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Abstract

This report defines and describes a format for models of system components required for system-on-chip (SoC) design. In
an SoC design process, starting from an initial system specification, an implementation of the system is created through a series
of interactive and automated steps by gradually synthesizing and assembling a system design using components taken out of
a set of databases. Generally, databases are needed for processing elements (PEs), bus and other communication protocols,
and RTL units. In this report we aim to provide an exhaustive list of requirements for components in an automated SoC design
flow using the example of a concrete database format. Following a description of the basic database format in general, this
report defines the format of each of the three databases in detail. Using information in this report, specific database formats
for diverse SoC design flows can be developed. Specifically, the database format in this report is used successfully in our SoC
Design Environment, SCE.
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Abstract

This report defines and describes a format for models of
system components required for system-on-chip (SoC) de-
sign. In an SoC design process, starting from an initial
system specification, an implementation of the system is
created through a series of interactive and automated steps
by gradually synthesizing and assembling a system design
using components taken out of a set of databases. Gener-
ally, databases are needed for processing elements (PEs),
bus and other communication protocols, and RTL units. In
this report we aim to provide an exhaustive list of require-
ments for components in an automated SoC design flow us-
ing the example of a concrete database format. Following
a description of the basic database format in general, this
report defines the format of each of the three databases in
detail. Using information in this report, specific database
formats for diverse SoC design flows can be developed.
Specifically, the database format in this report is used suc-
cessfully in our SoC Design Environment, SCE.

1 Introduction

In state-of-the-art design flows for system-on-chip (SoC)
design, an initial specification of a system is taken down
to an actual implementation through a series of interactive
and automated steps [1]. In such design flows, the system
is gradually synthesized and assembled using system com-
ponents taken out of a set of databases. Specifically, an
SoC design flow needs to include databases for processing
elements (PEs), bus or other communication protocols, and
RTL units.

The processing element (PE) databasecontains pro-
grammable processors, synthesizable custom hardware
components, system memories, IPs, etc. at different levels
of abstraction. Such PEs are used during the design flow
to implement the computation of the system by mapping
computational parts onto PEs taken out of the PE database.

Thebus protocol databasecontains timing-accurate de-
scriptions of protocols of system busses and other com-
munication structures used to implement communication
between the different PEs in the system.

Finally, theRTL unit databasecontains register-transfer
units like register files, ALUs and other functional units,
memories, local busses, etc. RTL units taken out of the
RTL database are used to synthesize computation mapped
to custom hardware PEs down to a cycle-accurate RTL de-
scription.

This report describes and defines a format of databases
for use in automated SoC design flows, thereby outlining
requirements for modeling components for system design
in general. First, Section 2 defines the general format of
the SoC databases. Then, in Section 3, Section 4, and Sec-
tion 5 the specifics of the PE, bus, and RTL databases are
described in detail, respectively.

2 General Database Format

Our databases for SoC design are described in the form
of SpecC code, i.e. the format of the databases is based
on the SpecC syntax [2] and the SpecC source code for
each database must be compilable into SIR (SpecC Inter-
nal Representation) files using the SpecC compiler (‘scc ’,
Section A.1).

2.1 Database Organization

For each database, there is exactly one top-level SIR file.
The top-level database SIR acts as a container for all com-
ponents stored in the database. The database SIR includes
components through import of individual component SIR
files where component SIR files have to be stored in the
same directory as or a sub-directory of the directory the
database SIR is located in.

Each component in the database must be stored in a sep-
arate SIR file. Component SIRs will be imported by SCE
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as needed throughout the design flow. Therefore, compo-
nent SIRs must be self-contained. Furthermore, in case of
parameterizable components, the component source code
must be made available as part of the database, too.

In case of databases with multiple models of each com-
ponent at different levels of abstraction, each model can
be stored in a separate SIR file as long as the top-level
database SIR contains all component models through di-
rect or indirect import. In those cases, the basic component
model used during allocation will contain pointers to other
models (in the form of annotations) and SCE will import
those models when needed in the design flow. The advan-
tage of separate component files is that at any stage of the
design flow, the system design will not contain any yet un-
used component models.

Since different models of components out of the differ-
ent databases get imported into the same system design
throughout the design flow, SIR design (import) names and
identifiers defined in the SIR files must be unique across all
databases and components. Furthermore, identifiers should
be chosen appropriately to reduce conflicts with names de-
fined in the system design itself. It is highly recommended
to use unique prefixes for component names such that nam-
ing conflicts are avoided.

Listing 1 shows a simple example for database organi-
zation. The databasedatabase (Listing 1(c)) contains
two components,Component0andComponent1, that are
stored in separate filescomponent0 (Listing 1(a)) and
component1 (Listing 1(b)), respectively.

2.2 Component Format

Components are described by SpecC objects (behaviors
or channels) in the SoC databases. Depending on the
database, part or all of the functionality of a component
is described through the SpecC code of the component ob-
ject. As needed, component objects can be hierarchically
composed out of other SpecC objects stored together with
the top-level component object in the database. Note that
unless noted, SpecC code describing component function-
ality in the databases is for simulation purposes only and
does not have to be synthesizable, i.e. apart from the re-
strictions of the database format defined in this document,
any valid SpecC code can be used.

On top of SpecC code to describe functionality, addi-
tional meta-information about each component is stored
in the database in the form of SpecC annotations attached
to the component object. Apart from general annotations
for database management, components generally have at-
tributes, parameters, and profiling weight tables.

attribute =
value

| attribute_range

attribute_range =
’{’ default_value ’,’ range_list ’}’

range_list =
range_value

| range_list ’,’ range_value

range_value =
value
| ’{’ min ’,’ max ’}’

Figure 1: Format of component attribute annotations.

2.2.1 Attributes

Component attributes describe characteristics or metrics
for a component. Attributes of a component are stored as
annotations attached to the component object under differ-
ent keys or names as defined by the database.

The general format of the value of an attribute annota-
tion is defined in Figure 1. An attribute is either a simple
annotation giving a fixed attribute value or a complex an-
notation describing a range of possible values for an ad-
justable attribute. For an adjustable attribute, the system
designer will be allowed to tune the attribute value during
allocation in the SoC design process within the range de-
fined by the annotation.

The range of values for an adjustable attribute is given
as a list of possible values. Each entry in the list is either
a single, fixed value or a pair of values defining the lower
and upper boundaries of an interval of values (for numeric
types only). The first entry in the list must be a single value
describing a sensible default. In all cases, all values must
be of the same type as defined by the attribute.

Listing 2 shows an example of component attribute
annotations. The annotations define a fixed value of
2.3 for PE COST and a range of values from 0.0
up to 60000000.0 with a default of 60000000.0 for
PE CLOCKFREQUENCY.

2.2.2 Parameters

All components in the SoC databases can be parameter-
izable. For a parameterized component, the system de-
signer selects values for each of the component’s parame-
ters during allocation. The SoC design tools will then sup-
ply the parameter values to the SpecC Design Generator
(‘sir gen ’, Section A.2) to generate application-specific
implementations of the component for use in the design as
needed. In case of components with multiple models, only
parameters defined for the component model used during
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1 behav ior Component0 ( ) ;
2 / / . . .
3 / /

(a) component0.sc

1 behav ior Component1 ( ) ;
2 / / . . .
3 / /

(b) component1.sc

1 / / Component da tabase
2

3 import ” component0 ” ;
4 import ” component1 ” ;

(c) database.sc

Listing 1: Database organization example.

1 behav ior DSP ( ) ;
2

3 note DSP . PE COST = 2 . 3 e0 ;
4

5 note DSP . PE CLOCK FREQUENCY = { 0 . 6 e + 0 8 , { 0 . 0 , 6 e7 } } ;

Listing 2: Component attributes example.

_SIR_PARAMETERS =
’{’ parameter_list ’}’

parameter_list =
parameter
| parameter_list ’,’ parameter

parameter =
’{’ name ’,’ deflt ’,’ prm_range ’,’ description ’,’ unit ’}’

prm_range =
’{’ range_list ’}’

range_list =
range_value
| range_list ’,’ range_value

range_value =
value
| ’{’ min ’,’ max ’}’

Figure 2: Format ofSIR PARAMETERSannotation.
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int float

+ 1 2
* 3 4

Table 1: Example of a profiling table.

allocation are relevant and parameter values supplied to
this model are reused to generate all subsequent models.

Components are made parameterizable through the
SIR PARAMETERSannotation used by ‘sir gen ’.

Figure 2 describes the extended format of the
SIR PARAMETERSannotation for use in compo-

nent parameterization. The annotation defines a list of
parameters where each parameter is a tuple consisting of
the parameter name followed by a default value, a range
of possible values, a string describing the parameter, and
a string for the parameter unit. The range of parameter
values is described as a list of range value in the same
format as for attributes, see Section 2.2.1. The type of
the default value defines the type of the parameter and all
values in the range have to be of the same type.

Instances of parameterizable components are generated
from the component source code by substituting the value
of a parameter for all occurrences of the parameter name in
the component macro described through the SpecC code of
the component. For more information, please refer to the
documentation of ‘sir gen ’.

For the purpose of inclusion in the database, components
should be written in such a way that they compile with de-
fault parameter values using the standard SpecC compiler
(‘scc ’, Section A.1) instead of ‘sir gen ’

An example of a parameterized component is shown in
Listing 3. The component has one parameterBITWIDTH
of unsigned integer type that can vary between 2 and 64.
The parameter description is “Width” and parameter values
are given in “bits”. The component source code defines a
default valueBITWIDTH DFLT of 32 for the parameter
and uses this value if no value is supplied forBITWIDTH
through ‘sir gen ’, e.g. for inclusion in the database.

2.2.3 Weight Tables

Component weight tables describe the special characteris-
tics or metrics of a component which are used to evaluate
the design metrics.

The design metrics are determined by the metrics of the
system architecture represented by component weight ta-
bles and the metrics of the system behavior represented by
profiling tables. For example, Table 1 represents the pro-
filing table of a system behavior. The top/bottom row rep-
resents an addition(”+”)/multiplication(”*”) operation, and
the left/right column represents integer(”int”)/float(”float”)

int float

+ 1 2
* 4 8

Table 2: Example of the operation weight table of a DSP.

int float

+ 1 4
* 12 32

Table 3: Example of a weighted result.

data type. Then, the ”3” indicates that the system behavior
executes the multiplication operation of integer type three
times during simulation.

Assume we map the above system behavior to a DSP
component. The weight table of the DSP representing the
required clock cycles for each operation is listed in Table 2.
The ”4” describes that the DSP takes 4 clock cycles to com-
plete the execution of one multiplication operation of inte-
ger type.

Accordingly, the weighted result computed by multiply-
ing the weights in the weight table with the entries in the
profiling table is described in Table 3. The summation of
the weighted result, which equals to 49, indicates the total
computation time of the design is 49 clock cycles.

Design metrics can be classified into three categories:
operation metric set, traffic metric set, and memory metric
set. In the component weight table, each row represents
the weights for one item type and each column represents
the weights for one data type. The possible item types
and data types of different metric sets are listed in Sec-
tion 2.2.4 and Section 2.2.5, respectively. Table 2, Table 4,
and Table 5 are the examples of operation weight table,
traffic weight table, and memory weight table. In general,
operation weight tables and traffic weight tables are man-
ually generated by designers. Memory weight tables are
automatically generated by SCE based on the memory at-
tributes.

item_header =
’"’item_list’"’

item_list =
item_type
| item_list ’,’ item_type

Figure 3: Format of item header annotations.

Weight tables are stored in the data base by use of three
annotations: item header annotation, data header annota-
tion, and weight annotation. Each metric set contains an
item header annotation and a data header annotation, which
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1 # de f ine BITWIDTH DFLT 32 u
2

3 # i f n d e f BITWIDTH
4 # de f ine BITWIDTH BITWIDTH DFLT
5 # end i f
6

7 behav ior Add ( out unsigned b i t [BITWIDTH −1 :0 ] sum ,
8 in unsigned b i t [BITWIDTH −1 :0 ] a ,
9 in unsigned b i t [BITWIDTH −1 :0 ] b )

10 {
11 note RT COST = BITWIDTH ∗ 3 . 0 ;
12

13 note SIR PARAMETERS = {
14 { ”BITWIDTH” , BITWIDTH DFLT , { { 2 u , 6 4 u} } , ” Width ” , ” b i t s ” }
15 } ;
16

17 vo id main (vo id ) {
18 sum = a + b ;
19 }
20 } ;

Listing 3: Parameterized component example.

1 behav ior DSP ( ) ;
2

3 note DSP . PE WEIGHT OPERATION HEADER ITEMTYPE = ” + ,∗ ” ;
4

5 note DSP . PE WEIGHT OPERATION HEADER DATATYPE = ” i n t , f l o a t ” ;
6

7 note DSP . PE WEIGHT OPERATIONDYNAMIC = ” 1 , 2 , 4 , 8 ” ;

Listing 4: Component weight table example.

5



int float

in 1 2
out 3 4

Table 4: Example of a traffic weight table.

int float

local 1 4
global 12 32

Table 5: Example of a memory weight table.

lists the supported item and data types, respectively. The
format of the values of the item header annotation and the
data header annotation are defined in Figure 3 and Figure 4.
The available item types and data types are listed in Sec-
tion 2.2.4 and Section 2.2.5.

Each metric contains one weight annotation. The items
in the weight table are stored as one dimensional array rep-
resented by a string, as defined in Figure 5. Eachvalue
must be of integer type.

Listing 4 shows an example of a component weight table
annotation, which matches the example described earlier.

2.2.4 Item Types for Metric Set

The possible values for item types of operation metric sets
are listed in Table 6 and Table 7. An operation metric
set defines values for basic operations (Table 6) and ba-
sic statements (Table 7) corresponding to weights for the
data flow and control flow complexity of the code.

For the operation metric set, besides the items listed in
Table 6, each global function can be treated as an indepen-
dent operation type. For example, if there is a global func-
tion f loat F1(int arg1, long arg2), we can put ”F1” into
the item header annotation of operation. Consequently, the
weighted result of function ”F1” is computed by multiply-
ing the weight of the entry in the row representing the
item type ”F1” and in the column representing the data
type ”float”(returning type of function), with the execution
number of function ”F1”. In this case, the operations inside
”F1” will not be calculated again.

The possible values of item types of the traffic metric
sets are listed in Table 8. The possible values of item types
of the memory metric sets are listed in Table 9.

2.2.5 Data Types for Metric Set

Operation and traffic metric sets share the same set of pos-
sible values of data types, which are listed in Table 10.

Besides the data types listed in Table 10, data type an-
notation can also contain three groups of hierarchial data

Name Description

void void operation
#1 const data access operation
#i identifer access operation
() parenthesis operation
this ”this” pointer access operation
[] array access operation
f() function call operation
. member access operation
-> member pointer access operation
p++ post-increment operation
p-- post-decrement operation
[:] bit slice operation
++p pre-increment operation
--p pre-decrement operation
&p address deriving operation
*p content deriving operation
+x unary plus operation
-x negation operation
˜ not operation
! logic not operation
sizeof(E) size of operation (on expression)
sizeof(T) size of operation (on type)
()x type conversion operation
@ concatenation operation
* multiplication operation
/ division operation
% modulo operation
+ addition operation
- substraction operation
<< left shift operation
>> right shift operation
< less operation
> greater operation
<= less equal operation
>= greater equal operation
== equal operation operation
!= not equal operation
& and operation
ˆ eor operation
| or operation
&& logic and operation
|| logic or operation
:? condition operation
= assignment operation

Table 6: Item types for operation metric set (operations).
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data_header =
’"’data_list’"’

data_list =
data_type
| data_list ’,’ data_type

Figure 4: Format of data header annotations.

weight =
’"’ weight_list ’"’

weight_list =
value
| weight_list ’,’ value

Figure 5: Format of weight annotations.

Name Description

*= multiplication & assignment operation
/= division & assignment operation
%= modulo & assignment operation
+= addition & assignment operation
-= substraction & assignment operation
<<= left shift & assignment operation
>>= right shift & assignment operation
&= and & assignment operation
ˆ = eor & assignment operation
|= or & assignment operation
’ comma operation

Table 6: Item types for operation metric set (operations)
(continued).

Name Description

: labeled statement
{} compound statement
*+ expression statement
if if statement
else else statement
switch switch statement
case case statement
default default statement
while while statement
do do statement
for for statement
goto goto statement
continue continue statement
break break statement
return return statement
par par statement
pipe pipe statement
exception exception statement
timing timing statement
fsm fsm statement
fsmd fsmd statement
wait wait statement
waitand waitand statement
waitfor waitfor statement
notify notify statement
notifyone notifyone statement

Table 7: Item types for operation metric set (statements).

Name Description

in input traffic
out output traffic

Table 8: Item types for traffic metric set

Name Description

local local variable storage (stack memory)
global global/static variable storage (static and

heap memory)

Table 9: Item types for memory metric set
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Name Description

bool bool
char char
unsigned char unsigned char
short int short int
unsigned short int unsigned short int
int int
unsigned int unsigned int
long int long int
unsigned long int unsigned long int
long long int long long int
unsigned long long int unsigned long

long int
float float
double double
long double long double
void void(for return

value of function)
event event
void* pointer

Table 10: Data types for metric sets.

types.

Bit vector We can define bit vectors with different
lengths as different data types. The corresponding
data type format is ”bit[size]” or ”unsigned bit[size]”.
For example, data belonging to eitherbit[8:0] or
bit[9:1] can be defined as an independent data type
"bit[9]" in the data header annotation.

Array We can define arrays with different lengths as dif-
ferent data types. The corresponding data type for-
mat is basic type[size]. For example, data belong-
ing to int[23] and int[24] type can be defined as in-
dependent data types"int[23]" and"int[24]"
respectively.

User Defined Type Every user defined structure/u-
nion/enum type can be treated as one independent
data type. It uses the structure/uniton/enum names
as the data type names. For example, if a structure
is defined as ”struct s1{int a; float b}” and we want
to define it as an independent data type, the defined
data type ”struct s1” can be put into the data header
annotation.

If above three groups of hierarchical data types are not
defined, then we use their basic types to compute the
weighted result. For example, if no data type ”int[24]” is
defined, the data with type int[24] will be treated as 24 in-
teger types.

int float long

+ 1 2 0
* 4 8 0
- 0 0 0

Table 11: An alternative operation weight table of the DSP.

2.2.6 Default Values

When specifying weight tables, designers don’t need to put
all the item types in Table 6, Table 7, Table 8, or Table 9
to the item header annotation, and don’t need to put all the
data types in Table 10 to the data header annotation. The
default value of weights for the item types that are not in
the item header annotation is 0. Similarly, the default value
of weights for data types that are not in the data header
annotation is 0. As a result, there is no different between
Table 2 and Table 11 in terms of values of weights.

3 Processing Elements

Processing elements are represented by SpecC behaviors
in the PE database. For each PE model, a corresponding
behavior declaration needs to exist in the database.

