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Abstract

This document covers the results from a course project of the graduate class "System-on-Chip
Description and Modeling". It reflects the theoretical knowledge gained during the course lectures as well
as the practical experiences of the course project. The project goal was to take an existing C code of an
audio decoder (MPEG 1 Layer 3), convert the code into a system on a chip specification, and follow the
design paradigm towards a concrete implementation. The design specification, capturing and synthesis
were performed using the SpecC language and itstools set developed at UC Irvine.
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1 Abstract

This document covers the results from a course projette graduate class “System-on-
Chip Description and Modeling”. It reflects the theordtlaaowledge gained during the

course lectures as well as the practical experiencé® aourse project. The project goal
was to take an existing C code of an audio decoder (MPE&yédr 3), convert the code

into a system on a chip specification, and follow thgigte paradigm towards a concrete
implementation. The design specification, capturing smthesis were performed using
the SpecC language and its tools set developed at UC Irvine.

2 Introduction to SoC Design

Improvements in manufacturing capabilities allow placingaotomplete embedded
system on a single chip. With that it becomes possildesign a system as a mix of
software running on a generic processor and specialized hardwhich performs
otherwise expensive computation. This design freedom leadsatdly to highly
specialized chips and cost efficient production. Howeverrtgwly gained freedom in
design places a burden on the SoC designer. The neagraphs will introduce the
challenges of system level design, the specificatbrsystems and the design space
exploration.

2.1 Challenges of SoC Design

The design of a SoC has similar goals as an embeddead.dékg designed system will
be used in a well-specified environment, and has to fidfrict requirements. Some
requirements are clearly defined by the application hieeftinctional requirements of an
algorithm, e.g. the decoding of an MPEG 1 Layer 3 data stredmh covers certain
quality restrictions. The environment poses other reqargs: e.g. minimizing the cost,
footprint, or power consumption. However due to thexiBility of a SoC design,
achieving the set goals, involves analyzing a multi dinesagidesign space. The degrees
of freedom stem from the process element types andatbeastics, their allocation, the
mapping of functional elements to the process elem#ms,interconnection with busses
and their scheduling.

To give another perspective of the design space, it isl godook at the levels of
abstraction. A SoC design has to deal with a wide raigstarts with a functional
description on system level, where major function kdoare defined and no timing
information is given. The other end of the spectrurthésresult of the design process,
where all functionalities described before are mappeldatdware and all hardware is
defined down to the RTL level. At that point in timeycle accurate model exists, which
is ready for production. Figure 1 depicts the levels ofrabson.
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Figure 1 Abstraction LevelsIn SoC Design (Source[2])

The goal of SoC design paradigm is to manage the imnsrsef design decisions in
the hardware software co-design. This is only possibi®liywing a well-defined flow
of design steps. Those design steps and their assomatdels will be described in the
next paragraphs.

2.2 SoC Specification

Hardware/Software co-design is an integral aspecthef3o0C design. It requires a
language with is capable of capturing the requirements bheshware design from wire
allocations do complex timing requirements, as well & dbmplexities of current
software design. During the lecture different altermstilanguages for system level
design were presented: the C++ library extension SY3tfh some extensions to the
UML capturing. The main focus was on the SpecC langualgiehvis an extension of the
ANSI-C language. It uses the ANSI-C for descriptiorsaftware requirements and adds
features needed for system design. It allows groupingretibnality to behaviors, which
later can be freely mapped to processing elementsdér to allow this free mapping the
computation has to be separated from the communicatibereore communication
between the behaviors is abstractly defined as chanféie channel specific
implementation (e.g. a PCI bus protocol) will be filiadduring later refinement stages.
The specification model is free of such implementatietail (and constrain).

The SpecC language further introduces many concepts from dnadeescription
languages like VHDL and Verilog. It introduces the conceptapturing scheduling
information in the language, such as sequential, paaatkpipelined execution.

The SpecC language very much supports the goals of spéofficcapturing. It allows
describing a fully functional model that incorporates designstrains and is testable
against a set of test vectors.

