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Abstract

This report defines and describes a format for models of system components required for system-on-chip (SoC) design. In
an SoC design process, starting from an initial system specification, an implementation of the system is created through a series
of interactive and automated steps by gradually synthesizing and assembling a system design using components taken out of
a set of databases. Generally, databases are needed for processing elements (PEs), bus and other communication protocols,
and RTL units. In this report we aim to provide an exhaustive list of requirements for components in an automated SoC design
flow using the example of a concrete database format. Following a description of the basic database format in general, this
report defines the format of each of the three databases in detail. Using information in this report, specific database formats

for diverse SoC design flows can be developed. Specifically, the database format in this report is used successfully in our SoC
Design Environment, SCE.
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Abstract Thebus protocol databaseontains timing-accurate de-

) ] _ scriptions of protocols of system busses and other com-
This report defines and describes a format for models of iy njcation structures used to implement communication
system components required for system-on-chip (SoC) deyetween the different PEs in the system.
sign. In an SoC design process, starting from an initial  ging|ly, theRTL unit databaseontains register-transfer
system specification, an implementation of the system isjts jike register files, ALUs and other functional units,
created through a series of interactive and automated steps emories. local busses. etc. RTL units taken out of the
by gradually synthesizing and assembling a system designgT| gatabase are used to synthesize computation mapped
using components taken out of a set of databases. Generyg custom hardware PEs down to a cycle-accurate RTL de-
ally, databases are needed for processing elements (PEs)scription.
bus and other communication protocols, and RTL units. In s report describes and defines a format of databases

this report we aim to pr_ovide an exhaustive list o_f require- ¢or use in automated SoC design flows, thereby outlining
ments for components in an automated SoC design flow “S'requirements for modeling components for system design

ing the example of a concrete database format. Following j, general. First, Section 2 defines the general format of
a description of the basic database format in general, this o' 5oC databases. Then. in Section 3. Section 4. and Sec-

report defines the format of each of the three databases in iy, 5 the specifics of the PE, bus, and RTL databases are
detail. Using information in this report, specific database jescribed in detail respectivély. '

formats for diverse SoC design flows can be developed.
Specifically, the database format in this report is used suc-

cessfully in our SoC Design Environment, SCE. 2 General Database Format

Our databases for SoC design are described in the form
1 Introduction of SpecC code, i.e. the format of the databases is based
on the SpecC syntax [2] and the SpecC source code for
In state-of-the-art design flows for system-on-chip (SoC) each database must be compilable into SIR (SpecC Inter-
design, an initial specification of a system is taken down nal Representation) files using the SpecC compisad”,
to an actual implementation through a series of interactive Section A.1).
and automated steps [1]. In such design flows, the system
is gradually synthesized and assembled using system COM» 1 Database Organization
ponents taken out of a set of databases. Specifically, an
SoC design flow needs to include databases for processing-or each database, there is exactly one top-level SIR file.
elements (PEs), bus or other communication protocols, andThe top-level database SIR acts as a container for all com-
RTL units. ponents stored in the database. The database SIR includes
The processing element (PE) databasentains pro- components through import of individual component SIR
grammable processors, synthesizable custom hardwardiles where component SIR files have to be stored in the
components, system memories, IPs, etc. at different levelssame directory as or a sub-directory of the directory the
of abstraction. Such PEs are used during the design flowdatabase SIR is located in.
to implement the computation of the system by mapping Each componentin the database must be stored in a sep-
computational parts onto PEs taken out of the PE databasearate SIR file. Component SIRs will be imported by SCE



as needed throughout the design flow. Therefore, compo-inute =

nent SIRs must be self-contained. Furthermore, in case of value

parameterizable components, the component source code | attribute_range

must be made available as part of the database, too. . _
attribute_range =

In case of databases with multiple models of each com- { default_value ’, range_list ¥
ponent at different levels of abstraction, each model can i
be stored in a separate SIR file as long as the top-levelrang"a—IISt r:ange value
database SIR contains all component models through di- | range list *’ range_value
rect or indirect import. In those cases, the basic component
model used during allocation will contain pointers to other ra"ge;;’lz":e =
models (in the form of annotations) and SCE will import | ¢ min " max }
those models when needed in the design flow. The advan-
tage of separate component files is that at any stage of the
design flow, the system design will not contain any yet un-
used component models.

Since different models of components out of the differ- 2.2.1 Attributes
ent databases get imported into the same system desig
throughout the design flow, SIR design (import) names and
identifiers defined in the SIR files must be unique across all
databases and components. Furthermore, identifiers shoul
be chosen appropriately to reduce conflicts with names de-
fined in the system design itself. It is highly recommended
to use unique prefixes for component names such that nam
ing conflicts are avoided.

Figure 1: Format of component attribute annotations.

rEiomponent attributes describe characteristics or metrics
for a component. Attributes of a component are stored as
c?nnotations attached to the component object under differ-
ent keys or names as defined by the database.

The general format of the value of an attribute annota-
tion is defined in Figure 1. An attribute is either a simple
annotation giving a fixed attribute value or a complex an-
o . . hotation describing a range of possible values for an ad-

Listing 1 shows a simple example for database organi- jstaple attribute. For an adjustable attribute, the system
zation. The databas#atabase (Listing 1(c)) contains  gesigner will be allowed to tune the attribute value during
two componentsComponent@nd Componentlthat are  gjigcation in the SoC design process within the range de-
stored in separate filesomponent0 (Listing 1(a)) and fined by the annotation.
componentl  (Listing 1(b)), respectively. The range of values for an adjustable attribute is given
as a list of possible values. Each entry in the list is either
a single, fixed value or a pair of values defining the lower
and upper boundaries of an interval of values (for numeric
types only). The first entry in the list must be a single value

. . . describing a sensible default. In all cases, all values must
Components are described by SpecC objects (behaworsDe of the 2ame type as defined by the attribute.

or channels) in the SoC databases. Depending on the™ . . .

: . Listing 2 shows an example of component attribute
database, part or all of the functionality of a component ; h : defi fixed val f
is described through the SpecC code of the componentob—annmaﬂons' The annotations define a fixed value o
. . . . 2.3 for .PECOST and a range of values from.®
ject. As needed, component objects can be hierarchically .