The PE database can contain different PE models at
varying levels of abstraction corresponding to the steps in
the design flow. At minimum, behavioral PE models used
for PE allocation and for initial implementation of speci-
fication behaviors mapped onto PEs are required to exist
for each PE (Section 3.1). In addition, PEs can option-
ally have bus-functional models for use after communica-
tion synthesis (Section 3.2) and implementation models for
cycle-accurate simulation in case of PEs with part or all of
their functionality fixed (Section 3.3). In case of synthesiz-
able or programmable PEs, PE models provide templates
that will be filled automatically during the design process.

3.1 PE Behaviors

Behavioral PE models are the basic models of PEs inside
SCE and the PE behaviors represent the PEs available in
the database. Therefore, for each PE there must be at least
a behavioral model and the set of PE behaviors defines the
list of PEs in the PE database. PE behaviors are used for
PE allocation and they define the basic characteristics like
attributes and parameters for a PE and all of its lower-level
models. Furthermore, the SpecC code of behavioral PE
models can describe high-level functional aspects of the PE
in case all or part of the PE’s functionality is pre-defined
and fixed.

8



3.1.1 General Format

pe_behavior =
behavior pe_name ports_opt interfaces_opt

body_opt ’;’

ports_opt =
<nothing>
| ’(’ ’)’
| ’(’ channel_port_list ’)’

channel_port_list =
channel_port
| channel_port_list ’,’ channel_port

channel_port =
interface_name
| interface_name port_name

interfaces_opt =
<nothing>
| implements interface_list

body_opt =
<nothing>
| ’{’ internal_declarations_opt ’}’

Figure 6: Format of PE behaviors.

A PE behavior is created through a special SpecC be-
havior declaration or definition. The format of PE behav-
iors is shown in Figure 6. The name of the SpecC behav-
ior defines the name of the PE component. For PEs with
fixed computation functionality, the PE behavior has ports
of abstract, message-passing interface type and an internal
or external body (Section 3.1.5).

PE behaviors carry a number of annotations for general
database management, attributes (Section 3.1.2), and op-
tional parameters (see Section 2.2.2).

Table 12 lists the general annotations that are attached
to PE behaviors for database management and in order to
describe basic information about the corresponding pro-
cessing element. In detail, the following annotations are
supported:

PE LIBRARY Name describing the PE database the be-
havior is a member of. Used to distinguish between
PE and other behaviors, i.e. required for PE behaviors.

PE CATEGORYName of the category the PE belongs to.
PE categories are mandatory and are used to classify
PEs into different groups for PE allocation and selec-
tion.

PE COMMENTBrief description of the PE that will be
used and displayed as an aid during selection and al-
location.

PE BF MODELName of the behavior providing a bus-
functional model of the PE. The named behavior has
to exist in the PE database. Required for PEs that have
pre-defined, fixed interfaces on the pin level. See Sec-
tion 3.2.

PE CA MODELName of the behavior providing a cycle-
accurate implementation model of the PE. The named
behavior has to exist in the PE database. Required for
PEs that have pre-defined, fixed hardware implemen-
tation. See Section 3.3.

Listing 5 shows an example of a simple PE behavior.
The behavior defines a PE namedMyDSPthat is part of
the “processor” library and belongs to the “DSP” category
in that database. In addition, bus-functional and cycle-
accurate modelsMyDSPBF andMyDSPISSof the PE are
made available.

3.1.2 Attributes

Basic characteristics and metrics of PEs are described
through attribute annotations attached to the PE behaviors.
Attribute annotations can be given using the format defined
previously in Section 2.2.1. Specifically, the following at-
tributes can be attached to PEs (Table 13):

PE CLOCKFREQUENCYClock frequency the PE is op-
erating at. For PEs where the clock can be adjusted up
to a maximum frequency, this should be an adjustable
attribute.

PE MIPS MIPS performance rating of the PE, i.e. max-
imal throughput of the PE in million instructions per
second.

PE COSTCost of the PE. The cost unit depends on the
database (e.g. price or area).

PE POWERPower consumption rating of the PE, i.e. usu-
ally average power consumption when not idling.

PE INSTRUCTIONWIDTH Number of bits in a PE in-
struction word, i.e. width of the internal instruction
bus.

PE DATAWIDTH Number of bits in a PE data word, i.e.
width of the internal data bus.

PE CHARWIDTH Number of bits in a basic machine
character, i.e. width of smallest addressable unit.

PE DATAMEMORYSize of internal data memory of PE.
For PEs without separate program memory space,
data memory size is the total size of combined pro-
gram and data memory.
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Name Description Type Default

PE LIBRARY Name of parent PE database String –
PE CATEGORY Name of PE category String ””
PE COMMENT PE description String ””
PE BF MODEL Name of bus-functional PE model String –
PE CA MODEL Name of cycle-accurate PE model String –

Table 12: General annotations for behavioral PE models.

1 behav ior MyDSP ( ) ;
2 note MyDSP. PE LIBRARY = ” p r o c e s s o r s ” ;
3 note MyDSP. PE CATEGORY = ”DSP” ;
4 note MyDSP. PECOMMENT = ”PE example ” ;
5 note MyDSP. PE BF MODEL = ”MyDSP BF” ;
6 note MyDSP. PE CA MODEL = ”MyDSP ISS” ;

Listing 5: PE behavior example.

Name Description Unit Type Default

PE CLOCKFREQUENCY Clock frequency Hz double 0.0
PE MIPS Throughput MIPS double 0.0
PE COST Cost double 0.0
PE POWER Power consumption W double 0.0
PE INSTRUCTIONWIDTH Instruction word width bits uint 0u
PE DATAWIDTH Data word width bits uint 0u
PE CHARWIDTH Machine character width bits uint 8u
PE DATAMEMORY Size of internal data memory byte uint 0u
PE PROGRAMMEMORY Size of internal program memory byte uint –

Table 13: PE behavior attribute annotations.
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PE PROGRAMMEMORYSize of internal program mem-
ory of PE for PEs with dedicated program memory
space separate from data memory.

Note that using adjustable attributes for these annotations
will define the amount of flexibility available in the PE
template.

3.1.3 Weight Tables

Weight tables of PEs are described through weight table
annotations attached to the PE behaviors. Weight table an-
notations can be given using the format defined previously
in Section 2.2.3. Specifically, the weight annotations that
can be attached to PEs are listed in Table 14. Each one is
used by at least one design metric after mapping a system
behavior to a system architecture. The weight annotations
and examples of their represented design metrics are:

PE WEIGHTOPERATIONSTATIC Each item in the
weight table represents the occupied instruction word
or control word for an operation with a certain item
type and data type in the PE.

For general purpose processors and DSPs, one design
metric represents the number of of instructions that
the system behavior contains after mapping the sys-
tem behavior to the PE. For custom hardware, it repre-
sents the number of control words that the system be-
havior contains after synthesizing the system behavior
to the PE.

PE WEIGHTOPERATIONDYNAMICEach item in the
weight table represents the clock cycles required to
execute an operation with a certain item type and data
type in the PE.

One design metric represents the computation time of
the design.

PE WEIGHTTRAFFIC STATIC Each item in the
weight table represents the occupied machine char-
acters by a storage unit (such as a variable) of the
system behavior with a certain item type and data
type in the PE. The machine character corresponds to
the ”char” data type in the SpecC language.

This is used to compute the static traffic. One design
metric represents the port width of the system behav-
ior. It equals to the traffic when each port of the be-
havior is accessed once.

PE WEIGHTTRAFFIC DYNAMICEach item in the
weight table represents the occupied machine charac-
ters by a storage unit (such as a variable) of the system
behavior with a certain item type and data type in the

PE. The machine character corresponds to the ”char”
data type in the SpecC language.

This is used to compute the dynamic traffic. One de-
sign metric represents the dynamic traffic of the de-
sign. It equals to the amount of traffic going through
the ports of the system behavior during simulation.

Besides the weight annotation, the item header an-
notation and data header annotation are also required.
The header annotations for operation metric set and traf-
fic metric set are shown in Table 15, and Table 16
respectively. PE WEIGHTOPERATIONSTATIC and
PE WEIGHTOPERATIONDYNAMICuse header anno-

tations in Table 15. PE WEIGHTTRAFFIC STATIC
and PE WEIGHTTRAFFIC DYNAMICuse header anno-
tations in Table 16.

3.1.4 Memory Tables

Memory tables attached to PE behaviors describe the lay-
out of variables in the PE memory as determined by the
compiler on top of the machine architecture. Memory ta-
ble annotations follow the same basic format as for weight
table annotations defined in Section 2.2.3. Specifically, the
following annotations are used to define PE memory tables
(Table 17):

PE MEMORYSIZE Size of variables of basic type on the
stack and the heap in machine characters as deter-
mined by thesizeof() operator.

PE MEMORYALIGNMENTAddress alignment bound-
aries for variable of basic type on the stack and the
heap.

Memory tables defined for the basic types will be used to
compute memory weights (sizes) for all basic and compos-
ite types found in the design.

Memory tables for sizing and alignment share the same
item and data header annotations shown in Table 18 where
item and data types iterate over all types of memory (lo-
cal/global) and all basic SpecC data types, respectively.

3.1.5 Computation Functionality

For intellectual-property (IP) PEs with fixed functionality
in terms of the computation the PE can perform, the PE be-
havior in the PE database has to provide a high-level, ab-
stract simulation model of the PE. The behavioral IP model
will be plugged into the system for simulation and has to
accurately model the computation performed by the IP in-
cluding estimated timing. On the other hand, the behav-
ioral IP model should exclude unnecessary implementation
details in order to achieve the fastest possible simulation
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Name Metric Unit Type Default

PE WEIGHTOPERATIONSTATIC Code size words double 0.0
PE WEIGHTOPERATIONDYNAMIC Computation time cycles double 0.0
PE WEIGHTTRAFFIC STATIC Static traffic chars double 0.0
PE WEIGHTTRAFFIC DYNAMIC Dynamic traffic chars double 0.0

Table 14: PE behavior weight annotations.

Name Type Default

PE WEIGHTOPERATIONHEADERDATATYPE in Table 10 –
PE WEIGHTOPERATIONHEADERITEMTYPE in Table 6 &Table 7 –

Table 15: Header annotations for operation metrics.

Name Type Default

PE WEIGHTTRAFFIC HEADERDATATYPE in Table 10 –
PE WEIGHTTRAFFIC HEADERITEMTYPE in Table 8 –

Table 16: Header annotations for traffic metrics.

Name Description Unit Type Default

PE MEMORYSIZE Variable size chars uint 0u
PE MEMORYALIGNMENT Variable alignment chars uint 0u

Table 17: PE behavior memory table annotations.

Name Type Default

PE MEMORYHEADERDATATYPE in Table 10 ””
PE MEMORYHEADERITEMTYPE in Table 9 ””

Table 18: Header annotations for memory tables.
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speeds. The IP model is a black-box model used for sim-
ulation only and therefore only needs to be functionally
correct in terms of the input and output values that can be
observed at its ports.

For such IPs, the PE database has to provide a SpecC
body for the PE behavior. The body can be either inter-
nal or external. In the former case, the SIR file of the PE
contains a complete SpecC definition of the PE behavior
including its body. In the latter case, the PE database pro-
vides a shared library with the PE behavior’s body to be
linked against the design for simulation. The shared li-
brary and associated annotations at the PE behavior can be
created via the IP mechanism of the SpecC compiler (see
‘scc ’ manual page, Section A.1).

Behavioral PE models of IPs communicate with the rest
of the system at an abstract, message-passing level. PE
behaviors of IPs must have ports that are of one of the fol-
lowing interface types out of the standard SpecC channel
library:

• i sender , i receiver , or i tranceiver

• i typed sender , i typed receiver , or
i typed tranceiver

PE behaviors are not allowed to have ports of any other
interface or standard type.

A simple example of an IP with pre-defined computa-
tion is shown in Listing 6. The IP has two ports for re-
ceiving and sending integers that get processed internally.
The body of the IP’s PE behavior provides SpecC code
for the main method that simulates the IP’s functionality
(in this case, simple incrementation) and timing (through a
waitfor statement modeling the IP’s input-to-output de-
lay). Since the IP behavior represents real hardware that
never exits, the IP model is executing in an endless loop.
Finally, the IP behavior provides the required general an-
notations for database management. Although not shown
in the example, IPs supply standard attributes and can be
made parameterizable like any other PE behavior.

3.1.6 Memory

mem_interface =
interface interface_name

’{’ ’}’ ’;’

Figure 7: Format of PE behavior memory interfaces.

For PEs that can act as system-level memories shared
among other PEs, the PE behavior has to be turned into a
server providing global storage. This is modeled by letting
the PE behavior implement a channel interface through

which other PEs can access the memory. The PE’s memory
interface in the database has to be empty and acts as a tem-
plate that will be filled as part of the design flow in SCE.
See Figure 7 for the general format of memory interface
definitions where a memory PE behavior implements such
an interface. In addition, memory interfaces have to have
a number of general annotations for database management
(Table 19):

PE MEMORYBoolean flag to distinguish PE behavior
memory interfaces from other normal interfaces. True
for memory interface templates.

An example of a system memory PE behavior is shown
in Listing 7. The memory behaviorMyMem implements
the memory interfaceIMyMem. As required, the memory
interface template is empty and has the proper annotation
attached. Attached to the memory PE behavior are the nor-
mal general annotations which mark the behavior as a PE
behavior in the “Memory” category and a bus-functional
model in the form of the “MyMemBF” behavior of the PE
database (since the memory has a fixed, pre-defined pin-
level interface). Since the PE is a pure system memory that
can not provide any computational functionality (IP with
fixed but empty computation, see Section 3.1.5), the mem-
ory’s PE behavior does not have any ports and themain
method is empty.

3.2 Bus-Functional PE Models

For PEs with fixed, pre-defined interfaces and communi-
cation functionality, the PE database has to contain a bus-
functional model of the PE. A bus-functional PE model
accurately describes the PE interface at the pin-level and
it provides a simulation-model of the PE’s communication
aspects on top of any computation functionality as defined
by the PE’s behavioral model, if any (see Section 3.1).

Bus-functional models can be thought of as additional
communication layers that wrap around the PE behavioral
model. A bus-functional model can consist of several lay-
ers of behaviors that create a hierarchy or tree of behav-
ior instantiations. At minimum, a top-level bus-functional
layer has to exist that provides a pin-accurate model of the
PE. Through this layer and its optional sublayer instance
hierarchy, the bus-functional PE model describes the com-
munication behavior of the PE at its pins and it has to pro-
vide the same computational functionality as the PE’s be-
havioral model.

For IPs with fixed computation and communication
functionality the bus-functional IP model provides a
timing- and data-accurate descriptions in terms of signals
that can be observed at the PE’s pins. Bus-functional IP
models only have to provide a single bus-functional layer
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1 # inc lude < c t y p e d d o u b l e h a n d s h a k e . sh>
2

3 DEFINE I TYPED SENDER( i p i n t , i n t )
4 DEFINE I TYPED RECEIVER ( i p i n t , i n t )
5

6 behav ior IP ( i i p i n t r e c e i v e r inpu t , i i p i n t s e n d e r o u t p u t )
7 {
8 note PE LIBRARY = ” p r o c e s s o r s ” ;
9 note PE CATEGORY = ” IP ” ;

10 note PECOMMENT = ” IP example ” ;
11 note PE BF MODEL = ” IP BF ” ;
12 note PE CA MODEL = ” IP RTL ” ;
13

14 i n t d a t a ;
15

16 vo id main (vo id )
17 {
18 whi le ( t rue )
19 {
20 i n p u t . re c e i v e (& d a t a ) ;
21 d a t a ++;
22 wa i t f o r ( 1 0 0 0 ) ;
23 o u t p u t . send ( d a t a ) ;
24 }
25 }
26 } ;

Listing 6: Example of PE behavior for IP with given functionality.

Name Description Type Default

PE MEMORY Flag for memory interface templates bool false

Table 19: Memory interface annotations.

1 i n t e r f a c e IMyMem {
2 note PEMEMORY = t rue ;
3 } ;
4

5 behav ior MyMem ( )
6 implements IMyMem
7 {
8 note PE LIBRARY = 1 ;
9 note PE CATEGORY = ”Memory ” ;

10 note PE BF MODEL = ”MyMem BF” ;
11

12 vo id main (vo id ) {
13 }
14 } ;

Listing 7: Example of PE behavior for system memory.
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but they can consist of several hierarchical layers internally
(Section 3.2.1). However, bus-functional IP models need to
supply an adapter that wraps and abstracts communication
with the IP up to the message-passing level equivalent to
the IP’s behavioral model (see Section 3.1.5).

For programmable PEs with flexible computation be-
havior (i.e. no functionality provided in the PE behavior,
Section 3.1.5) but fixed, pre-defined interfaces and com-
munication functionality, the bus-functional PE model has
to provide a hierarchy with at least two layers: a top-level
bus-functional layer describing the PE pin interface on the
outside and an internal empty hardware abstraction layer
(HAL) at the leaf of the bus-functional model hierarchy
describing the interface for accessing the PE’s communica-
tion implementation from the programmable computation
on the inside (Section 3.2.2).

A PE is considered programmable in terms of its com-
putation if the bus-functional PE model provides a hard-
ware abstraction layer (HAL). As part of the design pro-
cess in SCE, communication synthesis will use the HAL
of the bus-functional PE model as a template and modify it
to implement computation on the PE on top of the services
provided by the HAL model. In terms of services, the HAL
defines the insertion point for implementing the PE’s com-
putation and it provides communication services for stream
and memory I/O and interrupt handling. The HAL together
with the outer bus-functional layers model the correspond-
ing capabilities of the pre-defined PE implementation (e.g.
number and type of external interfaces, amount and level
of interrupts, etc.).

The HAL marks the boundary between hardware and
software in programmable PEs. SpecC code for the HAL
and the subbehavior hierarchy inserted into the HAL by
SCE will later be implemented in software. On top of an
implementation of the HAL on the target processor taken
out of the OS databases, target-specific code will be gen-
erated for the HAL model. Layers of the PE model above
up to and including the bus-functional layer represent the
hardware implementation of the PE and will later be re-
placed with a description of the real PE hardware taken out
of the databases for manufacturing.

If no hardware abstraction layer is provided, on the
other hand, the bus-functional PE model is considered
to be a self-contained simulation model of the complete
PE including computation and communication that will be
plugged into the system simulation as is.

3.2.1 Bus-Functional Layer

The general format of bus-functional PE models is shown
in Figure 8. The outer bus-functional layer is given as
a SpecC behavior definition with an internal or external
body, i.e. for IPs the body can be supplied as an external

bf_behavior =
behavior pe_bf_name pins body_opt ’;’

pins =
’(’ pin_list ’)’

pin_list =
pin
| pin_list ’,’ pin

pin =
pin_direction signal bit_sign bit_vector pin_name

pin_direction =
<nothing>
| in
| out
| inout

bit_sign =
<nothing>
| signed
| unsigned

bit_vector =
bit ’[’ const_expression ’:’ const_expression ’]’
| bit ’[’ const_expression ’]’

body_opt =
<nothing>
| ’{’ internal_declarations_opt ’}’

Figure 8: Format of bus-functional PE models.
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library in the same manner as for the behavioral PE model
(Section 3.1.5). The name of the bus-functional layer be-
havior defines the name of the bus-functional PE model
and has to match the corresponding annotation at the PE
behavior (see Section 3.1.1,PE BF MODELannotation).
Finally, bus-functional PE behaviors have to have a list of
ports of bitvector signal type representing the pins of the
PE.