The next section describes the exploration and refmersteps to transform the system
specification into a manufacturable description.



2.3 SoC Exploration

Together with the SpecC language a design paradigm wasluoed, which tries to
formalize individual refinements steps and gives the desiguidelines how to handle
efficiently the immense design space. Figure 2 showsrarview of the design flow, it
also indicates the integration of the validation flolhe tool suite provided with the
SpecC language closely follows the outlined design flove folowing paragraphs will
describe the steps of the design flow.
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Figure 2 SoC Design M ethodology (Source [2])
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The SoC design starts with the specification modelclvis a purely functional model

free of any implementation details. It focuses on camyuthe algorithmic behavior and

allows a functional validation of the description. Tihedel is untimed and allows only
for causal ordering. Once the specification model isHied it will serve as a “golden

model”, to compare to during the design cycle.

Architecture information is added during the Architeture refiaet. During this step

processing elements are inserted into the system antiofuadcbehaviors are mapped to
them. The processing elements can be standard compooeht&as generic processor
cores or DSPs, as well as specific hardware. Paresmsteh as clock frequency, of the
inserted elements can be adjusted to the application.nBadsed on internal statistics,
first estimations about the runtime performance camhbde, which gives the designer
the first feedback about the design decisions. Oncarttetecture refinement is finished,
the architecture model that captures the decisions asecteThis model is the first timed



model. It takes only computing time into account; all camivation between the
processing elements execute in zero time.

A further step in the refinement, the Scheduling Refingmemot shown in this graph.
This refinement allows the designer to select suitableeduling mechanisms to its
processing elements. The scheduling capabilities range dr@reset static scheduling,
which allows the most predictability, to a priority bdsdynamic scheduling.

The communication refinement allows the user to sdlasses and protocols. Later the
abstract communication channels of the Specificationéloan be mapped to physical
busses and protocols. Detailed information about the prstogdl be added. The
resulting Communication Model will include specific instianos for the particular bus
type and will be a bus functional model.

The last step in the design flow is the syntheseseHhe RTL code for the hardware will
be generated after the RTL component allocation, thamctional mapping and
scheduling. As a result of the hardware synthesis & @acurate of each hardware-
processing element is created. Similar activities takeepfor the software synthesis.
Here specific code for the selected RTOS is createchdadyet specific assembly code
compiled. The result is a cycle accurate model of esdtware-processing element,
which can be simulated on an instruction set simulat@l @xecuted on the target
processor. The combination of both synthesis partapsuced in the Implementation
model, which gives a cycle accurate description of teeesy.

This chapter has introduced the theoretical background t&Emsysdesign. It described the
individual models and the refinement steps needed to reaichpdementation. The next
chapter will introduce the surrounding information for gractical work on the MP3
decoder. It will also derive the design constraints.



3 Design Example

3.1 Overview of MPEG-1 Audio Layer 3

Digital compression of audio data is important due to bhedwidth and storage
limitations inherent in networks and computers. Regular riéligos are ineffective
towards data intensive audio files, MP3 on the other haralides significant
compression through lossy compression applying the perteptience of psycho
acoustics. The Psycho acoustic model implemented by NMB&tam takes advantage of
the fact that the exact input signal does not nee@ tetained. Since the human ear can
only distinguish a certain amount of detalil, it is suéint that the output signal sounds
identical to the human ears.

The course project involves the system specificatiah design exploration of an MP3
decoder. In the following section the generic structurno¥1P3 decoder is presented.

