Specification Model 
Specification model is the starting point in the system design process and forms the sole 
input to the architecture exploration tool. Specification model is the result of capturing 
the functionality of the design in System Level Description Language (SLDL). 
 
The Specification model is pure functional, abstract model, which is free of any 
implementation details.  The model runs in zero simulation time and hence has no notion 
of time. Since the specification model forms the basis for the synthesis and exploration it 
is important to write good specification model. A good specification model has the 
following important features: 
 
• Separation of computation and communication units: Specification model should 

clearly separate the communication blocks from the computation blocks. This enables 
rapid exploration by facilitating easy plug-n-play of modules. Abstraction of 
communication and synchronization functionality is a key for efficient synthesis and 
rapid design space exploration.  
In SpecC SLDL, computation units can be modeled using ‘behaviors’ and 
communication elements using ‘channels’. 
 

• Modularity: Modularity is required in the form of structural and behavioral hierarchy, 
allowing hierarchical decomposition of the system. The hierarchy of behaviors in the 
specification models solely reflects the system functionality without implying 
anything about the system architecture to be implemented.  

 
• Granularity: The size of the leaf behaviors determines the granularity of the design 

space exploration. More the number of leaf behaviors higher are the number of the 
possible explorations. Granularity depends on the user and the problem size. There is 
a wide range of possibilities: On one extreme every instruction can be a behavior and 
on the other extreme, entire design could be in one behavior. The former means huge 
design space exploration but it is not practical and the later results in reduced design 
space exploration. Granularity at subroutine level is one of the most practical 
solutions. 

 
•  Implementation details: Specification model should not have any implicit or 

explicit implementation detail. Having implementation details would restrict the 
design space exploration. For example, having communication through a pointer to an 
array would mean implementation of the array as memory and voids the other 
possibilities. 

 
• Concurrency: Any parallel functionality in the algorithm must be made into 

concurrent modules. This would expand the possibility of having these parallel units 
on different hardware or software modules.  



 11 

4.1 Writing Specification model in SpecC 
In the previous section we saw some desirable features of a specification model. In this 
section we give some hints in achieving such a model in SpecC.  
Specification model of the design can be written from the scratch, which requires 
extensive knowledge of the algorithm being implemented. In this case, user can decide 
the granularity, hierarchy and concurrency of the design based on the knowledge of the 
algorithm. This approach might be time consuming as one is starting from the scratch and 
the resulting specification model requires considerable amount of verification before 
considering it for rest of the design process. 
More than often in the embedded system development, specification model might be 
required to be developed from an existing reference C code which implements the 
algorithm. This approach is faster than the former as the significant amount of effort has 
already been invested in making the reference code. Moreover, since the SpecC SLDL is 
just a superset of C language it would require less effort to convert the C reference code 
into SpecC specification model than writing the specification model from scratch. We 
will look at this second approach in detail. 
Based on our experience, we have listed following guidelines in converting the C-code 
into the Specification model in SpecC. This task becomes sufficiently challenging due to 
the absence of specification model features in this C-code. 

 
1. The first step in making the specification model from a reference C program is to 

setup a testbench consisting of a parallel composition of behaviors, Stimulator, 
Design Under Test (DUT) and Monitor. DUT behavior implements the C reference 
main function, Stimulator behavior provides the test input to the DUT and the 
Monitor behavior collects the output from the DUT and compares with the reference 
expected output and takes necessary action based on result.  
In subsequent steps, the DUT behavior is broken into more behaviors. This approach 
has the advantage that you can test your resulting partial specification model at each 
step on the way to the full specification model. 