Bus-functional PE behaviors have a set of general pur-
pose annotations for database and design flow management
(Table 20):

PE BF BUS Name of the bus channel in the bus proto-
col database that describes the protocol for commu-
nication with the PE. The pin interface of the bus-
functional PE model has to match the list of wires in
the bus protocol by name and type.

PE BF ADAPTERName of the channel providing the
adapter wrapping the protocol stack for message-
passing communication with the IP. The named chan-
nel has to exist in the PE database. See Section 3.2.4.

PE HAL MODELName of the behavior providing the
hardware abstraction layer (HAL) for the bus-
functional PE model (see Section 3.2.2). The named
behavior has to exist in the PE database. The HAL
behavior has to be instantiated as a leaf in the tree of
subbehaviors of the bus-functional PE model.

PE INT HANDLERName of the method in the HAL be-
havior that acts as the interrupt handler for the in-
terrupt pin the annotation is attached to. See Sec-
tion 3.2.2.

An example of a simple bus-functional PE model for
the IP behavioral PE from Listing 6 is shown in Listing 8.
The model has only one top-level bus-functional layer with
an internal body that implements the IP’s computation and
communication functionality. Computation is the same as
in the behavioral IP model introduced previously. Commu-
nication is modeled accurately by driving and sampling the
PE pins. All in all, the bus-functional PE behavior provides
an accurate simulation model of the IP for co-simulation
with the rest of the system. When composing the sys-
tem, the bus-functional IP model defines that in order to
exchange data, other PEs communicating with the IP have
to implement the protocolIP Busstored in the bus protocol
database (Section 4). Apart from that, the IP comes with
an adapter channelIP Adapterthat implements the com-
plete protocol stack (including the bus protocol) for com-
munication with the IP at the message-passing level (see
Section 3.2.4).

3.2.2 Hardware Abstraction Layer

hal_behavior =
behavior pe_hal_name port_list_opt

implements_interface_opt
’{’ hal_body_list ’}’ ’;’

hal_body_list =
hal_body
| hal_body_list hal_body

hal_body =
note_definition
| protocol_channel_instance
| interrupt_handler_method
| hal_main_method

interrupt_handler_method =
void handler_name ’(’ void ’)’ ’{’ ’}’

hal_main_method =
void main ’(’ void ’)’ ’{’ ’}’

Figure 9: Format of hardware abstraction layer (HAL) for
bus-functional PE models.

The general format of the hardware abstraction layer
(HAL) for bus-functional PE models is shown in Figure 9.
The HAL is a SpecC behavior definition whose name de-
fines the name of the HAL model and has to match the
corresponding annotation at the high-level PE behavior
(see Section 3.1.1,PE HAL MODELannotation). A HAL
model generally has ports and implements interfaces to
communication with the outer layers of the bus-functional
PE model. In particular, the HAL layer implements an in-
terface that makes its interrupt handler methods public in
order for them to be invoked by the outer layers as required.

The HAL model has to provide an internal SpecC body
that acts as a template to be filled by SCE. It has to con-
tain exactly onemain method (required by SpecC) that is
empty. Furthermore, the HAL model has to define empty
interrupt handler methods that are called by the outer lay-
ers of the bus-functional model whenever an interrupt is
detected on one of the PE’s interrupt pins. The name of
a handler has to match the corresponding annotation at-
tached to the interrupt pin in the bus-functional layer (see
Section 3.2.1,PE INT HANDLERannotation).

Finally, the HAL model has to provide access to the PE’s
communication services for use by the code that will be in-
serted in the design process by SCE. The bus-functional
layer the HAL model is part of defines the protocol in the
bus database that is used by the PE for external commu-
nication (see Section 3.2.1,PE BF BUSannotation). The
HAL then has to make all the high-level interfaces at the
top of the protocol stack available (i.e. data link and mem-
ory access interfaces, see Section 4.3). Depending on the
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Name Description Type Default

PE BF BUS Name of the PE’s bus protocol String –
PE BF ADAPTER Name of the wrapper for IPs String –
PE HAL MODEL Name of PE hardware abstraction layer (HAL) model String –
PE INT HANDLER Name of HAL interrupt handler method for an interrupt pin String –

Table 20: Bus-functional PE model annotations.

1 behav ior IP BF ( in s i g n a l b i t [ 1 ] ready ,
2 out s i g n a l b i t [ 1 ] ack ,
3 s i g n a l b i t [ 3 1 : 0 ] d a t )
4 {
5 note PE BF BUS = ” IP Bus ” ;
6 note PE BF ADAPTER = ” IP Adap te r ” ;
7

8 i n t d a t a ;
9

10 vo id main (vo id ) {
11 whi le ( t rue )
12 {
13 wai t ( r i s i n g r eady ) ; / / r e c e i v e data
14 d a t a = d a t ;
15 wa i t f o r ( 5 ) ;
16 ack = 1 b ;
17

18 d a t a ++;
19

20 wai t ( f a l l i n g r eady ) ; / / send data
21 d a t = d a t a ;
22 ack = 0 b ;
23 }
24 }
25 } ;

Listing 8: Example of bus-functional PE model for simple IP.

17



boundaries between hardware and software in the PE, in-
terfaces can be made available either as ports of the HAL
model of corresponding interface type or by instantiating
part or all of the protocol stack channels inside the HAL
model. In either case, all bus communication available
inside the HAL is eventually mapped to transactions on
the PE pins through the hierarchy of layers of the bus-
functional PE model.

An example of a bus-functional model for a pro-
grammable PE is shown in Listing 9. The bus-functional
PE model consists of a hardware abstraction layer (List-
ing 9(a)) and an outer bus-functional layer (Listing 9(b)).

The HAL model (Listing 9(a)) imports the PE’s external
bus protocol out of the bus database in oder to instantiate
its data link layer channel. The data link layer channel
communicates with the lower layers of the bus protocol
stack through a corresponding port of the HAL model. As
required, the HAL model contains an emptymainmethod
and it provides a single interrupt handlerintHandlerthat is
made public through the HAL’s implemented interface.

The top-level bus-functional layer (Listing 9(b)) then
imports the HAL model and the bus-functional behavior
MyDSPBF instantiates the HAL behavior (line 22) and
provides a pointer to the HAL model through the corre-
sponding annotation (line 18). Inside the bus-functional
behavior’smain method, the HAL model is executed in
a try-interrupt construct that models the interrupt
control logic of the PE’s hardware. Normal execution of
the HAL is interrupted and the HAL’s interrupt handler
method is invoked whenever an interrupt (rising edge) on
the PE’s interrupt pinIntr is detected. As required, the
annotation at the interrupt pin points to the HAL inter-
rupt handler to reflect that fact (line 19). Finally, the bus-
functional model provides the required pointer to the PE
protocol in the bus database (line 17), it instantiates the
lower layer channels of the protocol stack (line 21), and it
maps the bus protocol onto the HAL’s ports to complete
the protocol implementation in the model.

3.2.3 Interrupt Handling

Bus-functional models for programmable PEs have to in-
clude a definition of the PE’s interrupt capabilities and its
interrupt handling. As described previously, the top-level
bus-functional layer defines the interrupt pins available at
the physical PE interface and the HAL model provides cor-
responding empty interrupt handler templates. The differ-
ent layers of the bus-functional PE model then describe the
PE’s interrupt behavior of detecting interrupts, suspending
regular computation, and executing the HAL interrupt han-
dlers during system simulation. The example of Listing 9
shows how to model such behavior for a typical simple pro-
cessor core with a single interrupt condition input.

In order to support more complex interrupt capabilities
with more than one source of interrupts, different priori-
ties, masking, etc. inside SCE, the PE database needs to
include interrupt controllers as part of the bus-functional
PE models. Interrupt controllers sit in front of the basic
PE core model and are modeled by adding another layer
to the bus-functional PE model between the processor core
and the outer bus-functional layer. Typically, the interrupt
controller provides a set of interrupt lines at the pins of the
top-level bus-functional layer while internally communi-
cating with the core via the PE bus and the core’s interrupt
condition input. The core then interrupts normal computa-
tion and executes the appropriate handler depending on the
inputs received from the interrupt controller. Overall, the
combination of layers has to simulate the proper interrupt
behavior while maintaining the relationship between inter-
rupt pins at the bus-functional layer and interrupt handlers
in the HAL required by the database format for SCE.

An example of a bus-functional PE model for a pro-
grammable PE that includes an interrupt controller is
shown in Listing 10. In contrast to the example shown pre-
viously, the hardware abstraction layer (Listing 10(a)) now
contains templates for two separate interrupt handlers.

In the next layer (Listing 10(b)), the interrupt control
logic in the model of the processor core hardware is mod-
ified to communicate with the interrupt controller. The in-
terrupt control logic is triggered to interrupt normal com-
putation on events at the core’s interrupt condition line and
bus control lines (line 33). Internally, the control logic pro-
cesses pending interrupts as long as the interrupt condi-
tion is active and the bus is not busy (in order to maintain
bus protocol timing, normal computation must not be in-
terrupted in the middle of a bus transaction). If there is a
pending interrupt, the interrupt logic communicates with
the interrupt controller over the PE bus to acknowledge
the interrupt and receive the interrupt vector. It then sub-
sequently calls the corresponding interrupt handler in the
HAL.

Finally, in the top-level bus-functional layer of the PE
model (Listing 10(c)), the processor core model and the
interrupt controller model are instantiated and connected
via wires and pins of the bus-functional layer. Further-
more, the appropriate annotations are attached to the in-
terrupt pins of the bus-functional layer pointing back to the
interrupt handlers in the HAL.

An example of a simple interrupt controller model
is shown in Listing 11. The interrupt controller (List-
ing 11(c)) consists of interrupt detection modules (one per
interrupt line) and a control module that communicates via
an interrupt status register (ISR). The interrupt detection
behaviors (Listing 11(a)) model the edge detection on the
interrupt lines, setting a bit in the status register when-
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1 import ”MyDSP Bus” ; / / bus p r o t o c o l
2

3 i n t e r f a c e IMyDSP IntHandlers {
4 vo id i n t H a n d l e r (vo id ) ;
5 } ;
6

7 behav ior MyDSP HAL( IMyDSP Bus Protocol p r o t o c o l )
8 implements IMyDSP IntHandlers
9 {

10 MyDSP Bus LinkAccess l i n k ( p r o t o c o l ) ; / / bus data s t ream
11 MyDSP Bus MemAccess mem( p r o t o c o l ) ; / / bus memory access
12

13 vo id i n t H a n d l e r (vo id ) {
14 }
15

16 vo id main (vo id ) {
17 }
18 } ;

(a) Hardware abstraction layer (HAL)

Listing 9: Example of bus-functional model for programmable PE.

1 import ”MyDSP HAL” ; / / hardware a b s t r a c t i o n l a y e r
2

3 / / I n t e r r u p t c o n t r o l l o g i c
4 behav ior MyDSP ICL ( IMyDSP Bus Protocol bus , IMyDSPIntHandlers h a n d l e r s )
5 {
6 vo id main (vo id ) {
7 h a n d l e r s . i n t H a n d l e r ( ) ;
8 }
9 } ;

10

11 / / Bus−f u n c t i o n a l l a y e r
12 behav ior MyDSP BF( out s i g n a l b i t [ 3 1 : 0 ] Addr ,
13 s i g n a l b i t [ 3 1 : 0 ] Data ,
14 out s i g n a l b i t [ 2 ] C t r l ,
15 in s i g n a l b i t [ 1 ] I n t )
16 {
17 note PE BF BUS = ”MyDSP Bus” ;
18 note PE HAL MODEL = ”MyDSP HAL” ;
19 note I n t . PE INT HANDLER = ” i n t H a n d l e r ” ;
20

21 MyDSP Bus Master p r o t o c o l ( Addr , Data , C t r l ) ; / / bus p r o t o c o l
22 MyDSP HAL h a l ( p r o t o c o l ) ;
23 MyDSP ICL i c l ( p r o t o c o l , h a l ) ;
24

25 vo id main (vo id ) {
26 t r y {
27 h a l . main ( ) ;
28 }
29 i n t e r r u p t ( r i s i n g I n t ) {
30 i c l . main ( ) ;
31 }
32 }
33 } ;

(b) Bus-functional layer

Listing 9: Example of bus-functional model for programmable PE (continued).
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1 import ”MyDSP Bus” ; / / bus p r o t o c o l
2

3 i n t e r f a c e IMyDSP IntHandlers {
4 vo id i n t A h a n d l e r (vo id ) ;
5 vo id i n t B h a n d l e r (vo id ) ;
6 } ;
7

8 behav ior MyDSP HAL( IMyDSP Bus Protocol p r o t o c o l )
9 implements IMyDSP IntHandlers

10 {
11 MyDSP Bus LinkAccess l i n k ( p r o t o c o l ) ; / / bus data l i n k access
12 MyDSP Bus MemAccess mem( p r o t o c o l ) ; / / bus memory access
13

14 vo id i n t A h a n d l e r (vo id ) {
15 }
16 vo id i n t B h a n d l e r (vo id ) {
17 }
18

19 vo id main (vo id ) {
20 }
21 } ;

(a) Hardware abstraction layer (HAL)

Listing 10: Example of bus-functional model for PE with interrupt controller.

ever an interrupt is detected. The control behavior (List-
ing 11(b)) watches the status register, signals interrupts to
the core, and performs interrupt acknowledge cycles on the
PE bus according to the priority of interrupts as long as
there are interrupts pending.

3.2.4 IP Adapters

For IP PEs with fixed computation and communication
functionality (see also Section 3.1.5), communication with
the IP can generally not be synthesized arbitrarily but has
to adhere to the proprietary IP protocol on all levels. Apart
from the IP bus model that describes the lower layers
of IP communication in the bus protocol database, bus-
functional IP models therefore need to supply a complete
protocol stack in the form of an IP adapter that covers com-
munication with the IP from the abstract, message-passing
level down to the pins of the IP bus.

IP adapters are SpecC channel definitions with an inter-
nal body as shown in Figure 10. The name of the channel
defines the name of the adapter and has to match the cor-
responding annotation at the bus-functional PE model (see
Section 3.2.1,PE BF ADAPTERannotation).

On the one side, adapter channels connect to the IP
through their list of ports of bitvector signal type that has
to match the list of wires in the IP bus and hence the list of
IP pins with reversed directions. On the other side, adapter
channels export methods through implemented interfaces
that provide message passing communication with the IP
equivalent to the set of channels connecting to the ports of

ip_adapter_channel =
channel adapter_name pins

implements interfaces_opt
’{’ internal_declarations_opt ’}’ ’;’

pins =
’(’ pin_list ’)’

pin_list =
pin
| pin_list ’,’ pin

pin =
pin_direction signal bit_sign bit_vector pin_name

pin_direction =
<nothing>
| in
| out
| inout

bit_sign =
<nothing>
| signed
| unsigned

bit_vector =
bit ’[’ const_expression ’:’ const_expression ’]’
| bit ’[’ const_expression ’]’

Figure 10: Format of IP adapters.
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1 import ”MyDSP HAL” ; / / hardware a b s t r a c t i o n l a y e r
2

3 / / I n t e r r u p t c o n t r o l l o g i c
4 behav ior MyDSP ICL ( IMyDSP Bus Master bus , IMyDSPIntHandlers hand le rs ,
5 in s i g n a l b i t [ 1 ] I n t , in s i g n a l b i t [ 1 ] Busy )
6 {
7 vo id main (vo id ) {
8 unsigned b i t [ 0 : 0 ] vec ;
9 whi le ( I n t && ! Busy ) { / / p r o c e s s pending i n t e r r u p t s

10 vec = bus . a c k I n t r ( ) ; / / acknowledge , r e c e i v ev e c t o r
11 swi tch ( vec ) { / / c a l l co r respond ing i n t e r r u p t hand le r
12 case 0 : re tu rn h a n d l e r s . i n t A h a n d l e r ( ) ;
13 case 1 : re tu rn h a n d l e r s . i n t B h a n d l e r ( ) ;
14 }
15 }
16 }
17 } ;
18

19 / / P r oces s o r core
20 behav ior MyDSPHW( out s i g n a l b i t [ 3 1 : 0 ] Addr ,
21 s i g n a l b i t [ 3 1 : 0 ] Data ,
22 s i g n a l b i t [ 2 ] C t r l ,
23 in s i g n a l b i t [ 1 ] I n t )
24 {
25 MyDSP Bus Master p r o t o c o l ( Addr , Data , C t r l ) ; / / bus p r o t o c o l
26 MyDSP HAL h a l ( p r o t o c o l ) ;
27 MyDSP ICL i c l ( p r o t o c o l , ha l , I n t , C t r l [ 0 ] ) ;
28

29 vo id main (vo id ) {
30 t r y {
31 h a l . main ( ) ;
32 }
33 i n t e r r u p t ( I n t , C t r l ) {
34 i c l . main ( ) ;
35 }
36 }
37 } ;

(b) Processor core layer

Listing 10: Example of bus-functional model for PE with interrupt controller (continued).
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1 import ”MyDSP HW” ; / / p r o c e s s o r core
2 import ”MyDSP IC” ; / / i n t e r r u p t c o n t r o l l e r
3

4 behav ior MyDSP BF ( s i g n a l b i t [ 3 1 : 0 ] Addr , / / bus
5 s i g n a l b i t [ 3 1 : 0 ] Data ,
6 s i g n a l b i t [ 2 ] C t r l ,
7 in s i g n a l b i t [ 1 ] intA , / / i n t e r r u p t s
8 in s i g n a l b i t [ 1 ] i n tB )
9 {

10 note PE BF BUS = ”MyDSP Bus” ;
11 note PE HAL MODEL = ”MyDSP HAL” ;
12 note in tA . PE INT HANDLER = ” i n t A h a n d l e r ” ;
13 note i n tB . PE INT HANDLER = ” i n t B h a n d l e r ” ;
14

15 s i g n a l b i t [ 1 ] I n t = 0 ; / / i n t e r r u p t l i n e
16

17 MyDSPHW hw( Addr , Data , C t r l , I n t ) ; / / p r o c e s s o r core
18 MyDSP IC i c ( Addr , Data , C t r l , I n t , intA , in tB ) ; / / i n t e r r u p t c t r l
19

20 vo id main (vo id ) {
21 par {
22 hw . main ( ) ;
23 i c . main ( ) ;
24 }
25 }
26 } ;

(c) Bus-functional layer

Listing 10: Example of bus-functional model for PE with interrupt controller (continued).

interface type in the behavioral IP model (Section 3.1.5).
For every port in the behavioral IP model, the IP adapter
channel has to provide corresponding reverse methods. To
avoid name clashes in the adapter, method names are suf-
fixed with ‘ ’ plus the name of the port in the behavioral
model.

Internally, adapter channels describe the implementation
of IP communication by mapping each message down to its
proper sequence of events on the IP bus wires for transfer-
ring data, synchronization, etc. IP communication can be
described directly in the body of the adapter or hierarchi-
cally through a stack of other protocol channel instances
(e.g. partly using IP bus protocol models out of the bus
database).