3.2 Brief Description of MP3 Decoder

The MP3 decoder for our design will use a complete MR&astras an input. Before
presenting more details about the actual decoding prozest®rt overview of the MP3
bit stream is given. The MP3 stream is organized indsarihe frame length depends on
the bit rate (~quality) of the encoded data. Since theab# may vary in variable rate
encoded streams, the frame size may also vary witlgimgle stream. Therefore the
frame header contains information for the frame detectThe basic frame format is
shown in the figure below:

Header Side into Main data Ancillary data

Figure 3MPEG 1 Layer 3 Frame Format (Sour ce [3])

The elements of a frame are:

1. Header 4 bytes long, contains sync word to indicate ctérame.
2. Side information contains information to decode main data.
3. Main data the main data contains the coded scale faahokshe Huffman

coded frequency lines.
4. Ancillary data Intended for user defined data (e.g. IRBd@antaining author and
name of the song)
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Figure 4 Block Diagram of M P3 Decoder (Sour cel[3])
The above block diagram shows the data flow within tHREKA1 Layer 3 decoder. The
incoming data stream is first split up into individualnfies and the correctness of those
frames is checked. Further, the side information comigitiie scale factors is decoded.
The main data of the frame is encoded as a Huffmaramstreith variable table
information for the decoding. Thus in order to decodenthén data first the Huffman
tables have to be recreated and later the main dataletbcAfter decoding, a frame
contains 1152 samples (subdivided into two granules of 576 sarepdd). However in
order to optimize space usage in the frame, the recmtistn may refer to previous
frames’ main data. This allows sharing of bandwidttwieen frames and yields smaller
stream sizes. However, this requires storing of additidrame information on the
decoder. The Huffman Decoding stage does refer to the prdvéouss for it's decoding.
The next step after Huffman decoding is the requantizafibe requantizer converts the
Huffman symbols to original spectral values using scal®facThe requantized data is
reordered for the scale factor bands. The requantizedtastfad to the stereo decoder,
which supports both MS stereo as well as Intensity stier@oats. The alias reduction
block is used to reduce the unavoidable aliasing effects adrtbeding polyphase filter
bank. The IMDCT block converts the frequency domain santpldsequency subband
samples. The frequency subbands were introduced by thdexnddnis allows treating
samples in each subband differently according to tfiereint abilities of the human ear
over different frequencies. Hence it allows a highempession rate. Finally, the
polyphase filter bank transforms the data from theviddal frequency subbands into
PCM samples. The PCM samples can now be fed to apgeaklsr or any other output
device through appropriate interface.



3.3 Cimplementation of MP3 decoder

To develop the specification model we referred to then@lamentation of the MP3
decoder available at [4In this section we will describe statistical charast&s of the
source C program.

The original project contains 66 source files, theyudelthe actual decoding algorithm
as well as supporting user interface code, contributing tolib2K of code. Fortunately
the project contained another subdirectory, which ooitained the necessary decoding
algorithm and a simple 10 spread over 10 source files asimgr3K lines of code. We
focused just on these 10 source files as a base fomplementation. The source is split
up into 30 functions. A call graph of the major functissmshown below.
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Figure5 Call Graph of major MP3 Decoder Functions

3.4 Design Constraints

MP3 allows 3 different output sampling rates — 32 KHz, 4dHz, and 48 KHz.
However, we restricted to support only 44.1 KHz sampling reteich eases the
definition of timing requirements. This sampling rate resgithe decoder to produce at
least 44100 samples per second. With 1152 samples per frengedoder has to decode
a frame every 26.12245ms.

Apart from this functional requirement, we set additiayedls of low power and cost.
Low power is an important requirement due to the fadt M@3 decoder on portable
embedded devise limited by the battery capacity. Since, MP8omputationally
algorithm it becomes important to make right choicesgiimize for power.

Finally, for a product to be successful and viable in matketcost has to be reasonable.
Thus, during our exploration, we explored many possibleitactures with the available
PE's to arrive at the final design, which satisfiesesth constraints.



4 Specification Model

Specification model is the starting point in the systisign process and forms the sole
input to the architecture exploration tool. Specificatioodel is the result of capturing
the functionality of the design in System Level Dggon Language (SLDL).