 
2. Second step is to choose granularity. As described in the previous section, there are a 

wide range of possibilities but one possibility is to make all the C functions into 
behaviors.  
It is not a hard requirement to convert all the functions into behaviors. The user    can 
take suitable decisions based on past experience and the knowledge of the algorithm 
and decide to convert only selected functions into behavior without compromising the 
design space exploration. 
Avoid Global variables across behaviors:  If the C reference code had any global 
variables then it is very likely that your resulting specification model of step-2 will 
have those global variables. There must not exist any global variables across 
behaviors and it is important to get rid of these global variables as they carry no 
significance in the system design. These global variables must be either moved to any 
of the behaviors or replaced with channels. Technical report [8] contains detailed 
information regarding converting C code into SpecC code. 
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3. Introducing concurrency into your specification model: The various behaviors can be 
composed as sequential, concurrent, pipelined or FSMD modules. After step-3 your 
module will be just sequential. Look for any apparent concurrency in the algorithm 
and compose those behaviors as concurrent modules. Many a times, these algorithms 
might not have any inherent concurrent modules, in that case concurrency can be 
achieved by means of pipelining.   
Technical report [8] contains detailed information regarding converting C code into 
SpecC code 
 

4. Separation of Computation from Communication: This will be naturally taken care of 
after the above steps are completed. 

4.2 Case Study: MP3 Decoder 
In this project we were required to write the specification model of the MPEG-1 Audio 
Layer 3 (popularly known as MP3) decoder and produce an implementation model by 
taking the specification model through a sequence of system level design steps. In this 
section we will describe the steps we performed to arrive at the specification model.  
 
We started with a reference C code for MP3 decoder [4] and applied the general 
methodology described in the previous sections to this specific case to arrive at the final 
specification model. These steps are described in detail below: 
 
1. The entire main function of the decoder was wrapped into a single behavior, 

mp3decoder. Two leaf behaviors stimulus and monitor were introduced as part of the 
testbench. The stimulus reads the input mp3 stream from the binary mp3 files (*.mp3) 
and sends it to mp3decoder in chunks of 16K Bytes. mp3decoder behavior decodes 
the input data and writes it to monitor in chunks of 4K Bytes. The monitor behavior 
receives the incoming data and writes it into a file (*.pcm). Double handshake 
channels were used to synchronize these behaviors. The resulting hierarchy is shown 
in the figure below. 
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Figure 6 Testbench Design 

 
2. The second step was to introduce granularity into our DUT mp3decoder.  It would 

have been ideal to convert each of the C functions in the decoder into behaviors. But 
considering the time available to complete the project the idea was not feasible. 
Alternatively, we decided to convert only critical functions in the decoder into 
behaviors. To get information on the critical functions, we ran the GNU profiler, 
gprof and obtained the relative execution time of each of the functions. From the 
profiler result we identified following critical functions. 

 
Function Percentage execution time 

Synthesis filter 73% 
Stereo Processing 6% 
Hybrid Processing 6.9% 

       
 Based on this, we decided to convert just these functions into behaviors. The resulting 

hierarchy and connectivity is shown in Figure 7. The hybrid processing was further 
decomposed to contain DCT36 and DCT12 behaviors. The resulting final hierarchy 
of the decoder is shown in Figure 8. 
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Figure 7 Testbench Design with Communication Channels 
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Figure 8 Testbench Design Detailed Representation 

 
 
 

Now we will describe in detail how we converted the functions into behaviors. We 
would like to illustrate this with a simple example shown in Figure 9. In this example, 
there is a C function f1 ( ) calling another function f2 ( ). This is shown on the left 
hand side of the figure encapsulated in oval. We decide to convert f1 and f2 into 
separate behaviors. The result is depicted on the right hand side of the figure. The 
behavior B1_f1 and B2_f2 are the behaviors corresponding to the functionality of the 
f1 ( ) and f2 ( ) respectively. The call to the function f2 ( ) from f1 ( ) is replaced with 
the send and receive calls of the double handshake channel. A double handshake 
channel is used to communicate the function parameters of f2( ). There will be as 
many channels as the number of parameters. 

 
Now, how are these behaviors composed? If you notice the synchronization between 
the two behaviors, first B1_f1 runs till the synchronization point is reached and after 
sending the data it blocks on receive( ) function until the B2_f2 sends the result back 
at the end of its execution. Thus the two behaviors are executed sequentially. This is 
similar to a Remote Procedure Call (RPC). 
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But these behaviors must be composed using SpecC ‘par’ construct otherwise there 
will be a deadlock. This parallel composition is indicated by the dotted line in the 
figure. 
The same principle holds in all our cases. The technical report [8] describes in detail 
to alternative ways to convert functions into behaviors. 