; .up to 6000000@ with a default of 60000000 for
composed out of other SpecC objects stored together with PE.CLOCKFREQUENCY
the top-level component object in the database. Note that”
unless noted, SpecC code describing component function-
ality in the databases is for simulation purposes only and 2-2-2 Parameters
does not have to be synthesizable, i.e. apart from the re-aj| components in the SoC databases can be parameter-
any valid SpecC code can be used. signer selects values for each of the component’s parame-

On top of SpecC code to describe functionality, addi- ters during allocation. The SoC design tools will then sup-

tional meta-information about each component is stored ply the parameter values to the SpecC Design Generator
in the database in the form of SpecC annotations attached(‘sir _gen’, Section A.2) to generate application-specific
to the component object. Apart from general annotations implementations of the component for use in the design as
for database management, components generally have atheeded. In case of components with multiple models, only
tributes, parameters, and profiling weight tables. parameters defined for the component model used during

2.2 Component Format
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behavior Component0 (); 1 behavior Componentl ();

... 2 1/
/1 3 /1
(a) component0.sc (b) componentl.sc
/I Component dadbase
import "component0”;
import "componentl”;

(c) database.sc

Listing 1: Database organization example.

behavior DSP();
note DSP._.PE.COST = 2.3€0;

note DSP.PECLOCKFREQUENCY ={ 0.6e+08,{ 0.0, 6e7 } };

Listing 2: Component attributes example.

_SIR_PARAMETERS =
{ parameter_list '}

parameter_list =
parameter
| parameter_list ’,’ parameter

parameter =
{ name ’; defit '} prm_range ', description ', unit '}
prm_range =

{ range_list '}

range_list =
range_value
| range_list ’,’ range_value

range_value =

value
| ' min "’} max ¥

Figure 2: Format ofSIR _PARAMETERS&nnotation.



| ] int ] float | | ] int] float |

1 2 + || 1 2
*113 |4 *114 |8
Table 1: Example of a profiling table. Table 2: Example of the operation weight table of a DSP.
| ][ int] float |
allocation are relevant and parameter values supplied to 11 12
this model are reused to generate all subsequent models. 12 [ 32
Components are made parameterizable through the
_SIR_PARAMETERSannotation used by sir _gen’. Table 3: Example of a weighted result.

Figure 2 describes the extended format of the
_SIR_PARAMETERSannotation for use in compo- o _
nent parameterization. The annotation defines a list of datatype. Then, the "3 indicates that the system behavior
parameters where each parameter is a tuple consisting ofXecutes .the multlpl!catmn operation of integer type three
the parameter name followed by a default value, a range fimes during simulation. _
of possible values, a string describing the parameter, and ASSume we map the above system behavior to a DSP
a string for the parameter unit. The range of parameter component. The weight table of the DSP representing the
values is described as a list of range value in the same'equired clock cycles for each operation s listed in Table 2.
format as for attributes, see Section 2.2.1. The type of The "4” describes that the DSP takes 4 clock cycles to com-
the default value defines the type of the parameter and all plete the execution of one multiplication operation of inte-
values in the range have to be of the same type. gertype. _ .
Instances of parameterizable components are generated Accordingly, the weighted result computed by multiply-
from the component source code by substituting the value N9 the weights in the weight table with the entries in the
of a parameter for all occurrences of the parameter name inPofiling table is described in Table 3. The summation of
the component macro described through the SpecC code othe we|gh.ted .result, which e_quqls to 49, indicates the total
the component. For more information, please refer to the COMPUtation time of the design is 49 clock cycles. .
documentation ofgir _gen’. Design metrics can be classified into three categories:
For the purpose of inclusion in the database, Componentsoperation metric set, traffic_metric set, and memory metric
should be written in such a way that they compile with de- set. In the component weight table, each row represents

fault parameter values using the standard SpecC compilertn® Weights for one item type and each column represents
(‘'scc’, Section A.1) instead ofsir _gen’ the weights for one data type. The possible item types

An example of a parameterized component is shown in and data types of different metric sets are listed in Sec-
Listing 3. The component has one param@&EFWIDTH tion 2.2.4 and Section 2.2.5, respectively. Table 2, Table 4,
of unsigned integer type that can vary between 2 and 64_and Table 5 are the examples of operation weight table,

The parameter description is “Width” and parameter values affic \{velght_tart])le, glnd me(;nor)f/rwelghtr:abli.l In general,
are given in “bits”. The component source code defines a OPEration weight tables and traific weight tables are man-

default valueBITWIDTHDFLT of 32 for the parameter  Ually generated by designers. Memory weight tables are
and uses this value if no value is supplied BITWIDTH automatically generated by SCE based on the memory at-

through sir _gen’, e.g. for inclusion in the database. tributes.
) item_header =
2.2.3 Weight Tables "item_list™

Component weight tables describe the special characterisitem_list =
tics or metrics of a component which are used to evaluate ~ item_type
the design metrics. | item_list *," item_type

The design metrics are determined by the metrics of the
system architecture represented by component weight ta- Figure 3: Format of item header annotations.
bles and the metrics of the system behavior represented by
profiling tables. For example, Table 1 represents the pro- Weight tables are stored in the data base by use of three
filing table of a system behavior. The top/bottom row rep- annotations: item header annotation, data header annota-
resents an addition("+")/multiplication("*") operation, and  tion, and weight annotation. Each metric set contains an
the left/right column represents integer("int”)/float("float”)  item header annotation and a data header annotation, which
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#define BITWIDTH_DFLT 32u
#ifndef BITWIDTH
#define BITWIDTH BITWIDTH DFLT
#endif
behavior Add(out unsigned bit[BITWIDTH —1:0] sum,
in unsigned bit[BITWIDTH —1:0] a,
in unsigned bit[BITWIDTH —1:0] b)

{

note _RT_.COST = BITWIDTH % 3.0;

note _SIRPARAMETERS = {

{ "BITWIDTH” , BITWIDTH DFLT, { {2u, 64u} }, "Width”, "bits” }
}
void main(void) {
sum = a + b;

}

1
Listing 3: Parameterized component example.

behavior DSP();
note DSP..PEWEIGHT.-OPERATIONHEADERLITEMTYPE = "+, %",
note DSP.PEWEIGHT_-OPERATIONHEADER DATATYPE = "int, float”;
note DSP..PEWEIGHT_OPERATIONDYNAMIC = "1,2,4,8";

Listing 4: Component weight table example.



| || int | float |
in 1 2
out || 3 4

Table 4: Example of a traffic weight table.

| || int | float |

local 1 4
global || 12 | 32

Table 5: Example of a memory weight table.

lists the supported item and data types, respectively. The
format of the values of the item header annotation and the
data header annotation are defined in Figure 3 and Figure 4
The available item types and data types are listed in Sec-
tion 2.2.4 and Section 2.2.5.