The Specification model is pure functional, abstractdehowhich is free of any
implementation details. The model runs in zero simufatime and hence has no notion
of time. Since the specification model forms the $&si the synthesis and exploration it
is important to write good specification model. A good dp=tion model has the
following important features:

e Separation of computation and communication units. Specification model should
clearly separate the communication blocks from the caatiputblocks. This enables
rapid exploration by facilitating easy plug-n-play of doés. Abstraction of
communication and synchronization functionality is a kayefficient synthesis and
rapid design space exploration.

In SpecC SLDL, computation units can be modeled using ‘belsaviend
communication elements using ‘channels’.

* Modularity: Modularity is required in the form of structural and &ahbral hierarchy,
allowing hierarchical decomposition of the system. Tleeanchy of behaviors in the
specification models solely reflects the system fonetity without implying
anything about the system architecture to be implemented.

* Granularity: The size of the leaf behaviors determines the gratwutairthe design
space exploration. More the number of leaf behaviogbdrmi are the number of the
possible explorations. Granularity depends on the usktree problem size. There is
a wide range of possibilities: On one extreme everyunsbn can be a behavior and
on the other extreme, entire design could be in onevimehdhe former means huge
design space exploration but it is not practical andates results in reduced design
space exploration. Granularity at subroutine leveloie of the most practical
solutions.

* Implementation details. Specification model should not have any implicit or
explicit implementation detail. Having implementationtadle would restrict the
design space exploration. For example, having commumicdtrough a pointer to an
array would mean implementation of the array as mgnaord voids the other
possibilities.

* Concurrency: Any parallel functionality in the algorithm must be madego
concurrent modules. This would expand the possibility efgathese parallel units
on different hardware or software modules.

10



4.1 Writing Specification model in SpecC

In the previous section we saw some desirable featuraspécification model. In this
section we give some hints in achieving such a model inGpe

Specification model of the design can be written frdra scratch, which requires
extensive knowledge of the algorithm being implementedhigdase, user can decide
the granularity, hierarchy and concurrency of the debsapged on the knowledge of the
algorithm. This approach might be time consuming as ®strting from the scratch and
the resulting specification model requires consideran®unt of verification before
considering it for rest of the design process.

More than often in the embedded system development, ispé&oih model might be
required to be developed from an existing reference C eddeh implements the
algorithm. This approach is faster than the former asignificant amount of effort has
already been invested in making the reference code. Mamesince the SpecC SLDL is
just a superset of C language it would require less effardomwert the C reference code
into SpecC specification model than writing the speaifo; model from scratch. We
will look at this second approach in detail.

Based on our experience, we have listed following guidelime®nverting the C-code
into the Specification model in SpecC. This task becasuégiently challenging due to
the absence of specification model features in thisdg-.co

1. The first step in making the specification model fromeerence C program is to
setup a testbench consisting of a parallel compostiobehaviors,Stimulator,
Design Under Test (DUT) andMonitor. DUT behavior implements the C reference
main function, Stimulator behavior provides the test infuthe DUT and the
Monitor behavior collects the output from the DUT andhpares with the reference
expected output and takes necessary action based on result
In subsequent steps, the DUT behavior is broken int@ telhaviors. This approach
has the advantage that you can test your resulting Ipgpgaification model at each
step on the way to the full specification model.

2. Second step is to choose granularity. As describeckipitévious section, there are a
wide range of possibilities but one possibility is to makettee C functions into
behaviors.

It is not a hard requirement to convert all the fuontdiinto behaviors. The user can
take suitable decisions based on past experience anddidekige of the algorithm
and decide to convert only selected functions into behawtbout compromising the
design space exploration.

Avoid Global variables across behaviors: If the Crexfee code had any global
variables then it is very likely that your resulting gfieation model of step-2 will
have those global variables. There must not exist anbablwariables across
behaviors and it is important to get rid of these glolzalables as they carry no
significance in the system design. These global blesamust be either moved to any
of the behaviors or replaced with channels. Technical rgBprcontains detailed
information regarding converting C code into SpecC code.

11



3.

