
System-on-Chip Environment (SCE Version 2.2.0
Beta): Manual

Lukai Cai
Andreas Gerstlauer

Samar Abdi
Jerry Peng

Dongwan Shin
Haobo Yu

Rainer D̈omer
Daniel D. Gajski

Technical Report CECS-TR-03-45
December 2003

System-on-Chip Environment (SCE Version 2.2.0
Beta): Manual

Lukai Cai
Andreas Gerstlauer

Samar Abdi
Jerry Peng

Dongwan Shin
Haobo Yu

Rainer D̈omer
Daniel D. Gajski

Technical Report CECS-TR-03-45
December, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

+1 (949) 824-8919

http://www.cecs.uci.edu

2

Contents

1 Introduction 1
1.1 Architecture Explorer 1
1.2 Network Explorer. 2
1.3 Communication Synthesizer 2

2 Overview 3
2.1 Modules. 4

2.1.1 Main Window 6
2.1.2 Input Dialogs 6
2.1.3 Display Windows 7

2.2 Requirements 8
2.3 Interfaces . 8

2.3.1 Internal Interfaces 8
2.3.2 External Interfaces. 9

2.4 Performance 10

3 Windows/GUI 10
3.1 Menu Bar . 11

3.1.1 File Menu 11
3.1.2 View Menu . 12
3.1.3 Project Menu 12
3.1.4 Synthesis Menu . .. 12
3.1.5 Windows . 13

3.2 Project Window 14
3.2.1 Models Tab 15
3.2.2 Imports Tab 15
3.2.3 Sources Tab. 16

3.3 Design Window 16
3.3.1 Hierarchy Tab 19
3.3.2 Behaviors Tab . .. 19
3.3.3 Channels Tab 21
3.3.4 View Pane . 22

3.4 Output Window. 22
3.5 Workspace. 23
3.6 Message Boxes. 23

3.6.1 Error Dialogs 23
3.6.2 Information Dialogs . 23

i

4 Functionality 24
4.1 Application . 25

4.1.1 Preferences Editing. 26
4.2 Project Handling 28

4.2.1 Project Creation 31
4.2.2 Project Opening 31
4.2.3 Project Saving . .. 32
4.2.4 Project Settings Editing. 34
4.2.5 Design Adding . .. 34
4.2.6 Design Opening 35
4.2.7 Design Deletion 35
4.2.8 Design Renaming 36
4.2.9 Description Changing 36
4.2.10 Project Closing 36

4.3 File Handling 36
4.3.1 File Opening 37
4.3.2 File Saving 38
4.3.3 File Closing. 40
4.3.4 File Import 40
4.3.5 Design Property Viewing 42
4.3.6 SCE Exiting 42

4.4 Design-Entity Handling 42
4.4.1 Entity Renaming .. 43
4.4.2 Entity Retyping . .. 43
4.4.3 Entity Deletion . .. 44
4.4.4 Hierarchy Displaying . .. 44

4.5 Synthesis . 45
4.5.1 Architecture Exploration 45
4.5.2 Network Exploration. 53
4.5.3 Communication Synthesis . .. 63
4.5.4 Decision Import 69

4.6 Window Management 72

References 73

A Manual Pages 74
A.1 scc - SpecC Compiler 75

ii

B Project File XML Schema 82
B.1 Elementsce . 82

B.1.1 Elementsce/project . 83
B.1.2 Elementsce/compiler . 83
B.1.3 Elementsce/models . 84
B.1.4 Elementsce/imports . 86
B.1.5 Elementsce/sources . 86

B.2 ComplexTypeCompilerOption . 87
B.3 ComplexTypeModelItem . 88

B.3.1 ElementModelItem/item . 90
B.3.2 ElementModelItem/option . 91

B.4 ComplexTypeSimpleItem . 91

iii

List of Figures

1 SCE environment. 2
2 Overview of the software architecture of SCE. 3
3 Module diagram of SCE. 5
4 Main Window of SCE. . .. 10
5 Project Window (Models tab). . .. 14
6 Project Window (Imports tab). 16
7 Project Window (Sources tab). 17
8 Design Window (Hierarchy tab).. 18
9 Design Window (Behaviors tab). 20
10 Design Window (Channels tab). . .. 21
11 Output Window. 22
12 Error dialog 24
13 Information dialog 24
14 Edit Preferences dialog (Compiler tab). 27
15 Edit Preferences dialog (Database tab). 29
16 Database Selection dialog.. 29
17 Project Open dialog. 32
18 Project Save dialog.. 33
19 Project Settings dialog. 34
20 File Open dialog. 37
21 File Save dialog. 39
22 File Importing dialog. 41
23 Design Property dialog. 41
24 PE Allocation dialog. 47
25 PE Selection dialog.. 48
26 Architecture Refinement dialog. 52
27 Network Allocation dialog (Bus tab). 55
28 Bus Selection dialog. 56
29 Network Allocation dialog (CE tab). 57
30 CE Selection dialog. 58
31 Network Allocation dialog (Connectivity tab). 59
32 Network Refinement dialog. . .. 62
33 Bus Parameter dialog. 66
34 Communication Refinement dialog. 68
35 Import Decisions dialog. .. 71

iv

System-on-Chip Environment (SCE Version 2.2.0 Beta): Manual

L. Cai, A. Gerstlauer, S. Abdi, J. Peng, D. Shin, H. Yu, R. D̈omer, D. Gajski
Center for Embedded Computer Systems

University of California, Irvine

Technical Report CECS-TR-03-45
December, 2003

1 Introduction

SCE represents a new technology that allows designers to capture system specification as a
composition of C-functions. These are automatically refined into different models required
at each step of the design process. Therefore designers can devote more effort to the creative
part of designing and the tools can create models for validation and synthesis. The end result
is that the designers do not need to learn new system level design languages (SystemC,
SpecC, Superlog, etc.) or even the existing Hardware Description Languages (Verilog,
VHDL).

Consequently, the designers have to enter only the golden specification of the design
and make design decisions interactively in SCE. The models for simulation, synthesis and
verification are generated automatically.

SCE contains three system-level synthesis tools: Architecture Explorer, Network Ex-
plorer, and Communication Synthesizer. This report is the menual of these three tools.

1.1 Architecture Explorer

Architecture Explorer (AE) is a tool that provides users a highly productive environment
to enable rapid and extensive architecture exploration. The task of architecture exploration
is to select the most cost-effective system architecture and mapping of specification to the
architecture to satisfy all design constraints.

AE is the first tool in the SCE design flow. AE starts with the specification model
captured by the designer. It then allows the users to specify the computation architecture
by selecting system components (software and hardware processors, memories) from the
database of processing elements (PEs). Following this, the designer can perform hardware-
software co-design by partitioning the behaviors and variables to selected PEs and memo-

1

Architecture Explorer

Network Explorer

Communication Synthesizer

PE
Database

CE
Database

Bus
Database

Li
br

ar
y

B
ui

ld
er

Specification Model

Architecture Model

Network Model

TLM

Communication Model

SpecC

Simulation
Capture

SpecC

Simulation
Capture

SpecC

Simulation
Capture

Simulation

SpecC

Simulation

Figure 1: SCE environment.

ries in order to implement the computational part of the specification on the defined com-
putation architecture. AE then generates and exports the new architecture model.

1.2 Network Explorer

Network Explorer (NE) is a tool that provides users a highly productive environment to
enable rapid and extensive network exploration. The task of network exploration is to select
the most cost-effective system communication topology to satisfy all design constraints.

NE is the second tool in the SCE design flow. NE starts with the architecture model pro-
duced by the Architecture Explorer. It then allows the users to specify the network topology
by selecting communication components (buses and communication elements (CE)) from
the databases of busses and CEs and by connecting components in the architecture (busses,
PEs, memories, and CEs). NE then generates and exports the new network model.

1.3 Communication Synthesizer

Communication Synthesizer (CS) is a tool that provides users a highly productive environ-
ment to enable rapid and efficient communication synthesis. The task of communication
synthesis is to select the detailed parameters of communication on each bus segment and to
generate transaction-level or final bus-functional, pin- and timing-accurate communication

2

Component importDatabase
SIR

GUI

Annotation

Model

Model

Cmd. Line
Parameters

Spec. Model SpecC

Arch. Model SpecC

Intermediate SpecC

Model refinement Cmd. Line
Parameters

Network Explorer

U
se

r
in

p
u

t

Library Builder

Project
XML

Figure 2: Overview of the software architecture of SCE.

models.
CS is the third tool in the SCE design flow. CS starts with the network model produced

by the Network Explorer. It then allows the users to specify the communication details by
setting the communication parameters for each bus segment in the system communication
architecture. CS then generates and exports the new communication model or transaction-
level model.

2 Overview

Figure 2 shows an overview of the software architecture of the Architecture Explorer, Net-
work Explorer, or Communication Synthesizer. AE/NE/CS requires an input model of the
intended design in the form of valid SpecC code [1] and conforming to the Specification
Model Reference Manual [3]. The input model is the specification model for AE, the ar-
chitecture model for NE, and the network model for CS. AE reads information about avail-
able components from a database of processing elements (PEs). NE reads information
about available components from databases of buses and communication elements (CEs).
CS reads information about available components from databases of processing elements
(PEs), buses, and communication elements (CEs). The database is read in binary form as a
file in SpecC Internal Representation (SIR) format as generated by the Library Builder tool
that is part of SCE. Through SCE’s graphical user interface (GUI), the user can browse the

3

specification/architecture/network model and PE/CE/bus database, and the user is provided
with a GUI to enter design decisions to come up with different design decisions. For AE,
the decisions are computation architectures and mappings of the specification onto those
architectures. For NE, the decisions are communication topologies. For CS, the deicisions
are bus parameters.

For each candidate design decision as determined by the user, the AE/NE/CS au-
tomatically generates an output model that exactly reflects the design decisions made.
The output model is the architecture model for AE, the network model for NE, and the
communication/transaction-level model for CS. The output models are generated in the
form of SpecC code following the Architecture Model Reference Manual, the Network
Model Reference Manual, and the Communication Model Reference Manual. Information
about design models and their relationships are tracked by the SCE and can be stored in
project files that can be read and written by SCE in a custom XML format. Generated
architecture models along with the corresponding project file(s) can then be passed to the
following tools in the SCE design flow.

Internally, the SCE consists of separate components for component import, architec-
ture/network/communication refinement, and graphical user interface (GUI). The main
SCE application is the SCE GUI which in turn calls import and refinement components
as needed. Component import and refinement are command line tools that are called and
executed by the GUI where the GUI supplies the correct command line parameters, captures
the output and handles (normal or abnormal) results. The GUI reads and displays design
models, lets the user browse the database, and provides facilities to enter design decisions.
Design decisions are stored by the GUI as annotations in the input design model. For gen-
eration of output design models, the GUI first passes the annotated design to the component
import tool which, as requested by the GUI, imports the necessary component models out
of the database into the design and writes an intermediate design model. The GUI then calls
the refinement tool on the intermediate design model. The refinement tool in turn generates
the final output architecture model which can be read, displayed and browsed through the
GUI.

The run time of automatic model generation is in the order of minutes. Therefore with
SCE, users can rapidly experiment with dozens, even hundreds of alternative design deci-
sions to make the optimal design decisions.

2.1 Modules

The block diagram and flow chart of the SCE is displayed in Figure 3. The blocks represent
SCE modules where each block is associated with one or more GUI elements. GUI elements
and hence SCE blocks can be further classified into three types: the Main Window, input
dialogs and display windows.

Besides above three types of windows, there are two types of arrows in Figure 3: solid

4

Main Windows

Project
Opening

File
Saving

Project
 Saving

File Opening

Design Window

Preference
Editing

Database
Selecting

Architecture
Refining

Project
Window

Design
Properties

PE Allocating

Output
Window

PE Selecting

Project Creation;
Design Adding

F
ile

 C
lo

se
;

A
E

 E
xi

t;
W

in
do

w
 M

an
ag

em
en

t
Top-Level Selection;

Mapping;
Entity handling

Project
Setting

Error

File
Importing

Information

Decisions
Importing

File Deleting
File Renaming

Link
Parameter
Assigning

Network
Allocating

Bus Selecting CE Selecting
Port

Configurating

Network
Refining

Commu-
nication
Refining

Figure 3: Module diagram of SCE.

5

arrows and dashed arrows. Solid arrows represent the pop-up relations. The window at the
arrow head will be triggered by clicking a button or selecting a menu item in the window at
the arrow tail. For example, by clickingOpen button inFile column in the menu of window
Main Window, users will triggerFile Open dialog. The text that appears on some arrows
represents the arrow’s task name. On the other hand, dashed arrows represent information
updates. The data in the window at the arrow head will be updated by clicking a button
in the window at the arrow tail. In order to simplify Figure 3, the arrows for error and
information dialogs are not connected. They are popped up when the error or information
occurs, which will be described in Section 4.

2.1.1 Main Window

The main window (shown as 3-D block in Figure 3), is the default, top-level window of the
GUI and hence the SCE application. The main window contains a menu bar and a status bar
through which the application can be controlled by the user and through which feedback is
provided to the user about the state of the application.

2.1.2 Input Dialogs

Input dialogs (shown as regular blocks) allow users to input the design or project decisions
by selecting, editing, or typing the details. They are all pop-up dialogs. Users directly/indi-
rectly pop up all the input dialogs by clicking buttons or selecting menu items. Input dialogs
include:

(a) File Open dialog for selecting the design file which users want to open.

(b) File Save dialog for saving current file as a new file with the specified name.

(c) Design Property dialog for displaying the information related to the process of SCE,
such as command history and processing status of SCE.

(d) File Import dialog for selecting the design file which users want to import.

(e) PE Allocation dialog for adding PEs to and removing PEs from the design.

(f) PE Selection dialog for selecting PEs from the PE library (for input dialog PE Allo-
cating).

(g) Network Allocation dialog for defining the network topology of the design.

(h) Bus Selection dialog for selecting busses from the bus database.

(i) CE Selection dialog for selecting communication elements (CE) from the CE database.

6

(j) Port Configuration dialog for editing ports of behaviors.

(k) Bus Parameter dialog for assigning parameters for busses in the design.

(l) Error dialogs for displaying of error messages of design tasks.

(m) Information dialogs for providing informational feedback to the user.

(n) Project Open dialog for reading a new project from disk.

(o) Project Save dialog for saving current project as a new project on disk with the speci-
fied name.

(p) Network Refinement dialog for selecting sub-tasks for network refinement.

(q) Architecture Refinement dialog for selecting sub-tasks for architecture refinement.

(r) Communication Refinement dialog for selecting sub-tasks for communication refine-
ment.

(s) Decision Import dialog for import the design decisions from other opened designs.

(t) Project Settings dialog for setting project preferences.

(u) Edit Preferences dialog for setting SCE preferences.

(v) Database Selection dialog for selecting the preferred database.

2.1.3 Display Windows

Display windows (shown as shaded windows in Figure 3) graphically display the informa-
tion of files, projects, and the process status of Architecture Explorer. Display windows are
sub-windows under the main window. Display windows include:

(a) Design Window displays the contents and the attributes of the designs saved in the
opened files. The displayed information includes hierarchy of behaviors, execution
sequence of behaviors, and variable/port details of the selected behavior.

(b) Project Window displays the project information such as hierarchy of design models
and included source files.

(c) Output Window displays the captured output of the SCE command line tools called by
the GUI.

7

2.2 Requirements

The SCE requires a system with the following runtime platform:

Host machine Intel-compatible x86 PC, 500MHz or higher, recommended minimum
128MB of RAM, 200MB of free hard disk space.

Operating system RedHat Enterprise Linux WS, Version 3

In order to compile the source code of SCE, the following additional software packages
have to be installed (in binary form including necessary header files):

• SIR library, Version 2.2.x (UC Irvine)

• Qt library and toolkit, Version 3.3.x (Trolltech, Inc.)

• PyQt library, Version 3.11 or higher (Riverbank Computing, Ltd.)

Note that in order to redistribute the libraries together with the compiled SCE, commercial
licenses of the above tools have to be obtained as necessary.

2.3 Interfaces

SCE interfaces can be separated into internal interfaces for information exchange between
SCE components and external interfaces for information exchange with other tools both
within SCE and outside of SCE.

2.3.1 Internal Interfaces

Components inside SCE exchange information through design models, command line pa-
rameters, logging output, and exit codes.

Design modelsDesign models are exchanged between SCE components in the form of
SpecC files stored on any file system supported by the underlying operating sys-
tem (Linux). In addition to the SpecC code for the design models themselves, SCE
components exchange information via annotations for design decisions and design
meta-information.

Command line parameters When calling command line tools, the SCE GUI will pass
information for controlling the tool in the form of command line parameters.

Logging output Command line tools will produce logging output during execution. This
logging output is captured by the GUI and displayed to the user in the GUI’s output
window.

8

Exit codes Command line tools signal status information (success or error codes in the
case of tool failure) to the GUI in the form of their exit codes. The GUI analyzes
command line tool exit codes and translates them into necessary information or error
messages.