Each metric contains one weight annotation. The items
in the weight table are stored as one dimensional array rep-
resented by a string, as defined in Figure 5. Eazlue
must be of integer type.

Listing 4 shows an example of a component weight table
annotation, which matches the example described earlier.

2.2.4 Item Types for Metric Set

The possible values for item types of operation metric sets
are listed in Table 6 and Table 7. An operation metric
set defines values for basic operations (Table 6) and ba-
sic statements (Table 7) corresponding to weights for the
data flow and control flow complexity of the code.

For the operation metric set, besides the items listed in
Table 6, each global function can be treated as an indepen
dent operation type. For example, if there is a global func-
tion float F1(int argl, long arg?), we can put "F1” into
the item header annotation of operation. Consequently, the
weighted result of function "F1” is computed by multiply-
ing the weight of the entry in the row representing the
item type "F1” and in the column representing the data
type "float”(returning type of function), with the execution
number of function "F1". In this case, the operations inside
"F1” will not be calculated again.

The possible values of item types of the traffic metric
sets are listed in Table 8. The possible values of item types
of the memory metric sets are listed in Table 9.

2.2.5 Data Types for Metric Set

| Name | Description
void void operation
#1 const data access operation
#i identifer access operation
0 parenthesis operation
this "this” pointer access operation
1 array access operation
O function call operation
. member access operation
> member pointer access operation
p++ post-increment operation
p-- post-decrement operation
[1] bit slice operation
++p pre-increment operation
--p pre-decrement operation
&p address deriving operation
*p content deriving operation
+X unary plus operation
-X negation operation
- not operation
! logic not operation
sizeof(E) size of operation (on expression)
sizeof(T) size of operation (on type)
(Ox type conversion operation
@ concatenation operation
* multiplication operation
/ division operation
% modulo operation
+ addition operation
- substraction operation
<< left shift operation
>> right shift operation
< less operation
> greater operation
<= less equal operation
>= greater equal operation
== equal operation operation
I= not equal operation
& and operation
- eor operation
| or operation
&& logic and operation
Il logic or operation
)

condition operation
assignment operation

Operation and traffic metric sets share the same set of pos- Table 6: Item types for operation metric set (operations).

sible values of data types, which are listed in Table 10.
Besides the data types listed in Table 10, data type an-
notation can also contain three groups of hierarchial data




| Name || Description
: labeled statement
data_header = { compound statement
data_list % .
+ expression statement
data_list = if if statement
data_type else else statement
| data_list *)" data_type switch switch statement
case case statement
Figure 4: Format of data header annotations. default default statement
while while statement
do do statement
for for statement
goto goto statement
continue continue statement
break break statement
return return statement
par par statement
weight = pipe pipe statement
weight list ™ exception exception statement
weight list = timing timing statement
value fsm fsm statement
| weight_list *, value fsmd fsmd statement
wait wait statement
Figure 5: Format of weight annotations. waitand waitand statement
waitfor waitfor statement
notify notify statement
notifyone notifyone statement

Table 7: Item types for operation metric set (statements).

| Name || Description |

*= multiplication & assignment operation | Name || Description

= division & assignment operation in input traffic

%= modulo & assignment operation out output traffic

+= addition & assignment operation

-= substraction & assignment operation Table 8: Item types for traffic metric set

<<= left shift & assignment operation

>>= right shift & assignment operation

&= and & assignment operation

"= eor & assignment operation

,: or& assignmept operation | Name || Description |

comma operation local local variable storage (stack memory)

Table 6: Item types for operation metric set (operations) | global global/static variable storage (static and
(continued). heap memory)

Table 9: Item types for memory metric set



| Name || Description | | ] int ] float | long ]

bool bool +11 |2 0

char char *14 |8 0

unsigned char unsigned char -{lo |o 0

short int short int

unsigned short int unsigned short int Table 11: An alternative operation weight table of the DSP.

int int

unsigned int unsigned int

::)r:]ség?:r?g l?nqg int :i;fﬁgﬁg ilg,?g int When specifying vyeight tables, designers don’t need to put

unsigned long long int unsigned long all thelltem types in Table .6, Table 7, Table 8, or Table 9
long int to the item header annotation, and don'’t need to pgt all the

float float data types in Table_ 10 to the da_ta header annotation. The

double double defqult value of welghts_ for_ the |t(_am_ types that are not in

long double long double the |te_m header annotation is 0. Slmllarly, the default value

void void(for  return of Welghts for data types that are .not in .the data header
value of function) annotation is 0. As a result, there is no different between

Table 2 and Table 11 in terms of values of weights.
event event
void* pointer
Table 10: Data types for metric sets. 3 Processing Elements

Processing elements are represented by SpecC behaviors
types. in the PE database. For each PE model, a corresponding
behavior declaration needs to exist in the database.