Introducing concurrency into your specification model: Vheous behaviors can be
composed as sequential, concurrent, pipelined or FSMD modiftes step-3 your
module will be just sequential. Look for any apparentcoorency in the algorithm
and compose those behaviors as concurrent modules. Mangsa these algorithms
might not have any inherent concurrent modules, in thaé @oncurrency can be
achieved by means of pipelining.

Technical report [8] contains detailed information regaydionverting C code into
SpecC code

Separation of Computation from Communication: This élnaturally taken care of
after the above steps are completed.

4.2 Case Study: MP3 Decoder

In this project we were required to write the specificatioodel of the MPEG-1 Audio
Layer 3 (popularly known as MP3) decoder and produce arem®itation model by
taking the specification model through a sequence of syktesh design steps. In this
section we will describe the steps we performed to aatitke specification model.

We started with a reference C code for MP3 decoder [d] applied the general
methodology described in the previous sections to this gpeeie to arrive at the final
specification model. These steps are described in dedailv:

1.

The entire main function of the decoder was wrapped @atsingle behavior,
mp3decoder. Two leaf behaviorstimulus and monitor were introduced as part of the
testbench. The stimulus reads the input mp3 streamtfrerninary mp3 files (*.mp3)
and sends it tanp3decoder in chunks of 16K Bytesmp3decoder behavior decodes
the input data and writes it toonitor in chunks of 4K Bytes. Theonitor behavior
receives the incoming data and writes it into a file (fmjpcDouble handshake
channels were used to synchronize these behaviors. THngesierarchy is shown
in the figure below.

12
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2. The second step was to introduce granularity into our Diyg3decoder.
have been ideal to convert each of the C functioribe decoder into behaviors. But
considering the time available to complete the projget itlea was not feasible.
Alternatively, we decided to convert only critical @tions in the decoder into
behaviors. To get information on the critical funcipmve ran the GNU profiler,
gprof and obtained the relative execution time of each offainetions. From the

profiler result we identified following critical functms.

Function

Per centage execution time

Synthesis filter 73%
Stereo Processing 6%
Hybrid Processing 6.9%

Based on this, we decided to convert just these fursciida behaviors. The resulting
hierarchy and connectivity is shown in Figure 7. The hybriccgssing was further
decomposed to contain DCT36 and DCT12 behaviors. The restfiftaighierarchy

of the decoder is shown in Figure 8.

13
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Figure 7 Testbench Design with Communication Channels

14

HyhridinControl
HybridinData
HybridoutDiata
iStereoCnhtl
iSterenDataln
iStereoDataCut
iStereoGranuleln

SterecScaleFacsl

sfinContral
sfinData
sfoutControl
sfoutData




mp3decoder )

filebur

send_data

] HybridinCantral ]

| HybridinData |

[ HybridowtData |

] iStereoCntl ]

] istereoDatain ]

| isterenDatacut ]

] iSterenGranuleln |

J5terenScaleFacsi

| sfinContral ]
| sfinData |

[ sfoutContral ]

] sfoutData ]

w w
4 T TopHybrid )
HybridinData
HyhridinCantral
Hyhbridautata

 Jdctizin[ >

parser sfilter iStereo fcct 20U
GG
| ‘

l Hybrid \ l DCT36 l DCT12

\ y,

Figure 8 Testbench Design Detailed Representation

Now we will describe in detail how we converted the fiors into behaviors. We
would like to illustrate this with a simple example simow Figure 9. In this example,
there is a C function f1 () calling another function(fg This is shown on the left
hand side of the figure encapsulated in oval. We decide needofl and f2 into

separate behaviors. The result is depicted on the gl side of the figure. The
behavior B1_f1 and B2_f2 are the behaviors corresponditigetéunctionality of the

f1 () and f2 (') respectively. The call to the funati@ () from f1 () is replaced with
the send and receive calls of the double handshake chanm®Eul#le handshake
channel is used to communicate the function parametef?( 9f There will be as

many channels as the number of parameters.