An example of an IP adapter for communication with
the IP introduced in Listing 8 is shown in Listing 12. The
adapter connects to the IP bus throughAddr, Data, andCtrl
ports. It implementssendinput andreceiveoutputmeth-
ods corresponding to theinput andoutputports of the be-
havioral IP model. Internally, the methods drive and sam-
ple the bus wires according to the IP protocol to exchange
data and synchronize with the IP.

3.3 Cycle-Accurate PE Models

For PEs with fixed functionality (i.e. programmable PEs
with fixed communication functionality or IPs with fixed
computation and communication functionality) the PE
database has to contain a cycle-accurate implementation
model of the PE in addition to the (mandatory in those
cases) bus-functional PE model. At its interface, a cycle-
accurate model has to match exactly the interface of its cor-
responding bus-functional model. Hence, a cycle-accurate
model is a SpecC behavior with ports of signal bitvector
type representing pins and the general format of cycle-
accurate models is the same as for bus-functional models
shown in Figure 8. Directions, types, names, and order
of ports have to be the same as in the corresponding bus-
functional model.

A cycle-accurate model has to have an external or in-
ternal body providing a clock cycle accurate simulation
model of the PE implementation. Therefore, compared to
the bus-functional model, the pin interface is the same but
the timing is refined and more accurate.

For programmable PEs, the cycle-accurate model has to
implement an instruction set simulation (ISS) that takes the
name of the object code for the processor generated within
SCE as a parameter and executes the instructions therein
cycle by cycle.
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1 behav ior MyDSP ICDetect (in s i g n a l b i t [ 1 ] i n t r , out s i g n a l b i t [ 1 ] f l a g )
2 {
3 vo id main (vo id )
4 {
5 whi le ( t rue ) {
6 wai t ( r i s i n g i n t r ) ;
7 f l a g = 1 ;
8 }
9 }

10 } ;

(a) Interrupt detection logic

1 import ”MyDSP Bus” ; / / bus p r o t o c o l
2

3 behav ior MyDSP ICCtrl ( IMyDSP Bus Slave bus , s i g n a l b i t [ 2 ] ISR ,
4 out s i g n a l b i t [ 1 ] I n t )
5 {
6 vo id main (vo id ) {
7 whi le ( t rue ) {
8 whi le ( ! ISR ) wai t ( ISR ) ; / / wa i t f o r i n t e r r u p t
9

10 I n t = 1 ; / / s i g n a l i n t e r r u p t c o n d i t i o n
11 i f ( ISR [ 0 ] )
12 bus . a c k I n t r ( 0 ) ; / / wa i t f o r acknowledge . . .
13 e l s e i f ( ISR [ 1 ] ) / / . . . and send v e c t o r
14 bus . a c k I n t r ( 1 ) ;
15 I n t = 0 ; / / r e s e t i n t e r r u p t c o n d i t i o n
16 }
17 }
18 } ;

(b) Control logic

Listing 11: Example of interrupt controller model.
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1 import ”MyDSP Bus” ; / / bus p r o t o c o l
2

3 import ” MyDSP ICDetect ” ; / / d e t e c t i o n l o g i c
4 import ” MyDSP ICCtrl ” ; / / c o n t r o l l e r
5

6 behav ior MyDSP IC ( in s i g n a l b i t [ 3 1 : 0 ] Addr , / / PE bus
7 s i g n a l b i t [ 3 1 : 0 ] Data ,
8 in s i g n a l b i t [ 2 ] C t r l ,
9 out s i g n a l b i t [ 1 ] I n t ,

10 in s i g n a l b i t [ 1 ] intA , / / i n t e r r u p t s
11 in s i g n a l b i t [ 1 ] i n tB )
12 {
13 MyDSP Bus Slave p r o t o c o l ( Addr , Data , C t r l ) ; / / bus p r o t o c o l
14

15 s i g n a l b i t [ 2 ] ISR = 0 ; / / s t a t u s r e g i s t e r
16

17 MyDSP ICDetect i n t A d e t e c t ( intA , ISR [ 0 ] ) ; / / d e t e c t i o n l o g i c
18 MyDSP ICDetect i n t B d e t e c t ( intB , ISR [ 1 ] ) ;
19

20 MyDSP ICCtrl c t r l ( p r o t o c o l , ISR , I n t ) ; / / c o n t r o l
21

22 vo id main (vo id ) {
23 par {
24 c t r l . main ( ) ;
25 i n t A d e t e c t . main ( ) ;
26 i n t B d e t e c t . main ( ) ;
27 }
28 }
29 } ;

(c) Interrupt controller model

Listing 11: Example of interrupt controller model (continued).

1 channel IP Adap te r (out s i g n a l b i t [ 1 ] ready ,
2 in s i g n a l b i t [ 1 ] ack ,
3 s i g n a l b i t [ 3 1 : 0 ] d a t )
4 implements I I P A d a p t e r
5 {
6 vo id s e n d i n p u t ( i n t i n p u t )
7 {
8 d a t = i n p u t ;
9 r eady = 1 b ;

10 wai t ( r i s i n g ack ) ;
11 }
12

13 vo id r e c e i v e o u t p u t (i n t & o u t p u t )
14 {
15 r eady = 0 b ;
16 wai t ( f a l l i n g ack ) ;
17 ∗ o u t p u t = d a t ;
18 }
19 } ;

Listing 12: Example of IP adapter model.
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For IPs, the cycle-accurate model in SpecC has to cor-
respond to the RTL description of the IP that has to be
available outside of SCE in the form of synthesizable (soft
core) or gate-level (hard core) HDL (e.g. VHDL or Ver-
ilog) code.

3.3.1 Instruction Set Models

For an instruction set model, the body of the cycle-accurate
PE behavior contains SpecC code that executes an instruc-
tion set simulation of the processor’s object code generated
through SCE. The instruction set simulation reads instruc-
tions from the supplied object file and executes them cycle
by cycle while simulating their effects on the pins of the
PE model. Instruction set models can trade of accuracy in
terms of timing observed at the PE’s pins versus simulation
speed depending on the granularity of simulated cycles.

Existing instruction set simulators (ISS) for PEs can be
plugged into the SpecC simulation as long as they pro-
vide a C level API that allows hooks into the simulation
flow to observe and manipulate the PE pins. The cycle-
accurate SpecC behavior in the PE database acts as a wrap-
per around calls to the ISS API and gets later linked against
the ISS libraries to create the co-simulation executable.
The wrapper code advances simulation time and drives and
samples pins on the SpecC side by controlling the ISS such
that both sides can be synchronized on events at the PE pin
interface.

Listing 13 shows an example of such a simple SpecC
instruction set model wrapper around an existing ISS for
the PE example from Listing 9. After initialization of the
ISS (line 15 and line 16), the instruction set model sim-
ulates one clock cycle of the ISS (line 21) in an endless
loop (line 18). In each cycle, the model drives the ISS’s
asynchronous inputs (line 19) and it checks for any I/O
instructions executed in the ISS. In case of external bus
reads (line 23) or bus writes (line 27), the model simu-
lates a corresponding bus cycle via calls to the PE’s bus
protocol model (line 10) imported from the bus protocol
database (line 3). In case of a normal processor cycle, the
instruction set model simply advances time on the SpecC
side corresponding to the simulated time spent in the ISS
(line 31).

3.3.2 IP Models

For IPs with fixed functionality, the cycle-accurate PE
model has to provide a RTL description of the IP that can
be plugged into the system simulation as is. The body of
the cycle-accurate PE behavior can be internal or external
where parts or all of the model can be supplied as an exter-
nal shared library created through the IP mechanism of the
SpecC compiler (‘scc ’, Section A.1).

RTL descriptions for IPs in SpecC can be at any level,
e.g. behavioral, FSMD-style, structural or even gate-level
RTL descriptions are possible. Furthermore, if an IP model
is available in the form of an external simulator that satis-
fies the requirements, it can be plugged in by providing a
SpecC wrapper in the same manner as for ISS models de-
scribed in Section 3.3.1. In any case, the PE database does
not pose any restrictions on the body of cycle-accurate IP
models and existing guidelines for RTL modeling can be
followed freely.

4 Bus Protocols

The bus database contains models of busses including asso-
ciated protocols where the term “bus” refers to communi-
cation structures in general, e.g. networks and their proto-
cols. Models taken out of the bus database are used within
SCE to implement and synthesize communication inside
the PEs connected to the busses of the system.

Bus models in the bus database consist of a stack of
protocol layers At the bottom of the stack, the physical
layer is connected to the actual physical bus wires and it
implements the bus primitives defined by the bus proto-
col for data transfers, synchronization and arbitration. On
top of the physical layer, the media access layer provides
an abstraction of external communication into data links
and memory accesses by using and combining bus primi-
tives to regulate media accesses and slice abstract data into
bus words. Note that even though these layers are loosely
based on the OSI reference model, they do not necessarily
match the OSI definitions exactly.

Each protocol layer can have two separate sides with dif-
ferent implementations for bus masters and bus slaves. The
different models of the two protocol layers for bus models
are stored as SpecC channels or behaviors (for passive or
active protocol models, respectively). Each channel or be-
havior provides a protocol implementation for one single
PE connected to the bus, i.e. each connected PE imple-
ments a bus protocol by creating internal instances of the
required protocol models. Physical layer models connect
to the bus wires through ports of the model and pins of the
PE. Higher-level models are stacked on top of each other
via interfaces implemented by each model where a model
calls the methods of the model beneath it via ports of cor-
responding interface type.

At the top-level of the bus database, all channels and
behaviors that are part of the same bus model are then
grouped together under a single, top-level bus channel that
acts as a container representing the overall bus protocol in
the bus database.
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1 # inc lude ” i s s . h ” / / ISS C i n t e r f a c e
2

3 import ”MyDSP Bus” ; / / bus p r o t o c o l
4

5 behav ior MyDSP ISS (out s i g n a l b i t [ 3 1 : 0 ] Addr ,
6 i nou t s i g n a l b i t [ 3 1 : 0 ] Data ,
7 i nou t s i g n a l b i t [ 2 ] C t r l ,
8 in s i g n a l b i t [ 1 ] I n t )
9 {

10 MyDSP Bus Master p r o t o c o l ( Addr , Data , C t r l ) ; / / bus p r o t o c o l
11

12 vo id main (vo id ) {
13 b i t [ 3 1 : 0 ] d a t a ;
14

15 i s s s t a r t u p ( ) ; / / i n i t i a l i z e ISS
16 i s s l o a d (OBJECTNAME ) ; / / load program
17

18 whi le ( t rue ) { / / run s i m u l a t i o n
19 i s s i n t r = I n t ; / / d r i v e ISS i n p u t
20

21 i s s e x e c ( ) ; / / run DSP c y c l e
22

23 i f ( i s s I R = = MOVEM RD) { / / bus read ?
24 p r o t o c o l . readLong ( issAR , & d a t a ) ;
25 i ss DR = d a t a ;
26 }
27 e l s e i f ( i s s I R = = MOVEM WR) { / / bus w r i t e ?
28 p r o t o c o l . wr i teLong ( issAR , iss DR ) ;
29 }
30 e l s e { / / normal c y c l e
31 wa i t f o r (1 e9 / CLOCKFREQUENCY) ;
32 }
33 }
34 }
35 } ;

Listing 13: Example of instruction set simulation (ISS) PE model.
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4.1 Bus Channels

Bus channels represent bus protocols in the bus database.
For each bus in the bus database there must be one bus
channel and the set of bus channels defines the list of bus
protocols available in the database. Bus channels are used
for bus allocation and they act as a container for all pro-
tocol models and other information like attributes and pa-
rameters associated with a bus.

4.1.1 General Format

bus_channel =
channel bus_name no_port_opt

implements_interface_opt
’{’ bus_body_list ’}’ ’;’

no_port_opt =
<nothing>
| ’(’ ’)’

bus_body_list =
bus_body
| bus_body_list bus_body

bus_body =
note_definition
| wire_definition
| instance_declaring_list
| method_definition

wire_definition =
signal bit_sign bit_vector wire_name

initializer_opt ’;’

bit_sign =
<nothing>
| signed
| unsigned

bit_vector =
bit ’[’ const_expression ’:’ const_expression ’]’
| bit ’[’ const_expression ’]’

initializer_opt =
<nothing>
| ’=’ const_expression

Figure 11: Format of bus channels.

A bus channel is created through a special SpecC chan-
nel definition. The general format of bus channels in shown
in Figure 11. The name of the bus channel defines the name
of the bus protocol in the bus database. A bus channels
does not have any ports but it can implement interfaces to
optionally expose bus communication interfaces instanti-
ated internally as described below for documentation and
readability purposes.

A bus channel has to have an internal body that defines
the set of wires of the bus and the protocol stacks for im-
plementation of the bus protocol inside partners connected
to and communicating via the bus. Bus wires are defined
by instances of variables of signal bitvector type with op-
tional initializers defining default values for driving a bus
wire. Protocol stacks are given as instances of channels
or behaviors describing protocol models at different lay-
ers. For each protocol model associated with the bus, an
instance of that channel or behavior has to exist in the bus
channel. Furthermore, every wire has to be connected to at
least one channel or behavior instance. Mappings of wires
to ports of low-level instances and of instances at lower
layers to ports of instances of higher layers thereby define
the proper connectivity to assemble protocol stacks inside
PEs.

In addition to the definition of the communication hi-
erarchy implementation, bus channels also carry a num-
ber of annotations for general database management, at-
tributes (Section 4.1.2), and optional parameters (see Sec-
tion 2.2.2).

General annotations for database management store ba-
sic information about the protocol organization (Table 21).
Specifically, the following general annotations are attached
to bus channels:

BUSLIBRARY Name describing the bus database the
channel is a member of. Used to distinguish between
bus and other channels, i.e. required for bus protocol
channels.

BUSCATEGORYName of the category the bus belongs
to. Bus categories are mandatory and are used to clas-
sify busses into different groups for bus allocation and
selection.

BUSCOMMENTBrief description of the bus that will be
used and displayed as an aid during selection and al-
location.

BUSADDRPORTName(s) of the variable(s) represent-
ing the wire(s) over which addresses are communi-
cated. Either a single string or a complex annotation
with a list of strings. Required for busses that support
addressing.

BUSDATAPORTName(s) of the variable(s) represent-
ing the wire(s) over which data is communicated. Ei-
ther a single string or a complex annotation with a list
of strings. Required for all busses.

BUSMASTERPROTOCOLName of the channel or be-
havior providing the implementation of the data trans-
fer protocol physical layer for bus masters. The
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Name Description Type Default

BUSLIBRARY Name of parent bus database String –
BUSCATEGORY Name of bus category String ””
BUSCOMMENT Bus description String ””
BUSADDRPORT Name of the bus wire carrying addresses String –
BUSDATAPORT Name of the bus wire carrying data String –
BUSMASTERPROTOCOL Name of data transfer protocol master model String –
BUSSLAVEPROTOCOL Name of data transfer protocol slave model String –
BUSMASTERINT Name of synchronization protocol receiver model String –
BUSSLAVEINT Name of synchronization protocol sender model String –
BUSMASTERACCESS Name of bus request model of arbitration protocol String –
BUSSLAVEACCESS Name of bus grant model of arbitration protocol String –
BUSMASTERLINK Name of data link master model String –
BUSSLAVELINK Name of data link slave model String –
BUSMASTERMEM Name of memory access model String –
BUSREADMETHOD Name of media access layer read method String –
BUSWRITEMETHOD Name of media access layer write method String –

Table 21: General annotations for bus protocol channels.

named channel or behavior has to exist in the bus
database. Required for all busses. See Section 4.2.2.

BUSSLAVEPROTOCOLName of the channel or behav-
ior providing the implementation of the data transfer
protocol physical layer for bus slaves. The named
channel or behavior has to exist in the bus database.
Required for all busses. See Section 4.2.2.

BUSMASTERINT Name of the channel or behavior
providing the implementation of the synchronization
protocol physical layer for bus masters, i.e. event de-
tection on the receiver side. The named channel or
behavior has to exist in the bus database. Required for
busses that support interrupt lines. See Section 4.2.3.

BUSSLAVEINT Name of the channel or behavior pro-
viding the implementation of the synchronization pro-
tocol physical layer for bus slaves, i.e. event genera-
tion on the sender side. The named channel or be-
havior has to exist in the bus database. Required for
busses that support interrupt lines. See Section 4.2.3.

BUSMASTERACCESSName of the channel or behav-
ior providing the arbitration protocol implementation
for bus accesses by bus masters. The named channel
or behavior has to exist in the bus database. Required
for busses where masters have to participate in a sep-
arate media access protocol among hosts attached to
the bus. See Section 4.2.4.

BUSSLAVEACCESSName of the channel or behavior
providing the arbitration protocol implementation for
bus accesses by bus slaves. The named channel or

behavior has to exist in the bus database. Required
for busses where masters have to participate in a sep-
arate media access protocol among hosts attached to
the bus. See Section 4.2.4.

BUSMASTERLINK Name of the channel providing the
media access layer implementation for data links in-
side bus masters. The named channel has to exist in
the bus database. Required for all busses. See Sec-
tion 4.3.2.

BUSSLAVELINK Name of the channel providing the
media access layer implementation for data links in-
side bus slaves. The named channel has to exist in
the bus database. Required for all busses. See Sec-
tion 4.3.2.

BUSMASTERMEMName of the channel providing the
media access layer implementation for external mem-
ory accesses inside bus masters. The named channel
has to exist in the bus database. Required for busses
that support shared memories. See Section 4.3.3.

BUSREADMETHODName of the media access layer
method for bus read accesses. The named method has
to exist in all link and memory access media access
layer channels (see Section 4.3.2 and Section 4.3.3).
Required for all busses.

BUSWRITEMETHODName of the media access layer
method for bus write accesses. The named method
has to exist in all link and memory access media
access layer channels (see Section 4.3.2 and Sec-
tion 4.3.3). Required for all busses.
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Note that different protocol model annotations can point to
the same behavior or channel, i.e. a protocol implementa-
tion can provide more than one of the mandatory or op-
tional functionalities within the restrictions noted in the
rest of this Section 4.

An example of a bus channel is shown in Listing 14.
The bus channel defines a bus protocol namedMyDSPBus
that is part of the “busses” library and belongs to the “Pro-
cessor” category (the example being the protocol for the
MyDSPprocessor from the PE database bus-functional ex-
amples, see Section 3.2). The bus channel annotations pro-
vides pointers to the different channels implementing the
layers of the bus protocol model described in the following
sections. The bus provides the mandatory models for the
data transfer protocol physical layer (MyDSPBusMaster
on the master side andMyDSPBusSlaveon the slave side)
and the media access layer link (MyDSPBusLink for both
sides) implementations. The bus supports shared memory
communication and it defines the corresponding media ac-
cess layer implementations (MyDSPBusMemAccessfor
performing memory accesses from a master). In both
cases, link and memory type communication is provided
throughreadandwrite methods of the corresponding chan-
nels. Finally, the bus defines a built-in synchronization pro-
tocol (MyDSPBus IntGeneratefor interrupt generation on
the slave side andMyDSPBus IntDetectfor interrupt de-
tection on the master side) but does not support arbitration
to regulate bus accesses (noBUSMASTERACCESSan-
notation), i.e. it does not support multiple masters to be
connected.