2.3.2 External Interfaces

The SCE exchanges information with other tools and with the designer via design models,
databases, project files and via SCE’s graphical user interface:

Design modelsDesign models are exchanged between SCE’s tools in the form of SpecC
source code stored as files in any file system supported by the underlying operating
system (Linux). SpecC source files are stored as text files in DOS or Unix end-of-line
format where SCE will be able to read both formats and to export files in DOS form.
Generally, SpecC source code is stored in plain ASCII format. However, SCE will
be able to transparently handle Kanji-encoded comments and strings.

SCE will generally be able to import any valid SpecC code that is parsable according
to the syntax and grammar of SpecC 2.0 (based on standard ANSI C) as defined in
the SpecC Language Reference Manual (LRM), Version 2.0 [1]. Note that inside
SCE no object code or executables are ever created and therefore models imported
into SCE can include foreign code that depends on libraries outside (i.e. does not
have to be linkable on) the underlying host platform (Linux). In contrast, since SCE
will preprocess the SpecC source files on the host platform and inline any included
code in its exported models, pre-prepared, clean header files with all specific code
to be included have to be supplied together with the SCE import SpecC models as
necessary for external tools.

In addition, individual models imported into SCE will have to conform to the specific
rules and guidelines defined in the specification documents for each type of model.

DatabasesDatabases are generated by the library builder and stored as a collection of
binary SpecC Internal Representation (SIR) files managed via a specific file system
hierarchy on top of the general underlying file system. SCE components then read
component models from these SIR database files.

Project files Project files are stored as XML files in any file system supported by the un-
derlying operating system (Linux). Project XML files are text files using Unix text
file format. Project files use a custom XML format that is common to all tools in the
SCE environment, i.e. the project XML file format is shared among the SCE tools
and any SCE tool is able to read, write and modify project files generated by or used
as input to any other SCE tool. For the XML schema describing the SCE project file
format see Appendix B.

9

User interface All user input is entered in SCE through a graphical user interface (GUI).
The SCE GUI is built on top of the X11 windowing system and as such can be run
on any local or remote X window server.

2.4 Performance

The SCE will guarantee that for a typical design with less than 10,000 lines of code, less
than 10 PEs, and less than 100 behaviors, variables and channels, automatic generation of
the refined model will take less than 5 minutes.

3 Windows/GUI

Menu Bar

Tool Bar

Output Window

Status Bar

Project
Window Workspace

Figure 4: Main Window of SCE.

The primary GUI of SCE is the Main Window, which is displayed in Figure 4. The
Main Window consists of six parts:

(a) A Menu Bar that contains four columns of commands. Each column is a drop-down
menu (see Section 3.1).

(b) A Tool Bar that contains a list of short-cut icons. Each icon represents a command in
the menu bar.

(c) A Project Window (see Section 3.2).

10

(d) A Workspace that contains a number of opened Design Windows (see Section 3.3).

(e) An Output Window (see Section 3.4).

(f) A Status Bar that displays the current status of SCE, such as “Loading. . . ” or “Ready”.

In this section, we introduce organization-related and display-related details of Menu
Bar, Project Window, Display Windows, and Output Window. Some windows contain drop-
down menus or pop-up menus. The menus further contain design commands. The usage
and functionality behind the commands will be described later in Section 4.

3.1 Menu Bar

The Menu Bar contains five main menu entries:File, View, Project, Synthesis, andWin-
dows. Each main menu entry is a drop-down menu which contains a number of commands.
In general, unless otherwise noted, selecting a main menu entry will apply the correspond-
ing action to the currently active design, i.e. to the design window in the workspace that
currently has the input focus. If there is no currently active design window, menu com-
mands will silently fail (do nothing).

3.1.1 File Menu

TheFile menu contains eight commands:

Open SelectingOpen will allow loading and opening of an existing design file (see Sec-
tion 4.3.1).

Close SelectingClose will close the currently active design (see Section 4.3.3).

Save SelectingSave will save the currently active design file (see Section 4.3.2).

Save As SelectingSave As will save the currently active design as a new file (see Sec-
tion 4.3.2).

Save All SelectingSave All will save all the opened files (see Section 4.3.2).

Import SelectingImport will import a design file into the currently active design (see Sec-
tion 4.3.4).

Properties SelectingProperties will display the properties of the currently active design
(see Section 4.3.5).

Exit SelectingExit will exit from and quit SCE (see Section 4.3.6).

11

3.1.2 View Menu

TheView menu contains three commands:

Show Variables SelectingShow Variables will toggle displaying of variables in the cur-
rently active design window (see Section 4.4.4).

Show Channels SelectingShow Channels will toggle displaying of channels in the cur-
rently active design window. (see Section 4.4.4)

Hierarchy SelectingHierarchy will pop up a submenu that allows to choose between dif-
ferent modes for the amount of detail displayed in the design hierarchy in the cur-
rently active design window (see Section 4.4.4).

Preferences SelectingPreferences will allow viewing and modifying of application pref-
erences (see Section 4.1.1).

3.1.3 Project Menu

TheProject menu contains seven commands:

New SelectingNew will create a new project and open it (see Section 4.2.1).

Open SelectingOpen will open an existing project file (see Section 4.2.2).

Close SelectingClose will close the current project (see Section 4.2.10).

Save SelectingSave will save the current project file (see Section 4.2.3).

Save As SelectingSave As will save the current project as a new project file (see Sec-
tion 4.2.3).

Settings SelectingSettings will allow viewing and modifying of project settings (see Sec-
tion 4.2.4).

3.1.4 Synthesis Menu

TheSynthesis menu contains three commands:

Allocate PE SelectingAllocate PE will allow allocation and selection of PEs/memories
from the PE database (see Section 4.5.1).

Allocate Network SelectingAllocate Network will allow users to define the communication
topology (see Section 4.5.2).

12

Assign Bus Parameters SelectingAssign Bus Paramters will allow users to select the
paramters for each bus segment in the design (see Section 4.5.3).

Import Decisions SelectingImport Design will allow importing of design decisions from
another opened design (see Section 4.5.4).

Architecture Refinement SelectingArchitecture Refinement will perform architecture re-
finement to generate the refined architecture model (see Section 4.5.1).

Network Refinement SelectingNetwork Refinement will perform network refinement to
generate the refined network model (see Section 4.5.2).

Communication Refinement SelectingCommunication Refinement will perform commu-
nication refinement to generate the refined transaction-level or communication model
(see Section 4.5.3).

3.1.5 Windows

TheWindows menu contains six commands:

Close SelectingClose will close the currently active design window in the Workspace.

Close All SelectingClose All will close all design windows in the Workspace.

Next Selecting Next will switch focus to and raise the next design window in the
Workspace.

Previous SelectingPrevious will switch focus to and raise the previous design window in
the Workspace.

Tile SelectingTile will rearrange the design windows in the Workspace in a tiled style.

Cascade SelectingCascade will rearrange the design windows in the Workspace in a cas-
caded style.

Project Manager Selecting/unselectingProject Manager will display or undisplay the
Project Window.

Output Window Selecting/unselectingOutput Window will display or undisplay the Output
Window.

At the bottom of theWindows menu, the names of all opened design windows will be
listed. Selecting the name of a design will switch focus to and raise (bring to the front) the
corresponding design window.

Details about the usage and functionality of these commands are introduced in Sec-
tion 4.6.

13

3.2 Project Window

ex1.sc

Design Description

Initial design

ex1_1.sc

ex1_2.sc

Models Imports Sources

Figure 5: Project Window (Models tab).

The Project Window is a sub-window of the Main Window, displaying project infor-
mation. In general, a project holds meta-information about a set of design files and their
relationship, e.g. a parent-child relationship in case a design was generated from another
design through refinement. Hence, each file represents a design of the project at one ab-
straction level. In addition, the project can hold project-specific settings for the design
environment, such as the compiling and parsing environment (paths).

At any time, the SCE application can keep one project open and active in memory. The
name of this currently active project is displayed in the title bar of the Main Window. The
Project Window displays the hierarchical information of design files in the currently active
project. If there is no active project, the Project Window is disabled.

The Project Window can be detached or docked. Users can drag the window (by its title
bar or handle) to the desired place. If the Project Window is detached, it can be floating and
displayed anywhere on the desktop. If the Project Window is docked, it has to be attached
to any of the borders of the Main Window.

The Project Window contains three tabs:Models, Imports, andSources. By clicking
the tab at the bottom of the window, the corresponding tab will be activated and brought to
the front.

14

3.2.1 Models Tab

Figure 5 shows the screenshot of the Models tab. The Models tab contains two columns.
ColumnDesign displays the name of each design file in the project. If one design is derived
or generated from another, the derived design is displayed as the child design of the previous
one. The derivation hierarchy is indicated through connecting lines of a tree structure.

Users can select a design by clicking the row in which the design is displayed. Double-
clicking on a row will open the corresponding design. If the design is currently opened and
loaded, double-clicking will activate (switch focus to and raise to the front) the correspond-
ing design window in the Workspace (see Section 3.5).

The ColumnDescription shows an optional description of the design. By clicking into
the column, the user can edit the description text of the selected design directly in the
corresponding table cell.

Right-clicking on a row will open a context menu pop-up for the selected design. The
context menu contains four commands:

Open SelectingOpen will open the selected file (see Section 4.3.1). If the selected design is
already opened, the corresponding design window in the workspace will be activated.

Delete SelectingDelete will remove the selected file from the project and optionally delete
the file on disk (see Section 4.2.7).

Rename SelectingRename will rename the selected file (see Section 4.2.8).

Change Description Change Description will trigger editing of the description of the se-
lected file. (see Section 4.2.9)

Note that renaming and changing of description actions can also be triggered by clicking
into the corresponding column of the selected file.

3.2.2 Imports Tab

Figure 6 shows the screenshot of Imports tab. The Imports tab displays a lists of imported
design names. The list contains the union of all the sub-designs that have been imported
directly or indirectly into any of the design files that are part of the project.

Users can select an imported design by clicking the row in which the imported design
is displayed. Double-clicking on an imported design opens the corresponding design in the
workspace.

Right-clicking on an imported design opens a context-menu pop-up for the selected
design. The context menu contains one command:

Open SelectingOpen will open the import design file (see Section 4.3.1).

Note that the opening action is equivalent to double-clicking on the imported design.

15

Design

import1

Model Import Source

import2

import3

Figure 6: Project Window (Imports tab).

3.2.3 Sources Tab

Figure 7 shows the screenshot of Sources tab. The Sources tab displays a lists of names of
source files. The list contains the union of all SpecC source files that are sources for the
design files that are part of the project.

The Sources tab does not allow any action on the files and is for informative purposes
only.

3.3 Design Window

The Design Window displays the content and the attributes of an opened design, and it
allows browsing and navigation of the design hierarchy. The screenshot of the Design
Window is displayed in Figure 8.

The Design Window consists of two parts: the side bar and the view pane. The side
bar displays the basic information for navigation of the structure of the design. It further
consists of three tabs:Hierarchy, Behaviors, andChannels. The view pane displays the
detailed information for the entity that has been selected in the side bar.

16

File

file1.sc

Model Import Source

file2.sc

file3.sc

Figure 7: Project Window (Sources tab)
.

17

Name Type

Hierarchy Behaviors Channels

PE

SW1

B1

B23

B2

B3

HW

Name Type

b1

b2

b3

Design

b23

port1 bool

var1 int

b1 B1

b23 B23

Side
bar

View
pane

|

||

Figure 8: Design Window (Hierarchy tab).

18

3.3.1 Hierarchy Tab

The Hierarchy tab in the side bar are illustrated in Figure 8. In the columnName, the
design hierarchy of behaviors, channels (optional) and variables (optional) is displayed in
a tree form. The hierarchy tree indicates the entity type (variable, channel or sequential,
parallel, FSM, or leaf behavior) visually through icons in theName column. Entities are
sorted according to their calling order in the design, i.e. according to their execution order
in case of sequential or FSM behavior compositions. Displaying of channels and variables
in the Design Window Sidebar Hierarchy tab can be toggled via the View menu and the
toolbar (see Section 4.4.4).

At the root of the hierarchy tree in the Hierarchy tab, behavior (and optionally chan-
nel) types/classes are listed. At lower levels of the hierarchy, sub-behavior (and optionally
channel and/or variable) instances inside the respective parent behavior (or channel) are
listed. For any but the roots of the hierarchy tree, the columnName shows the name and
the columnType shows the type of the respective design instances. For classes at the root
of the tree, theName column shows the name of the respective class (i.e. the type) and the
Type column is empty. For example (Figure 8), behavior classDesign contains two child
behavior instancesb1 (of typeB1) andb23 (of typeB23), which are executed sequentially
identified by symbol|.

If PE allocation information is available, the Hierarchy tab contains a columnPE which
shows the PE mapping information. If no PE allocation information is available, thePE
column is not shown. If the PE mapping is empty, this implies that the behavior in this row
is mapped to the same PE to which its parent is mapped.

Right-clicking on a design entity row in the Hierarchy tab opens a context menu pop-up
for the selected entity. The context menu contains four commands:

Rename SelectingRename will rename the selected entity (see Section 4.4.1).

Delete SelectingDelete will delete the selected entity (see Section 4.4.3).

Change Type SelectingChange Type will allow plug-and-play to change the type of the
selected entity.Change Type is not shown for the roots of the hierarchy tree.

Set as Top Level SelectingSet as Top Level will set the selected behavior as the top level
design behavior (see Section 4.5.1).

3.3.2 Behaviors Tab

The Behaviors tab in the sidebar (Figure 9) lists all behavior types/classes in the design. The
name of each behavior type/class is shown in a columnName. Behavior types are sorted by
name and the sort order can be toggled by clicking into theName column header.

19

Name Type

Hierarchy Behaviors Channels

Name Type

port1 bool

var1 int

b1 B1

b23 B23

B1

B2

B23

B3

Design

Figure 9: Design Window (Behaviors tab)
.

20

Right-clicking on a behavior row in the Behaviors tab opens a context-menu pop-up
for the selected behavior class. The context menu of theBehaviors tab contains three com-
mands:

Rename SelectingRename will rename the selected entity (see Section 4.4.1).

Delete SelectingDelete will delete the selected entity (see Section 4.4.3).

Set as Top Level SelectingSet as Top Level will set the selected behavior as the top level
design behavior (see Section 4.5.1).

3.3.3 Channels Tab

Name Type

Hierarchy Behaviors Channels

Name Type

var1 int

var2 bool

Channel1

Channel2

Figure 10: Design Window (Channels tab).

In the Channels tab (Figure 10), all the channel types/classes in the design are listed.
The name of each channel type/class is shown in a columnName. Channel types are sorted
by name and the sort order can be toggled by clicking into theName column header.

Right-clicking on a channel row in the Channels tab opens a context-menu pop-up for
the selected channel class. The context menu of theChannels tab contains two commands:

Rename SelectingRename will rename the selected entity (see Section 4.4.1).

21

Delete SelectingDelete will delete the selected entity (see Section 4.4.3).

3.3.4 View Pane

When clicking on a design entity row in any of the sidebar tabs, the corresponding row is
selected and details of the selected entity are displayed in the view pane. The details shown
are the contents of the respective entity and they include contained sub-entities including
ports, methods, and variable, channel and child behavior instances. Both the name and
the type of sub-entities are displayed in theName and Type columns of the view pane,
respectively. Elements of the view pane list are sorted by class (port, variable, behavior,
channel). Within each class and among classes, the sort order can be set by clicking on the
Name or Type column headers.

3.4 Output Window

command1 -parameter1 ex1.sc

/*** Start command1 ***/

/*** End command1 ***/

step 1: ...

step 2: ...

Compile Refinement

Figure 11: Output Window
.

The Output Window displays the information related to the process of SCE, such as
logged status, diagnostic and error output of background commands. The screenshot of
Output Window is displayed in Figure 11. The Output Window contains two tabs:Compile
andRefinement. TheCompile tab displays the log messages generated during preprocessing
and parsing of SpecC code when opening, loading and importing design files. TheRefine-
ment tab displays the log messages generated by the command line tools spawned by the
main application GUI during design refinement. The Output Window is for informational
purposes only and doesn’t contain any button, box or context menu that users can click or
edit.

22

The Output Window can be detached or docked. Users can drag the window (by its title
bar or handle) to the desired place. If the Output Window is detached, it can be floating and
displayed anywhere on the desktop. If the Output Window is docked, it has to be attached
to any of the borders of the Main Window.

3.5 Workspace

In general, multiple designs can be open and loaded in the SCE application. The design
windows for all currently opened and loaded designs are shown in the Workspace. Within
the Workspace, design windows can be minimized, maximized, resized and closed freely
via their title bar, title bar icons and handles on their window frames. Closing a design
window closes the corresponding design (file).

At any time, there is exactly one active design window in the Workspace. The active
window is the one that has the input focus and it is visualized by highlighting its title bar.
Unless otherwise noted, all menu, toolbar or other commands apply to the currently active
design window. Clicking into a design window activates the corresponding window and
raises it to the front of the Workspace. A newly opened design windows automatically
becomes the active window.