The PE database can contain different PE models at

data type format is “bit[size]” or "unsigned bit[size]". varying levels of abstraction corresponding to the steps in
For example, data belonging to eithbit[8:0] or the design flow. At minimum, behavioral PE models used

bit[9:1] can be defined as an independent data type fpr PE aIIocati_on and for initial implementation_ of speci—_
"bit[9]" in the data header annotation. fication behaviors mapped onto PEs are required to exist
for each PE (Section 3.1). In addition, PEs can option-
Array We can define arrays with different lengths as dif- ally have bus-functional models for use after communica-
ferent data types. The corresponding data type for- tion synthesis (Section 3.2) and implementation models for
mat is basictypdsize]. For example, data belong- cycle-accurate simulation in case of PEs with part or all of
ing to int[23] and int[24] type can be defined as in- their functionality fixed (Section 3.3). In case of synthesiz-
dependent data typémit[23]" and"int[24]" able or programmable PEs, PE models provide templates
respectively. that will be filled automatically during the design process.

Bit vector We can define bit vectors with different
lengths as different data types. The corresponding

User Defined Type  Every user defined structure/u-
nion/enum type can be treated as one independent3.1 PE Behaviors

data type. It uses the structure/uniton/enum names ) ) o

is defined as "struct gint a; float 3 and we want SCE and the PE behaviors represent the PEs available in

to define it as an independent data type, the definedthe database. Therefore, for each PE there must be at least

data type "struct s1” can be put into the data header & behavioral model and the set of PE behaviors defines the

annotation. list of PEs in the PE database. PE behaviors are used for

PE allocation and they define the basic characteristics like

If above three groups of hierarchical data types are not attributes and parameters for a PE and all of its lower-level
defined, then we use their basic types to compute the models. Furthermore, the SpecC code of behavioral PE
weighted result. For example, if no data type "int[24]" is models can describe high-level functional aspects of the PE
defined, the data with type int[24] will be treated as 24 in- in case all or part of the PE’s functionality is pre-defined
teger types. and fixed.



3.1.1 General Format _PE.BF_.MODELName of the behavior providing a bus-
functional model of the PE. The named behavior has
to exist in the PE database. Required for PEs that have

pe_behavior = , pre-defined, fixed interfaces on the pin level. See Sec-
behavior pe_name ports_opt interfaces_opt ion 3.2
body_opt tion 3.2.
ports_opt = _PE.CAMODELName of the behavior providing a cycle-
<nothing> accurate implementation model of the PE. The named
| C ’)’h ot et Y behavior has to exist in the PE database. Required for
| (" channel_port list PEs that have pre-defined, fixed hardware implemen-
channel_port list = tation. See Section 3.3.
channel_port .. . ;
| channel_port_list *;" channel_port Listing 5 shows an example of a simple PE behavior.
~ The behavior defines a PE namglyDSPthat is part of
Cha”?r?t'jﬁgge‘name the “processor” library and belongs to the “DSP” category
| interface_name port_name in that database. In addition, bus-functional and cycle-
accurate modelBlyDSPBF andMyDSPISSof the PE are
interfaces_opt = made available.
<nothing>

| implements interface_list
3.1.2 Attributes

body opt =
<nothing> Basic characteristics and metrics of PEs are described
| *{ intemal_declarations_opt ¥ through attribute annotations attached to the PE behaviors.
Attribute annotations can be given using the format defined
Figure 6: Format of PE behaviors. previously in Section 2.2.1. Specifically, the following at-

tributes can be attached to PEs (Table 13):

A PE behavior is created through a special SpecC be-
havior declaration or definition. The format of PE behav-
iors is shown in Figure 6. The name of the SpecC behav-
ior defines the name of the PE component. For PEs with
fixed computation functionality, the PE behavior has ports
of abstract, message-passing interface type and an internalPE MIPS MIPS performance rating of the PE, i.e. max-

_PE_.CLOCKFREQUENCYClock frequency the PE is op-
erating at. For PEs where the clock can be adjusted up
to a maximum frequency, this should be an adjustable
attribute.

or external body (Section 3.1.5). imal throughput of the PE in million instructions per
PE behaviors carry a number of annotations for general second.

database management, attributes (Section 3.1.2), and op-

tional parameters (see Section 2.2.2). _PE_.COST Cost of the PE. The cost unit depends on the

Table 12 lists the general annotations that are attached  database (e.g. price or area).
o PE. behavu_)rs_ for data_tbase management and n order tO_PF_POWERDower consumption rating of the PE, i.e. usu-
describe basic information about the corresponding pro-

cessing element. In detail, the following annotations are ally average power consumption when not idling.

supported: _PEINSTRUCTIONWIDTH Number of bits in a PE in-
struction word, i.e. width of the internal instruction

_PE_LIBRARY Name describing the PE database the be- bus

havior is a member of. Used to distinguish between
PE and other behaviors, i.e. required for PE behaviors. pE DATAWIDTH Number of bits in a PE data word, i.e.

width of the internal data bus.
_PE.CATEGORWame of the category the PE belongs to.

PE categories are mandatory and are used to classify PE CHARWIDTH Number of bits in a basic machine

PEs into different groups for PE allocation and selec- character, i.e. width of smallest addressable unit.
tion.
_PEDATAMEMORYSize of internal data memory of PE.
_PE.COMMENTBrief description of the PE that will be For PEs without separate program memory space,
used and displayed as an aid during selection and al- data memory size is the total size of combined pro-
location. gram and data memory.
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Name || Description | Type | Default ]

_PE_LIBRARY Name of parent PE database String -
_PE_.CATEGORY| Name of PE category String
_PE.COMMENT|| PE description String
-PE.BF.MODEL || Name of bus-functional PE model String -
_PE.CAMODEL || Name of cycle-accurate PE model String -

Table 12: General annotations for behavioral PE models.

behavior MyDSP();
note MyDSP._.PELIBRARY = "processors”;
note MyDSP..PECATEGORY = "DSP”;

note MyDSP.PECOMMENT "PE_example”;
note MyDSP..PEBF_MODEL = "MyDSP_BF”;
note MyDSP._.PECA_MODEL = "MyDSP_ISS”;

Listing 5: PE behavior example.

| Name || Description | Unit | Type | Default]

_PE.CLOCKFREQUENCY Clock frequency Hz double 0.0
_PE.MIPS Throughput MIPS | double 0.0
PECOST Cost double| 0.0
-PELPOWER Power consumption w double| 0.0
_PEINSTRUCTIONWIDTH || Instruction word width bits uint Ou
_PEDATAWIDTH Data word width bits uint Ou
_PE.CHARWIDTH Machine character width bits uint 8u
_PEDATAMEMORY Size of internal data memory byte uint Ou
-PEEPROGRAMEMORY Size of internal program memory byte uint -

Table 13: PE behavior attribute annotations.
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_PEPROGRAMIEMORSize of internal program mem- PE. The machine character corresponds to the "char”
ory of PE for PEs with dedicated program memory data type in the SpecC language.

space separate from data memory. This is used to compute the dynamic traffic. One de-

Note that using adjustable attributes for these annotations S9N Metric represents the dynamic traffic of the de-

will define the amount of flexibility available in the PE sign. It equals to the amount of traffic going through
template. the ports of the system behavior during simulation.