The bus channel example contains variable instances
defining the basic bus wires (address busAddr, data bus
Data, and control linesCtrl) and two built-in interrupt lines
(intA andintB). On top of the wires, protocol stacks for the
master and slave side of the bus are defined by instantiat-
ing all the channels named in the annotations in the proper
hierarchy. Physical layer instances connect directly to the
wires for basic bus (master, slave) and interrupt protocols
(masterIntX, slaveIntX), respectively. On top of that, me-
dia access layer instances for links (masterLink, slaveLink)
and memory accesses (masterMem) connect to the physi-
cal bus protocol implementations to use the bus primitives
provided by them.

4.1.2 Attributes

Basic characteristics and metrics of busses and protocols
are described through attribute annotations attached to the
bus channels. Attribute annotations can be given using the
format defined previously in Section 2.2.1. Specifically,
the following attributes can be attached to bus channels
(Table 22):

BUSBANDWIDTHMaximal bandwidth of the bus, i.e.
throughput of the bus at 100% utilization.

BUSCOSTCost of the bus. The cost unit depends on the
database (e.g. price or area).

BUSADDRWIDTH Number of bits in bus addresses (e.g.
number of wires in the address bus or bitwidth of ad-
dress field in bus frames). Determines the size of the
bus address space.

BUSDATAWIDTH Number of bits in bus data words
(e.g. number of wires in the data bus or bitwdith of
data part in bus frames). Determines the maximal
amount of data transfered in a single regular bus cy-
cle.

BUSCHARWIDTH Number of bits in a basic bus char-
acter for memory accesses where bus characters are
memory words aligned at unit address boundaries
(one bus character per address), i.e. width of small-
est addressable memory unit.

BUSALIGNMENTBoundary at which whole bus data
words are aligned in the bus address space, i.e. the
address of a any part of a bus word modulo the align-
ment determines the address of the corresponding
whole bus data word.

Note that bus character width multiplied by the bus align-
ment must not necessarily be equal to the bus data word
width in case memory accesses use only partial data words,
for example.

4.1.3 Weight Tables

Weight tables of buses are described through weight table
annotations attached to the bus channels. Weight table an-
notations can be given using the format defined previously
in Section 2.2.3. Specifically, the weight annotations can
be attached to buses are listed in Table 23. Each one is
used by at least one design metrics after mapping system
channels to system buses. The weight annotations and ex-
amples of their represented design metrics are:

BUSWEIGHTTRAFFIC STATIC Each item in the
weight table represents the occupied bus data words
by a storage unit (such as a variable) of the system
channel with a certain item type and data type on the
bus.

This is used to compute the static traffic. One design
metric represents the port width of the system chan-
nel. It equals to the traffic when each port of the chan-
nel is accessed once.
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1 import ” MyDSP Bus Int ” ; / / i n t e r r u p t p r o t o c o l
2 import ” MyDSP Bus Link ” ; / / da ta l i n k media access
3 import ”MyDSP Bus Mem” ; / / memory media access
4

5 channel MyDSP Bus ( ) {
6 note BUS LIBRARY = ” busses ” ;
7 note BUS CATEGORY = ” P r o c e s s o r ” ;
8 note BUS COMMENT = ” Bus example ” ;
9 note BUS ADDR PORT = ” Addr ” ;

10 note BUS DATA PORT = ” Data ” ;
11 note BUS MASTER PROTOCOL = ” MyDSPBus Master ” ;
12 note BUS SLAVE PROTOCOL = ” MyDSPBus Slave ” ;
13 note BUS MASTER INT = ” MyDSP Bus IntDetect ” ;
14 note BUS SLAVE INT = ” MyDSP Bus IntGenerate ” ;
15 note BUS MASTER LINK = ” MyDSP Bus LinkAccess ” ;
16 note BUS SLAVE LINK = ” MyDSP Bus LinkAccess ” ;
17 note BUS MASTER MEM = ”MyDSP Bus MemAccess ” ;
18 note BUS WRITE METHOD = ” w r i t e ” ;
19 note BUS READ METHOD = ” read ” ;
20

21 s i g n a l b i t [ 3 1 : 0 ] Addr ; / / bus w i res
22 s i g n a l b i t [ 3 1 : 0 ] Data ;
23 s i g n a l b i t [ 2 ] C t r l = 0 0 b ;
24 s i g n a l b i t [ 1 ] in tA = 0 b ; / / i n t e r r u p t l i n e s
25 s i g n a l b i t [ 1 ] i n tB = 0 b ;
26

27 MyDSP Bus Master m as te r ( Addr , Data , C t r l ) ;/ / mas ter s t a c k
28 MyDSP Bus LinkAccess m as te rL ink ( m as te r ) ;
29 MyDSP Bus MemAccess masterMem ( m as te r ) ;
30 MyDSP Bus IntDetect m as te r In tA ( in tA ) ;
31 MyDSP Bus IntDetect m as te r In tB ( in tB ) ;
32

33 MyDSP Bus Slave s l a v e ( Addr , Data , C t r l ) ;/ / s l a v e s t a c k
34 MyDSP Bus LinkAccess s l a v e L i n k ( s l a v e ) ;
35 MyDSP Bus IntGenerate s l a v e I n t A ( in tA ) ;
36 MyDSP Bus IntGenerate s l a v e I n t B ( in tB ) ;
37 } ;

Listing 14: Bus channel example.

Name Description Unit Type Default

BUSBANDWIDTH Max. throughput bits/s double 0.0
BUSCOST Cost double 0.0
BUSADDRWIDTH Address bus width bits uint 8u
BUSDATAWIDTH Data bus width bits uint 0u
BUSCHARWIDTH Memory character width bits uint 8u
BUSALIGNMENT Bus word address alignment addr uint 1u

Table 22: Bus channel attribute annotations.

Name Metric Unit Type Default

BUSWEIGHTTRAFFIC STATIC Static traffic words double 0.0
BUSWEIGHTTRAFFIC DYNAMIC Dynamic traffic words double 0.0

Table 23: Bus channel weight annotations.
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BUSWEIGHTTRAFFIC DYNAMICEach item in the
weight table represents the occupied bus data words
by a storage unit (such as a variable) of the system
channel with a certain item type and data type on the
bus.

This is used to compute the dynamic traffic. One de-
sign metric represents the dynamic traffic of the de-
sign. It equals to the amount of traffic going through
the ports of the system channel during simulation.

Besides the weight annotation, the item header anno-
tation and data header annotation are also required. The
header annotations are displayed in Table 24.

4.2 Physical Layer

Physical layer protocol models provide primitives for
atomic bus transactions at their interfaces and they describe
the basic timing of events (value changes) on the wires of
the bus for each primitive. Timing diagrams of bus trans-
actions are represented through state machines and associ-
ated timing constraints defining the possible sequences of
driving and sampling bus wires. Physical layer protocol
models are used in the SCE design flow to provide models
of the protocol behavior on the wires of the bus both for
system simulation and for synthesis of protocol implemen-
tations in actual hardware.

In general, a bus can have separate physical protocols
for basic data transfers, synchronization, and arbitration. A
protocol model provides a description for implementation
of the protocol in a PE connected to the bus’ wires. Each
physical protocol can have two separate models with dif-
ferent implementations for bus master and bus slave type
PEs.

4.2.1 General Format

The general format of physical layer protocol models is
shown in Figure 12. Physical layer models are defined as
either SpecC channels for passive models or SpecC behav-
iors for active models. In case of active models, the be-
havior defines amainmethod that has to be executed con-
currently with the main computation inside a PE for busses
where a PE needs to constantly participate in the protocol.
For example, an active slave side might be necessary to an-
swer and decline polling requests in case of a protocol that
requires an acknowledge from slave to master to complete
a transfer.

In both cases, the physical layer model defines a set of
methods and exports them through an implemented inter-
face such that higher layers can use physical layer ser-
vices for communication by calling appropriate methods
as needed. Internally, a physical layer channel or behavior

protocol_model =
protocol_channel

| protocol_behavior

protocol_channel =
channel protocol_name pins

implements interface_list
’{’ internal_declarations_opt ’}’ ’;’

protocol_behavior =
behavior protocol_name pins

implements interface_list
’{’ internal_declarations_opt ’}’ ’;’

pins =
’(’ pin_list ’)’

pin_list =
pin
| pin_list ’,’ pin

pin =
pin_direction signal bit_sign bit_vector pin_name

pin_direction =
<nothing>
| in
| out
| inout

bit_sign =
<nothing>
| signed
| unsigned

bit_vector =
bit ’[’ const_expression ’:’ const_expression ’]’
| bit ’[’ const_expression ’]’

Figure 12: Format of physical layer protocol models.
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Name Type Default

BUSWEIGHTTRAFFIC HEADERDATATYPE in Table 10 –
BUSWEIGHTTRAFFIC HEADERITEMTYPE in Table 8 –

Table 24: Header annotations for traffic metrics.

models the corresponding protocol for driving and sam-
pling the bus wires through their ports of bitvector signal
type. The list of ports has to match a subset of the list of
bus wires such that physical layer models can be connected
to the wires through pins of the bus-functional PE.

4.2.2 Data Transfer Protocol

The mandatory data transfer protocol is the core of the bus
and it describes primitives for transferring native bus words
distinguished by bus addresses. It has to provides methods
for all atomic bus cycles available over the core bus, in-
cluding special types like burst mode, etc.

In case of a master/slave arrangement (separate models
for master and slave side), the master side is actively initi-
ating bus cycles and the slave slide can only passively listen
on the bus for the start of a cycle to participate in. Conse-
quently, methods on the slave side are considered block-
ing and only return when the transfer has been completed
successfully with the corresponding master. In order to en-
able polling, methods on the master side, on the other hand,
must not block even if no corresponding slave is available
to successfully complete the transfer (note that in order to
satisfy this requirement, active slaves might be necessary to
answer and decline a transfer if no data is available through
higher layers).

In case there is no distinction between masters and
slaves (master model and slave model are the same), the
single data transfer protocol model acts both as master and
slave where for each transfer the sending side is assumed to
be the master and the receiving side the slave. Apart from
that, the same restrictions for the sending (master) and re-
ceiving (slave) methods apply.

Listing 15 and Listing 16 show an example of a data
transfer protocol model. The data transfer protocol inter-
face shown in Listing 15 provides primitives for reading
and writing data operands of different sizes from/to the
bus in one shot. Since bus addresses have to be aligned
correctly, the slice of addresses accepted by each primitive
depends on the size of the operand.

The example protocol is defined as two separate pas-
sive models in the form of channels for the master side
(Listing 16(a)) and the slave side (Listing 16(b)). Both
sides implement the same data transfer protocol interface
IMyDSPBusProtocol shown previously. Internally, the
sequence of statements in the methods drive and sample the

Addr, Data, andCtrl wires of the bus through ports of the
channels. Furthermore, the protocol state machines are en-
closed indo-timing constructs to specify the constraints
on timing that have to be obeyed when implementing the
protocol.

4.2.3 Synchronization Protocol

As explained in the previous section, the data transfer pro-
tocol generally only supplies inherent one-way synchro-
nization from master to slave. However, in order to im-
plement reliable communication with guaranteed data de-
livery, two-way synchronization between communication
partners is required. Therefore, a bus can supply an op-
tional, distinct synchronization protocol to efficiently send
events from slave to master. Usually, this means an inter-
rupt protocol and interrupt wires through which a slave can
send interrupts to a master.

In the same manner as data transfer protocols (see Sec-
tion 4.2.2), interrupt protocols can be arranged as sepa-
rate models for master side and slave side, or as one com-
mon model acting as both master (when sending) and slave
(when receiving). In both cases, the master and slave sides
have to implement thei receiveand i sendinterfaces out
of the standard SpecC channel library to receive and send
events, respectively.

If the synchronization protocol annotations in the bus
channel point to the data transfer protocol model(s), two-
way synchronization with blocking transfers on both sides
has to be implemented as part of the data transfer proto-
col, and no separate synchronization protocol is available
or necessary. Similarly, if no synchronization protocol is
supplied, no event transfer mechanism is available as part
of the bus.

An example of a basic synchronization protocol to send
interrupts from a slave to a master is shown in Listing 17.
On the master side (Listing 17(a)), the interrupt detection
logic channel receives events by recognizing rising edges
on the interrupt line connected to its port. On the slave
side (Listing 17(b)), the interrupt generation logic chan-
nel sends events by creating a pulse on the interrupt line
through its port.
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1 i n t e r f a c e IMyDSP Bus Protocol
2 {
3 vo id r eadBy te (b i t [ 3 1 : 0 ] addr , b i t [ 7 : 0 ] ∗ d a t a ) ;
4 vo id readWord (b i t [ 3 1 : 1 ] addr , b i t [ 1 5 : 0 ] ∗ d a t a ) ;
5 vo id readLong (b i t [ 3 1 : 2 ] addr , b i t [ 3 1 : 0 ] ∗ d a t a ) ;
6

7 vo id w r i t e B y t e (b i t [ 3 1 : 0 ] addr , b i t [ 7 : 0 ] d a t a ) ;
8 vo id wri teWord (b i t [ 3 1 : 1 ] addr , b i t [ 1 5 : 0 ] d a t a ) ;
9 vo id wr i teLong (b i t [ 3 1 : 2 ] addr , b i t [ 3 1 : 0 ] d a t a ) ;

10 } ;

Listing 15: Example of a data transfer protocol interface.

1 channel MyDSP Bus Master (
2 out s i g n a l b i t [ 3 1 : 0 ] Addr ,
3 s i g n a l b i t [ 3 1 : 0 ] Data ,
4 out s i g n a l b i t [ 2 ] C t r l )
5 implements IMyDSP Bus Protocol
6 {
7 vo id readLong (b i t [ 3 1 : 2 ] A,
8 b i t [ 3 1 : 0 ] ∗D) {
9 do {

10 l 1 : Addr = A @ 00 b ;
11 C t r l = 0 1 b ;
12 wa i t f o r ( 1 0 ) ;
13 l 2 : ∗D = Data ;
14 C t r l = 0 0 b ;
15 } t im ing {
16 range ( l 1 ; l 2 ; 1 0 ; ) ;
17 }
18 }
19

20 vo id wr i teLong (b i t [ 3 1 : 2 ] A,
21 b i t [ 3 1 : 0 ] D) {
22 do {
23 l 1 : Addr = A @ 00 b ;
24 Data = D;
25 C t r l = 1 1 b ;
26 wa i t f o r ( 1 0 ) ;
27 l 2 : C t r l = 0 0 b ;
28 } t im ing {
29 range ( l 1 ; l 2 ; 1 0 ; ) ;
30 }
31 }
32

33 / / . . .
34 } ;

(a) Master side

1 channel MyDSP Bus Slave (
2 in s i g n a l b i t [ 3 1 : 0 ] Addr ,
3 s i g n a l b i t [ 3 1 : 0 ] Data ,
4 in s i g n a l b i t [ 2 ] C t r l )
5 implements IMyDSP Bus Protocol
6 {
7 vo id wr i teLong (b i t [ 3 1 : 2 ] A,
8 b i t [ 3 1 : 0 ] D) {
9 do {

10 l 1 : wai t ( r i s i n g C t r l ) ;
11 i f ( (A ! = Addr [ 3 1 : 2 ] ) | |
12 ( C t r l [ 1 ] ) ) goto l 1 ;
13 wa i t f o r ( 5 ) ;
14 l 2 : Data = D;
15 } t im ing {
16 range ( l 1 ; l 2 ; ; 1 0 ) ;
17 }
18 }
19

20 vo id readLong (b i t [ 3 1 : 2 ] A,
21 b i t [ 3 1 : 0 ] ∗D) {
22 do {
23 wai t ( r i s i n g C t r l ) ;
24 i f ( (A ! = Addr [ 3 1 : 2 ] ) | |
25 ( ! C t r l [ 1 ] ) ) goto l 1 ;
26 l 1 : wa i t f o r ( 5 ) ;
27 l 2 : ∗D = Data ;
28 } t im ing {
29 range ( l 1 ; l 2 ; ; 1 0 ) ;
30 }
31 }
32

33 / / . . .
34 } ;

(b) Slave side

Listing 16: Example of data transfer protocol model.
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1 import ” i r e c e i v e ” ;
2

3 channel MyDSP Bus IntDetect (
4 in s i g n a l b i t [ 1 ] i n t r
5 )
6 implements i r e c e i v e
7 {
8 vo id r e c e i v e (vo id )
9 {

10 wai t ( r i s i n g i n t r ) ;
11 }
12

13 } ;

(a) Interrupt detection logic

1 import ” i s e n d ” ;
2

3 channel MyDSP Bus IntGenerate (
4 out s i g n a l b i t [ 1 ] i n t r
5 )
6 implements i s e n d
7 {
8 vo id send (vo id ) {
9 i n t r = 1 ;

10 wa i t f o r ( 5 ) ;
11 i n t r = 0 ;
12 }
13 } ;

(b) Interrupt generation logic

Listing 17: Example of synchronization protocol model.

4.2.4 Arbitration Protocol

If the bus supports multiple masters connected to the bus,
it has to supply an arbitration protocol that is used to regu-
late accesses to the shared bus wires. In a centralized arbi-
tration scheme, the master side of the arbitration protocol
instantiated in each master communicates with the slave
side of the arbitration protocol instantiated in an additional
arbiter component attached to the bus. In a distributed ar-
bitration scheme, there is no slave side of the arbitration
protocol and the master sides of the protocol in each mas-
ter regulate accesses among themselves.

The master side of the arbitration protocol can ei-
ther be provided as a separate physical layer protocol
model or it can be a built-in part of the data transfer
protocol in which case the arbitration master annotation
( BUSMASTERACCESS, see Section 4.1.1) points back
to the data transfer protocol model. In case of a separate
arbitration protocol, the master side arbitration protocol
model has to implement thei semaphoreinterface out of
the standard SpecC channel library for acquiring and re-
leasing access to the bus. In either case, arbitration has to
be made available for each PE that will act as a data trans-
fer protocol master if multiple masters sharing the bus are
supported.

4.3 Media Access Layer

Media access layer models abstract accesses to the actual
physical medium through the protocol into canonical inter-
faces for regulated, non-conflicting exchange or communi-
cation of data of arbitrary size and type. Hence, the me-
dia access layer regulates conflicting bus accesses in case
the bus supports multiple masters through the bus arbitra-
tion protocol, and it slices data chunks into bus words or
frames that are transmitted using the primitives (and possi-

bly choosing among modes) of the bus data transfer proto-
col. Note that the media access layer does not implement
any additional synchronization (e.g. through the synchro-
nization protocol) but rather inherits the synchronization
semantics from the underlying data transfer protocol.

The media access layer consists of two parts, models for
implementation of bi-directional data links and models for
accesses to shared memories connected to the bus. Manda-
tory data link models provide primitives to create point-to-
point logical links for exchanging data between two com-
munication partners attached to the bus. Optional memory
access models are required if the bus supports shared mem-
ories and addressing of and access to PE storage. In both
cases, media access layer models can consist of separate
implementations for use in bus master and bus slave type
PEs.