3.6 Message Boxes

As a result of certain actions, the SCE application will pop up message box dialogs for
feedback to or input from the user about handling of special situations. Message boxes are
used to provide informative messages and to ask simple questions. In general, there are two
types of message boxes: error dialogs and information dialogs.

3.6.1 Error Dialogs

If the application encounters an abnormal error situation in which user notification about the
failure of the initiated action is required, an Error dialog will be popped up (Figure 12). The
Error dialog displays an error message at the top-half of the Error dialog. At the bottom-
half, an Error dialog contains one button:Ok. Clicking Ok will close the Error dialog and
original dialog (if any) that prompted the message. After clicking, the original action that
prompted the message is aborted and cancelled.

3.6.2 Information Dialogs

If the application encounters an abnormal situation in which user notification is required
and the user is given several choices on how to continue, an Information dialog will be
popped up (Figure 13). An information message and associated question is displayed at
the top-half of the dialog. The bottom-half of the dialog contains three buttons:Yes, No,

23

Ok

Error mesage here

Figure 12: Error dialog
.

andCancel. Clicking Yes will accept the recommendation and do the corresponding action.
Clicking No will not accept the recommendation and will not do the corresponding action
but will continue the original action that prompted the message in the first place. Finally,
clicking Cancel will not do the recommended action and will also cancel the original action
that prompted the message. Clicking one of above three buttons will close the Information
dialog and original dialog (if any) that prompted the message.

No

Recommending mesage here

Yes Cancel

Figure 13: Information dialog
.

4 Functionality

The functionality of SCE can be classified to six categories: application, project handling,
file handling, design-entity handling, architecture exploration, and window management.

In this section, sub-windows or sub-menus described in Section 3 are referred using the
following format:Win : Sub. Win refers to display windows:

• Main represents the Main Window.

• Project represents the Project Window.

• Design represents the Design Window.

24

Sub refers to drop-down menus or sub windows (tabs):

• For the Main Window,Sub is eitherFile, View, Project, Synthesis, or Windows (drop-
down menus introduced in Section 3.1).

• For the Project Window,Sub is eitherModels, Imports, or Sources (tabs introduced
in Section 3.2).

• For the Design Window,Sub is eitherHierarchy, Behaviors, or Channels (sidebar
tabs introduced in Section 3.3).

For example,Pro ject :: Models refers to the Models tab in the Project Window.
Main menu or context menu commands described in Section 3 are referred to using

the following format:Win :: Sub ⇒Command whereCommand refers to a command. For
example,Main::File⇒Open refers to theOpen command in theFile menu of the Main
Window menu bar. On the other hand,Project::Models⇒Open refers to theOpen command
in the context menu of the Project Window Models tab.

4.1 Application

The main application of SCE supports a set of persistent application settings. Application
settings are persistently stored across different invocations of the tool. In fact, application
settings are shared among all tools in the SCE environment, i.e. they are persistent across
invocation of different tools at different times.

Application settings are stored in both system-wide and user-specific locations. System-
wide application settings affect all users of SCE applications on the system. They are
stored in a file on disk in a location that is configurable during compile time of SCE. User-
specific application settings, on the other hand, are stored in a file in the user’s Linux home
directory. The application first reads the system-wide and then the user-specific settings,
i.e. user-specific settings can override (if given) system-wide settings and if no user-specific
settings are given, application settings default to the system-wide settings. If no system-
wide settings are available, compiled-in defaults are used.

Application settings in general provide the standard settings (paths, etc.) to use by
default for the different parts of SCE applications. Note that application settings can be
overwritten or extended by project-specific settings (see Section 4.2). Application settings
include:

Compiler settings A set of options for preprocessing and parsing SpecC source files.
When opening/loading or importing a design file, the SpecC compiler (‘scc’, see
Appendix A.1) is used internally to compile the SpecC source file into SCE’s inter-
nal SpecC Internal Representation (SIR) [2] format. Via the compiler settings, the
options for preprocessing and parsing passed to the SpecC compiler are specified.
Specifically, compiler settings contain the following:

25

Standard include path An ordered list of directories in which to search for include
files during preprocessing.

Standard import path An ordered list of directories in which to search for imported
files during parsing.

Macro defines An ordered list of preprocessor macro definitions.

Macro undefines An ordered list of preprocessor macro undefines.

Compiler options Additional compiler switches passed literally to the SpecC com-
piler. Possible compiler switches are switches for setting warning and verbosity
levels.

Database pathsLocation of the database SIR files for the PE database, the CE database,
and the bus database.

All paths in the application settings are relative to the current working directory when start-
ing the application, i.e. relative paths in the settings are converted into absolute paths by
prepending the working directory during startup of the application.

In terms of application settings, SCE supports functions to view and edit application
settings/preferences.

4.1.1 Preferences Editing

Operation Preference editing allows viewing and setting of the application settings of
SCE. Users start editing the preferences of SCE by selectingMain :: Pro ject ⇒Pre f erence.
This will pop-up the Edit Preferences dialog, which allow users to browse and specify the
compiler and database settings. The Edit Preferences dialog is illustrated in Figure 14. A
dashed rectangular represents a tab. A solid rectangular represents an edit box. A rounded
rectangular represents a button.

There are two tabs in the Edit Preferences dialog: Compiler and Database. By clicking
the tab at top-left corner of the window, users can select either of them for viewing and
editing.

(a) The Compiler tab allows viewing and editing of compiler settings. The screenshot
for Compiler tab is shown in Figure 14. The Compiler tab contains line edit boxes
for all compiler settings. The text in theInclude Path andImport Path lines defines
the directory lists (separated by colons) for the standard include and standard import
paths, respectively. The text in theDefines andUndefines lines define the list of macro
defines and undefines (separated by semicolons), respectively. Finally, the text in the
Options line defines the compiler options/switches.

26

Compiler Database

Include Path: \demo\inc

Import Path: \demo\import

Defines

Undefines

Ok Cancel

Options -ww -v

Figure 14: Edit Preferences dialog (Compiler tab).

27

(b) The Database tab allows for viewing and selecting of database file paths. The screen-
shot for Database tab is shown in Figure 15. Users can type in the file names and paths
of PE, CE, and Bus databases inPE Database, CE Database, andBus Database line
edit boxes. Besides typing in the databases file names, users can also select the names
by usingSelect buttons next to the edit boxes. ClickingSelect button will pop up a
Database Selection dialog displayed in Figure 16

Database Selection dialog allows users to choose and select existing database files on
disk to use for each of the three databases. In the Database Selection dialog, the solid
rectangular represents the edit box. The dashed rectangular represents the display box.
The round rectangulars represents buttons.

In the Database Selection dialog, users should first specify the database directory in
Look-in box. The content of the directory will be automatically displayed in the dis-
play box in the center. The database type in theFile Type box defaults to SIR files
for databases but can be chosen by the user. All the database files with the specified
type will be displayed in the display box. Users further type in the database name in
Database Name box. Finally, by clickingOpen button, the database with the specified
name will be selected. If users clickCancel button, then the action of database selec-
tion will be cancelled. Either clickingOpen or Cancel button will close the Database
Selection dialog.

ButtonsOk andCancel appear at the bottom of the Edit Preference dialog. If users click
theOk button, all the edited preferences are saved. If users click theCancel button, all the
edited preferences are discarded. Either clickingOk or Cancel button will close Preference
dialog.

4.2 Project Handling

Project handling deals with project issues. Project handling functionality is common and
shared across all SCE tools. It allows for tracking of design meta-data over the whole life-
time of a design. A project acts as a unified container that holds all information related
to a certain design at various levels of abstraction, i.e. it contains all the information that
describes the organization of design files that are part of the project. Furthermore, a project
contains project-specific settings that can override or extend application-specific settings
(see Section 4.1) for compiler paths, options, etc. Specifically, a project contains the fol-
lowing information:

Design modelsA tree of design files and their relationship. If a design has been generated
from another design through refinement, it is a child of the source design in the tree.
For each model, the tree stores the design name, the location of the design’s files on
disk, the abstraction level, and the command used to generate the model.

28

Compiler Database

Ok Cancel

PE Database

\demo\db\pe Select

CE Database

\demo\db\ce Select

Bus Database

\demo\db\bus Select

Figure 15: Edit Preferences dialog (Database tab).

Look in: /dir1/demo

dir1

dir2

dir3

Database Name:

Database Type:

pe_database1.sir

*.sir

Open

Cancel

Figure 16: Database Selection dialog.

29

Imports A list of imported design files. The list of imports contains the union of all (sub-
)designs imported by any of the models that are part of the project.

Sources A list of source files. The list of sources contains the union of all SpecC source
files from which the models that are part of the project have been compiled. For each
source file, the location (path) of the file on disk is stored in the project.

Compiler settings A set of project-specific options for preprocessing and parsing SpecC
source files. Compiler settings contain include paths, import paths, compiler options,
and macro defines and undefines. Project-specific compiler settings generally over-
write or extend the corresponding application-specific settings. In the case of paths,
project paths are prepended to the standard paths defined in the application settings
(i.e. they are prepended to the directory search list). In all other cases, options or
macro defines/undefined are appended to the compiler command line after the stan-
dard options and macros defined in the application settings.

All paths in the project settings are defined to be relative to the location of the project file,
i.e. relative paths in a project file are converted into absolute paths by appending the project
file’s directory during loading/opening of a project file. During saving/writing of project
files, absolute paths are in turn converted back to relative paths if they point to a location
below the target project file directory.

Projects are stored as text files on disk in a custom XML format. See Appendix B for
the XML schema describing the project file format. The project file format is the same for
all tools in the SCE environment, i.e. a project file can be read, modified and written by any
SCE tool.

Projects can be read from and saved as project files at any time in the SCE application.
At any time, however, at maximum only one project can be open and loaded. While a
certain project is open and loaded, its settings apply to all actions performed during that
time. In addition, certain actions will automatically update and add data in the currently
opened and loaded project.

In order to deal with management of projects, SCE supports a set of project handling
functions. Specifically, project handling consists of the following functions:

(a) Project Creation to create a new projects (see Section 4.2.1).

(b) Project Opening to open and load existing projects from project files on disk (see
Section 4.2.2).

(c) Project Saving to save the current project into a project file (see Section 4.2.3).

(d) Project Settings to edit the settings of the opened project (see Section 4.2.4).

(e) Design Adding to adds new design files into the opened project (see Section 4.2.5).

30

(f) Design Opening to open a design model or import that is part of the project (see Sec-
tion 4.2.6).

(g) Design Deletion to delete a design model file from the project and optionally the disk
(see Section 4.2.7).

(h) Design Renaming to rename a design model and design file in the project and on disk
(see Section 4.2.8).

(i) Description Changing to change the description of a design model in the opened
project (see Section 4.2.9).

(j) Project Closing to close the current project (see Section 4.2.10).

4.2.1 Project Creation

Operation Users can create a new project by selectingMain :: Pro ject ⇒ New.

Error/Information Messages Assuming before project creation, users have opened an-
other project in SCE, the currently opened project has been modified and the opened project
is not saved yet. When users selectMain :: Pro ject ⇒ New, an Information dialog will be
popped up querying the user whether he wants to save the current project first before cre-
ating a new one. If the user accepts the recommendation, a Project Saving action (see
Section 4.2.3) is performed first.

4.2.2 Project Opening

Operation Users open an existing project by selectingMain :: Pro ject ⇒ Open. The
selection will pop-up the Project Open dialog in which the user can choose and select an
existing project file on disk to open and load. The screenshot of Project Open dialog is
shown in Figure 17. The solid rectangular represents the edit box. The dashed rectangular
represents the display box. The round rectangulars represent buttons.

Users should first specify the project directory inLook-in box. The content of the
directory will be automatically displayed in the display box in the center. The file type
defaults to project files (with a ‘.sce’ suffix) but users can specify any file type in theProject
Type box. All the project files with the specified type will be displayed in the display box.
Users further select the project name in theProject Name box. Finally, by clickingOpen
button, the project with the specified name will be opened. If users click theCancel button,
the action of project opening will be cancelled. Either clickingOpen or Cancel button will
close the Project Open dialog.

31

Look in: /dir1/demo

dir1

dir2

dir3

Project Name:

Project Type:

project1.sce

*.sce

Open

Cancel

Figure 17: Project Open dialog.

Error/Information Messages If the specified project doesn’t exist before clickingOpen
button, then clickingOpen button has no effect.

In case of errors reading the project file from disk (file errors, wrong file format), an
error dialog with a corresponding error message is popped up. Upon confirming the error,
the Project Opening action is cancelled.

Assuming before project opening, users have opened another project in SCE, the opened
project is modified and the opened project is not saved yet. When users open a different
project, the Information dialog will be popped up to recommend users to save the previ-
ous project first and, if the recommendation is accepted, a Project Saving action will be
performed. This is the same as the case in task Figure 4.2.1.

4.2.3 Project Saving

Operation Users can save the current project by one of the following two methods:

(a) SelectingMain :: Pro ject ⇒ Save. The project will be saved using the current project
name.

If the saved project is unnamed (a new project created by task Project Creating),
then selectingMain :: Pro ject ⇒ Save will do the same action as selectingMain ::
Pro ject ⇒ Save As (see below).

(b) Users can save the current project under any (new) name by selectingMain ::
Pro ject ⇒ Save As. The selection will pop-up the Project Save dialog in which user

32

Look in: /dir1/demo

dir1

dir2

dir3

Project Name:

Project Type:

project1.sce

*.sce

Save

Cancel

Figure 18: Project Save dialog.

can choose the directory and file name to save the project under. The screenshot of
the Project Save dialog is displayed in Figure 18. The solid rectangular represents the
edit box. The dashed rectangular represents the display box. The round rectangulars
represent the buttons.

In the Project Save dialog, users should first specify the project directory inLook-in
box. The content of the directory will be automatically displayed in the display box
in the center. The file type defaults to project files (‘.sce’ suffix) but users can specify
any file type in theProject Type box. All the project files with the specified type will
be displayed in the display box. Users then select the project name inProject Name
box. Finally, by clicking theSave button, the current project will be saved in a project
file with the specified name. If users clickCancel button, then the action of project
saving will be cancelled. Either clickingSave or Cancel button will close the Project
Save dialog.

Error/Information Messages When selectingMain :: Pro ject ⇒ Save As and specifying
the file name of an existing file on disk, an Information dialog will pop up asking the user
whether he wants to overwrite the existing file. If the user declines this, the Project Saving
action will be cancelled.

When selectingMain :: Pro ject ⇒ Save or Main :: Pro ject ⇒ Save As, errors may occur
(file errors, e.g. if no space is available on the hard disk). In this case, an Error dialog as
shown in Figure 12 will be popped up, corresponding error messages will be displayed, and
the Project Saving action will be cancelled.

33

4.2.4 Project Settings Editing

Operation Project setting allows users to edit project settings. Unlike application prefer-
ences editing in Section 4.1.1, project setting apply only to the current project. Users start
project settings editing by selectingMain :: Pro ject ⇒ Setting. The selection will pop up
the Project Settings dialog, which is displayed in Figure 19. In the Project Settings dialog,
user can view and edit the compiler settings stored in the project. The dialog contains line
edit boxes for all compiler settings. The text in theInclude Path and Import Path lines
defines the directory lists (separated by colons) for the project-specific include and import
paths, respectively. The text in theDefines andUndefines lines define the list of macro de-
fines and undefines (separated by semicolons), respectively. Finally, the text in theOptions
line defines the project’s compiler options/switches.

Compiler

Include Path: \demo\inc

Import Path: \demo\import

Defines

Undefines

Ok Cancel

Options -ww -v

Figure 19: Project Settings dialog.

4.2.5 Design Adding

Operation Users can add any currently opened design file to the project. In order to do
that, users selectMain :: Pro ject ⇒ Add Design. After clicking, the design corresponding

34

to the currently active design window will be added to the project. The design will be added
to the project as a new root in the forest of design model trees. In addition, any imported
designs and source files of the new design will be merged into the list of imports and sources
that are part of the project.

Error/Information Messages If users try to add a file which is already in the current
project, an error dialog with a corresponding error message will be popped up (as illustrated
in Figure 12).

4.2.6 Design Opening

Operation Double-clicking on a design model in the Project Window models or import
tabs (Pro ject :: Models or Pro ject :: Imports), a File Opening action on the given design
file will be performed (see Section 4.3.1 for details, including error/information messages),
i.e. a corresponding design window will be opened in the workspace. If the selected design
is already opened in the workspace, its design window will be raised to the top and made
active. The Design Opening action can also be triggered via corresponding context menu
entries in the model and import tabs (selectingPro ject :: Models ⇒ Open or Pro ject ::
Imports ⇒ Open).

4.2.7 Design Deletion

Operation Users can delete files from the current project and optionally from disk. Se-
lecting the corresponding entry in the context menu of a design model in the Project Win-
dow models tab (Pro ject :: Models ⇒ Delete) will delete the selected design from the
project and optionally from disk. In case of a model with children in the model tree, the
user will also be given the option to recursively delete all the model’s children.