Besides the weight annotation, the item header an-
3.1.3 Weight Tables notation and data header annotation are also required.
) . . The header annotations for operation metric set and traf-
Weight tables of PEs are described through weight table fic metric set are shown in Table 15, and Table 16
annotations attached to the PE behaviors. Weight table a”'respectively. PEWEIGHTOPERATIONSTATIC and
notations can be given using the format defined previously pe \WEIGHTOPERATIONDYNAMICuse header anno-
in Section 2.2.3. Specifically, the weight annotations that \,:0ns in Table 15. PE WEIGHTTRAFFIC_STATIC

can be attached to PEs are listed in Table 14. Each one is; 4 pE WEIGHTTRAEFIC_DYNAMICuse header anno-
used by at least one design metric after mapping a SyStemtatio_ns in Table 16. )

behavior to a system architecture. The weight annotations

and examples of their represented design metrics are:
3.1.4 Memory Tables

_PEWEIGHTOPERATIONSTATIC Each item in the
weight table represents the occupied instruction word
or control word for an operation with a certain item
type and data type in the PE.

Memory tables attached to PE behaviors describe the lay-
out of variables in the PE memory as determined by the
compiler on top of the machine architecture. Memory ta-
ble annotations follow the same basic format as for weight
For general purpose processors and DSPs, one desigmable annotations defined in Section 2.2.3. Specifically, the
metric represents the number of of instructions that following annotations are used to define PE memory tables
the system behavior contains after mapping the sys- (Table 17):

tem behavior to the PE. For custom hardware, it repre-

sents the number of control words that the system be- -PEMEMORSIZE ' Size of variables of basic type on the
havior contains after synthesizing the system behavior stack and the heap in machine characters as deter-
to the PE. mined by thesizeof()  operator.

_PE WEIGHTOPERATIONDYNAMICEach item in the =~ -PEMEMORALIGNMENTAddress alignment bound-
weight table represents the clock cycles required to ~ aries for variable of basic type on the stack and the
execute an operation with a certain item type and data heap.

type in the PE. Memory tables defined for the basic types will be used to

One design metric represents the computation time of compute memory weights (sizes) for all basic and compos-

the design. ite types found in the design.

) ) Memory tables for sizing and alignment share the same

-PEWEIGHTTRAFFIC_STATIC Each item in the  jem and data header annotations shown in Table 18 where
weight table represents the occupied machine char-iiem and data types iterate over all types of memory (lo-

acters by a storage unit (such as a variable) of the c4)/global) and all basic SpecC data types, respectively.
system behavior with a certain item type and data

type in the PE. The machine character corresponds to
the "char” data type in the SpecC language.

This is used to compute the static traffic. One design For intellectual-property (IP) PEs with fixed functionality

metric represents the port width of the system behav- in terms of the computation the PE can perform, the PE be-
ior. It equals to the traffic when each port of the be- havior in the PE database has to provide a high-level, ab-
havior is accessed once. stract simulation model of the PE. The behavioral IP model

will be plugged into the system for simulation and has to
_PEWEIGHTTRAFFIC_.DYNAMICEach item in the accurately model the computation performed by the IP in-

weight table represents the occupied machine charac-cluding estimated timing. On the other hand, the behav-
ters by a storage unit (such as a variable) of the systemioral IP model should exclude unnecessary implementation
behavior with a certain item type and data type in the details in order to achieve the fastest possible simulation

3.1.5 Computation Functionality

11



Name || Metric | Unit | Type | Default|

_PEWEIGHTOPERATIONSTATIC Code size words | double| 0.0
-PEWEIGHTOPERATIONDYNAMIC|| Computation time cycles| double| 0.0
-PEWEIGHTTRAFFIC_STATIC Static traffic chars | double| 0.0
-PEWEIGHTTRAFFIC_DYNAMIC Dynamic traffic chars | double| 0.0

Table 14: PE behavior weight annotations.

Name || Type | Default |

-PEWEIGHTOPERATIONHEADERDATATYPE|| in Table 10 -
-PEWEIGHTOPERATIONHEADERTEMTYPE || in Table 6 &Table 7 -

Table 15: Header annotations for operation metrics.

Name | Type | Default |

_PEWEIGHTTRAFFIC_HEADEEDATATYPE|| in Table 10 -
-PEWEIGHTTRAFFIC_HEADERTEMTYPE || in Table 8 -

Table 16: Header annotations for traffic metrics.

| Name || Description | Unit | Type | Default |
_PEMEMORSIZE Variable size chars| uint Ou
_PEMEMORXLIGNMENT|| Variable alignment chars| uint Ou

Table 17: PE behavior memory table annotations.