4.3.1 General Format

mac_model =
mac_channel

| mac_behavior

mac_channel =
channel mac_name ’(’ port_list ’)’

implements interface_name
’{’ internal_declarations_opt ’}’ ’;’

mac_behavior =
behavior mac_name ’(’ port_list ’)’

implements interface_name
’{’ internal_declarations_opt ’}’ ’;’

Figure 13: Format of media access layer models.

The general format of media access layer models is
shown in Figure 13. In the same manner as physical layer
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models (see Section 4.2.1), active or passive media ac-
cess layer models can be created through SpecC behavior
or channel definitions, respectively. Media access models
connect to underlying physical layer models for data trans-
fers and arbitration through ports of corresponding inter-
face type. For use by higher-level models created within
SCE, a media access model has to define a set of meth-
ods in its body and export them through an implemented
interface.

Since they will be accessed and used by automatically
generated code, media access layer interfaces have to ad-
here to a certain canonical format. As defined in Figure 14,
a media access layer interface defines a set of methods for
transferring a block of data over the bus using a bus ad-
dress to distinguish between different logical connections
made over the same physical bus. Consequently, a media
access method has no return value and takes three param-
eters: a bus address of integral type corresponding to the
range of addresses available on the bus, a pointer to a data
block, and the size of the data block in bytes. A media ac-
cess layer interface has to define exactly two methods for
reading and writing a block of data from/to the bus where
the names of the methods have to match the corresponding
annotations at the bus channel (see Section 4.1.1).

An example of a media access layer interface is shown
in Listing 18. The interface has the two required methods
read and write that each take address, data pointer, and
length parameters. Corresponding to a 32-bit bus address
range, address and length parameters are ofunsigned
long type.

4.3.2 Data Links

The data link part of the media access layer is used to trans-
fer streams of data packets between logical endpoints in-
side PEs attached to the bus where two logical endpoints
define a bi-directional, point-to-point logical link. Since
streams only support sequential access (no random access),
bus addresses are used to distinguish among different logi-
cal links on the bus only, i.e. data link models use the same
bus address supplied as parameter for all bytes in a packet.
Addresses supplied to data link model methods are used as
addresses on the bus where addresses can be assumed to
be aligned on bus word boundaries as defined in the bus
channel annotations (see Section 4.1.1).

The data link part of the media access layer can provide
different master and slave sides of the model if the under-
lying data transfer protocol in the physical layer differen-
tiates between bus masters and slaves and if separate func-
tionality is needed. For example, acquiring and releasing
access to the bus through calls to the arbitration protocol is
only needed on the master side, if supported by the bus at
all.

Listing 19 shows and example of a data link media ac-
cess layer model. This example shows a model that can be
used for both masters and slaves assuming that no arbitra-
tion is present. If arbitration is supported by the physical
layer, the calls to data protocol primitives in the data link
model on the master side would have to be enclosed in ar-
bitration method calls. Apart from arbitration, the data link
model slices the packet of data supplied as a parameter to
thereadandwrite methods into bus words using data trans-
fer protocol primitives for byte and long word transfers to
transmit as much data as possible in each bus cycle. The
same bus address supplied as method parameter is used for
all transfers of the packet.

4.3.3 Memory Access

The memory access part of the media access layer pro-
vides methods for accessing bytes of data stored in a shared
memory PE attached to the bus. Since memories need
to support random access, data bytes in all memories at-
tached to the bus have to be individually distinguishable.
Therefore, bus addresses are used to select among different
characters stored in memory where each character holds a
certain amount of bytes as defined by the bus (see Sec-
tion 4.1.1) and where consecutive bytes in memory are ac-
cessed as consecutive characters on the bus. Consequently,
for each memory access the address supplied is the address
of the first character in the block of data to be accessed and
the length of the block divided by the bus character size
determines the range of bus addresses accessed. Gener-
ally, addresses supplied by higher layers generated through
SCE cannot be assumed to be properly aligned in any way,
i.e. the memory access model has to take care of properly
aligning data on the bus.

A media access layer memory model consists of master
and slave sides for initiating and serving shared memory
accesses over the bus. The master side provides methods
with names matching the corresponding bus channel an-
notations (Section 4.1.1) for reading and writing blocks of
data bytes from/to memory used in PEs that access shared
storage over the bus. The slave side, on the other hand,
provides methods for serving incoming random memory
accesses used in PEs that provide shared storage (e.g. ded-
icated shared memory PEs).

An example of a memory access client model is shown
in Listing 20. As in the example of the data link model
shown in the previous section, the memory access model
slices the block of data into bus words and transfer the data
using primitives provided by the physical layer data trans-
fer protocol model. Similarly, in case the physical layer of
the bus supports arbitration, data protocol primitives have
to be enclosed in arbitration call to regulate bus accesses
on the bus master side. In contrast to the data link model,
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mac_interface =
’{’ mac_declaration_list ’}’ ’;’

mac_declaration_list =
mac_declaration
| mac_declaration_list mac_declaration

mac_declaration =
note_definition
| mac_method_declaration

mac_method_declaration =
void method_name ’(’ addr_param ’,’ data_param ’,’ len_param ’)’ ’;’

addr_param =
integral_type_specifier param_name

data_param =
void * param_name

len_param =
integral_type_specifier param_name

Figure 14: Format of media access layer interfaces.

1 i n t e r f a c e IMyDSP Bus Access
2 {
3 vo id w r i t e ( unsigned long addr , vo id ∗ data , unsigned long l e n ) ;
4 vo id r ead (unsigned long addr , vo id ∗ data , unsigned long l e n ) ;
5 } ;

Listing 18: Example of media access layer interface.
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1 import ” MyDSP Bus Protocol ” ; / / p h y s i c a l l a y e r
2

3 import ” IMyDSP Bus Access ” ; / / MAC i n t e r f a c e
4

5 channel MyDSP Bus LinkAccess ( IMyDSP Bus Protocol p r o t o c o l )
6 implements IMyDSP Bus Access
7 {
8 vo id w r i t e ( unsigned long addr , vo id ∗ data , unsigned long l e n ) {
9 unsigned char∗ p ;

10

11 f o r ( p = ( unsigned char∗ ) d a t a ; l e n >= 4 ; l e n −= 4 , p + = 4 )
12 p r o t o c o l . wr i teLong ( addr [ 3 1 : 2 ] , (∗ p ) [ 7 : 0 ] @ (∗ ( p + 1 ) ) [ 7 : 0 ] @
13 (∗ ( p + 2 ) ) [ 7 : 0 ] @ (∗ ( p + 3 ) ) [ 7 : 0 ] ) ;
14 f o r ( ; l e n ; len−− , p++)
15 p r o t o c o l . w r i t e B y t e ( addr ,∗ p ) ;
16 }
17

18 vo id r ead (unsigned long addr , vo id ∗ data , unsigned long l e n ) {
19 unsigned char∗ p ;
20 b i t [ 3 1 : 0 ] l ;
21 b i t [ 7 : 0 ] b ;
22

23 f o r ( p = ( unsigned char∗ ) d a t a ; l e n >= 4 ; l e n −= 4 , p + = 4 ) {
24 p r o t o c o l . readLong ( addr [ 3 1 : 2 ] , & l ) ;
25 ∗p = l [ 3 1 : 2 4 ] ; ∗ ( p + 1 ) = l [ 2 3 : 1 6 ] ; ∗ ( p + 2 ) = l [ 1 5 : 8 ] ; ∗ ( p + 2 ) = l [ 7 : 0 ] ;
26 }
27 f o r ( ; l e n ; len−− , p ++) {
28 p r o t o c o l . r eadBy te ( addr , & b ) ;
29 ∗p = b ;
30 }
31 }
32 } ;

Listing 19: Example of media access layer data link model.
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1 import ” MyDSP Bus Protocol ” ; / / p h y s i c a l l a y e r
2

3 import ” IMyDSP Bus Access ” ; / / MAC i n t e r f a c e
4

5 channel MyDSP Bus MemAccess ( IMyDSPBus Protocol p r o t o c o l )
6 implements IMyDSP Bus Access
7 {
8 vo id w r i t e ( unsigned long addr , vo id ∗ data , unsigned long l e n ) {
9 unsigned char ∗ p ;

10

11 f o r ( p = ( unsigned char∗ ) d a t a ; l e n && ( addr % 4 ) ; p ++ , len−−)
12 p r o t o c o l . w r i t e B y t e ( addr ++ ,∗p ) ;
13 f o r ( ; l e n >= 4 ; p + = 4 , l e n −= 4)
14 p r o t o c o l . wr i teLong ( addr [ 3 1 : 2 ] + + , (∗ p ) [ 7 : 0 ] @ (∗ ( p + 1 ) ) [ 7 : 0 ] @
15 (∗ ( p + 2 ) ) [ 7 : 0 ] @ (∗ ( p + 3 ) ) [ 7 : 0 ] ) ;
16 f o r ( ; l e n ; p + + , len−−)
17 p r o t o c o l . w r i t e B y t e ( addr ++ ,∗p ) ;
18 }
19

20 vo id r ead (unsigned long addr , vo id ∗ data , unsigned long l e n ) {
21 unsigned char ∗ p ;
22 b i t [ 3 1 : 0 ] l ;
23 b i t [ 7 : 0 ] b ;
24

25 f o r ( p = ( unsigned char∗ ) d a t a ; l e n && ( addr % 4 ) ; p ++ , len−−) {
26 p r o t o c o l . r eadBy te ( addr ++ , &b ) ;
27 ∗p = b ;
28 }
29 f o r ( ; l e n >= 4 ; p + = 4 , l e n −= 4) {
30 p r o t o c o l . readLong ( addr [31 :2 ]++ , & l ) ;
31 ∗p = l [ 3 1 : 2 4 ] ; ∗ ( p + 1 ) = l [ 2 3 : 1 6 ] ; ∗ ( p + 2 ) = l [ 1 5 : 8 ] ; ∗ ( p + 2 ) = l [ 7 : 0 ] ;
32 }
33 f o r ( ; l e n ; p + + , len−−) {
34 p r o t o c o l . r eadBy te ( addr ++ , &b ) ;
35 ∗p = b ;
36 }
37 }
38 } ;

Listing 20: Example of media access layer memory access master model.
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however, the memory access model also chooses data pro-
tocol primitives such that proper alignment is ensured. Fur-
thermore, the model generates correct bus addresses by in-
crementing addresses for consecutive characters in the data
block.

5 RTL Units

The RTL database contains models of register transfer
level units such as functional units, storage units and lo-
cal busses. RTL units are represented by SpecC behaviors
in the RTL database. For each RTL unit, a corresponding
behavior declaration needs to exist in the database.

The RTL units will be used for RTL component allo-
cation and the generation of the final RTL netlist. Dur-
ing the RTL synthesis process, operations, variables and
data transfers in the behavioral description of the design
are bound to these RTL units.

5.1 RTL Behaviors

RTL behaviors represent the RTL units in the RTL
database. For each RTL unit, there must be one RTL be-
havior which describes its basic characteristics in form of
attributes and parameters.

5.1.1 General Format

An RTL behavior is created through a special SpecC be-
havior definition. The general format of RTL units is
shown in Figure 15. The name of the behavior defines the
name of the RTL unit in the RTL database. RTL behaviors
should accurately reflect the component ports in terms of
number and order.

RTL behaviors carry a number of annotations for gen-
eral database management, attributes (Section 5.1.2), and
optional parameters (see Section 2.2.2).

Table 25 lists the general annotations that are attached
to RTL behaviors for database management and in order to
describe basic information about the corresponding RTL
unit. In detail, the following annotations have to be sup-
plied:

RT LIBRARY Name describing the RTL database the be-
havior is a member of. Used to distinguish between
RTL and other behaviors, i.e. required for RTL behav-
iors.

RT CATEGORYName of the category the RTL unit be-
longs to. RTL unit categories are mandatory and are
used to classify RTL units into different groups for
RTL allocation and selection.

rtl_behavior =
behavior unit_name ports body_opt ’;’

body_opt =
<nothing>
| ’{’ internal_declarations_opt ’}’ ’;’

ports =
’(’ port_list ’)’

port_list =
port
| port_list ’,’ port

port =
port_direction bit_sign bit_vector port_name

port_direction =
<nothing>
| in
| out
| inout

bit_sign =
<nothing>
| signed
| unsigned

bit_vector =
bit ’[’ const_expression ’:’ const_expression ’]’
| bit ’[’ const_expression ’]’

Figure 15: Format of RTL unit behavior models.
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Name Description Type Default

RT LIBRARY Name of parent RTL database String –
RT CATEGORY Name of RTL unit category String ””
RT COMMENT RTL unit description String ””
RT CLASS RTL unit classification (see Table 26) uint 0u
RT DATATYPE Type of data processed by RTL unit (see Table 27) uint 0u

Table 25: General annotations for RTL unit behavior.

RT COMMENTBrief description of the RTL unit that will
be used and displayed as an aid during selection and
allocation.

RT CLASS Class the RTL unit belongs to, i.e. type of
unit. See Table 26.

RT DATATYPEData type of the RTL unit, i.e. type of
data the unit can process. See Table 27.

Value Class

0 Functional unit
1 Memory
2 Register
3 Register file
4 Bus

Table 26: Classification of RTL units.

RTL units must be classified into 5 different categories:
functional units, memories, registers, register files and lo-
cal busses. Functional units can perform operations like
addition, subtraction, multiplication, and so on. A func-
tion unit may take more than one clock cycle to perform
an operation (multi-cycle operation), or can be pipelined
to reduce the clock period.

Secondly, storage units can store data which will be used
in the next computation. These include memories, regis-
ters, and register files.

Finally, local busses are wires used to transfer data be-
tween functional units and storage units.

Value Datatype

0 Integral
1 Floating point
2 Fixed point

Table 27: RTL unit data types.

The behavioral description of a design contains differ-
ent data types of variables. These data types are classified
as: integral type, floating point type, and fixed point type
as shown in Table 27. RTL units perform operations with
these types of operands and store results in the same type.

5.1.2 Attributes

Basic characteristics and metrics of RTL units are de-
scribed through attribute annotations attached to the RTL
behaviors. Attribute annotations can be given using the
format defined previously in Section 2.2.1. Specifically,
the following attributes can be attached to an RTL behav-
ior (Table 28):

RT COSTCost of the RTL unit. The cost unit depends on
the database (e.g. price or area).

RT POWERPower consumption rating of the RTL unit,
i.e. usually average power consumption when not
idling. The power unit isW.

RT AREA Area of the the RTL unit. The area unit ismm2

RT SIZE The size of the storage unit in words, i.e. num-
ber of words which the storage unit can store.

RT BITWIDTH The bit width of the RTL unit, i.e. how
wide the RTL unit is.

RT DECIMALWIDTH The bit width for mantissa of
floating point type unit or for fractional part of fixed
point type unit.

RT DELAY Worst case delay for the RTL unit. The unit
is ns.

RT INPUT DELAY The delay from the input to the in-
ternal data buffer for multi-cycle/pipelined units. The
default value is 0ns. It also indicates the write time to
write a value to the memory. This attribute is associ-
ated with clocked units.

RT OUTPUTDELAY The delay to obtain the output data.
For storage units, it indicates the read time to read a
value from the memory. This attribute is associated
with clocked units.

RT STAGESThis indicates how many pipeline stages the
RTL unit has. The default value is 0u.

RT INTERVAL This indicates how often the RTL unit
can receive input data in number of clock cycle (data
introduction interval). The default value is 0u
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Name Description Unit Type Default

RT COST Cost double 0.0
RT POWER Power consumption W double 0.0
RT AREA Physical size mm2 double 0.0
RT SIZE Storage size words ulong 0ul
RT BITWIDTH Data width bits uint 8
RT DECIMALWIDTH Fractional part width bits uint 0u
RT DELAY Worst case stage delay ns double 0.0
RT INPUT DELAY First stage delay ns double 0.0
RT OUTPUTDELAY Last stage delay ns double 0.0
RT STAGES Number of pipeline stages uint 0u
RT INTERVAL Data introduction interval uint 0u

Table 28: RTL behavior attribute annotations.

Name Description Type Default

RT PIN TYPE port type unsigned int 0u
RT ACTIVE HIGH the port is active high or not bool true
RT CLK POS clock polarity of capturing data bool true

Table 29: RTL unit port attribute annotations.

Also, the ports of RTL units have some attributes as
shown in Table 29.

RT PIN TYPE Type of port. See Table 30.

RT ACTIVE HIGH This indicates whether the port is ac-
tive high or not. e.g. if reset is asserted to high and the
design is reset, then reset port is active high.

RT CLK POS The clock polarity when the input data is
sampled. This attribute is associated with each data
port. e.g. if data is sampled at the positive edge of the
clock, this attribute for the data port should be set to
true.

Value Port type

0 Data
1 Control
2 Address
3 Clock
4 Reset

Table 30: RTL unit port types.

The port types of an RTL unit are classified as: data type,
control type, address type, clock type, and reset type as
listed in Table 30.

5.1.3 Operations

The annotationRT OPERATIONSdefines the operations
which the RTL unit can perform and the associated I/O

ports and control ports. The operations in the RTL input
description will be bound to the RTL units which can per-
form these operations. Table 31 lists all operations which
can be used in operation field.

In addition, we should have a way to describe IP units
like MAC, DCT, and so on. Because the functionality of
an IP unit can’t be described by a primitive SpecC oper-
ator, we use a function call to point to the IP unit in the
operation field (string in Table 31. In the design, if the
designer wants to map a function callmac to MAC unit,
the MAC unit should havemac in the operation field of
RT OPERATIONS. Note that only global functions are

supported for this mapping.
Listing 21 shows RT OPERATIONSof an ALU unit

which can perform the arithmetic operations addition (+),
subtraction (−), increment (++), decrement (−−) and
comparison (==, ! =), as well as the logic operations logic
and/or (&&, ||). These operations and the associated I/O
ports and control ports are defined byRT OPERATIONS
in the ALU unit. For example, as shown in line 12 in List-
ing 21, control inputctrl of ALU should be set to 0x0000
for the ALU to perform addition of values at input porta
andb. The result of the addition will come out of the out-
put portsum.

5.2 Examples

In this section, we will take a closer look at how we can de-
scribe RTL components with examples. We will describes
how functional units and storae units and busses look like.
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_RT_OPERATIONS =
’{’ operation_list ’}’

operation_list =
operation
| operation_list ’,’ operation

operation =
’{’ name ’,’ ’{’ ports_list ’}’ ’}’

ports_list =
ports
| ports_list ’,’ ports

ports =
’{’ output_ports ’,’ input_ports ’,’ ’{’ control_list ’}’ ’}’

output_ports =
port_name
| ’{’ port_name_list ’}’

input_ports =
port_name
| ’{’ port_name_list ’}’

port_name_list =
port_name
| port_name_list ’,’ port_name

control_list =
control
| control_list ’,’ control

control =
’{’ port_name ’,’ const_expression ’}’

Figure 16: Format ofRT OPERATIONSannotation.