 
Figure 9 Generic Behavior Split 

 
Following the above described approach, 4 child behaviors, Parser, sfilter, iStereo 
and TopHybrid were created within the DUT behavior, mp3decoder as shown in 
Figure-2. Parser behavior was like a owner behavior comprising of the overall 
parsing functionality with patches of synchronization at appropriate places to get the 
services of the other behaviors. Parser behavior synchronizes with each of the other 
behaviors and when these other behaviors are running parser is waiting for that 
behavior to complete. Thus the behavioral hierarchy across these behaviors is 
sequential. 
Further, as shown in Figure-3 the TopHybrid behavior was further modularized to 
contain 3 children behaviors, Hybrid, DCT36, DCT12. The synchronization across 
these behaviors was similar to that across behaviors Parser, sfilter, iStereo and 
TopHybrid. 

 
3. The third step was to get rid of all the global variables across the behaviors. In our 

example we were required to deal with two kinds of global variables. 
a. Category1: This category of global variables, after being initialized by an init 

function was restricted to one single behavior. This included variables like 
lookup tables. In this case, the global variables and the init function were 



 17 

moved to the behavior requiring them thus restricting the access of these 
variables to just one behavior. 

b. Category2: This category included global variables used for both read and 
write across the behaviors. In our case, since all the behaviors were essentially 
sequential, we resolved this by moving those global variables into the 
behavior (owner behavior) which corresponds to the start point of the 
sequential execution. The other behaviors requiring these variables will be 
sent by owner behavior through channels and the updated values are received 
through the channels from the other behaviors and the actual variable will be 
updated by the owner behavior. 

 
4. Concurrency: The behaviors were all composed in parallel as seen in Figure-3. But 

the synchronization implemented between these channels made their execution 
sequential. 

 
 
The resulting specification model consisted on 11 behaviors and 18 channels in total at all 
levels. The relative code, computation and data profile of each of these behaviors in given 
in the graphs below. These graphs were obtained from the System On Chip Environment 
tool. 
 

 
Figure 10 Code Profile per Behavior 
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Figure 11 Distribution of Computation among Behaviors 

 
 
 
 

 
Figure 12 Total Size of Variables per Behavior 
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5 Design Space Exploration 
 
The next step in the system level design process is the Design Space Exploration. In this 
step we will use the specification model of the MP3 decoder and carry out the following 
exploration and synthesis process: 

• Architectural Exploration and Refinement: In this step, the behaviors of the 
specification model are mapped to the components of the system architecture. 
This step can be further divided into: 

a. Allocation of the set of Processing Elements (PE) from the IP library. 
b. Partitioning of the behaviors onto the PEs. 
c. Mapping of the variables into the memory. 
d. Scheduling of the behaviors on the sequential PEs. 

 
• Communication Exploration and Synthesis: In this step, abstract 

communication between components is refined into an actual implementation 
over wires and protocols of system busses. This step can be further divided into: 

a. Allocation of system busses 
b. Partitioning of channels onto busses 
c. Protocol and transducer insertion. 
d. Inlining of communication on components 
e. Communication synthesis. 

 
For detailed description of each of these steps, please refer to [2]. 
To carry out each of these steps we used System On Chip Environment (SCE) tool [6]. 
Most of the above listed steps are automated in the tool and the user is just required to 
allocate components, map them to the PE and choose appropriate command to arrive at 
the refined model. 
In the subsequent sections we will describe the various design explorations we performed 
and how we arrived at the final architecture and communication decisions. 
 