Error/Information Messages After selectingPro ject :: Models ⇒ Delete, an Informa-
tion dialog will be popped up to query to user whether he wants to also delete the corre-
sponding model’s files on disk. If the selected file has children, then another Information
dialog querying the user whether he wants to also recursively delete all children and chil-
dren’s children of the selected model. If the selects recursive deletion, an Information dialog
similar to the initial Information dialog to query about deletion of corresponding files on
disk will pop up for each child model.

If file deletion on disk is selected, an error dialog may pop up in case of disk/file errors.
Upon confirmation of the error, the Project Deletion action will be aborted.

35

4.2.8 Design Renaming

Operation By selectingPro ject :: Models ⇒ Rename or by clicking into theDesign col-
umn of the Project Window models tab, users can rename the file name displayed in the
Design column. Renaming is performed in place inside the column cell itself by opening a
corresponding text edit box. Renaming can be aborted by pressing theEsc key. PressingEn-
ter accepts the newly entered name and renames the design both in the project and on disk.
If the design is loaded and opened, the corresponding design window in the Workspace will
also be automatically renamed.

Error/Information Messages If the new design name entered by the user is the name of
a design already existing in the project, an Error dialog with a corresponding error message
will pop up and, after confirmation, the Design Renaming action will be aborted.

If renaming the file on disk results in an error (file error), a corresponding Error dialog
will be popped up and the Design Renaming will be aborted.

4.2.9 Description Changing

Operation Users can change the file description displayed in theDescription column of
Pro ject :: Models tab by selecting thePro ject :: Models ⇒ Change Description context
menu entry or by clicking into the correspondingDescription column in the row represent-
ing the selected file. After clicking, the corresponding cell in theDescription column of
Pro ject :: Models is editable in place. Editing can be aborted withEsc and is accepted by
pressingEnter.

4.2.10 Project Closing

Operation Users can close the current project by selectingMain :: Pro ject ⇒Close.

Error/Information Messages If the current project is modified and not yet saved, select-
ing Close will pop up an Information dialog which recommends to save the current project
first. If the user accepts the recommendation, a Project Saving action (Section 4.2.3) is
performed before closing the project.

4.3 File Handling

File handling deals with issues relating to manipulation of design files within SCE. File
handling includes opening, saving, and closing of actual design model files on disk. File
handling is closely related to Design Windows (Section 3.3) and Design Window Manage-
ment (Section 4.6). In general, there is a one-to-one association between design models,

36

design files on disk and design windows in the Workspace. Each Design Window repre-
sents a view onto one loaded design file which in turn stores the data of one design model,
and vice versa. For example, both File Closing (Section 4.3.3) and Window Closing (Sec-
tion 4.6) will close the design file and the design window and unload the design from SCE’s
memory. Specifically, File Handling consists of the following tasks:

(a) File Opening to open and load existing design files from disk (see Section 4.3.1).

(b) File Saving to save a design into a design file on disk (see Section 4.3.2).

(c) File Closing to close a design file (see Section 4.3.3).

(d) File Import to import an existing design file from disk into a currently opened design
(see Section 4.3.4).

(e) Design Property to display the current design file’s properties (see Section 4.3.5).

(f) SCE Exiting to exit the SCE application (see Section 4.3.6).

4.3.1 File Opening

Look in: /dir1/demo

dir1

dir2

dir3

File Name:

File Type:

ex1.sc

*.sc

Open

Cancel

Figure 20: File Open dialog.

Operation Users can open an existing design file on disk in different ways:

37

(a) SelectingMain :: File ⇒ Open will pop up the File Open dialog in which the user
can choose and select an existing file on disk to open and load. The File Open dialog
is illustrated in Figure 20. The solid rectangular represents the edit box. The dashed
rectangular represents the display box. The round rectangulars represent the buttons.

Users should first specify the directory of the file inLook-in box. The content of the
directory will be automatically displayed in the display box in the center. The file type
defaults to SpecC source files (‘.sc’ suffix) but user can specify any file type in theFile
Type box. All the files with the specified type will be displayed in the display box.
Users then further select the file name in theFile Name box. Finally, by clicking the
Open button, the file with the specified name will be open. If users click theCancel
button, the action of file opening will be cancelled. Either clickingOpen or Cancel
button will close the File Open dialog.

(b) Double-clicking on a design in the Project Window models or imports tabs (Pro ject ::
Models or Pro ject :: Imports) or selecting the corresponding context-menu entries
(Pro ject :: Models ⇒ Open or Pro ject :: Imports ⇒ Open) will open and load the
design file for the selected design model.

Opening and loading a design file in either way will result in a corresponding new Design
Window popping up in the Workspace. The new Design Window will automatically be
made the active one and raised to the front of the Workspace.

If the selected design file is already opened and loaded, it will not be loaded again from
disk and File Opening will only result in activating and raising the corresponding Design
Window in the Workspace.

Error/Information Messages In the case of selecting from disk, if the specified file
doesn’t exist before clicking theOpen button, then clickingOpen has no effect.

In case of errors reading the design file from disk (file errors, wrong file format), an
error dialog with a corresponding error message is popped up. Upon confirming the error,
the File Opening action is cancelled.

4.3.2 File Saving

Operation Users can save opened and loaded design files (Design Windows in the
Workspace) by one of the following three methods:

(a) SelectingMain :: File ⇒ Save will save the file of the currently active Design Window
using its current name.

(b) Users can save the file of the currently active Design Window under any (new) name
by selectingMain :: File ⇒ Save As. The selection will pop up the File Save dialog

38

Look in: /dir1/demo

dir1

dir2

dir3

File Name:

File Type:

ex1.sc

*.sc

Save

Cancel

Figure 21: File Save dialog.

in which user can choose the directory and file name to save the design under. The
screenshot of the File Save dialog is shown in Figure 21. The solid rectangular rep-
resents the edit box. The dashed rectangular represents the display box. The round
rectangulars represent the buttons.

In the File Save dialog, users should first specify the directory of the file inLook-in
box. The content of directory will be automatically displayed in the display box in the
center. The file type defaults to SpecC source files (‘.sc’ suffix) but users can specify
any file type in theFile Type box. All the files with the specified type will be displayed
in the display box. Users then further select the file name inFile Name box. Finally, by
clicking Save button, the current opened file will be saved as the file with the specified
name. If users clickCancel button, then the action of File Saving will be cancelled.
Either clickingSave or Cancel button will close the File Save dialog.

(c) SelectingMain :: File ⇒ Save All will save the files of all currently opened Design
Windows in the Workspace using their current names.

Error/Recommendation Messages. When selectingMain :: File ⇒ Save As and speci-
fying the file name of an existing file on disk, an Information dialog will pop up asking the
user whether he wants to overwrite the existing file. If the user declines this, the File Saving
action will be cancelled.

When selectingMain :: File ⇒ Save, Main :: File ⇒ Save As, or Main :: File ⇒ Save
All, errors may occur (file errors, e.g. if no space is available on the disk). In this case, an

39

Error dialog as shown in Figure 12 will be popped up, corresponding error messages will
be displayed, and the File Saving action will be cancelled.

4.3.3 File Closing

Operation Users can close the file and window of the currently active Design Window
in the Workspace by selectingMain :: File ⇒ Close. Closing a file will unload the design
from memory and will close the corresponding Design Window in the Workspace.

Error/Information Messages If the current design is modified and not yet saved, select-
ing Close will pop up an Information dialog which recommends to save the current design
first. If the user accepts the recommendation, a File Saving action (Section 4.3.2) is per-
formed before closing the file.

4.3.4 File Import

Operation Users can import an existing design file on disk into a currently opened and
loaded design. Importing a design will merge the design’s contents into the currently opened
design (equivalent to a SpecCimport statement). All the design entities in the imported
files can then be used in the current design. For example, in order to do plug-and-play of
behaviors, users can replace a behavior in a design with an imported compatible behavior
(see Section 4.4.2 for the Changing Type action).

In order to import a file users should first active the target Design Window in the
Workspace and then selectMain :: File ⇒ Import. The selection will pop up File Import-
ing dialog in which users can select and choose an existing design file on disk to open and
import into the currently active Design Window. The File Importing dialog is shown in Fig-
ure 22. The solid rectangular represents the edit box. The dashed rectangular represents the
display box. The round rectangulars represent the buttons.

In the File Importing dialog, users should first specify the directory of the file inLook-
in box. The content of the directory will be automatically displayed in the display box in
the center. The file type defaults to SpecC source files (‘.sc’ suffix) but users can specify
any file type in theFile Type box. All the files with the specified type will be displayed in
the display box. Users then further select the file name in theFile Name box. Finally, by
clicking theOpen button, the file with the specified name will be imported. If users click
Cancel button, then the action of File Importing will be cancelled. Either clickingOpen or
Cancel button will close the File Import dialog.

40

Look in: /dir1/demo

dir1

dir2

dir3

File Name:

File Type:

ex1.sc

*.sc

Open

Cancel

Figure 22: File Importing dialog.

Design Name: project1

File Name: /demo/ex1.sc

Friday, July 23 08:44 2004

Ok

Change Log:

Day/Time Command

command1 -parameter1 ex1.sc

Figure 23: Design Property dialog.

41

4.3.5 Design Property Viewing

Operation Users can display and view a design’s properties by selectingMain ::
Pro ject ⇒ Properties. The selection will pop up a Design Properties dialog which is
illustrated in Figure 23. The dashed rectangular represents the display box. The round
rectangular represents the button.

In the Design Property dialog, the boxDesign Name displays the design name (project1
in Figure 23), the BoxFile Name displays the name of the design file (e.g./demo/ex1.sc),
and the boxChange Log displays the history of SCE refinement commands applied to the
design. The left part of theChange Log specifies which commands were executed. The
right part of Change Log specifies the exact command lines with parameters. Clicking
buttonOk will close Design Properties dialog .

4.3.6 SCE Exiting

Operation SelectingMain :: File ⇒ Exit will exit the SCE application and close the SCE
GUI.

The current project, if any, will be automatically saved by triggering a Project Saving
action (see Section 4.2.3). Note that this can result in a Project Save dialog popping up in
case the current project is unnamed and modified.

Error/Recommendation Messages. If there are any open Design Windows that are mod-
ified and not yet saved, an Information dialog will pop up for each window, querying the
user whether he wants to save the corresponding design. The user will be able to cancel the
whole Exit action via the corresponding dialog button. If the user accepts the recommen-
dation to save the file, a File Saving action will be triggered (see Section 4.3.2). Note that
the File Saving action can trigger additional Error dialogs which in turn can abort the whole
Exit operation in case of file errors during saving.

Automatic Project Saving can result in errors and corresponding Error dialogs popping
up. In turn, the whole Exit operation can be aborted in those cases.

4.4 Design-Entity Handling

Design-Entity Handling deals with manipulation of design entities such as behaviors, chan-
nels, variables, and channels. In general, Design entities are manipulated directly in the
currently active Design Window in the Workspace. Design-Entity Handling is part of the
refinement process and allows the user to perform some typical refinement tasks in a manual
fashion. Basically, Design-Entity Handling tasks are tasks that do not change the semantics
of the design. Rather, they are tasks to apply, for example, cosmetic or syntactic changes
like behavior renaming to the design. Specifically, Design-Entity Handling consists of the
following tasks:

42

(a) Entity Renaming to rename the selected entity (see Section 4.4.1).

(b) Entity Retyping to change the type of the selected entity (see Section 4.4.2).

(c) Entity Deletion to delete the selected entity from the design (see Section 4.4.3).

(d) Hierarchy Displaying to toggle between different modes for displaying of the design
hierarchy (see Section 4.4.4).

4.4.1 Entity Renaming

Operation The names of design entities including behaviors, behavior instances, chan-
nels, channel instances, variables, and ports are displayed inName column of the De-
sign Window tabs. Users can change these names of entities. In order to do it, users
first select the corresponding row inDesign :: Hierarchy, Design :: Behaviors or Design ::
Channels tabs. SelectingDesign :: Hierarchy ⇒ Rename, Design :: Behaviors ⇒ Rename,
or Design :: Channels ⇒ Rename context-menu commands will then allow users to edit the
names directly in the cell by opening a corresponding text edit box in place. Renaming can
be aborted by pressing theEsc key. PressingEnter accepts the newly entered name and
renames the entity in the design.

Error/Information Messages If renaming the entity in the design leads to an error (e.g.
if an entity with the same name already exists), an Error dialog with a corresponding error
message will pop up and subsequently the operation will be aborted.

4.4.2 Entity Retyping

Operation Users can change the type of design entity instances including variable, chan-
nel and behavior instances that are displayed in theType column of Design Window hi-
erarchy tab. In order to do it, users first need to select the corresponding row in the
Design :: Hierarchy tab. Selecting theDesign :: Hierarchy ⇒Change Type context-menu
command will then allow users to chose a type for the instance entity from a list of com-
patible types directly in the cell by opening a drop-down combo box with entries for all
compatible types in place. Compatibility in SpecC is defined by a match in the list of port
types and the list of implemented interfaces, e.g. two behaviors are compatible if they have
the same list of ports in terms of order and type of ports. Users can choose any of the of-
fered types from the drop-down list. Selecting a new type will then change the type of the
instance entity in the design.

43

Error/Information Messages If retyping of the entity in the design leads to an error, an
Error dialog with a corresponding error message will pop up and subsequently the operation
will be aborted.

4.4.3 Entity Deletion

Operation Users can delete unused design entities from the design. In order to do it, users
first need to select the corresponding row inDesign :: Hierarchy, Design :: Behaviors, or
Design :: Channels tabs. SelectingDesign :: Hierarchy ⇒ Delete, Design :: Behaviors ⇒
Delete or Design :: Channels ⇒ Delete context-menu commands will then delete the se-
lected entity from the design.

Error/Information Messages If deleting the entity in the design leads to an error (e.g. if
the entity is used by another entity, i.e. if some part of the design depends on that entity), an
Error dialog with a corresponding error message will pop up and subsequently the operation
will be aborted.

4.4.4 Hierarchy Displaying

Operation Users can toggle between different modes for displaying the design hierarchy
in the Design Window hierarchy tab. SelectingMain :: View ⇒ Hierarchy will open a
sub-menu pop-up containing for entries corresponding to the four different display modes:

Show All Displays a forest of instantiation hierarchy trees where all uninstantiated behav-
iors are roots and the complete instantiation tree for all of them is shown.

Show Testbench Displays the complete instantiation hierarchy tree for theMain behavior
class root only.

Show Design Displays the instantiation hierarchy tree only for the root class that is cur-
rently the top-level design behavior. This basically shows the current system being
designed.

Show Architecture Displays the current top-level behavior as the only root class and only
displays first-order (direct) children of (instances in) that behavior. This basically
shows only the top, system level of the current system being designed.

Display modes are mutually exclusive, i.e. selecting one display mode will turn off the
previous mode and switch to the new mode instead.

In addition to switching hierarchy display modes, users can toggle displaying of both
variables and channels in the hierarchy tree. SelectingMain :: View :: Show Variables
or Main :: View :: Show Channels toggles between display of variables and channels in

44

the hierarchy tab of the current Design Window. If channels are displayed, both channel
instances and uninstantiated channels are shown in the forest of instantiation hierarchy trees.
If variables are displayed, both global variables and variable instances inside behaviors (and
optionally channels) are shown in the forest of instantiation hierarchy trees.

4.5 Synthesis

4.5.1 Architecture Exploration

Architecture Exploration is the main task of the Architecture Explorer tool. Architecture
Exploration deals with the process of implementing a specification on a computation archi-
tecture consisting of PEs and memories in order to generate a respective architecture model
for the design. Architecture exploration therefore helps designers to allocate PEs/memo-
ries, map design entities to the allocated PEs/memories and to generate the Architecture
Model. Specifically, Architecture Exploration consists of four tasks:

(a) Top-Level Selection to select the behavior representing the top level of the system to
be designed (see Section 4.5.1).

(b) PE Allocation to allocate and select PEs/memories from the PE database in order to
assemble the system architecture (see Section 4.5.1).

(c) Mapping to map the design’s computation entities to the selected PEs/memories
(see Section 4.5.1).

(d) Architecture Refinement to automatically generate an Architecture Model from the
given Specification Model based on the decision made during PE Allocation and Map-
ping (see Section 4.5.1).

In order to perform Architecture Exploration, not all the tasks described above need to
be done. However, some tasks must be executed and must be executed in a certain order.
These mandatory tasks and their execution sequence are:

1. Project Creation or Project Opening.

2. Preferences Editing and Project Settings Editing.

3. File Opening.

4. Design Adding.

5. Top-level Selection.

6. PE Allocation.

45

7. Mapping.

8. Architecture Refinement.

9. Project Saving and/or AE Exiting.

Note that steps 6, 7, and 8 can be performed repeatedly in a loop in order to generate
multiple candidate architecture design models in one AE session.

Top-Level Selection Users can select the top-level behavior which represents the system
design to be implemented. All the children of the top-level behavior are considered to
be part of the system design. On the other hand, All the parents/siblings of the top-level
behavior are considered to belong to the testbench outside of the actual design.