Name | Type | Default |

-PEMEMORWYEADERDATATYPE]|| in Table 10
-PEMEMORWEADERTEMTYPE || in Table 9

Table 18: Header annotations for memory tables.
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speeds. The IP model is a black-box model used for sim- which other PEs can access the memory. The PE’'s memory
ulation only and therefore only needs to be functionally interface in the database has to be empty and acts as a tem-
correct in terms of the input and output values that can be plate that will be filled as part of the design flow in SCE.
observed at its ports. See Figure 7 for the general format of memory interface
For such IPs, the PE database has to provide a Spec@lefinitions where a memory PE behavior implements such
body for the PE behavior. The body can be either inter- an interface. In addition, memory interfaces have to have
nal or external. In the former case, the SIR file of the PE a number of general annotations for database management
contains a complete SpecC definition of the PE behavior (Table 19):
including its body. In the latter case, the PE database pro-
vides a shared library with the PE behavior's body to be -PEMEMORBoolean flag to distinguish PE behavior
linked against the design for simulation. The shared li- memory interfaces from other normalinterfaces. True
brary and associated annotations at the PE behavior canbe  for memory interface templates.
created via the IP mechanism of the SpecC compiler (see An examole of a svst PE behavior is sh
‘scc ' manual page, Section A.1). P ystem memory ehavioris shown

Behavioral PE models of IPs communicate with the rest ' Listing 7. The memory behaviddyMemimplements

of the system at an abstract, message-passing level. Péhe memory mterfa_cﬂ\/IyMem As required, the memory
behaviors of IPs must have ports that are of one of the fol- interface template is empty and has the proper annatation

L attached. Attached to the memory PE behavior are the nor-
lowing interface types out of the standard SpecC channel ) ; )
Wing | P ! P mal general annotations which mark the behavior as a PE

library: behavior in the “Memory” category and a bus-functional
e | _sender ,i _receiver ,ori _tranceiver model in the form of the “MyMenBF” behavior of the PE
. ) ] database (since the memory has a fixed, pre-defined pin-
e i typed sender , i typed receiver , or level interface). Since the PE is a pure system memory that
i typed _tranceiver can not provide any computational functionality (IP with

fixed but empty computation, see Section 3.1.5), the mem-
ory’'s PE behavior does not have any ports andrtian
method is empty.

PE behaviors are not allowed to have ports of any other
interface or standard type.

A simple example of an IP with pre-defined computa-
tion is shown in Listing 6. The IP has two ports for re-
ceiving and sending integers that get processed internally.3.2 Bus-Functional PE Models
The body of the IP’s PE behavior provides SpecC code
for the main method that simulates the IP’s functionality For PEs with fixed, pre-defined interfaces and communi-
(in this case, simple incrementation) and timing (through a cation functionality, the PE database has to contain a bus-
waitfor statement mode”ng the IP’s input-to-outputde_ functional model of the PE. A bus-functional PE model

lay). Since the IP behavior represents real hardware thataccurately describes the PE interface at the pin-level and
never exits, the IP model is executing in an endless |Oop_ it provides a simulation-model of the PE’s communication
Finally, the IP behavior provides the required general an- aspects on top of any computation functionality as defined
notations for database management. Although not shownby the PE’s behavioral model, if any (see Section 3.1).

in the example, IPs supply standard attributes and can be Bus-functional models can be thought of as additional

made parameterizable like any other PE behavior. communication layers that wrap around the PE behavioral
model. A bus-functional model can consist of several lay-
3.1.6 Memory ers of behaviors that create a hierarchy or tree of behav-
ior instantiations. At minimum, a top-level bus-functional
layer has to exist that provides a pin-accurate model of the
mem_interface = PE. Through this layer and its optional sublayer instance
interface  interface_name hierarchy, the bus-functional PE model describes the com-
Ty munication behavior of the PE at its pins and it has to pro-

vide the same computational functionality as the PE’s be-
Figure 7: Format of PE behavior memory interfaces.  havioral model.
For IPs with fixed computation and communication
For PEs that can act as system-level memories sharedunctionality the bus-functional IP model provides a
among other PEs, the PE behavior has to be turned into atiming- and data-accurate descriptions in terms of signals
server providing global storage. This is modeled by letting that can be observed at the PE’s pins. Bus-functional IP
the PE behavior implement a channel interface through models only have to provide a single bus-functional layer

13
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#include <c_typed-double_handshake . sh
DEFINEI_.TYPED.SENDER(ipint , int)
DEFINE.I_TYPED_RECEIVER (ipint , int)
behavior IP(i_ipint_receiver input, Lipint_sender output)
{
note _PELIBRARY = "processors”;
note _.PECATEGORY = "IP";
note PECOMMENT = "IP_example”;
note _.PEBF_MODEL = "IP_BF”;
note _-PECA_MODEL = "IP_RTL";
int data;
void main(void)
while (true)
{
input.receive(&data);
data++;
waitfor (1000);
output.send(data);
}
}
1
Listing 6: Example of PE behavior for IP with given functionality.
| Name || Description | Type | Default |
| .PEMEMORY| Flag for memory interface templates | bool | false ]
Table 19: Memory interface annotations.
interface IMyMem {
note PEMEMORY = true ;
s
behavior MyMem ()
implements IMyMem
{
note _PELIBRARY = 1;
note _PECATEGORY = "Memory”;
note _.PEBF_.MODEL = "MyMem_BF”;

void main(void) {

}

Listing 7: Example of PE behavior for system memory.
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but they can consist of several hierarchical layers internally
(Section 3.2.1). However, bus-functional IP models need to
supply an adapter that wraps and abstracts communication
with the IP up to the message-passing level equivalent to
the IP’s behavioral model (see Section 3.1.5).

For programmable PEs with flexible computation be-
havior (i.e. no functionality provided in the PE behavior,
Section 3.1.5) but fixed, pre-defined interfaces and com-
munication functionality, the bus-functional PE model has
to provide a hierarchy with at least two layers: a top-level
bus-functional layer describing the PE pin interface on the
outside and an internal empty hardware abstraction layer
(HAL) at the leaf of the bus-functional model hierarchy
describing the interface for accessing the PE’s communica-bf_behavior =

tion implementation from the programmable computation behavior  pe_bf name pins body_opt
on the inside (Section 3.2.2). pins =
A PE is considered programmable in terms of its com- ¢ pin_list 'y

putation if the bus-functional PE model provides a hard-
ware abstraction layer (HAL). As part of the design pro- Pn-ist =
. S . . pin

cess in SCE, communication synthesis will use the HAL | pin_list * pin
of the bus-functional PE model as a template and modify it
to implement computation on the PE on top of the services pin = _ o _
provided by the HAL model. In terms of services, the HAL pin_direction  signal - bit_sign bit_vector pin_name
defines the insertion point for implementing the PE’s com- i direction =
putation and it provides communication services for stream <nothing>
and memory I/O and interrupt handling. The HAL together | in
with the outer bus-functional layers model the correspond- I ;‘gut
ing capabilities of the pre-defined PE implementation (e.g.
number and type of external interfaces, amount and level bit_sign =
of interrupts, etc.). <nothing>