Now, how are these behaviors composed? If you notesyhchronization between
the two behaviors, first B1_f1 runs till the synchronaatpoint is reached and after
sending the data it blocks on receive( ) function uh&lB2_f2 sends the result back
at the end of its execution. Thus the two behavioreaeeuted sequentially. This is
similar to a Remote Procedure Call (RPC).

15



But these behaviors must be composed using SpecC ‘parrwctnstherwise there
will be a deadlock. This parallel composition is indicat®y the dotted line in the
figure.

The same principle holds in all our cases. The techregairt [8] describes in detalil
to alternative ways to convert functions into behaviors
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Figure 9 Generic Behavior Split

Following the above described approach, 4 child behaviRaiser, filter, iStereo
and TopHybrid were created within the DUT behavianp3decoder as shown in
Figure-2 Parser behavior was like a owner behavior comprising of the divera
parsing functionality with patches of synchronizatiomppropriate places to get the
services of the other behavioRarser behavior synchronizes with each of the other
behaviors and when these other behaviors are rurpangy is waiting for that
behavior to complete. Thus the behavioral hierarchy sacitiese behaviors is
sequential.

Further, as shown in Figure-3 tAepHybrid behavior was further modularized to
contain 3 children behaviorgjybrid, DCT36, DCT12. The synchronization across
these behaviors was similar to that across behaWarser, sfilter, iSereo and
TopHybrid.

. The third step was to get rid of all the global varialdesoss the behaviors. In our
example we were required to deal with two kinds of glaaaiables.
a. Categoryl: This category of global variables, after being initiedl by an init
function was restricted to one single behavior. Thdutted variables like
lookup tables. In this case, the global variables and ribefunction were

16



moved to the behavior requiring them thus restricting tteess of these
variables to just one behavior.

b. Category2: This category included global variables used for both esatl
write across the behaviors. In our case, since ab&haviors were essentially
sequential, we resolved this by moving those global vasabio the
behavior (owner behavior) which corresponds to the gtamt of the
sequential execution. The other behaviors requiring thasables will be
sent by owner behavior through channels and the updated eatuesceived
through the channels from the other behaviors and the actuable will be
updated by the owner behavior.

4. Concurrency: The behaviors were all composed in paradledeen in Figure-3. But
the synchronization implemented between these charmmalde their execution
sequential.

The resulting specification model consisted on 11 behaaiwisl8 channels in total at all
levels. The relative code, computation and data profikEach of these behaviors in given
in the graphs below. These graphs were obtained fromyter8 On Chip Environment
tool.
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Figure 10 Code Profile per Behavior
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Computation Profile

Rel. operations
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Figure 11 Distribution of Computation among Behaviors
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Figure 12 Total Size of Variables per Behavior
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5 Design Space Exploration

The next step in the system level design process Be¢kgn Space Exploration. In this
step we will use the specification model of the MP3 dec@nd carry out the following
exploration and synthesis process:
» Architectural Exploration and Refinement: In this step, the behaviors of the
specification model are mapped to the components of yiera architecture.
This step can be further divided into:
a. Allocation of the set of Processing Elements (P&fthe IP library.
b. Partitioning of the behaviors onto the PEs.
c. Mapping of the variables into the memory.
d. Scheduling of the behaviors on the sequential PEs.

 Communication Exploration and Synthesiss In this step, abstract

communication between components is refined into anahdimplementation
over wires and protocols of system busses. This stepecaurther divided into:

a. Allocation of system busses

b. Partitioning of channels onto busses

c. Protocol and transducer insertion.

d. Inlining of communication on components

e. Communication synthesis.

For detailed description of each of these steps, plefseto [2].

To carry out each of these steps we used System On Chip&meint (SCE) tool [6].
Most of the above listed steps are automated in theatmblthe user is just required to
allocate components, map them to the PE and choose apfgaymamand to arrive at
the refined model.

In the subsequent sections we will describe the variosigrexplorations we performed
and how we arrived at the final architecture and commuaitakcisions.