5.1 IP Library: 
The PE library of the SCE tool available for this experiment consists of a couple of 
general purpose processors, DSPs and a custom hardware. The general purpose 
processors included Motorola Coldfire r and Toshiba TX49H2. DSPs include Motorola 
56600. Since our algorithm is implemented using floating point arithmetic, Motorola 
DSP which does not support floating point unit was not useful. So we restricted our 
exploration to general purpose processors, Motorola Coldfire and Toshiba TX49H2 and 
the custom hardware unit. 
Among the buses, there were 4 busses available: Motorola Coldfire M bus, Toshiba G 
bus, Motorola DSP56600 and Samsung KM 684002A buses. Based on our PE selection 
we restricted to Motorola Cold fire bus and Toshiba G bus.  
Similarly, for memory modules, we will restrict our exploration to Motorola Coldfire 
SRAM and Samsung KM684002A. 
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5.2 Exploration 1: 
PE: Toshiba TX49H2 
Memory: Samsung KM684002A memory.  
Bus: Single PE, Processor native bus. 
 
The procedure for detailed architectural exploration is given the SCE tutorial document 
[6]. 
Toshiba TX49H2 is a 64 bit 200 MHz RISC processor. With this configuration, for mp3 
stream funky.mp3 with a real time length of 1:02 minutes, we got an estimated run time 
of 5 Secs. Though the resulting architectural model simulated to produce bit accurate 
output, due to the limitation in the tool we could not verify the estimated run time of 5 
Secs.  
 
We proceeded with the next step of scheduling of behaviors onto this PE. We chose to do 
Round-Robin scheduling for all the behaviors. We could not explore the other possibility 
of serializing the behaviors and static scheduling due to the synchronization that existed 
between behaviors in our specification model. The tight coupling between the behaviors 
required that every behavior should be dynamically scheduled using either round-robin or 
priority based scheduling. 
The resulting model of scheduling refinement compiled and simulated but still due to the 
limitation of the tool, timing detail was missing. 
 
Since there was only one PE, it was not required to allocate any busses and we carried out 
the network refinement and the communication refinement. The resulting model 
compiled, simulated and verified to produce bit accurate output. 
 
Since we did not have any custom hardware elements in this exploration we skipped the 
RTL refinement and proceeded to C code generation. Due to the limitation in the tool we 
could not carry out the C code generation. 
 
Since the estimated runtime looked too optimistic, we verified the parameter table 
containing “cycles per operation” of the processor. The MP3 decoder implementation is 
heavily based on floating point operations. Exactly those operations are wrongly captured 
in that table to take only a single cycle. Checking with the processors specification [7] we 
found, that an integer division already takes 36 cycles. Due to this discrepancy we did not 
further explore the due based on the Toshiba TX49H2. 
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5.3 Exploration 2: 
PE: Motorola Coldfire 
Memory: Samsung Motorola Coldfire SRAM.  
Bus: Single PE, Processor native bus. 
 
A second set of exploration was performed using a single CPU a Motorola ColdFire with 
120MHz. All behaviors were allocated to this processing unit. Executing the decoding of 
the test stream funky.mp3 with a real time length of 1:02 minutes, took an estimated 27.8 
seconds. Without further verification we assume that this result seems reasonable and 
continued working with this solution.  
The timing figures before indicate that there is a significant safety margin in computing 
power, the test stream was decoded in half its real time playing time. To reduce the power 
requirements, the clock frequency was reduced to 60MHz. Using this lower clock speed 
the same test stream still decodes within 55.5 seconds. In order to verify if the timing 
constrains are met in all cases and not in average only, we would need to refer to 
simulation timing. However this could not be done. Although our design contains the 
timing restriction, the architecture refinement tool does only insert timing information 
based on the behavior level. Since our behaviors are complex and perform the work 
within a while loop, simulation timing information was not available.  
As in the previous exploration we did chose a dynamic scheduling algorithm. Again 
dynamic scheduling is required, since we have parallel behaviors, which communicate 
within their execution via channels. Therefore it is not possible to use static scheduling. 
The communication and network refinement is trivial for this exploration since all code is 
executed on the ColdFire. In order to satisfy the tool set constrains, we have allocated the 
ColdFire native bus and communication protocol. The ColdFire itself is master and slave 
on that bus. To emphasize again, no real communication is performed on the physical bus.  
The presented solution is a pure software solution; therefore in the Implementation 
Refinement no RTL code generation was performed. This refinement was performed for 
the SW and C code was generated for the ColdFire target. However, a limitation in the C 
code generator did not allow us to proceed to the final executable. Therefore we could not 
verify that the timing restrictions are met with the cycle accurate model. 
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5.4 Exploration 3: 
PE: Motorola Coldfire, Custom Hardware 
Memory: Samsung Motorola Coldfire SRAM.  
Bus: Motorola Coldfire M bus. 
 