The HAL marks the boundary between hardware and I E';?Qgged
software in programmable PEs. SpecC code for the HAL
and the subbehavior hierarchy inserted into the HAL by bit_vector = _ '
SCE will later be implemented in software. On top of an bit T const_expression " const_expression
implementation of the HAL on the target processor taken | bit T const_expression 1
out of the OS databases, target-specific code will be gen-pody opt =
erated for the HAL model. Layers of the PE model above <nothing>
up to and including the bus-functional layer represent the | { intemnal_declarations_opt 7
hardware implementation of the PE and will later be re-
placed with a description of the real PE hardware taken out Figure 8: Format of bus-functional PE models.
of the databases for manufacturing.

If no hardware abstraction layer is provided, on the
other hand, the bus-functional PE model is considered
to be a self-contained simulation model of the complete
PE including computation and communication that will be
plugged into the system simulation as is.

3.2.1 Bus-Functional Layer

The general format of bus-functional PE models is shown
in Figure 8. The outer bus-functional layer is given as
a SpecC behavior definition with an internal or external
body, i.e. for IPs the body can be supplied as an external
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library in the same manner as for the behavioral PE model 3.2.2 Hardware Abstraction Layer
(Section 3.1.5). The name of the bus-functional layer be-

havior defines the name of the bus-functional PE model

and has to match the corresponding annotation at the PEha_behavior =

. : . behavi hal rt_list_opt
behavior (see Section 3.1.JRE BF_MODELannotation). © a\i/gz)lemr:;_tsaiﬁtr;?fgse pgpt—'s—()p

Finally, bus-functional PE behaviors have to have a list of { hal_body_list ¥
ports of bitvector signal type representing the pins of the
PE hal_body _list =

' . . hal_bod!

Bus-functional PE behaviors have a set of general pur- | h5|_bgdy_|ist hal_body
pose annotations for database and design flow management
(Table 20): hal body =

note_definition
. tocol_channel_instal
-PE.BF_.BUS Name of the bus channel in the bus proto- I ﬂ‘;,?ﬁg;ﬁ;ﬁ?;—;ﬂ;hgﬁf
col database that describes the protocol for commu- | hal_main_method

nication with the PE. The pin interface of the bus-
functional PE model has to match the list of wires in
the bus protocol by name and type.

interrupt_handler_method =
void handler_name (' void 'y '{ %}

hal_main_method =
_PEBF.ADAPTERName of the channel providing the void main °( void ) {7
adapter wrapping the protocol stack for message-

passing communication with the IP. The named chan- Figure 9: Format of hardware abstraction layer (HAL) for
nel has to exist in the PE database. See Section 3.2.4hys-functional PE models.

_PEHALMODELName of the behavior providing the The general format of the hardware abstraction layer
hardware abstraction layer (HAL) for the bus- (HAL) for bus-functional PE models is shown in Figure 9.
functional PE model (see Section 3.2.2). The named The HAL is a SpecC behavior definition whose name de-
behavior has to exist in the PE database. The HAL fines the name of the HAL model and has to match the
behavior has to be instantiated as a leaf in the tree of corresponding annotation at the high-level PE behavior
subbehaviors of the bus-functional PE model. (see Section 3.1.1PE HAL MODElannotation). A HAL

model generally has ports and implements interfaces to

_PE.INT _.HANDLERName of the method in the HAL be- communication with the outer layers of the bus-functional
havior that acts as the interrupt handler for the in- PE model. In particular, the HAL layer implements an in-
terrupt pin the annotation is attached to. See Sec- terface that makes its interrupt handler methods public in
tion 3.2.2. order for them to be invoked by the outer layers as required.

The HAL model has to provide an internal SpecC body
An example of a simple bus-functional PE model for that acts as a template to be filled by SCE. It has to con-
the IP behavioral PE from Listing 6 is shown in Listing 8. tain exactly onanain method (required by SpecC) that is

The model has only one top-level bus-functional layer with empty. Furthermore, the HAL model has to define empty

an internal body that implements the IP’s computation and interrupt handler methods that are called by the outer lay-

communication functionality. Computation is the same as ers of the bus-functional model whenever an interrupt is
in the behavioral IP model introduced previously. Commu- detected on one of the PE’s interrupt pins. The name of
nication is modeled accurately by driving and sampling the a handler has to match the corresponding annotation at-

PE pins. Allin all, the bus-functional PE behavior provides tached to the interrupt pin in the bus-functional layer (see

an accurate simulation model of the IP for co-simulation Section 3.2.1,PE.INT _HANDLERannotation).

with the rest of the system. When composing the sys- Finally, the HAL model has to provide access to the PE’s

tem, the bus-functional IP model defines that in order to communication services for use by the code that will be in-

exchange data, other PEs communicating with the IP haveserted in the design process by SCE. The bus-functional
to implement the protocdP_Busstored in the bus protocol  layer the HAL model is part of defines the protocol in the
database (Section 4). Apart from that, the IP comes with bus database that is used by the PE for external commu-
an adapter channéP _Adapterthat implements the com-  nication (see Section 3.2.JRE_ BF_BUSannotation). The
plete protocol stack (including the bus protocol) for com- HAL then has to make all the high-level interfaces at the
munication with the IP at the message-passing level (seetop of the protocol stack available (i.e. data link and mem-

Section 3.2.4). ory access interfaces, see Section 4.3). Depending on the
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| Name || Description | Type | Default |
_PEBF.BUS Name of the PE’s bus protocol String -
_PE.BF_ADAPTER || Name of the wrapper for IPs String -
-PEEHALMODEL Name of PE hardware abstraction layer (HAL) model String -
_PELINT _.HANDLER|| Name of HAL interrupt handler method for an interrupt pin String -

Table 20: Bus-functional PE model annotations.