Operation Users first select the desired behavior by clicking its row in theDesign ::
Hierarchy or Design :: Behaviors tabs. Then, users set the selected behavior as the top-
level behavior by selecting theDesign :: Hierarchy ⇒ Set As Top − Level or Design ::
Behaviors⇒ Set As Top−Level commands in the context-menu for the respective behavior.

After selection, the instantiation hierarchy tree with the current top-level behavior at its
root will be visually emphasized/highlighted in the Design Window’s hierarchy tab (through
use of an italic font for entity texts).

Error/Information Messages All allocation information is stored in the design as an-
notations at the top-level design behavior (see Section 4.5.1). When switching the top-level
from one behavior to another, if an allocation exists at the current behavior, an Information
dialog is popped up querying the user whether he wants to copy the existing allocation over
to the new top-level behavior. If the user accepts the recommendation and if then an allo-
cation already exists at the new top-level behavior, another Information dialog is popped
up querying the user whether he wants to overwrite the allocation information at the new
top-level behavior. If the user declines the recommendation, the previous allocation at the
new top-level behavior is kept.

PE Allocation Users can select PEs/memories out of the PE database in order to allocate
and assemble the system architecture. PE allocation information is stored in the design itself
as an allocation table that is annotated at the top-level design behavior (see Section 4.5.1).
As a consequence, different allocation tables at different top-level behaviors can exist in the
same design, reflecting the fact that incremental design will require changes in the allocation
as design progresses from one part of the system to another.

46

Ok Cancel

Add

Copy

Remove

Name Type Clock Description Dat

PE1 Type1 60MHz this is pe1 12
PE2 Type2 100MHz this is pe2 32

Figure 24: PE Allocation dialog.

Operation In order to do PE Allocation, users first selectMain :: Synthesis ⇒
Allocate PEs. As a result, the current allocation is read from the design and a PE Allo-
cation dialog is popped up. In case of errors reading the allocation from the design (e.g.
wrong allocation table format), a new, empty allocation table is used in the dialog.

The screenshot of the PE Allocation dialog is shown in Figure 24. The round rectangu-
lars represent the buttons. In the PE Allocation dialog, the table shows the list of currently
allocated PEs. The header of the table indicates the meaning of each column, such as PE’s
name and type. Each row in the table represents an allocated PE/memory that is part of
the current system target architecture. For each PE, its name, its type, its attributes and an
editable description are shown in the respective columns of the table. The list of allocated
PEs can be sorted by any column and in ascending or descending order each by clicking
into the corresponding column header. By default, the list is sorted by ascending names.

In the PE Allocation dialog, users can perform the following actions:

PE Adding In order to add a PE into the design, users click the buttonAdd to pop up the
PE Selection dialog which opens and loads the PE database and allows users to select
an additional PE out of the PE database. The screenshot of the PE Selection dialog is
shown in Figure 25.

At the left of the PE Selection dialog is a PE category table. Each row represents
one category of PEs in the database. For example, rowProcessors contains all the
general-purpose processors in the database.

By clicking and selecting one row in the table at left, users will be shown all the PEs
in the selected category in the table at the right. Each row of the table at the right
represents one type of PE in the database under the selected category. The name of
the PE type (Component column) and other attributes of the PE type are displayed in

47

separate columns. Users can select the desired PE type by clicking the corresponding
row.

There are two buttons at the bottom of the PE Selection dialog:Ok and Cancel.
By clicking the Ok button, an additional PE of the selected PE type and with an
automatically determined name is added into the design’s allocated architecture. In
addition, PEs can be allocated by double-clicking into the desired PE type row in the
PE Selection dialog (equivalent to selecting the row and pressingOk). Clicking the
Cancel button aborts and cancels PE selection without changes to the PE allocation.
Either clickingOk or Cancel button will close the PE Selection dialog and return to
the PE Allocation dialog.

Ok Cancel

Component Clock Program Data

60MHz 32kB 128kB
50MHz 16kB 32kB

Catagories

IP

Memory

Pro1
Pro2

Processor

Figure 25: PE Selection dialog.

PE Copying In order to duplicate an existing PE in the design’s PE allocation, users can
select a PE by clicking the corresponding row in the allocation table and click the
buttonCopy. Clicking Copy will add a new PE instance with an automatically de-
termined name and with the same type, attributes and description as the currently
selected PE to the design’s allocation.

PE Deletion . In order to remove a PE from the design’s allocation, users can select the
target PE to be removed in the allocation table and click theRemove button. Clicking
Remove will remove the selected PE from the list of allocated PEs.

PE Editing Users can edit the PE name and PE description in the PE Allocation dialog by
clicking into the respectiveName or Description column of the corresponding PE.
Clicking into any of these cells will allow editing of the respective text in the cell
by opening a text edit box in place. Pressing theEsc key during editing aborts the
edit operation. PressingEnter accepts the entered text and changes the PE name or
description in the allocation accordingly.

48

Allocation Closing There are two buttons at the bottom of the PE Allocation dialog:Ok
andCancel. By clicking theOk button, the allocation displayed in the PE Allocation
dialog’s allocation table is saved into the design. ClickingCancel will abort and
cancel PE Allocation. When cancelling, all modifications made to the allocation
table will be lost and no data will be saved in the design. Either clickingOk or
Cancel button will close PE Allocation dialog.

Error/Information Messages There are several possible errors during PE Allocation:

(a) Before PE Allocation, selectingMain :: Synthesis ⇒ Allocate PEs if no top-level be-
havior is selected in the design will pop up an Error dialog to that effect and will abort
the PE Allocation operation.

(b) During PE Editing, if users try to give PEs a name which is already used as the name
of another PE in the design, an Error dialog will be popped up, a corresponding error
message will be shown, and the editing operation will be aborted and cancelled.

(c) During PE Adding, when clicking theAdd button the PE database stored on disk will
be opened and loaded in order to read the list of available PEs from the database. In
case of errors during database opening (e.g. file errors or wrong file format), an Error
dialog will be popped up and the PE Adding operation will be aborted.

Furthermore, when adding a PE to the allocation via the PE Selection dialog, the
selected PE type is read from the database. In case of database read errors (file errors,
database format errors) during this operation, an Error dialog will be popped up and
the PE Adding operation aborted.

(d) During PE Allocation, clicking theOk button in the PE Allocation dialog will write
the allocation table back to the design. In case of errors, an Error dialog is popped up
and PE Allocation is aborted completely.

Mapping In order to implement the computation in the specification model on the al-
located computation architecture consisting of PEs and memories, users have to be able
to map the behaviors, variables and channels in the specification onto the allocated PEs.
Hence, Mapping consists of separate Behavior Mapping, Variable Mapping and Channel
Mapping tasks:

Behavior Mapping Behavior Mapping allows for mapping of behavior types/classes in the
design onto allocated PEs, i.e. behavior mapping information is stored as annotations
at the behavior classes in the design. In order to be able to map a behavior onto a PE,
the PE out of the database must allow execution of arbitrary code on it. Users can
explicitly map every behavior type on a PE. Explicit mapping will map all instances

49

of that behavior onto the selected PE. If instances should be mapped to different PEs,
appropriate copies of the behavior have to be made outside of AE first. If a behavior is
not mapped to any PE, all of its instances will be implicitly (and recursively) mapped
onto the same PE as the parent behavior class in which they are instantiated in. If
different instances are implicitly mapped to different PEs, appropriate copies of the
behavior in each PE will be automatically generated during refinement. Note that
user must map all the behaviors under the top-level behavior to PEs either implicitly
(by mapping the top-level behavior itself) or explicitly.

Variable Mapping Variable Mapping allows for mapping of variable instances in the de-
sign into local memories of allocated regular PEs or into allocated global, shared
memory PEs. Variable mapping information is stored as annotations attached to vari-
able definitions inside a behavior class. As a result, multiple incarnations of the same
variable in different instances of the parent behavior will all share the same mapping
information. If a variable is not explicitly mapped by the user, during refinement a lo-
cal copy of the variable will be created in each PE accessing the variable. Refinement
will also automatically insert necessary code (additional behaviors inside PEs and
channels between PEs) for synchronization and message passing to keep copies up-
dated and synchronized such that shared semantics are preserved. Implicit mapping
is not supported for variables that are shared among concurrent behaviors mapped to
different PEs. If a variable is explicitly mapped into local memory of a regular PE
or into a shared, global memory PE, all of its incarnations will be moved there and
other PEs will access the variable through a memory interface. Explicit mapping of
variables is only supported for target PEs out of the database that support external
accesses via a memory interface.

Channel Mapping Channel Mapping allows for mapping of complex channel instances
(of c queue or c semaphore type) in the specification onto PEs in the allocated target
architecture. Channel mapping information is stored as annotations attached to chan-
nel instantiations inside a behavior class. As a result, multiple incarnations of the
same channel (instance) in different instances of the parent behavior will all share the
same mapping information. If a complex channel (instance) is explicitly mapped to
a PE, implementations for all of its incarnations will be generated in that PE during
refinement. If a complex channel (instance) is not explicitly mapped, implementa-
tions for each of its incarnations will be generated in the PE the parent behavior of
that incarnation is mapped to. In both cases, other PEs accessing the channel incar-
nation will communicate with the target PE the channel incarnation is implemented
in through additional automatically inserted simple channels. In order to be able to
map a channel onto a PE, the PE out of the database must allow execution of arbitrary
code on it.

50

Operation Users can map behaviors, variables and channels in the design to allocated
regular or memory PEs via the additionalPE column in the Design Window hierarchy
tab. Note that thePE column is only shown if PE allocation information is available (see
Section 4.5.1): By default, thePE column shows the current mapping information for each
entity in the design. In case of errors reading the mapping information from the design
(e.g. wrong annotation format), an empty, implicit (i.e. lack of explicit) mapping will be
assumed.

In order to explicitly map an entity, users should click into thePE column of the re-
spective entity in theDesign :: Hierarchy tab. If the desired entities are not shown in
the hierarchy tab, users should first enable display of variables or channels by selecting
Main : View ⇒ Show Variables or Main : View ⇒ Show Channel.

Clicking into thePE column of the Design Window hierarchy tab will open a drop-
down combo box in place with entries for all possible target PEs in order allow users to
select a target PE to map the entity to directly in the cell. In the combo box, users will be
able to choose from all possible PEs that the specific entity can be mapped to (see above for
enforced restrictions). In addition, the combo box contains an empty entry to chose in order
to remove any existing explicit mapping and switch to implicit mapping for that entity.

Selecting an entry from the combo box will write the corresponding mapping into the
design. If there are multiple incarnations of an explicitly mapped entity (behavior class,
variable definition or channel instance), the hierarchy tab display will be updated after
changing the mapping to reflect the new mapping for all entity’s incarnations in thePE
column.

After mapping, the behaviors mapped to different PEs will be shown with different
colors.

Architecture Refinement Architecture Refinement executes the implementation deci-
sions made in the other Architecture Exploration tasks by refining the current Specifica-
tion Model into an automatically generated Architecture Model based on and reflecting the
decision made during PE Allocation and Mapping.

Operation In order to do refinement, users can select theMain :: Synthesis ⇒
Architecture Re f inement menu entry to pop up the Architecture Refinement dialog. The
screenshot of the Architecture Refinement dialog is shown in Figure 26. The small square
with check mark represent the check boxes. The round rectangulars represent buttons.

In the Architecture Refinement dialog, users can select whether individual sub-tasks of
the architecture refinement process will be performed or not. By checking or unchecking
the check boxes tasks are turned on and off and partially or completely refined models
can be generated. By default, all tasks are turned on. The three sub-tasks of architecture
refinement are:

51

Start Cancel

Behavior Refinement

Variable Refinement

Complex Channel
 Refinement

Figure 26: Architecture Refinement dialog.

(a) Behavior Refinement which introduces PE behaviors from the database, groups the
original behaviors under the new PEs, and inserts synchronization and message pass-
ing to preserve execution semantics.

(b) Variable Refinement which (re-)distributes variables into PEs, generates necessary PE
memory interfaces, and updates accesses to shared variables inside leaf behaviors.

(c) Channel Refinement which generates implementations of complex channels inside
PEs, creates adapters for accesses to complex channel implementations, and inserts
necessary simple channels in between.

If Behavior Refinement is turned off, bothVariable Refinement and Channel Refinement
are turned off and can not be turned on. In this case, no output model is generated and
only input validation is performed. In other cases, exactly one output model is generated in
which optionally variables and channels are not refined but left untouched.

User can then start the architecture refinement process by clicking theStart button. If
users click theCancel button, the Architecture Refinement operation will be aborted and
cancelled. Either clickingStart or Cancel buttons will close the Architecture Refinement
dialog.

After clicking theStart button, the architecture refinement command line components
of the Architecture Explorer will be executed in the background. Any diagnostic, status and
informative output of the architecture refinement tools will be shown in the Refinement tab
of the Output Window (Out put :: Re f ine).

When the architecture refinement process is finished, the newly generated architecture
model is automatically opened and loaded, and a corresponding new Design Window is
created in the Workspace. The new Design Window is automatically activated and raised
to the front. In addition, the new architecture model is automatically added to the current

52

project (see Design Adding, Section 4.2.5) as a child of the specification model it was
generated from.

While the architecture refinement background tools are running, the majority of the
main AE GUI is disabled. However, users can abort/kill execution of the background tools
by selectingMain :: Synthesis ⇒ Stop. After clicking, the current architecture refinement
background task is aborted.

Error/Information Messages If the architecture refinement background tools abort
with an error (e.g. unmapped behaviors in the design) or are killed via theMain ::
Synthesis ⇒ Stop menu entry, an Error dialog with a corresponding error message will pop
up. Specifically, the architecture refinement background tools check for and can produce
the following classes of errors:

• No top level behavior.

• No or invalid PE allocation.

• No or invalid PE models in the database.

• Unsupported (inter-PE) channels in the specification.

• Unsupported (partitioned) behavior types in the specification.

• Unsupported (global or partitioned) shared variable and/or port types in the specifi-
cation.

• No or invalid behavior or complex channel mapping.

• Invalid variable mapping or no mapping for variables shared between concurrent be-
haviors on different PEs.

Upon confirming the error, the remainder of the Architecture Refinement Operation will be
cancelled.

If the design the new model was generated from is not in the project, the new model is
not added to the project and an Error dialog to that effect will be popped up.

4.5.2 Network Exploration

Network Exploration is the main task of the Network Explorer tool. Network Exploration
deals with the process of implementing end-to-end communication channels between PEs
in the architecture model over point-to-point channels in a network of PEs, CEs and busses
in order to generate the respective network model. Network Exploration therefore helps de-
signers to allocate and define a communication topology and to generate a Network Model.
Specifically, Network Exploration consists of two tasks:

53

(a) Network Allocation to allocate, select and define the communication network topology
(see Section 4.5.2).

(b) Network Refinement to automatically generate a Network Model from the given Ar-
chitecture Model based on the decisions made during Network Allocation (see Sec-
tion 4.5.2).

In order to perform the network exploration, not all the tasks described above need to
be done. However, some tasks must be executed and must be in a certain order. These
mandatory tasks and their execution sequence are:

1. Project Creation or Project Opening.

2. Preferences Editing and Project Settings Editing.

3. File Opening.

4. Design Adding.

5. Network Allocation.

6. Network Refinement.

7. Project Saving and/or NE Exiting.

Note that steps 5 and 6 can be performed repeatedly in a loop in order to generate multiple
candidate communication design models in one NE session.

Network Allocation In order to define the system network topology, users can allocate
and connect (together with already allocated PEs) busses and CEs (bridges, transducers) out
of the bus and CE databases, respectively. Network allocation and connection information
is stored in the design itself as allocation and connection tables that are annotated at the top-
level design behavior (see Section 4.5.1). As a consequence, different allocation/connection
tables at different top-level behaviors can exist in the same design, reflecting the fact that
incremental design will require changes in the topology as design progresses from one part
of the system to another.

Operation In order to do Network Allocation, users first selectMain :: Synthesis ⇒
Allocate Network. As a result, the current allocation and connectivity is read from the de-
sign and a Network Allocation dialog is popped up. In case of errors reading the allocation
from the design (e.g. wrong allocation table format), new, empty allocation and connection
tables are used in the dialog.

54

Bus CE Connectivity

Add

Copy

Remove

Name Type Address Data Spe

Bus0 Type1 16 bits 24 bits 12

Bus1 Type2 32 bits 24 bits 32

Ok Cancel

Figure 27: Network Allocation dialog (Bus tab).

The screenshot of the Network Allocation dialog is shown in Figure 27 where the round
rectangulars represent buttons. The Network Allocation dialog has three tabs,Bus, CE and
Connectivity, in which the user can allocate busses, allocate CEs, or define the PE/CE to
bus connectivity, respectively. Clicking the tabs at the top of the dialog will raise and shown
the corresponding tab in front.