The goal of this exploration was to take the results of the previous exploration with a 
single ColdFire processor and attempt to reduce the clock frequency further for power 
saving reasons. In order to still meet the timing requirements, a custom hardware block 
with a 100MHz clock frequency is allocated. The computationally most intensive part, 
the Synthesis Filter was allocated to this block. All other behaviors are executed on the 
ColdFire (with up to now 60MHz). Unexpectedly using additional hardware did not 
speed up the execution. Instead of an execution time of 55.5 seconds for the pure 
ColdFire implementation, the execution now takes 62.1 seconds on the CPU and 13.4 
seconds on the custom hardware. We assume that this result is due to the nature of our 
specification, which does not yet explore parallelism. As described before the behaviors 
are introduced as blocking calls on a dual handshake channel. Therefore they have the 
timing semantic of blocking PRC call and do not allow parallelism. The CPU is idle 
while the hardware unit performs the computation.  
Due this restriction we did not follow further exploration with a split hardware/software 
implementation. 

6 Implementation 
As the previous chapter explains the architecture with a single ColdFire processor was 
chosen for the implementation. The previous chapter did also describe the further 
refinement activities on that design. These refinements resulted in the implementation 
model, with generated C code.  
A comparison of the number of lines of code for different models is given below. The 
lines were counted using the tool “lc” (by Brian Marik), the following table shows the 
lines containing code, blank and comment only lines are omitted. 
 
 

Model Lines of Code 
Reference C Code 3031 
Specification Model 3649 
Generated Code in Implementation 7228 
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7 Conclusion 
In this project we implemented the specification model of an MP3 decoder in SpecC 
SLDL and followed the system level design procedure using System-On-Chip 
environment to arrive at the final implementation model of the decoder.  
We chose SpecC as a language to implement the specification model as it best suits for 
describing systems involving both hardware and software components. Being a true 
superset of ANSI-C it has a natural suitability to describe software components. It has 
added features like signals, wait, notify etc. to support hardware description. It also 
includes constructs to support hierarchical description of system components. With all 
these features, the designer has flexibility to choose and describe the system under design 
at any desired level of abstraction. SpecC is easy to learn and a clean language. Anyone 
with background knowledge of C can learn SpecC. 
Besides the SpecC language the System-on-Chip environment presented a major support 
for completing the project. Although, it is in its early development stage, it allows an easy 
design space exploration. It enables the designer to estimate performance during the early 
stages of the design and additionally allows the early pruning of the design space.  
We spent most of our time in converting an existing C code into the Specification model. 
Unfortunately a noticeable effort had to be spent since the originating code was not 
ANSI-C compliant and frequently used a small feature of variable initialization not 
available in SpecC. The most challenging part was the conversion from the strictly 
sequential C code, which heavily relied on global variables. In order to break up the code 
into behaviors, these global variables have to be attached to behaviors and the 
communication has to be mapped to channels. Clearly the originating C code did not 
follow the separation of computation and communication. Unfortunately due to time 
restrictions we only completed the first set of behaviors. With the limited amount 
behaviors we could not fully explore the possibilities in concurrency, which also limited 
us in the design exploration.  
Future work on this topic could start with our Specification Model and create more 
behaviors. With sufficiently breaking up the code into behaviors a clean design can be 
achieved which will consist of concurrent modules of the code. This will enable efficient 
mapping of behaviors to concurrent processing elements and exploitation of parallelism.
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