5.1 IP Library:

The PE library of the SCE tool available for this expent consists of a couple of
general purpose processors, DSPs and a custom hardwaregereral purpose
processors included Motorola Coldfire r and Toshiba TX49HZP faclude Motorola
56600. Since our algorithm is implemented using floating paitiinaetic, Motorola
DSP which does not support floating point unit was not us&ual.we restricted our
exploration to general purpose processors, Motorola ©eldhd Toshiba TX49H2 and
the custom hardware unit.

Among the buses, there were 4 busses available: MotGal#fire M bus, Toshiba G
bus, Motorola DSP56600 and Samsung KM 684002A buses. Based ok gatetion
we restricted to Motorola Cold fire bus and Toshiba G bus.

Similarly, for memory modules, we will restrict ouxpdoration to Motorola Coldfire
SRAM and Samsung KM684002A.
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5.2 Exploration 1:

PE: Toshiba TX49H2
Memory: Samsung KM684002A memory.
Bus: Single PE, Processor native bus.

The procedure for detailed architectural exploration vermgithe SCE tutorial document
[6].

Toshiba TX49H2 is a 64 bit 200 MHz RISC processor. With thigigaration, for mp3
stream funky.mp3 with a real time length of 1:02 minutes,gat an estimated run time
of 5 Secs. Though the resulting architectural model stedil#o produce bit accurate
output, due to the limitation in the tool we could netify the estimated run time of 5
Secs.

We proceeded with the next step of scheduling of behawmsthis PE. We chose to do
Round-Robin scheduling for all the behaviors. We could nploex the other possibility

of serializing the behaviors and static scheduling due tsythehronization that existed
between behaviors in our specification model. The tighiptng between the behaviors
required that every behavior should be dynamically schedisied either round-robin or

priority based scheduling.

The resulting model of scheduling refinement compiled amdilated but still due to the

limitation of the tool, timing detail was missing.

Since there was only one PE, it was not required toaloany busses and we carried out
the network refinement and the communication refinemdiite resulting model
compiled, simulated and verified to produce bit accurateubut

Since we did not have any custom hardware elementssiexploration we skipped the
RTL refinement and proceeded to C code generation. Dine tintitation in the tool we
could not carry out the C code generation.

Since the estimated runtime looked too optimistic, wéigdrthe parameter table
containing “cycles per operation” of the processor. TiR8Mecoder implementation is
heavily based on floating point operations. Exactly thasarations are wrongly captured
in that table to take only a single cycle. Checking withirocessors specification [7] we
found, that an integer division already takes 36 cycleg. tO this discrepancy we did not
further explore the due based on the Toshiba TX49H2.
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5.3 Exploration 2:

PE: Motorola Coldfire
Memory: Samsung Motorola Coldfire SRAM.
Bus: Single PE, Processor native bus.

A second set of exploration was performed using a s@Bld a Motorola ColdFire with
120MHz. All behaviors were allocated to this processing unitclixgy the decoding of
the test stream funky.mp3 with a real time length 62 Ininutes, took an estimated 27.8
seconds. Without further verification we assume th# tesult seems reasonable and
continued working with this solution.

The timing figures before indicate that there is a $icamt safety margin in computing
power, the test stream was decoded in half its real pilaying time. To reduce the power
requirements, the clock frequency was reduced to 60MHz. Wsimdower clock speed
the same test stream still decodes within 55.5 seconasdér to verify if the timing
constrains are met in all cases and not in average am@ywould need to refer to
simulation timing. However this could not be done. Althowgh design contains the
timing restriction, the architecture refinement tool doa$y insert timing information
based on the behavior level. Since our behaviors arelernapd perform the work
within a while loop, simulation timing information was raailable.