Note that as a result of previous architecture exploration, busses might be pre-allocated
and pre-connected in the Architecture Model generated by the Architecture Explorer.
The Architecture Explorer will automatically pre-allocate and pre-connect necessary and
mandatory busses for PEs that come with pre-defined busses (i.e. CPUs). This information
is then passed from the Architecture Explorer to the Network Explorer through the Archi-
tecture Model. As a result, such busses and their connectivity to PEs might show up when
first opening the Network Allocation dialog for a new Architecture model.

In the Bus tab, a table with the list of currently allocated busses will be shown (Fig-
ure 27). The header of the table indicates the meaning of each column, such as bus name
and type. Each row in the table represents an allocated bus that is part of the current system
target architecture. For each bus, its name, its type, its attributes and an editable description
are shown in the respective columns of the table. The list of allocated busses can be sorted
by any column and in ascending or descending order each by clicking into the correspond-
ing column header. By default, the list is sorted by ascending names. In theBus tab of the
Network Allocation dialog, users can perform the following actions:

Bus Adding In order to add a bus to the design, users click the buttonAdd to pop up the

55

Bus Selection dialog which opens and loads the bus database and allows users to
select an additional bus out of the bus database. The screenshot of the Bus Selection
dialog is shown in Figure 28.

At the left of the Bus Selection dialog is a bus category table. Each row represents
one category of busses in the database. For example, rowStandard contains all the
standard busses in the database.

By clicking and selecting one row in the table at left, users will be shown all the
busses in the selected category in the table at the right. Each row of the table at
the right represents one type of bus in the database under the selected category. The
name of the bus type (Bus column) and other attributes of the bus type are displayed in
separate columns. Users can select the desired bus type by clicking the corresponding
row.

There are two buttons at the bottom of the Bus Selection dialog:Ok andCancel. By
clicking theOk button, an additional bus of the selected bus type and with an auto-
matically determined name is added into the design’s allocated network architecture.
In addition, busses can be allocated by double-clicking into the desired bus type row
in the Bus Selection dialog (equivalent to selecting the row and pressingOk). Click-
ing theCancel button aborts and cancels Bus selection without changes to the bus
allocation. Either clickingOk or Cancel button will close the Bus Selection dialog
and return to the Network Allocation dialog.

Ok Cancel

Bus Speed Address Data

30Mbit/s 32bits 32bits
10Mbit/s 32bits 32bits

Catagories

IP

Simple

AMBA
PCI

Standard

Figure 28: Bus Selection dialog.

Bus Copying In order to duplicate an existing bus in the design’s bus allocation, users
can select a bus by clicking the corresponding row in the allocation table and click
the buttonCopy. Clicking Copy will add a new bus instance with an automatically
determined name and with the same type, attributes and description as the currently

56

selected bus to the design’s allocation.

Bus Deletion . In order to remove a bus from the design’s allocation, users can select the
target bus to be removed in the allocation table and click theRemove button. Clicking
Remove will remove the selected bus from the list of allocated busses. Busses that
currently have PEs or CEs connected to them will not be available for deletion (the
Remove button will be inactive and grayed out for them).

Bus Editing Users can edit the bus name and bus description in the bus allocation tab by
clicking into the respectiveName or Description column of the corresponding bus.
Clicking into any of these cells will allow editing of the respective text in the cell
by opening a text edit box in place. Pressing theEsc key during editing aborts the
edit operation. PressingEnter accepts the entered text and changes the bus name or
description in the allocation accordingly.

Bus CE Connectivity

Add

Copy

Remove

Name

CE1

Ok Cancel

Type Clock Program Dat

Type1 60MHz 32kB 12

Figure 29: Network Allocation dialog (CE tab).

In theCE tab, a table with the list of currently allocated CEs will be shown (Figure 29).
The header of the table indicates the meaning of each column, such as CE name and type.
Each row in the table represents an allocated CE that is part of the current system target
architecture. For each CE, its name, its type, its attributes and an editable description are
shown in the respective columns of the table. The list of allocated CEs can be sorted by
any column and in ascending or descending order each by clicking into the corresponding
column header. By default, the list is sorted by ascending names. In theCE tab of the
Network Allocation dialog, users can perform the following actions:

57

CE Adding In order to add a CE to the design, users click the buttonAdd to pop up the CE
Selection dialog which opens and loads the CE database and allows users to select an
additional CE out of the CE database. The screenshot of the CE Selection dialog is
shown in Figure 30.

At the left of the CE Selection dialog is a CE category table. Each row represents
one category of CEs in the database. For example, rowTransducer contains all the
transducers in the database.

By clicking and selecting one row in the table at left, users will be shown all the CEs
in the selected category in the table at the right. Each row of the table at the right
represents one type of CE in the database under the selected category. The name of
the CE type (CE column) and other attributes of the CE type are displayed in separate
columns. Users can select the desired CE type by clicking the corresponding row.

There are two buttons at the bottom of the CE Selection dialog:Ok andCancel. By
clicking theOk button, an additional CE of the selected CE type and with an automat-
ically determined name is added into the design’s allocated network architecture. In
addition, CEs can be allocated by double-clicking into the desired CE type row in the
CE Selection dialog (equivalent to selecting the row and pressingOk). Clicking the
Cancel button aborts and cancels CE selection without changes to the CE allocation.
Either clickingOk or Cancel button will close the CE Selection dialog and return to
the Network Allocation dialog.

Ok Cancel

CE Clock Program Data

30MHz 32bits 32bits
20MHz 32bits 32bits

Catagories

Bridge

CE1
CE2

Transducer

Figure 30: CE Selection dialog.

CE Copying In order to duplicate an existing CE in the design’s CE allocation, users can
select a CE by clicking the corresponding row in the allocation table and click the
buttonCopy. Clicking Copy will add a new CE instance with an automatically de-
termined name and with the same type, attributes and description as the currently

58

selected CE to the design’s allocation.

CE Deletion . In order to remove a CE from the design’s allocation, users can select the
target CE to be removed in the allocation table and click theRemove button. Clicking
Remove will remove the selected CE from the list of allocated busses.

CE Editing Users can edit the CE name and CE description in the CE allocation tab by
clicking into the respectiveName or Description column of the corresponding CE.
Clicking into any of these cells will allow editing of the respective text in the cell
by opening a text edit box in place. Pressing theEsc key during editing aborts the
edit operation. PressingEnter accepts the entered text and changes the CE name or
description in the allocation accordingly.

Bus CE Connectivity

Ok Cancel

p1 p2 p1

Bus1

Bus2

p2 p1 p2

PE1 CE1 PE2

 M2 S S M2 M1 M1/S

Figure 31: Network Allocation dialog (Connectivity tab).

In theConnectivity tab, a matrix that displays connectivity of PEs and CEs to busses is
shown (Figure 31). The top rows/headers of the connectivity table show all the currently
allocated PEs and CEs together with the list of logical/interface ports for each PE/CE in
the design. For each PE/CE and port, its name is shown in the respective header row. The
list of PEs/CEs is automatically updated whenever a CE is added or deleted from the CE
allocation in theCE tab. The rows of the connectivity matrix in theConnectivity tab list the
currently allocated busses in the design by their names. The list of busses is automatically
updated whenever a bus is added or deleted from the bus allocation in theBus tab. For

59

each bus, the matrix visually shows the connectivity of ports to this bus by marking the
corresponding columns. In theConnectivity tab of the Network Allocation dialog, users
can perform the following actions:

Port Adding/Deletion The list of ports/interfaces for each PE and CE is determined by
the list of available ports defined by the PE/CE database model. For synthesizable
PEs/CEs with undefined or variable port lists in the database, the user can add or
remove ports from the PE’s or CE’s port list. Right-clicking onto a PE’s or CE’s port
list or port will pop up a context menu with the following entries:

Add port SelectingAdd port will add an additional port with an automatically deter-
mined name to the corresponding PE or CE. This menu entry is not available
(grayed out) for PEs or CEs with fixed port lists.

Remove port SelectingRemove port will remove the selected port from the corre-
sponding PE or CE. This menu entry is not available (grayed out) for fixed/-
mandatory ports.

Clicking onto the name of a non-fixed port will open a text edit box in place in order
to allow the user to edit the port name directly in the cell. PressingEsc will abort
editing whileEnter accepts the new name.

Port Connecting In the table, the users can then connect ports of a PEs/CEs to busses by
clicking into the corresponding table cell at the intersection of the port and bus. If the
selected port is already connected to a different bus, the connection will be moved
(i.e. the previous connection be removed and the port re-connected to the new bus).
Ports with pre-defined, fixed protocols can only be connected to matching busses
and clicking into any other bus row will have no effect. Pre-connected ports with
mandatory, pre-defined and fixed bus connections can not be connected to any other
bus, i.e. clicking into any row will have no effect.

For each port connection, the user can further specify the interface type of the port.
Generally, ports can connected to busses either as bus master, bus slave or as com-
bined bus master/slave. If the bus from the database supports arbitration and allows
for multiple masters on the bus, any master connection must also specify the arbiter
port to use where the bus database model defines the set of possible master ports
supported by the bus. Clicking into a valid (see above) connection cell of the connec-
tivity matrix will open a drop-down combo box in that cell in place with entries for
all possible connection types for that port/bus combination. In general, users will be
able to choose in the combo box from the following connection types: slave, name of
any available (not connected to any other PE/CE port) bus master port, or any combi-
nation of slave with any available master port. Selecting an entry from the combo box
will change the connection type and update the text displayed in the cell accordingly.

60

There are two buttons at the bottom of Network Allocation dialog:Ok and Cancel.
By clicking theOk button, the network allocation and connectivity is saved back into the
design. If users click theCancel button, Network Allocation will be cancelled and all
modifications to the allocation and connectivity are discarded. Either clickingOk or Cancel
button will close the Network Allocation dialog.

Error/Information Messages There are several possible errors during Network al-
location in general: if no top-level behavior is selected in the design when selecting
Main :: Synthesis ⇒ Allocate Network an Error dialog to that effect will be popped up
and the Network Allocation operation will be aborted. Furthermore, clicking theOk button
in the Network Allocation dialog will write the allocation and connection tables back to the
design. In case of errors, an Error dialog is popped up and Network Allocation is aborted.

There are several errors that can happen specifically during bus or CE allocation:

(a) During Bus or CE Editing, if users try to give busses or CEs a name which is already
used as the name of another bus or CE in the design, an Error dialog will be popped
up, a corresponding error message will be shown, and the editing operation will be
aborted and cancelled.

(b) During Bus or CE Adding, when clicking theAdd button the bus or CE database stored
on disk will be opened and loaded in order to read the list of available busses/CEs from
the database. In case of errors during database opening (e.g. file errors or wrong file
format), an Error dialog will be popped up and the Bus or CE Adding operation will
be aborted.

Furthermore, when adding a bus or CE to the allocation via the Bus or CE Selection
dialog, the selected bus/CE type is read from the database. In case of database read
errors (file errors, database format errors) during this operation, an Error dialog will
be popped up and the Bus/CE Adding operation aborted.

Finally, several errors can happen during connectivity definition:

(a) During port name editing, if users try to give ports a name which is already used as the
name of another port of the same PE/CE, a corresponding Error dialog will be shown
and the renaming operation cancelled.

(b) If, upon closing of the Network Allocation dialog by clicking theOk button, there are
any PE/CE ports that are not connected, a corresponding Error dialog will be shown
and the user will be returned to the Network Allocation dialog.

61

Network Refinement Network Refinement executes the implementation decisions made
in the other Network Exploration tasks by refining the current Architecture Model into an
automatically generated Network Model based on and reflecting the decision made during
Network Allocation.

Start Cancel

Channel Grouping

Protocol Stack
Inserting
Communication
element inserting

Figure 32: Network Refinement dialog.

Operation In order to do refinement, users can select theMain :: Synthesis ⇒
Network Re f inement menu entry to pop up the Network Refinement dialog. The screen-
shot of the Network Refinement dialog is shown in Figure 32. The small square with check
mark represent the check boxes. The round rectangulars represent buttons.

In the Network Refinement dialog, users can select whether individual sub-tasks of
the network refinement process will be performed or not. By checking or unchecking the
check boxes tasks are turned on and off and partially or completely refined models can be
generated. By default, all tasks are turned on. The three sub-tasks of network refinement
are:

(a) Protocol insertion which generates implementations for the upper network layers (pre-
sentation and session layers) of the protocol stack into the system PEs.

(b) Channel merging which automatically groups and merges sequentially accesses chan-
nels over one shared channel.

(c) CE insertion which inserts communication elements such as transducers and bridges
between PEs and generates necessary additional network protocol implementations
inside PEs and CEs.

TheChannel merging andCE insertion sub-tasks are automatically turned off and can not
be turned on ifProtocol insertion is disabled. If all tasks are turned off, no output model is

62

generated and only input validation is performed. In other cases, exactly one output model
at varying levels of refinement is generated.

User can then start the network refinement process by clicking theStart button. If users
click theCancel button, the Network Refinement operation will be aborted and cancelled.
Either clickingStart or Cancel buttons will close the Network Refinement dialog.

After clicking theStart button, the network refinement command line components of
the Network Explorer will be executed in the background. Any diagnostic, status and infor-
mative output of the network refinement tools will be shown in the Refinement tab of the
Output Window (Out put :: Re f ine).

When the network refinement process is finished, the newly generated network model
is automatically opened and loaded, and a corresponding new Design Window is created
in the Workspace. The new Design Window is automatically activated and raised to the
front. In addition, the new network model is automatically added to the current project (see
Design Adding, Section 4.2.5) as a child of the architecture model it was generated from.

While the network refinement background tools are running, the majority of the main
NE GUI is disabled. However, users can abort/kill execution of the background tools by
selectingMain :: Synthesis ⇒ Stop. After clicking, the current network refinement back-
ground task is aborted.

Error/Information Messages If the network refinement background tools abort with
an error or are killed via theMain :: Synthesis ⇒ Stop menu entry, an Error dialog with a
corresponding error message will pop up. Specifically, the network refinement background
tools check for and can produce the following classes of errors:

• No top level behavior.

• No or invalid network allocation and topology information.

• No or invalid CE and bus models in the database.

• Unsupported channels or channel connectivity structure in the system architecture at
the top level.

Upon confirming the error, the remainder of the Network Refinement Operation will be
cancelled.

If the design the new model was generated from is not in the project, the new model is
not added to the project and an Error dialog to that effect will be popped up.

4.5.3 Communication Synthesis

Communication Synthesis is the main task of the Communication Synthesizer tool. Com-
munication synthesis deals with the process of implementing point-to-point communication

63

channels between PEs and CEs in a network model over actual busses and bus protocols in
order to generate a respective communication model for the design. Communication syn-
thesis therefore helps designers to determine the communication details on each bus and
to generate a Transaction-Level or Communication Model. Specifically, Communication
Synthesis consists of two tasks:

(a) Bus Parameter Assignment to assign the parameters to the communication performed
over each bus in the system (see Section 4.5.3).

(b) Communication Refinement to automatically generate a Transaction-Level or Com-
munication Model from the given Network Model based on the decisions made during
Bus Parameter Assignment (see Section 4.5.3).

In order to perform Communication Synthesis, not all the tasks described above need
to be done. However, some tasks must be executed and must be executed in a certain order.
These mandatory tasks and their execution sequence are:

1. Project Creation or Project Opening.

2. Preferences Editing and Project Settings Editing.

3. File Opening.

4. Design Adding.

5. Bus Parameter Assignment.

6. Communication Refinement.

7. Project Saving and/or CS Exiting.

Note that steps 5 and 6 can be performed repeatedly in a loop in order to generate multiple
candidate communication design models in one CS session.

Bus Parameter Assignment The network model defines the sets of logical point-to-point
communication channels between PEs and CEs to be implemented over each bus segment
in the system. In order to implement data transfers and synchronization associated with
these logical point-to-point communication channels over the actual busses, users need to
assign both distinct physical bus addresses and distinct bus interrupt lines to each channel
as needed. In general, multiple slaves and multiple masters can be connected to each bus.
Interrupt lines are needed for channels with synchronization from slave to master. On the
other hand, synchronization from master to slave and any kind of data transfer between
master and slave requires assignment of a corresponding bus address. In order to distinguish

64

channels going over the same bus, each channel has to be assigned a separate addresses
and/or interrupt.

The network model can contain double-handshake channels, single-handshake channels
and PE memory interfaces mapped to each bus. Since double-handshake channels require
data transfers and two-way synchronization, they need to be assigned one address and one
interrupt line each. Singe-handshake channels require one-way synchronization with no
data transfer only. Depending on their direction, they therefore need to be assigned either
one address (from master to slave) or one interrupt line (from slave to master). Memory
interfaces require a contiguous block of data transfers each with a size determined by the
network model. During communication synthesis, a base address needs to be assigned to
each memory interface which in turn will determine the range of addresses occupied by the
memory interface on the respective bus. Corresponding address and interrupt assignments
are stored as annotations attached to memory interfaces and channel instances inside the
top-level behavior of the design.