Operators Description Operators Description

++ post-increment −− post-decrement
++ : pre-increment −− : pre-decrement
+ : positive − : negative
∼ not ∗ multiplication
/ division % modulo
+ addition − subtraction

<< shift left >> shift right
< less than > greater than

<= less than or equal to >= greater than or equal to
== equal to ! = not equal to
& bitwise and ∧ bitwise exclusive or
| bitwise or && logical and
|| logical or ! logical not
= assignment (write data to storage unit) [] array access (read data from storage unit)

string name of function call for IP @ concatenation

Table 31: operators inRT OPERATIONS.
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1 # i f n d e f BITWIDTH
2 # de f ine BITWIDTH 32 u
3 # end i f
4

5 behav ior a l u (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] sum ,
6 out s i g n a l unsigned b i t [ 0 : 0 ] s t a t u s ,
7 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,
8 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,
9 in s i g n a l unsigned b i t [ 3 : 0 ] c t r l ) ;

10

11 note a l u . RT OPERATIONS = {
12 { ”+” , {{{ ”sum” } , { ” a ” , ”b ” } , {{ ” c t r l ” , 0000 ub} }}}} ,
13 { ”++” , {{{ ”sum” } , { ” a ” } , {{ ” c t r l ” , 0000 ub} , { ”b ” , 0001 ub}}} ,
14 {{ ”sum” } , { ”b ” } , {{ ” c t r l ” , 0000 ub} , { ” a ” , 0001 ub}}}}} ,
15 { ” ++: ” , {{{ ”sum” } , { ” a ” } , {{ ” c t r l ” , 0000 ub} , { ”b ” , 0001 ub}}} ,
16 {{ ”sum” } , { ”b ” } , {{ ” c t r l ” , 0000 ub} , { ” a ” , 0001 ub}}}}} ,
17 { ”−” , {{{ ”sum” } , { ” a ” , ”b ” } , {{ ” c t r l ” , 00001 ub} } } } } ,
18 { ”−−” , {{{ ”sum” } , { ” a ” } , {{ ” c t r l ” , 0001 ub} , { ”b ” , 0001 ub}}}}} ,
19 { ”−−:” , {{{ ”sum” } , { ” a ” } , {{ ” c t r l ” , 0001 ub} , { ”b ” , 0001 ub}}}}} ,
20 { ” −: ” , {{{ ”sum” } , { ”b ” } , {{ ” c t r l ” , 0001 ub} , { ” a ” , 0000 ub}}}}} ,
21 { ” ˜ ” , {{{ ”sum” } , { ” a ” } , {{ ” c t r l ” , 0010 ub} }}}} ,
22 { ”&” , {{{ ”sum” } , { ” a ” , ”b ” } , {{ ” c t r l ” , 0011 ub} }}}} ,
23 { ” | ” , {{{ ”sum” } , { ” a ” , ”b ” } , {{ ” c t r l ” , 0100 ub} }}}} ,
24 { ” ˆ ” , {{{ ”sum” } , { ” a ” , ”b ” } , {{ ” c t r l ” , 0101 ub} }}}} ,
25 { ”>=” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 0110 ub} }}}} ,
26 { ”>” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 0111 ub} }}}} ,
27 { ”==” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 1000 ub} }}}} ,
28 { ” != ” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 1001 ub} }}}} ,
29 { ”<=” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 1010 ub} }}}} ,
30 { ”<” , {{{ ” s t a t u s ”} , { ” a ” , ”b ” } , {{ ” c t r l ” , 1011 ub} }}}}
31 } ;

Listing 21: Example ofRT OPERATIONSannotation.
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5.2.1 Functional units

Listing 22 shows an example of a simple behavior for an
RTL unit. The behavior namedalu is part of the ”rtl” li-
brary and belongs to the ”Functional Unit” category. The
delay, area, cost and power ofalu are configurable at-
tributes and are scaled by the bit width. Thealu is not
pipelined as shown in line 23. Themain function body
describes the functionality of thealu including timing. It
containswhile statement to describe thatalu runs for
good andwait statement with sensitivity list for simula-
tion. Input ports in combinational circuit can be included
in a set of sensitivity list. To describe the delay of the unit,
we usewaitfor statement as shown in line 41. Note that
the value inwaitfor statement is as same as that of the
RT DELAYattribute.

Now, we will show how to describe a pipeline functional
unit. Listing 23 shows an example of a 3-stage pipline mul-
tiplier unit which is named to behaviormult p. In order
to describe the behavior of pipeline stages, we may use
sub-behaviors such asstage1 , stage2 andstage3 in
themult p. These sub-behaviors are runnig in parallel as
shown in Listing 23. In the behaviorstage1 , the value
of input ports is latched to internal registers. The behavior
stage2 performs multiplication and stores its result to an
internal register. In the behaviorstage3 , the result of the
multiplication will be latched to output port. This unit is
working at rising edge of clock.

5.2.2 Storage units

Listing 24 shows a simple registerreg which samples data
at the rising edge of a clock whenload is asserted and
otherwise, outputs the data after output delay. The clock
clk is included in sensitivity list because this unit is edge-
triggered sequential circuit.

Listing 25 shows a register filereg which has two read
ports and one write port. It samples data at the rising edge
of a clock and stores it into an internal memorybuf with
an address. It also outputs the data from the memory with
the addres. This unit has 3 configurable parameters such as
bit width, address width and size.

5.2.3 Busses

Listing 26 shows a bus which is a wire in RTL design. Even
though the bus unit is defined in RTL component library
to contain its attributes, it will be instantiated in a design.
Instead, we will use signal variables to represent busses in
the design.
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1 # de f ine BITWIDTH DFLT 32u
2

3 # i f n d e f BITWIDTH
4 # de f ine BITWIDTH BITWIDTH DFLT
5 # end i f
6

7 behav ior a l u (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] sum ,
8 out s i g n a l unsigned b i t [ 0 : 0 ] s t a t u s ,
9 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,

10 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,
11 in s i g n a l unsigned b i t [ 3 : 0 ] c t r l ) ;
12

13 note a l u . RT LIBRARY = ” r t l ” ;
14 note a l u . RT CATEGORY = ” F u n c t i o n a l Un i t ” ;
15 note a l u . RT CLASS = 0 u ;
16 note a l u . RT DATATYPE = 0 u ;
17 note a l u . RT BITWIDTH = BITWIDTH;
18 note a l u . RT DELAY = 0 . 5 2 ∗ ( BITWIDTH / 4 ) ;
19 note a l u . RT STAGES = 0 u ;
20 note a l u . RT AREA = BITWIDTH ∗ 0 . 0 0 0 2 9 7 ;
21 note a l u . RT COST = BITWIDTH ∗ 2 . 8 ;
22 note a l u . RT POWER = BITWIDTH ∗ 0 . 0 0 0 0 5 ;
23 note a l u . RT OPERATIONS = {
24 { ”+” , { { { ”sum” } , { ” a ” , ”b ” } , { { ” c t r l ” , 0000 ub} } } } }
25 / / . . .
26 } ;
27

28 note a l u . SIR PARAMETERS = {
29 { ”BITWIDTH” , BITWIDTH DFLT , { { 2 u , 6 4 u} } , ” B i t w i d t h ” , ” b i t s ” }
30 } ;

(a) Declaration

Listing 22: Example of RTL unit.
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1 # inc lude ” a l u . sh ” / / d e c l a r a t i o n
2

3 behav ior a l u (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] sum ,
4 out s i g n a l unsigned b i t [ 0 : 0 ] s t a t u s ,
5 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,
6 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,
7 in s i g n a l unsigned b i t [ 3 : 0 ] c t r l )
8 {
9 note c t r l . RT PIN TYPE = 1 u ;

10

11 vo id main (vo id )
12 {
13 unsigned b i t [BITWIDTH −1 :0 ] r e s ;
14

15 whi le ( 1 )
16 {
17 wai t ( a , b , c t r l ) ;
18 swi tch ( c t r l )
19 {
20 case 0000 ub : r e s = a + b ;
21 break ;
22 / / . . .
23 }
24 wa i t f o r 0 . 5 2∗ ( BITWIDTH / 4 ) ;
25 sum = r e s ;
26 }
27 }
28 } ;

(b) Definition

Listing 22: Example of RTL unit (continued).
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1 # de f ine BITWIDTH DFLT 32u
2

3 # i f n d e f BITWIDTH
4 # de f ine BITWIDTH BITWIDTH DFLT
5 # end i f

(a) Macros

1 # inc lude ” mul t . sh ” / / macros
2

3 behav ior mul t ( out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] r e s u l t ,
4 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,
5 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,
6 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) ;
7

8 note mul t . RT LIBRARY = ” r t l ” ;
9 note mul t . RT CATEGORY = ” F u n c t i o n a l Un i t ” ;

10 note mul t . RT CLASS = 0 u ;
11 note mul t . RT DATATYPE = 0 u ;
12 note mul t . RT BITWIDTH = BITWIDTH;
13 note mul t . RT DELAY = 0 . 6 0 ∗ ( BITWIDTH / 4 ) ;
14 note mul t . RT STAGES = 3 u ;
15 note mul t . RT AREA = BITWIDTH ∗ BITWIDTH ∗ 0 . 0 0 0 2 9 7 ;
16 note mul t . RT COST = BITWIDTH ∗ BITWIDTH ∗ 2 . 8 ;
17 note mul t . RT POWER = BITWIDTH ∗ BITWIDTH ∗ 0 . 0 0 0 0 5 ;
18 note mul t . RT OPERATIONS = {
19 { ” ∗ ” , { { ” r e s u l t ” } , { ” a ” , ”b ” } , { } } }
20 } ;
21

22 note mul t . SIR PARAMETERS = {
23 { ”BITWIDTH” , BITWIDTH DFLT , { { 2 u , 6 4 u} } , ” B i t w i d t h ” , ” b i t s ” }
24 } ;

(b) Declaration

Listing 23: Example of 3-stage pipelined multiplier.
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1 # inc lude ” mul t . sh ” / / macros
2 behav ior s t a g e 1 (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] reg a ,
3 out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] reg b ,
4 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,
5 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,
6 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) {
7 vo id main (vo id ) {
8 whi le ( 1 ) {
9 wai t ( c l k r i s i n g ) ; r e g a = a ; r e g b = b ;

10 } }
11 } ;

(c) First stage

1 # inc lude ” mul t . sh ” / / macros
2 behav ior s t a g e 2 (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] reg c ,
3 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] reg a ,
4 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] reg b ,
5 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) {
6 vo id main (vo id ) {
7 whi le ( 1 ) {
8 wai t ( c l k r i s i n g ) ; r e g c = r e g a ∗ r e g b ;
9 } }

10 } ;

(d) Second stage

1 # inc lude ” mul t . sh ” / / macros
2 behav ior s t a g e 3 (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] r e s u l t ,
3 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] reg c ,
4 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) {
5 vo id main (vo id ) {
6 whi le ( 1 ) {
7 wai t ( c l k r i s i n g ) ; r e s u l t = r e g c ;
8 } }
9 } ;

(e) Third stage

Listing 23: Example of 3-stage pipelined multiplier (continued).
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1 # inc lude ” m u l t p . sh ” / / d e c l a r a t i o n
2

3 import ” mul t p1 ” ; / / s t a g e 1
4 import ” mul t p2 ” ; / / s t a g e 2
5 import ” mul t p3 ” ; / / s t a g e 3
6

7 behav ior mul t ( out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] r e s u l t ,
8 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] a ,
9 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] b ,

10 in s i g n a l unsigned b i t [ 0 : 0 ] c l k )
11 {
12 note c l k . RT PIN TYPE = 3 u ;
13

14 s i g n a l unsigned b i t[BITWIDTH −1 :0 ] reg a , reg b , r e g c ;
15

16 s t a g e 1 U1 ( rega , reg b , a , b , c l k ) ;
17 s t a g e 2 U2 ( regc , reg a , reg b , c l k ) ;
18 s t a g e 3 U3 ( r e s u l t , r egc , c l k ) ;
19

20 vo id main (vo id ) {
21 par {
22 U1 . main ( ) ;
23 U2 . main ( ) ;
24 U3 . main ( ) ;
25 }
26 }
27 } ;

(f) Definition

Listing 23: Example of 3-stage pipelined multiplier (continued).

49



1 # de f ine BITWIDTH DFLT 32u
2

3 # i f n d e f BITWIDTH
4 # de f ine BITWIDTH BITWIDTH DFLT
5 # end i f
6

7 behav ior r eg (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] o u t p o r t ,
8 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] i n p o r t ,
9 in s i g n a l unsigned b i t [ 0 : 0 ] load ,

10 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) ;
11

12 note r eg . RT LIBRARY = ” r t l ” ;
13 note r eg . RT CATEGORY = ” R e g i s t e r ” ;
14 note r eg . RT CLASS = 2 u ;
15 note r eg . RT DATATYPE = 0 u ;
16 note r eg . RT BITWIDTH = BITWIDTH;
17 note r eg . RT INPUT DELAY = 0 . 4 + ( BITWIDTH ∗ 0 . 0 1 ) ;
18 note r eg . RT OUTPUT DELAY = 0 . 2 + ( BITWIDTH ∗ 0 . 0 1 ) ;
19 note r eg . RT AREA = 0 . 0 0 0 0 6 ∗ BITWIDTH;
20 note r eg . RT COST = 1 . 0 ∗ BITWIDTH;
21 note r eg . RT POWER = 0 . 0 0 0 0 0 1∗ BITWIDTH;
22 note r eg . RT OPERATIONS ={
23 { ” [ ] ” , { { { ” o u t p o r t ” } , { } , { { ” l oad ” , 1 ub} } } } } ,
24 { ”=” , { { { } , { ” i n p o r t ” } , { } } } }
25 } ;
26

27 note r eg . SIR PARAMETERS = {
28 { ”BITWIDTH” , BITWIDTH DFLT , { { 1 u , 1 2 8 u} } , ” B i t w i d t h ” , ” b i t s ” }
29 } ;

(a) Declaration

Listing 24: Example of register.
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1 # inc lude ” r eg . sh ” / / d e c l a r a t i o n
2

3 behav ior r eg (out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] o u t p o r t ,
4 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] i n p o r t ,
5 in s i g n a l unsigned b i t [ 0 : 0 ] load ,
6 in s i g n a l unsigned b i t [ 0 : 0 ] c l k )
7 {
8 note l oad . RT PIN TYPE = 1 u ;
9 note c l k . RT PIN TYPE = 3 u ;

10

11 vo id main (vo id )
12 {
13 unsigned b i t [BITWIDTH −1 :0 ] buf ;
14

15 whi le ( 1 )
16 {
17 wai t ( c l k r i s i n g ) ;
18 i f ( l oad = = 1 ub ) {
19 wa i t f o r 0 . 4 + ( BITWIDTH∗ 0 . 0 1 ) ; / / i n p u t de lay
20 buf = i n p o r t ;
21 }
22 e l s e {
23 wa i t f o r 0 . 2 + ( BITWIDTH∗ 0 . 0 1 ) ; / / o u t p u t de lay
24 o u t p o r t = buf ;
25 }
26 }
27 }
28 } ;

(b) Definition

Listing 24: Example of register (continued).

1 # de f ine BITWIDTH DFLT 32u
2 # de f ine SIZE DFLT 16 u l
3 # de f ine ADDRWIDTH DFLT 4u
4

5 # i f n d e f BITWIDTH
6 # de f ine BITWIDTH BITWIDTH DFLT
7 # end i f
8

9 # i f n d e f SIZE
10 # de f ine SIZE SIZE DFLT
11 # end i f
12

13 # i f n d e f ADDRWIDTH
14 # de f ine ADDRWIDTH ADDRWIDTH DFLT
15 # end i f

(a) Macros

Listing 25: Example of register file.
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1 # inc lude ” r f . sh ” / / macros
2

3 behav ior RF(out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outA ,
4 out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outB ,
5 out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outC ,
6 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] i n p o r t ,
7 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] raA ,
8 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] raB ,
9 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] wa ,

10 in s i g n a l unsigned b i t [ 0 : 0 ] reA ,
11 in s i g n a l unsigned b i t [ 0 : 0 ] reB ,
12 in s i g n a l unsigned b i t [ 0 : 0 ] we ,
13 in s i g n a l unsigned b i t [ 0 : 0 ] c l k ) ;
14

15 note RF . RT LIBRARY = ” r t l ” ;
16 note RF . RT CATEGORY = ” R e g i s t e r F i l e ” ;
17 note RF . RT CLASS = 3 u ;
18 note RF . RT DATATYPE = 0 u ;
19 note RF . RT SIZE = SIZE ;
20 note RF . RT BITWIDTH = BITWIDTH;
21 note RF . RT INPUT DELAY = 0 . 5 + ( SIZE ∗ 0 . 0 0 1 ) + ( BITWIDTH ∗ 0 . 0 1 ) ;
22 note RF . RT OUTPUT DELAY = 1 . 0 ;
23 note RF . RT STAGES = 0 u ;
24 note RF . RT CLOCK = 2 ;
25 note RF . RT AREA = 0 . 0 0 0 0 6 ∗ ( BITWIDTH / 2 ) ∗ ( SIZE / 4 ) ;
26 note RF . RT COST = 6 . 0 ∗ ( BITWIDTH / 2 ) ∗ ( SIZE / 4 ) ;
27 note RF . RT POWER = 0 . 0 0 0 0 2∗ ( BITWIDTH / 2 ) ∗ ( SIZE / 4 ) ;
28 note RF . RT OPERATIONS ={
29 { ” [ ] ” , { { { ” outA ” } , { } , { { ” reA ” , 1 ub } } } ,
30 { { ” outB ” } , { } , { { ” reB ” , 1 ub } } } } } ,
31 { ”=” , { { { } , { ” i n p o r t ” } , { { ”we” , 1 ub } } } } }
32 } ;
33

34 note SIR PARAMETERS = {
35 { ”BITWIDTH” , BITWIDTH DFLT , { { 1 u , 1 2 8 u} } , ” B i t w i d t h ” , ” b i t s ” } ,
36 { ” SIZE” , SIZE DFLT , { { 1 ul , 1 2 8 u l} } , ” S i ze ” , ” words ” } ,
37 { ”ADDRWIDTH” , ADDRWIDTH DFLT, { { 1 u , 1 2 8 u} } , ” Address wid th ” , ” b i t s ” }
38 } ;

(b) Declaration

Listing 25: Example of register file (continued).
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1 # inc lude ”RF . sh ” / / d e c l a r a t i o n
2

3 behav ior RF(out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outA ,
4 out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outB ,
5 out s i g n a l unsigned b i t[BITWIDTH −1 :0 ] outC ,
6 in s i g n a l unsigned b i t [BITWIDTH −1 :0 ] i n p o r t ,
7 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] raA ,
8 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] raB ,
9 in s i g n a l unsigned b i t [ADDRWIDTH−1 :0 ] wa ,

10 in s i g n a l unsigned b i t [ 0 : 0 ] reA ,
11 in s i g n a l unsigned b i t [ 0 : 0 ] reB ,
12 in s i g n a l unsigned b i t [ 0 : 0 ] we ,
13 in s i g n a l unsigned b i t [ 0 : 0 ] c l k )
14 {
15 note raA . RT PIN TYPE = 2 u ;
16 note raB . RT PIN TYPE = 2 u ;
17 note wa . RT PIN TYPE = 2 u ;
18 note reA . RT PIN TYPE = 1 u ;
19 note reB . RT PIN TYPE = 1 u ;
20 note we . RT PIN TYPE = 1 u ;
21 note c l k . RT PIN TYPE = 3 u ;
22 note reA . RT ACTIVE HIGH = t rue ;
23 note reB . RT ACTIVE HIGH = t rue ;
24 note we . RT ACTIVE HIGH = t rue ;

(c) Definition

Listing 25: Example of register file (continued).