As in the previous exploration we did chose a dynarmoieeduling algorithm. Again
dynamic scheduling is required, since we have parallel bafsawhich communicate
within their execution via channels. Therefore it is possible to use static scheduling.
The communication and network refinement is trivial fos #ploration since all code is
executed on the ColdFire. In order to satisfy the $eblconstrains, we have allocated the
ColdFire native bus and communication protocol. ThelEio¢ itself is master and slave
on that bus. To emphasize again, no real communicatperformed on the physical bus.
The presented solution is a pure software solution; thexeih the Implementation
Refinement no RTL code generation was performed. Thiseraent was performed for
the SW and C code was generated for the ColdFire taddgetever, a limitation in the C
code generator did not allow us to proceed to the finalueable. Therefore we could not
verify that the timing restrictions are met with thyele accurate model.
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5.4 Exploration 3:

PE: Motorola Coldfire, Custom Hardware
Memory: Samsung Motorola Coldfire SRAM.
Bus: Motorola Coldfire M bus.

The goal of this exploration was to take the resultshef previous exploration with a
single ColdFire processor and attempt to reduce the cleckigncy further for power
saving reasons. In order to still meet the timing requer@s) a custom hardware block
with a 100MHz clock frequency is allocated. The computatigrmost intensive part,
the Synthesis Filter was allocated to this block. Alles behaviors are executed on the
ColdFire (with up to now 60MHz). Unexpectedly using additiohatdware did not
speed up the execution. Instead of an execution time of &&&énds for the pure
ColdFire implementation, the execution now takes 62cbra#s on the CPU and 13.4
seconds on the custom hardware. We assume that this isedue to the nature of our
specification, which does not yet explore parallelisra.d&scribed before the behaviors
are introduced as blocking calls on a dual handshake charekfore they have the
timing semantic of blocking PRC call and do not allow palisite The CPU is idle
while the hardware unit performs the computation.

Due this restriction we did not follow further explocatiwith a split hardware/software
implementation.

6 Implementation

As the previous chapter explains the architecture witimglesColdFire processor was
chosen for the implementation. The previous chapter tid describe the further
refinement activities on that design. These refinemeasulted in the implementation
model, with generated C code.

A comparison of the number of lines of code for différenodels is given below. The
lines were counted using the tool “Ic” (by Brian Mari)etfollowing table shows the
lines containing code, blank and comment only lines aré&euhi

Model Lines of Code
Reference C Code 3031
Specification Model 3649
Generated Code in Implementation 7228
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7 Conclusion

In this project we implemented the specification modeafMP3 decoder in SpecC
SLDL and followed the system level design procedure usiygte§-On-Chip
environment to arrive at the final implementation maxfe¢he decoder.

We chose SpecC as a language to implement the speaificabdel as it best suits for
describing systems involving both hardware and software coamp@nBeing a true
superset of ANSI-C it has a natural suitability to déscisoftware components. It has
added features like signals, wait, notify etc. to suppartare description. It also
includes constructs to support hierarchical description stegy components. With all
these features, the designer has flexibility to choadedascribe the system under design
at any desired level of abstraction. SpecC is easy to & a clean language. Anyone
with background knowledge of C can learn SpecC.

Besides the SpecC language the System-on-Chip environneseinped a major support
for completing the project. Although, it is in its gadevelopment stage, it allows an easy
design space exploration. It enables the designeritoagstperformance during the early
stages of the design and additionally allows the gatying of the design space.

We spent most of our time in converting an existing C aottethe Specification model.
Unfortunately a noticeable effort had to be spent siheeoriginating code was not
ANSI-C compliant and frequently used a small featurevarfiable initialization not
available in SpecC. The most challenging part was theecsion from the strictly
sequential C code, which heavily relied on global varmblle order to break up the code
into behaviors, these global variables have to be r@thdo behaviors and the
communication has to be mapped to channels. Clearlpriggating C code did not
follow the separation of computation and communicatidnfortunately due to time
restrictions we only completed the first set of bebis/i With the limited amount
behaviors we could not fully explore the possibiliieconcurrency, which also limited
us in the design exploration.

Future work on this topic could start with our Specificatidodel and create more
behaviors. With sufficiently breaking up the code inehdviors a clean design can be
achieved which will consist of concurrent modules ofdbde. This will enable efficient
mapping of behaviors to concurrent processing elementsxglditation of parallelism.
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