Busses are taken out of the bus database during Communication Synthesis. Each bus
in the database defines the range of addresses and the set of interrupt lines it can support.
During Bus Parameter Assignment, users can choose parameters for each channel freely out
of the set of supported addresses and interrupt lines. However, database models for each
PE and CE connected to the bus can define ranges of addresses on the bus reserved for PE-
or CE-internal use. During Bus Parameter Assignment, the user is restricted from selecting
any of those reserved addresses. For example, CPUs can define restricted addresses on
their busses reserved for CPU-internal accesses to its local memory or interrupt controller.
Also, bus slave interfaces of bridges will always reserve the complete range of master side
addresses mapped into the slave side.

Operation In order to assign addresses and interrupts, users can pop up the Bus Pa-
rameter dialog by selectingMain :: Synthesis ⇒ Assign Bus Parameters. As a result, the
current interrupt and address assignments are read from the design and shown in the dia-
log. In case of errors reading the parameters from the design (e.g. wrong annotation table
format), assignments in error are discarded silently.

The screenshot of Bus Parameter dialog is shown in Figure 33. The dialog contains
a number of tabs, one for each bus in the system where the name of a tab is determined
by the name of its bus. Clicking on a tab at the top of the dialog will raise and show the
corresponding tab in the front.

Each tab contains a table with four columns:Channel, Start Address, End Address,
andInterrupt. The table lists all channels, memory interfaces and PEs/CEs on the corre-
sponding bus. TheChannel column shows the name of each channel, interface or PE/CE.
The columnsStart Address andEnd Address show the range of addresses assigned to each
channel, interface or PE/CE in hexadecimal format. Note that for a channel, start address

65

Bus1 Bus2

Link
Start
Address

End
Address

chan1 1000 1000

chan2 1001 1001

Ok Cancel

Interrupt

mem1

 i1

 i2

2000 2100

CPU1 0000 0FFF

Figure 33: Bus Parameter dialog.

and end address are always the same. Channel and PE/CE address fields can be empty if
no address is required or reserved. Finally, theInterrupt column shows the name of the bus
interrupt line assigned to a channel. The interrupt field can be empty if not interrupt line is
required. It is always empty for memory interfaces and PEs. The list of channels, memory
interfaces and PEs/CEs can be sorted by any column and in ascending or descending order
each by clicking into the corresponding column header. By default, the list is sorted by
ascending start addresses.

For Bus Parameter Assignment, users can perform the following actions in the dialog:

Address AssignmentUsers can assign start (base) addresses to channels and memory in-
terfaces in the list. In order to assign addresses, users click into theStart Address
column for the respective channel or interface. The dialog will prevent editing and
ignore column clicks for PEs/CEs and for channels that do not require an address.
Otherwise, clicking will open a text edit box in place to allow entering of the de-
sired address in hexadecimal format directly in the cell. The user can abort editing
by pressing theEsc key. PressingEnter accepts the entered text and assigns the new
address to the channel/interface. Entering a new address will automatically update
the End Address column for the corresponding channel/interface (for channels, the
end address equals to the start address; for memories, the end address equals to start
address + memory size - 1).

66

Interrupt Assignment Users can assign interrupts to certain channels in the list by click-
ing into theInterrupt column of the respective channel. Clicking into theInterrupt
column for memory interfaces, PEs/CEs or channels that don’t require an interrupt
will be ignored. Otherwise, clicking will open a drop-down combo box in place of
the cell with entries for all possible interrupt lines supported by the bus. In the combo
box users can choose and select any of the bus interrupt lines to assign to the channel.

If the user assigns an address or interrupt that is already used by another channel, interface
or PE/CE to any of the channels or interfaces, the conflicting entries will be highlighted
(using red text color) in the corresponding cells of the Bus Parameter dialog.

There are two buttons at the bottom of the Bus Parameter dialog:Ok andCancel. By
clicking theOk button, the assigned bus parameters are saved into the design. If users click
the Cancel button, the Bus Parameter Assignment task will be cancelled. Either clicking
Ok or Cancel buttons will close the Bus Parameter dialog.

Error/Information Messages When entering a new address, the Bus Parameter dia-
log performs validation of the entered text to ensure that it is in correct hexadecimal format
and within range of supported bus addresses. In case of errors, a corresponding Error dialog
is popped up and address editing eventually resumed.

When clicking theOk button in the dialog, address and interrupt assignments are vali-
dated for conflicts. If there are conflicting/overlapping assignments, an Information dialog
is popped up querying the user whether he is sure to commit the changes. If the user de-
clines, he will be returned to the Bus Parameter dialog. If the user accepts (or if there are no
conflicts in the first place), address and interrupt assignments annotations are written back
into the design. If an error writing the annotations occurs, a corresponding Error dialog is
popped up and the Bus Parameter Assignment aborted.

Communication Refinement Communication Refinement executes the implementation
decisions made in the other Communication Synthesis tasks by refining the current Network
Model into an automatically generated Transaction-Level or Communication Model based
on and reflecting the decision made during Bus Parameter Assignment.

Operation In order to do refinement, users can select theMain :: Synthesis ⇒
Communication Re f inement menu entry to pop up the Communication Refinement dia-
log. The screenshot of the Communication Refinement dialog is shown in Figure 34. The
small square with check mark represent the check boxes. The round rectangulars represent
buttons.

In the Communication Refinement dialog, users can select whether individual sub-tasks
of the architecture refinement process will be performed or not. By checking or unchecking
the check boxes tasks are turned on and off and partially or completely refined models can

67

Start Cancel

Output Transaction
Level Model

Output Communication
Model

Figure 34: Communication Refinement dialog.

be generated. By default, all tasks are turned on, i.e. both transaction-level and communica-
tion models are generated for the design. The two sub-tasks of communication refinement
are:

(a) Generate Transaction Level Model which generates a transaction-level model at the
output.

(b) Generate Communication Model which generates a pin-accurate, bus-functional com-
munication model at the output.

If both sub-tasks are turned on, two output models will be generated. On the other hand,
if not sub-task is turned on, no output will be generated and only input validation will be
performed. In all other cases, one output model of selected format will be generated.

User can then start the communication refinement process by clicking theStart button.
If users click theCancel button, the Communication Refinement operation will be aborted
and cancelled. Either clickingStart or Cancel buttons will close the Communication Re-
finement dialog.

After clicking theStart button, the communication refinement command line compo-
nents of the Communication Synthesizer will be executed in the background. Any diagnos-
tic, status and informative output of the communication refinement tools will be shown in
the Refinement tab of the Output Window (Out put :: Re f ine).

When the communication refinement process is finished, the newly generated
transaction-level or communication models are automatically opened and loaded, and cor-
responding new Design Windows are created in the Workspace. The new Design Windows
are automatically activated and raised to the front. In addition, the new models are auto-
matically added to the current project (see Design Adding, Section 4.2.5) as a child of the
specification model they were generated from.

While the architecture refinement background tools are running, the majority of the
main CS GUI is disabled. However, users can abort/kill execution of the background tools

68

by selectingMain :: Synthesis ⇒ Stop. After clicking, the current communication refine-
ment background task is aborted.

Error/Information Messages If the communication refinement background tools
abort with an error or are killed via theMain :: Synthesis ⇒ Stop menu entry, an Error
dialog with a corresponding error message will pop up. Specifically, the communication
refinement background tools check for and can produce the following classes of errors:

• No top level behavior.

• No or invalid network allocation and topology information.

• No or invalid bus models in the database.

• No (if required) or invalid bus-functional PE/CE models in the database.

• Unsupported channels, PEs/CEs or connectivity structure in the system architecture
at the top level.

• No or invalid address and interrupt assignments.

Upon confirming the error, the remainder of the Communication Refinement Operation will
be cancelled.

If the design the new models were generated from is not in the project, the new models
are not added to the project and an Error dialog to that effect will be popped up.

4.5.4 Decision Import

In order to take over implementation decisions from a previously done design into a new
design, SCE allows to import design decisions from one design into another. With this
functionality, previously made design decisions can easily be transfered to a new design as
a starting point for exploration.

Operation Users can import design decisions from any currently opened and loaded
design into the currently active design by selecting the Main Menu commandMain ::
Synthesis ⇒ Import Decisons. As a result, the Import Decisions dialog will be popped
up as shown in Figure 35. The solid rectangular with triangle symbol represents the drop-
down menu. The square with check mark represents a select box. The round rectangulars
represents buttons.

First, in order to select a design from which decisions are imported, users select the
name of the source design in theSource design drop-down box. The combo box contains

69

all the names of currently opened Design Windows except for the currently active one.
Users select one design from them as the source design.

Secondly, users can select decisions which will be imported to the current design. Users
do it by checking the selection items as follows:

PE Allocation Copies the allocated PEs/memories from the source design to the currently
active design. For all behaviors in the source design, PE allocation annotations are
copied to the behavior (if any) with the same name in the target design.

Behavior Mapping Copies behavior mapping information from the source design to the
currently active design. For all behaviors in the source design, PE mapping annota-
tions are copied to the behavior (if any) with the same name in the target design.

Variable Mapping Copies variable mapping information from the source design to the cur-
rently active design. For all variable definitions in all behaviors in the source design,
PE mapping annotations are copied to the variable (if any) with the same name in the
behavior (if any) with the same name in the target design.

Channel Mapping Copies channel mapping information from the source design to the cur-
rently active design. For all channel instances in all behaviors in the source design,
PE mapping annotations are copied to the channel instance (if any) with the same
name in the behavior (if any) with the same name in the target design.

Bus Allocation Copies the allocated busses from the source design to the currently active
design. For all behaviors in the source design, bus allocation annotations are copied
to the behavior (if any) with the same name in the target design.

CE Allocation Copies the allocated busses from the source design to the currently active
design. For all behaviors in the source design, CE allocation annotations are copied
to the behavior (if any) with the same name in the target design.

Connectivity Copies the network topology connectivity from the source design to the cur-
rently active design. For all behaviors in the source design, network connectivity
annotations are copied to the behavior (if any) with the same name in the target de-
sign.

Address assignment Copies the address assignments from the source design to the cur-
rently active design. For all channel instances in all behaviors in the source design,
address assignment annotations are copied to the channel instance (if any) with the
same name in the behavior (if any) with the same name in the target design.

Interrupt assignment Copies the interrupt assignments from the source design to the cur-
rently active design. For all channel instances in all behaviors in the source design,

70

interrupt assignment annotations are copied to the channel instance (if any) with the
same name in the behavior (if any) with the same name in the target design.

The Import Decisions dialog includes an additional check item to select whether any
existing annotations in the target design should be overwritten or kept.

There are two buttons on the Import Decisions dialog:Import andCancel. By clicking
the Import button, the design decisions of the selected items are imported to the selected
design from the source design. If users clicks theCancel button, the action of Decision
Importing will be aborted and cancelled. Either clickingImport or Cancel button will close
the Import Decisions dialog.

Import Cancel

Behavior Mapping

Variable Mapping

Complex Channel
 Mapping

PE Allocation

Source design:

CE Allocation

Topology Selection

Bus Allocation

Interrupt Assignment

Address Assignment

Architecture Synthesis

Network Synthesis

Communication Synthesis

Figure 35: Import Decisions dialog.

71

Error/Information Messages Decision Importing requires reading and writing of an-
notations in the designs. In case of errors (e.g. wrong annotation format) upon pressing the
Import button, an Error dialog will be popped up and the Decision Importing operation will
be aborted.

4.6 Window Management

Window Management deals with the management of design windows in the Workspace.
Window Management allows for closing, resizing, and arranging of multiple simultane-
ously opened design windows within the Workspace. Specifically, the tasks for Window
Management are:

Window Closing Users can close the currently active design window in the Workspace by
selectingMain :: Window ⇒ Close. In addition, any of the design windows can be
closed by clicking on a respective icon in the window’s title bar.

Users can close all the currently opened design windows in the Workspace by select-
ing Main :: Window ⇒Close All.

In all cases, closing a design window triggers a File Closing action for the corre-
sponding design file (see Section 4.3.3).

Window Arranging Users can automatically arrange design windows in the Workspace
in a variety of manners. SelectingMain :: Window ⇒ Tile will rearrange the design
windows in the Workspace in a tiled fashion. SelectingMain :: Window ⇒Cascade
will rearrange the design windows in the Workspace in a cascaded manner. Apart
from that, windows can be freely resized and moved within the Workspace by drag-
ging their title bar or borders. In addition, users can maximize and minimize design
windows by clicking on a respective icon on the window’s title bar.

Window Switching SelectingMain :: Window ⇒ Next or Main :: Window ⇒ Previous
will switch the focus to and activate the next/previous design window in the list of
opened windows. Using these actions, users can cycle through the list of windows.
Design windows are ordered in the window list according to the order in which they
were opened. In addition, users can activate and raise any of the opened design
windows by clicking into the window.

Finally, the bottom of theMain :: Window menu contains entries for all currently
opened design windows. Selecting any of these menu entries will activate and raise
the corresponding design window.

Window Toggling SelectingMain :: Window ⇒ Pro ject Manager or Main :: Window ⇒
Out put Window will toggle (turn on and off) displaying of Project and Output Win-
dows, respectively.

72

References

[1] R. Dömer, A. Gerstlauer and D. D. Gajski.SpecC Language Reference Manual, Ver-
sion 2.0, SpecC Technology Open Consortium (STOC), Japan, December 2002.

[2] R. Dömer. The SpecC Internal Representation (V2.0.3), Technical Report 03-21,
University of California, Irvine, January 1999.

[3] J. Peng, A. Gerstlauer, K. Ramineni, R. Dömer and D. D. Gajski.System-On-Chip
Specification Style Guide, Technical Report CECS-TR-03-21, Center for Embedded
Computer Systems, University of California, Irvine, 2003.

73

A Manual Pages

This appendix contains the documentation in the form of manual pages for external, third-
party tools used by SCE.

74

A.1 scc - SpecC Compiler

NAME

scc – SpecC Compiler

SYNOPSIS

scc–h

sccdesign [command] [options]

DESCRIPTION

sccis the compiler for the SpecC language. The main purpose ofsccis to compile
a SpecC source program into an executable program for simulation. Furthermore,
sccserves as a general tool to translate SpecC code from various input to various
output formats which include SpecC source text, SpecC binary files in SpecC
Internal Representation format, and other compiler intermediate files.

Using the first command syntax as shown in the synopsis above, a brief usage
information and the compiler version are printed to standard output and the pro-
gram exits. Using the second command syntax, the specifieddesign is compiled.
By default,sccreads a SpecC source file, performs preprocessing and builds the
SpecC Internal Representation (SIR). Then, C++ code is generated, compiled and
linked into an executable file to be used for simulation. However, the subtasks
performed bysccare controlled by the givencommand so that, for example, only
partial compilation is performed with the specifieddesign.

On successful completion, the exit value 0 is returned. In case of errors during
processing, an error code with a brief diagnostic message is written to standard
error and the program execution is aborted with the exit value 10.

For preprocessing and C++ compilation,sccrelies on the availability of an exter-
nal C++ compiler which is used automatically in the background. By default, the
GNU compilergcc/g++is used.

ARGUMENTS

design specifies the name of the design; by default, this name is used as base
name for the input file and all output files;

75

COMMAND

Thecommand has the format -suffix1 2 suffix2, wheresuffix1 andsuffix2 specify
the format of the main input and output file, respectively. This command also
implies the compilation steps being performed. By default, the command –sc2out
is used which specifies reading a SpecC source file (e.g. design.sc) and generating
an executable file (e.g. a.out) for simulation. All necessary intermediate files (e.g.
design.cc, design.o) are generated automatically.