26 vo id main (vo id )
27 {
28 unsigned b i t [BITWIDTH −1 :0 ] buf [ SIZE ] ;
29

30 whi le ( 1 )
31 {
32 wai t ( c l k r i s i n g ) ;
33 i f ( we = = 1 ) {
34 wa i t f o r 0 . 5 + ( SIZE∗0 . 001 )+ ( BITWIDTH∗ 0 . 0 1 ) ; / / i n p u t de lay
35 buf [ wa ] = i n p o r t ;
36 }
37 e l s e i f ( reA = = 1 ) {
38 wa i t f o r 1 . 0 ; / / o u t p u t de lay
39 outA = buf [ raA ] ;
40 }
41 e l s e i f ( reB = = 1 ) {
42 wa i t f o r 1 . 0 ; / / o u t p u t de lay
43 outB = buf [ raB ] ;
44 }
45 }
46 }
47 } ;

(d) Definition (continued)

Listing 25: Example of register file (continued).
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1 # de f ine BITWIDTH DFLT 32u
2

3 # i f n d e f BITWIDTH
4 # de f ine BITWIDTH BITWIDTH DFLT
5 # end i f
6

7 behav ior bus (i nou t s i g n a l unsigned b i t [BITWIDTH −1 :0 ] d a t a )
8 {
9 note bus . RT LIBRARY = ” r t l ” ;

10 note bus . RT CATEGORY = ” Bus ” ;
11 note bus . RT CLASS = 4 u ;
12 note bus . RT DELAY = 1 . 0 ;
13 note bus . RT AREA = BITWIDTH ∗ 0 . 0 0 0 0 0 0 1 ;
14 note bus . RT POWER = BITWIDTH ∗ 0 . 0 0 0 0 0 1 ;
15 note bus . RT COST = BITWIDTH ∗ 2 . 0 ;
16 note bus . RT PROTOCOL = { ” r ead ” , ” w r i t e ” } ;
17 note bus . RT BITWIDTH = BITWIDTH;
18

19 note bus . SIR PARAMETERS = {
20 { ”BITWIDTH” , BITWIDTH DFLT , { { 2 u , 6 4 u} } , ” B i t w i d t h ” , ” b i t s ” } } ;
21

22 unsigned b i t [BITWIDTH −1 :0 ] buf ;
23

24 vo id r ecv (unsigned b i t [BITWIDTH −1 :0 ] i d a t a ) {
25 buf = i d a t a ;
26 }
27 unsigned b i t [BITWIDTH −1 :0 ] send ( ){
28 re tu rn buf ;
29 }
30

31 vo id main (vo id ) {
32 whi le ( 1 ) {
33 wa i t f o r 1 . 0 ;
34 r ecv ( d a t a ) ;
35 d a t a = send ( ) ;
36 }
37 }
38 } ;

Listing 26: Example of bus.
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A Manual Pages

This appendix contains the documentation in the form of manual pages for tools included in SCE that are used for database
management.
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A.1 scc - SpecC Compiler

NAME

scc – SpecC Compiler

SYNOPSIS

scc–h

sccdesign[ command] [ options]

DESCRIPTION

scc is the compiler for the SpecC language. The main purpose ofsccis to compile a SpecC source program into
an executable program for simulation. Furthermore,sccserves as a general tool to translate SpecC code from
various input to various output formats which include SpecC source text, SpecC binary files in SpecC Internal
Representation format, and other compiler intermediate files.

Using the first command syntax as shown in the synopsis above, a brief usage information and the compiler version
are printed to standard output and the program exits. Using the second command syntax, the specifieddesign
is compiled. By default,scc reads a SpecC source file, performs preprocessing and builds the SpecC Internal
Representation (SIR). Then, C++ code is generated, compiled and linked into an executable file to be used for
simulation. However, the subtasks performed bysccare controlled by the givencommandso that, for example,
only partial compilation is performed with the specifieddesign.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error code with a
brief diagnostic message is written to standard error and the program execution is aborted with the exit value 10.

For preprocessing and C++ compilation,sccrelies on the availability of an external C++ compiler which is used
automatically in the background. By default, the GNU compilergcc/g++is used.

ARGUMENTS

design specifies the name of the design; by default, this name is used as base name for the input file and all
output files;

COMMAND

The commandhas the format -suffix12 suffix2,wheresuffix1andsuffix2specify the format of the main input
and output file, respectively. This command also implies the compilation steps being performed. By default,
the command –sc2out is used which specifies reading a SpecC source file (e.g. design.sc) and generating an
executable file (e.g. a.out) for simulation. All necessary intermediate files (e.g. design.cc, design.o) are generated
automatically.

Legal command suffixes are:

sc SpecC source file (default:design.sc)

si preprocessed SpecC source file (default:design.si)

sir binary SIR file in SpecC Internal Representation format (default:design.sir)

cc C++ simulation source file (default:design.cc)
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h C++ simulation header file (default:design.h)

cch both, C++ simulation source file and C++ header file (default:design.ccanddesign.h)

o linker object file (default:design.o)

out executable file for simulation (default:design);however, with the –ip option, a shared library will be pro-
duced (default:libdesign.so)

OPTIONS

–v | –vv| -vvv increase the verbosity level so that all tasks performed are logged to standard error (default:
be silent); at level 1, informative messages for each task performed are displayed; at level 2,
additionally input and output file names are listed; at level 3, very detailed information about
each executed task is printed;

–w | –ww| -www increase the warning level so that warning messages are enabled (default: warnings are disabled);
four levels are supported ranging from only important warnings (level 1) to pedantic warnings
(level 4); for most cases, warning level 2 is recommended (–ww);

–g enable debugging of the generated simulation code (default: no debugging code); this option
disables optimization;

–O enable optimization of the generated simulation code (default: no optimization); this option
disables debugging;

–ip enable intellectual property (IP) mode; when generating a SIR binary or SpecC text file, only
declarations of symbols marked public will be included (the public interface of an IP is created);
when generating C++ code, non-public symbols will be output so that they will be invisible
outside the file scope; when compiling or linking, the compiler and linker are instructed to create
a shared library instead of an executable file (creation of an IP simulation library);

–n suppress creation of new log information when generating the output SIR file (default: update
log information); see also section ANNOTATIONS below;

–sl suppress source line information (preprocessor directives) when generating SpecC or C++ source
code (default: include source line directives);

–sn suppress all annotations when generating SpecC source code (default: include annotations);

–st tabulator steppingset the tabulator stepping for SpecC/C++ code generation; this setting is used for code in-
dentation; a value of 0 will disable the indentation of the generated code (default: 4);

–sT system tabulator steppingset the system tabulator stepping (\t) for SpecC/C++ code generation; if set, tab
characters will be used for indentation; if a value of 0 is specified, only spaces will be used for
indentation (default: 8);

–sw line wrappingset the column for line wrapping; in code generation, any line longer than this value is subject
to line wrapping; if a value of 0 is specified, no line wrapping will be performed (default: 70);

–i input file specify the name of the input file explicitly (default:design.suffix1);the name ’-’ can be used to
specify reading from standard input;

–o output file specify the name of the final output file explicitly (default:design.suffix2);the name ’-’ can be
used to specify writing to standard output;
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–D do not define any standard macros; by default, the macroSPECC is defined automatically (it is
set to 1); furthermore, implementation dependent macros may be defined; this option suppresses
the definition of all these macros;

–Dmacrodef define the preprocessor macromacrodefto be passed to the preprocessor;

–U do not undefine any macros; by default, few macros are undefined automatically (in order to
allow C/C++ standard header files to be used); this option is implementation dependent;

–Uundef undefine the preprocessor macroundefwhich will be passed to the preprocessor as being unde-
fined; the macroundefwill be undefined after the definition of all command-line macros; this
allows to selectively suppress macros from being defined in the preprocessing stage;

–I clear the standard include path; by default, the standard include path consists of the directory
$SPECC/inc; this option suppresses the default include path;

–Idir appenddir to the include path (extend the list of directories to be searched for including source
files); include directories are searched in the order of their specification; unless suppressed by
option –I, the standard include path is automatically appended to this list; by default, only the
standard include directories are searched;

–L clear the standard library path; by default, the standard library path consists of the directory
$SPECC/lib; this option suppresses the default library path;

–Ldir appenddir to the library path (extend the list of directories to be searched for linker libraries);
the library path is searched in the specified order; unless suppressed by option –L, the standard
library path is automatically appended to this list; by default, only the standard library path is
searched;

–l when linking, do not use any standard libraries; the default libraries are displayed when calling
the compiler with the –h option; the –l option suppresses linking against theses standard libraries;

–llib passlib as a library to the linker so that the executable is linked againstlib; libraries are linked
in the specified order; unless suppressed by option –l, the standard libraries are automatically
appended to this list; by default, only standard libraries are used;

–P reset the import path; clear the list of directories to be searched for importing files; by default,
the current directory is searched first, followed by the standard import directory $SPECC/import;
this option suppresses this standard import path;

–Pdir appenddir to the import path, extending the list of directories to be searched for importing files;
import directories are searched in the order of their specification; unless suppressed by option
–P, the standard search path is automatically appended to this list; by default, only the standard
import path is searched;

–xpp preprocessorcall redefine the command to be used for calling the C preprocessor (default: ”g++ -E -x c %p
%i -o %o”); the preprocessor call must contain three markers %p, %i and %o, which indicate the
options and file names used in the call; in the specified string, the %p marker will be replaced
with the list of specified preprocessor options; the %i and %o markers will be replaced with the
actual input and output filenames, respectively;

–xcc compilercall redefine the command to be used for calling the C/C++ compiler (default: ”g++ -c %c %i -o
%o”); the compiler call must contain three markers %c, %i and %o, which indicate the options
and file names used in the call; in the specified string, the %c marker will be replaced with the
list of specified compiler options; the %i and %o markers will be replaced with the actual input
and output filenames, respectively;
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–xld linker call redefine the command to be used for calling the linker (default: ”g++ %i -o %o %l”); the linker
call must contain three markers %l, %i and %o, which indicate the options and file names used
in the call; in the specified string, the %l marker will be replaced with the list of specified linker
options; the %i and %o markers will be replaced with the actual input and output filenames,
respectively;

–xp preprocessoroption pass an option directly to the C/C++ preprocessor (default: none);

–xc compileroption pass an option directly to the C/C++ compiler (default: none);

–xl linker option pass an option directly to the linker (default: none);

ENVIRONMENT

SPECC is used to determine the installation directory of the SpecC environment where SpecC standard include
files (directory $SPECC/inc), SpecC standard import files (directory $SPECC/import), and SpecC sys-
tem libraries (directory $SPECC/lib) are located.

SPECCLICENSEFILE determines the license file (path and file name) to be used by the SpecC environment; if
undefined, the environment variableSPECCis used as the path to the license file called ”license.sce”;
if neither SPECCLICENSEFILE nor SPECCexist, the file ”license.sce” is searched in the current
directory;

ANNOTATIONS

The following SpecC annotations are recognized by the compiler:

SCELOG contains the log information of the SIR file; this global annotation is created and maintained auto-
matically by the SpecC compiler and the SpecC tool set and can be used to determine the origin and
the operations performed on the design model;SCELOG is a composite annotation consisting of
a list of log entries, ordered by time of creation; each log entry consists of a time stamp, command
line, source file, version info, and an optional comment;

SCCRESERVEDSIZE for external behaviors and channels (IP components), this indicates the size reserved in
the C++ class for internal use; the annotation type is unsigned int; if found at class definitions, this
annotation is checked automatically for reasonable values; for IP declarations, the annotation can
be created automatically with the –ip option;

SCCPUBLIC for global symbols, this annotation indicates whether the symbol is public and will be visible in a
shared library; the annotation type is bool; this annotation only is recognized with the –ip option;

VERSION

The SpecC compilersccis version 2.2.b.

AUTHOR

Rainer Doemer<doemer@ics.uci.edu>

COPYRIGHT

(c) 1997-2003 CECS, University of California, Irvine
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SEE ALSO

gcc(1), g++(1), sir delete(l), sir depend(l), sir import (l), sir isolate(l), sir list(l), sir note(l), sir rename(l),
sir strip (l), sir tree(l), sir wrap(l)

BUGS, LIMITATIONS

Variables of enumerator type cannot be initialized at the time of their declaration. The SpecC compiler issues a (false)
error message in this case. As a simple work-around, however, enumerator variables can be initialized by use of standard
assignment statements at the beginning of their lifetimes.
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A.2 sir gen - SpecC Design Generator

NAME

sir gen – part of the SpecC SIR tool set

SYNOPSIS

sir gen[ options] design[ parameter...]

DESCRIPTION

sir gen generates a parametrized design from a SpecC source template by creating a SIR file that contains the
SpecC Internal Representation of the design.

sir gen reads the SpecC source file for the givendesign,applies theparametersgiven on the command line,
optionally performs name mangling, and writes the resulting SIR file for thedesignor for its mangled design
name. Parameters are applied to the design by defining corresponding preprocessor macros when reading in the
SpecC source template. Input and output file names can be overwritten using the –i and –o options.

On successful completion, the exit value 0 is returned. In case of errors, an error code with a diagnostic message
is written to standard error and the program execution is aborted with the exit value 10. In this case, no output is
produced.

ARGUMENTS

design specifies the main design name to generate; if no –i option is specificed, the file name for the input
source template is deduced by appending the suffix ’.sc’ to this name; if no –o option is specified, the
generated design will be written into a SIR file with the (possibly mangled, see –m option) name of the
design plus the suffix ’.sir’;

parameterspecified a parameter to be applied when generating the design; syntactically, aparameteris a key/value
pair separated by an assignment character (’=’, no whitespace); thekeyspecifies the name of the param-
eter, while thevaluespecifies the value to apply to the parameter; avalueis given using standard SpecC
syntax for constants; each key/value pair will create a corresponding preprocessor definition while read-
ing of thedesignsource file, i.e. the source code is templated using the capabilities of the preprocessor
to modify code generation based on the parameter definitions;

OPTIONS

–h prints a short usage and version information and then quits;

–i input file specifies the name of the input source file template explicitly; the name ’-’ can be used to specify
reading from standard input;

–m enables name mangling; the design name and the names of all global, non-imported definitions (behaviors,
channels, interfaces, functions, and variables) are mangled by appending a unique suffix to the name; by
default, the suffix will be generated from the given orderedparameterset; note that mangling of the design
name will change the name of the output file accordingly;

–msuffixenables name mangling and specifies thesuffixused to mangle names explicitly;

–n suppresses the creation of new log information when generating the output SIR file; by default, log informa-
tion in the main design file is updated automatically (see also section ANNOTATIONS below);
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–o output filespecifies the name of the output design file explicitly; the name ’-’ can be used to specify writing to
standard output;

–v | –vv| –vvv set the verbosity level so that actions performed are logged to standard error (default: be silent);

–w | ... | –wwww set the warning level so that warning messages are enabled (default: standard warnings are dis-
played); four levels are supported ranging from only important warnings (level 1) to pedantic warnings (level
4);

–D do not define any standard macros; by default, the macroSPECC is defined automatically (it is set to 1);
furthermore, implementation dependent macros may be defined; this option suppresses the definition of all
these macros;

–Dmacrodefdefine the preprocessor macromacrodefto be passed to the preprocessor;

–U do not undefine any macros; by default, few macros are undefined automatically (in order to allow C/C++
standard header files to be used); this option is implementation dependent;

–Uundef undefine the preprocessor macroundefwhich will be passed to the preprocessor as being undefined; the
macroundefwill be undefined after the definition of all command-line macros; this allows to selectively
suppress macros from being defined in the preprocessing stage;

–I clear the standard include path; by default, the standard include path consists of the directory $SPECC/inc;
this option suppresses the default include path;

–Idir appenddir to the include path (extend the list of directories to be searched for including source files); include
directories are searched in the order of their specification; unless suppressed by option –I, the standard
include path is automatically appended to this list; by default, only the standard include directories are
searched;

–P resets the import path; the list of directories to be searched for import is cleared; by default, the current
directory is searched first, followed by the standard import directory $SPECC/import; this option suppresses
this standard import path;

–Pdir appendsdir to the import path, extending the list of directories to be searched for importing files; import
directories are searched in the order of their specification; unless suppressed by option –P, the standard
search path is automatically appended to this list; by default, only the standard import path is searched;

ENVIRONMENT

SPECC is used to determine the installation directory of the SIR tool set where SpecC standard include files
(directory $SPECC/inc), and SpecC standard import files (directory $SPECC/import) are located.

SPECCLICENSEFILE determines the license file (path and file name) to be used by the SIR tool set; if undefined,
the environment variableSPECCis used as the path to the license file called ”license.sce”; if neither
SPECCLICENSEFILE norSPECCexist, the file ”license.sce” is searched in the current directory;

ANNOTATIONS

The following SpecC annotations are recognized bysir gen:

SCELOG contains the log information of the SIR file; this global annotation is created and maintained auto-
matically by the SpecC compiler and the SpecC tool set and can be used to determine the origin and
the operations performed on the design model;SCELOG is a composite annotation consisting of
a list of log entries, ordered by time of creation; each log entry consists of a time stamp, command
line, source file, version info, and an optional comment;
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SIRPARAMETERSspecifies the set of valid parameters that can be applied to the global definition to which
this annotation is attached;SIRPARAMETERSis a composite annotation consisting of a list of
template parameters; each entry consists of the parameter name, the parameter default value, and
the parameter range; the parameter range is given as a list that can contain both discrete values and
pairs of min/max values;

MACROS

During processing of the SpecC source template input file,sir genwill define preprocessor macros that correspond
to the key/value pairs given as parameters on the command line.

In addition, the following preprocessor macros are set bysir genduring reading of the source file:

SIRMANGLEDSUFFIX contains the name mangling suffix chosen via the –m option; if name mangling is
disabled, the macro is not defined;

VERSION

The SpecC SIR tool set is version 2.2.b.

AUTHOR

Andreas Gerstlauer<gerstl@ics.uci.edu>

COPYRIGHT

(c) 1997-2003 CECS, University of California, Irvine

SEE ALSO

scc(l), sir delete(l), sir depend(l), sir import (l), sir isolate(l), sir list(l), sir note(l), sir rename(l), sir stats(l),
sir strip (l), sir tree(l), sir wrap(l)

BUGS, LIMITATIONS

It is generally not possible to perform name mangling in a fully canonical fashion (e.g. mangling of strings or mangling in
the presence of multiple, disparate template definitions in the design).sir genonly performs limited mangling by default.
Therefore, the user should explicitly choose the mangling scheme.
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