Legal command suffixes are:

sc SpecC source file (default:design.sc)

si preprocessed SpecC source file (default:design.si)

sir binary SIR file in SpecC Internal Representation format (default:design.sir)

cc C++ simulation source file (default:design.cc)

h C++ simulation header file (default:design.h)

cch both, C++ simulation source file and C++ header file (default:design.cc and
design.h)

o linker object file (default:design.o)

out executable file for simulation (default:design); however, with the –ip op-
tion, a shared library will be produced (default:libdesign.so)

OPTIONS

–v | –vv | -vvv increase the verbosity level so that all tasks performed are
logged to standard error (default: be silent); at level 1, infor-
mative messages for each task performed are displayed; at level
2, additionally input and output file names are listed; at level 3,
very detailed information about each executed task is printed;

–w | –ww | -www increase the warning level so that warning messages are enabled
(default: warnings are disabled); four levels are supported rang-
ing from only important warnings (level 1) to pedantic warnings
(level 4); for most cases, warning level 2 is recommended (–
ww);

76

–g enable debugging of the generated simulation code (default: no
debugging code); this option disables optimization;

–O enable optimization of the generated simulation code (default:
no optimization); this option disables debugging;

–ip enable intellectual property (IP) mode; when generating a SIR
binary or SpecC text file, only declarations of symbols marked
public will be included (the public interface of an IP is created);
when generating C++ code, non-public symbols will be output
so that they will be invisible outside the file scope; when com-
piling or linking, the compiler and linker are instructed to create
a shared library instead of an executable file (creation of an IP
simulation library);

–n suppress creation of new log information when generating the
output SIR file (default: update log information); see also sec-
tion ANNOTATIONS below;

–sl suppress source line information (preprocessor directives) when
generating SpecC or C++ source code (default: include source
line directives);

–sn suppress all annotations when generating SpecC source code
(default: include annotations);

–st tabulator stepping set the tabulator stepping for SpecC/C++ code generation;
this setting is used for code indentation; a value of 0 will disable
the indentation of the generated code (default: 4);

–sT system tabulator stepping set the system tabulator stepping (\t) for Spec-
C/C++ code generation; if set, tab characters will be used for
indentation; if a value of 0 is specified, only spaces will be used
for indentation (default: 8);

–sw line wrapping set the column for line wrapping; in code generation, any line
longer than this value is subject to line wrapping; if a value of 0
is specified, no line wrapping will be performed (default: 70);

–i input file specify the name of the input file explicitly (default:de-
sign.suffix1); the name ’-’ can be used to specify reading from
standard input;

77

–o output file specify the name of the final output file explicitly (default:de-
sign.suffix2); the name ’-’ can be used to specify writing to stan-
dard output;

–D do not define any standard macros; by default, the macro
SPECC is defined automatically (it is set to 1); furthermore,

implementation dependent macros may be defined; this option
suppresses the definition of all these macros;

–Dmacrodef define the preprocessor macromacrodef to be passed to the pre-
processor;

–U do not undefine any macros; by default, few macros are unde-
fined automatically (in order to allow C/C++ standard header
files to be used); this option is implementation dependent;

–Uundef undefine the preprocessor macroundef which will be passed to
the preprocessor as being undefined; the macroundef will be
undefined after the definition of all command-line macros; this
allows to selectively suppress macros from being defined in the
preprocessing stage;

–I clear the standard include path; by default, the standard in-
clude path consists of the directory $SPECC/inc; this option
suppresses the default include path;

–Idir appenddir to the include path (extend the list of directories to
be searched for including source files); include directories are
searched in the order of their specification; unless suppressed by
option –I, the standard include path is automatically appended
to this list; by default, only the standard include directories are
searched;

–L clear the standard library path; by default, the standard library
path consists of the directory $SPECC/lib; this option sup-
presses the default library path;

–Ldir appenddir to the library path (extend the list of directories to be
searched for linker libraries); the library path is searched in the
specified order; unless suppressed by option –L, the standard
library path is automatically appended to this list; by default,
only the standard library path is searched;

78

–l when linking, do not use any standard libraries; the default li-
braries are displayed when calling the compiler with the –h op-
tion; the –l option suppresses linking against theses standard li-
braries;

–llib passlib as a library to the linker so that the executable is linked
againstlib; libraries are linked in the specified order; unless sup-
pressed by option –l, the standard libraries are automatically ap-
pended to this list; by default, only standard libraries are used;

–P reset the import path; clear the list of directories to be searched
for importing files; by default, the current directory is searched
first, followed by the standard import directory $SPECC/import;
this option suppresses this standard import path;

–Pdir appenddir to the import path, extending the list of directories to
be searched for importing files; import directories are searched
in the order of their specification; unless suppressed by option
–P, the standard search path is automatically appended to this
list; by default, only the standard import path is searched;

–xpp preprocessor call redefine the command to be used for calling the C prepro-
cessor (default: ”g++ -E -x c %p %i -o %o”); the preprocessor
call must contain three markers %p, %i and %o, which indicate
the options and file names used in the call; in the specified string,
the %p marker will be replaced with the list of specified prepro-
cessor options; the %i and %o markers will be replaced with the
actual input and output filenames, respectively;

–xcc compiler call redefine the command to be used for calling the C/C++ com-
piler (default: ”g++ -c %c %i -o %o”); the compiler call must
contain three markers %c, %i and %o, which indicate the op-
tions and file names used in the call; in the specified string, the
%c marker will be replaced with the list of specified compiler
options; the %i and %o markers will be replaced with the actual
input and output filenames, respectively;

–xld linker call redefine the command to be used for calling the linker (default:
”g++ %i -o %o %l”); the linker call must contain three markers
%l, %i and %o, which indicate the options and file names used
in the call; in the specified string, the %l marker will be replaced
with the list of specified linker options; the %i and %o markers

79

will be replaced with the actual input and output filenames, re-
spectively;

–xp preprocessor option pass an option directly to the C/C++ preprocessor (de-
fault: none);

–xc compiler option pass an option directly to the C/C++ compiler (default: none);

–xl linker option pass an option directly to the linker (default: none);

ENVIRONMENT

SPECC is used to determine the installation directory of the SpecC environ-
ment where SpecC standard include files (directory $SPECC/inc),
SpecC standard import files (directory $SPECC/import), and SpecC
system libraries (directory $SPECC/lib) are located.

SPECC LICENSE FILE determines the license file (path and file name) to be used
by the SpecC environment; if undefined, the environment variable
SPECC is used as the path to the license file called ”license.sce”; if nei-
therSPECC LICENSE FILE norSPECC exist, the file ”license.sce” is
searched in the current directory;

ANNOTATIONS

The following SpecC annotations are recognized by the compiler:

SCE LOG contains the log information of the SIR file; this global annotation
is created and maintained automatically by the SpecC compiler and
the SpecC tool set and can be used to determine the origin and the
operations performed on the design model;SCE LOG is a com-
posite annotation consisting of a list of log entries, ordered by time
of creation; each log entry consists of a time stamp, command line,
source file, version info, and an optional comment;

SCC RESERVED SIZE for external behaviors and channels (IP components), this
indicates the size reserved in the C++ class for internal use; the
annotation type is unsigned int; if found at class definitions, this
annotation is checked automatically for reasonable values; for IP
declarations, the annotation can be created automatically with the
–ip option;

80

SCC PUBLIC for global symbols, this annotation indicates whether the symbol is
public and will be visible in a shared library; the annotation type is
bool; this annotation only is recognized with the –ip option;

VERSION

The SpecC compilersccis version 2.2.0.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

(c) 1997-2004 CECS, University of California, Irvine

SEE ALSO

gcc(1), g++(1), sir delete(l), sir depend(l), sir import (l), sir isolate(l),
sir list(l), sir note(l), sir rename(l), sir strip (l), sir tree(l), sir wrap(l)

BUGS, LIMITATIONS

Variables of enumerator type cannot be initialized at the time of their declaration. The
SpecC compiler issues a (false) error message in this case. As a simple work-around, how-
ever, enumerator variables can be initialized by use of standard assignment statements at
the beginning of their lifetimes.

81

B Project File XML Schema

Elements Complex types
sce CompilerOption

ModelItem
SimpleItem

B.1 Elementsce

diagram

children project compiler models imports sources
source <xs:elementname=”sce ”>

<xs:annota t ion>
<xs:documentation>Root</ xs:documentation>

</ xs :annota t ion>

<xs:complexType>
<xs:sequence>

<xs:elementname=”pro jec t ” type=” x s :s t r i n g ” />
<xs:elementname=”compiler ”>

<xs:complexType>
<xs:sequence>

<xs:elementname=”opt ion ” type=”CompilerOption”
minOccurs=”0” maxOccurs=”unbounded” />

</ xs:sequence>
</ xs:complexType>

</ xs:element>

82

<xs:elementname=”models”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”ModelItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

<xs:elementname=”imports ”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”SimpleItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

<xs:elementname=”sources ”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”SimpleItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

</ xs:sequence>
</ xs:complexType>

</ xs:element>

B.1.1 Elementsce/project

diagram

type xs:string
source <xs:elementname=”pro jec t ” type=”x s : s t r i n g ” />

B.1.2 Elementsce/compiler

diagram

children option

83

source

<xs:elementname=”compiler ”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”opt ion ” type=”CompilerOption”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

Elementsce/compiler/option

diagram

type CompilerOption

attributes
Name Type Use Default Fixed Annotation
name required

source <xs:elementname=”opt ion ” type=”CompilerOption”
minOccurs=”0” maxOccurs=”unbounded” />

B.1.3 Elementsce/models

diagram

children item

source

<xs:elementname=”models”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”ModelItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

84

Elementsce/models/item

diagram

type ModelItem
children item option

attributes

Name Type Use Default Fixed Annotation
name xs:string required
level optional Abstraction level of

the design model.

design xs:string optional Design name. De-
faults to base file
name.

input xs:string optional File name of the inter-
mediate design model
at the input of refine-
ment after import.

type xs:string optional <empty> Automatic refine-
ment command line
(comma-separated
elements) used to
generate model.
Empty if manually
generated.

source <xs:elementname=”item” type=”ModelItem”
minOccurs=”0” maxOccurs=”unbounded” />

85

B.1.4 Elementsce/imports

diagram

children item

source

<xs:elementname=”imports ”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”SimpleItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

Elementsce/imports/item

diagram

type SimpleItem

attributes
Name Type Use Default Fixed Annotation
name xs:string required

source <xs:elementname=”item” type=”SimpleItem”
minOccurs=”0” maxOccurs=”unbounded” />

B.1.5 Elementsce/sources

diagram

children item

source

<xs:elementname=”sources ”>
<xs:complexType>

<xs:sequence>
<xs:elementname=”item” type=”SimpleItem”

minOccurs=”0” maxOccurs=”unbounded” />
</ xs:sequence>

</ xs:complexType>
</ xs:element>

86

Elementsce/sources/item

diagram

type SimpleItem

attributes
Name Type Use Default Fixed Annotation
name xs:string required

source <xs:elementname=”item” type=”SimpleItem”
minOccurs=”0” maxOccurs=”unbounded” />

B.2 ComplexTypeCompilerOption

diagram

type extension of xs:string
properties base xs:string

used by elementsce/compiler/option

attributes
Name Type Use Default Fixed Annotation
name required

source

<xs:complexTypename=”CompilerOption”>
<xs:simpleContent>

<xs:extens ion base=” x s: s t r i n g ”>
<x s : a t t r i b u t e name=”name” use=”requi red ”>

<xs:simpleType>
<x s : r e s t r i c t i o n base=”x s : s t r i n g ”>

<xs:enumeration value=”incpath ” />
<xs:enumeration value=” importpath ” />
<xs:enumeration value=”def ines ” />
<xs:enumeration value=”undef ines ” />
<xs:enumeration value=”opt ions ” />

</ x s : r e s t r i c t i o n>
</ xs:simpleType>

</ x s : a t t r i b u t e>
</ xs :ex tens ion>

</ xs:simpleContent>
</ xs:complexType>

87

B.3 ComplexTypeModelItem

diagram

type extension ofSimpleItem
properties base SimpleItem

children item option
used by elements sce/models/item ModelItem/item

attributes

Name Type Use Default Fixed Annotation
name xs:string required
level optional Abstraction level of

the design model.

design xs:string optional Design name. De-
faults to base file
name.

input xs:string optional File name of the inter-
mediate design model
at the input of refine-
ment after import.

type xs:string optional <empty> Automatic refine-
ment command line
(comma-separated
elements) used to
generate model.
Empty if manually
generated.

source <xs:complexTypename=”ModelItem”>

88

<xs:complexContent>
<xs:extens ion base=”SimpleItem”>

<xs:choice>
<xs:elementname=”item” type=”ModelItem” minOccurs=”0”

maxOccurs=”unbounded” />
<xs:elementname=”opt ion ” minOccurs=”0”>

<xs:complexType>
<xs:simpleContent>

<xs:extens ion base=”x s : s t r i n g ”>
<x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ”

use=” requi red ” f ixed=”descr ip t ion ” />
</ xs :ex tens ion>

</ xs:simpleContent>
</ xs:complexType>

</ xs:element>
</ xs :choice>

<x s : a t t r i b u t e name=”leve l ” use=”opt iona l ”>
<xs:annota t ion>

<xs:documentation>Abstract ion leve l of the design model
</ xs:documentation>

</ xs :annota t ion>
<xs:simpleType>

<x s : r e s t r i c t i o n base=”x s : s t r i n g ”>
<xs :pa t te rn value=”0x [a−z0−9A−Z]+L?” />

</ x s : r e s t r i c t i o n>
</ xs:simpleType>

</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”design ” type=”x s : s t r i n g ” use=”opt iona l ”>
<xs:annota t ion>

<xs:documentation>Design name .
Defaul ts to base f i l e name .</ xs:documentation>

</ xs :annota t ion>
</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”input ” type=”x s : s t r i n g ” use=”opt iona l ”>
<xs:annota t ion>

<xs:documentation>Fi le name of the in termedia te design model
a t the input of ref inement a f t e r import .

</ xs:documentation>
</ xs :annota t ion>

</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”type ” type=”x s : s t r i n g ” use=”opt iona l ” de fau l t=””>
<xs:annota t ion>

<xs:documentation>Automatic ref inement command l i ne (comma−
separatedelements) used to generatemodel .
Empty i f manually generated</ xs:documentation>

</ xs :annota t ion>
</ x s : a t t r i b u t e>

</ xs :ex tens ion>
</ xs:complexContent>

</ xs:complexType>

89

B.3.1 ElementModelItem/item

diagram

type ModelItem
children item option

attributes

Name Type Use Default Fixed Annotation
name xs:string required
level optional Abstraction level of

the design model.

design xs:string optional Design name. De-
faults to base file
name.

input xs:string optional File name of the inter-
mediate design model
at the input of refine-
ment after import.

type xs:string optional <empty> Automatic refine-
ment command line
(comma-separated
elements) used to
generate model.
Empty if manually
generated.

source <xs:elementname=”item” type=”ModelItem”
minOccurs=”0” maxOccurs=”unbounded” />

90

B.3.2 ElementModelItem/option

diagram

type extension of xs:string

attributes
Name Type Use Default Fixed Annotation
name xs:string required description

source

<xs:elementname=”opt ion ” minOccurs=”0”>
<xs:complexType>

<xs:simpleContent>
<xs:extens ion base=”x s : s t r i n g ”>

<x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ”
use=” requi red ” f ixed=”descr ip t ion ” />

</ xs :ex tens ion>
</ xs:simpleContent>

</ xs:complexType>
</ xs:element>

B.4 ComplexTypeSimpleItem

diagram

used by
elements sce/imports/item sce/sources/item

complexType ModelItem

attributes
Name Type Use Default Fixed Annotation
name xs:string required

source
<xs:complexTypename=”SimpleItem”>

<x s : a t t r i b u t e name=”name” type=”x s : s t r i n g ” use=”requi red ” />
</ xs:complexType>

91

	1 Introduction
	1.1 Architecture Explorer
	1.2 Network Explorer
	1.3 Communication Synthesizer

	2 Overview
	2.1 Modules
	2.1.1 Main Window
	2.1.2 Input Dialogs
	2.1.3 Display Windows

	2.2 Requirements
	2.3 Interfaces
	2.3.1 Internal Interfaces
	2.3.2 External Interfaces

	2.4 Performance

	3 Windows/GUI
	3.1 Menu Bar
	3.1.1 File Menu
	3.1.2 View Menu
	3.1.3 Project Menu
	3.1.4 Synthesis Menu
	3.1.5 Windows

	3.2 Project Window
	3.2.1 Models Tab
	3.2.2 Imports Tab
	3.2.3 Sources Tab

	3.3 Design Window
	3.3.1 Hierarchy Tab
	3.3.2 Behaviors Tab
	3.3.3 Channels Tab
	3.3.4 View Pane

	3.4 Output Window
	3.5 Workspace
	3.6 Message Boxes
	3.6.1 Error Dialogs
	3.6.2 Information Dialogs

	4 Functionality
	4.1 Application
	4.1.1 Preferences Editing

	4.2 Project Handling
	4.2.1 Project Creation
	4.2.2 Project Opening
	4.2.3 Project Saving
	4.2.4 Project Settings Editing
	4.2.5 Design Adding
	4.2.6 Design Opening
	4.2.7 Design Deletion
	4.2.8 Design Renaming
	4.2.9 Description Changing
	4.2.10 Project Closing

	4.3 File Handling
	4.3.1 File Opening
	4.3.2 File Saving
	4.3.3 File Closing
	4.3.4 File Import
	4.3.5 Design Property Viewing
	4.3.6 SCE Exiting

	4.4 Design-Entity Handling
	4.4.1 Entity Renaming
	4.4.2 Entity Retyping
	4.4.3 Entity Deletion
	4.4.4 Hierarchy Displaying

	4.5 Synthesis
	4.5.1 Architecture Exploration
	4.5.2 Network Exploration
	4.5.3 Communication Synthesis
	4.5.4 Decision Import

	4.6 Window Management

	References
	A Manual Pages
	A.1 scc - SpecC Compiler

	B Project File XML Schema
	B.1 Element sce
	B.1.1 Element sce/project
	B.1.2 Element sce/compiler
	B.1.3 Element sce/models
	B.1.4 Element sce/imports
	B.1.5 Element sce/sources

	B.2 ComplexType CompilerOption
	B.3 ComplexType ModelItem
	B.3.1 Element ModelItem/item
	B.3.2 Element ModelItem/option

	B.4 ComplexType SimpleItem