1 behavior IP.BF(in signal bit[1] ready ,
2 out signal bit[1] ack ,
3 signal bit[31:0] dat)
4

5 note _.PEBF_BUS = "IP_Bus”;

6 note _.PEBF_ADAPTER = "IP_Adapter”;

7

8 int data;

9

10 void main(void) {

11 while (true)

12 {

13 wait(rising ready); Il receive data
14 data = dat;

15 waitfor (5);

16 ack = 1b;

17

18 data++;

19

20 wait (falling ready); /1 send data
21 dat = data;

22 ack = 0b;

23 }

24

25 };

Listing 8: Example of bus-functional PE model for simple IP.
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boundaries between hardware and software in the PE, in- In order to support more complex interrupt capabilities
terfaces can be made available either as ports of the HAL with more than one source of interrupts, different priori-
model of corresponding interface type or by instantiating ties, masking, etc. inside SCE, the PE database needs to
part or all of the protocol stack channels inside the HAL include interrupt controllers as part of the bus-functional
model. In either case, all bus communication available PE models. Interrupt controllers sit in front of the basic

inside the HAL is eventually mapped to transactions on
the PE pins through the hierarchy of layers of the bus-
functional PE model.

An example of a bus-functional model for a pro-
grammable PE is shown in Listing 9. The bus-functional
PE model consists of a hardware abstraction layer (List-
ing 9(a)) and an outer bus-functional layer (Listing 9(b)).

The HAL model (Listing 9(a)) imports the PE’s external
bus protocol out of the bus database in oder to instantiate
its data link layer channel. The data link layer channel
communicates with the lower layers of the bus protocol
stack through a corresponding port of the HAL model. As
required, the HAL model contains an empiain method
and it provides a single interrupt handietHandlerthat is
made public through the HAL's implemented interface.

The top-level bus-functional layer (Listing 9(b)) then
imports the HAL model and the bus-functional behavior
MyDSPBF instantiates the HAL behavior (line 22) and
provides a pointer to the HAL model through the corre-
sponding annotation (line 18). Inside the bus-functional
behavior'smain method, the HAL model is executed in
a try-interrupt construct that models the interrupt
control logic of the PE’s hardware. Normal execution of
the HAL is interrupted and the HAL's interrupt handler
method is invoked whenever an interrupt (rising edge) on
the PE’s interrupt pirintr is detected. As required, the
annotation at the interrupt pin points to the HAL inter-
rupt handler to reflect that fact (line 19). Finally, the bus-
functional model provides the required pointer to the PE
protocol in the bus database (line 17), it instantiates the
lower layer channels of the protocol stack (line 21), and it
maps the bus protocol onto the HAL's ports to complete
the protocol implementation in the model.

3.2.3 Interrupt Handling

Bus-functional models for programmable PEs have to in-
clude a definition of the PE’s interrupt capabilities and its
interrupt handling. As described previously, the top-level
bus-functional layer defines the interrupt pins available at
the physical PE interface and the HAL model provides cor-
responding empty interrupt handler templates. The differ-
ent layers of the bus-functional PE model then describe the

PE core model and are modeled by adding another layer
to the bus-functional PE model between the processor core
and the outer bus-functional layer. Typically, the interrupt
controller provides a set of interrupt lines at the pins of the
top-level bus-functional layer while internally communi-
cating with the core via the PE bus and the core’s interrupt
condition input. The core then interrupts normal computa-
tion and executes the appropriate handler depending on the
inputs received from the interrupt controller. Overall, the
combination of layers has to simulate the proper interrupt
behavior while maintaining the relationship between inter-
rupt pins at the bus-functional layer and interrupt handlers
in the HAL required by the database format for SCE.

An example of a bus-functional PE model for a pro-
grammable PE that includes an interrupt controller is
shown in Listing 10. In contrast to the example shown pre-
viously, the hardware abstraction layer (Listing 10(a)) now
contains templates for two separate interrupt handlers.

In the next layer (Listing 10(b)), the interrupt control
logic in the model of the processor core hardware is mod-
ified to communicate with the interrupt controller. The in-
terrupt control logic is triggered to interrupt normal com-
putation on events at the core’s interrupt condition line and
bus control lines (line 33). Internally, the control logic pro-
cesses pending interrupts as long as the interrupt condi-
tion is active and the bus is not busy (in order to maintain
bus protocol timing, normal computation must not be in-
terrupted in the middle of a bus transaction). If there is a
pending interrupt, the interrupt logic communicates with
the interrupt controller over the PE bus to acknowledge
the interrupt and receive the interrupt vector. It then sub-
sequently calls the corresponding interrupt handler in the
HAL.

Finally, in the top-level bus-functional layer of the PE
model (Listing 10(c)), the processor core model and the
interrupt controller model are instantiated and connected
via wires and pins of the bus-functional layer. Further-
more, the appropriate annotations are attached to the in-
terrupt pins of the bus-functional layer pointing back to the
interrupt handlers in the HAL.

An example of a simple interrupt controller model
is shown in Listing 11. The interrupt controller (List-

PE’s interrupt behavior of detecting interrupts, suspending ing 11(c)) consists of interrupt detection modules (one per
regular computation, and executing the HAL interrupt han- interrupt line) and a control module that communicates via
dlers during system simulation. The example of Listing 9 an interrupt status register (ISR). The interrupt detection
shows how to model such behavior for a typical simple pro- behaviors (Listing 11(a)) model the edge detection on the
cessor core with a single interrupt condition input. interrupt lines, setting a bit in the status register when-
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import "MyDSP_Bus”; /I bus protocol
interface IMyDSP._IntHandlers {
void intHandler (void);
}
behavior MyDSPHAL(IMyDSP _Bus_Protocol protocol)
implements IMyDSP_IntHandlers
{
MyDSP_Bus_LinkAccess link (protocol); // bus data stream
MyDSP_Bus MemAccess mem(protocol); // bus memory access
void intHandler (void) {
}
void main(void) {
}
}
(a) Hardware abstraction layer (HAL)
Listing 9: Example of bus-functional model for programmable PE.
import "MyDSP_HAL"; /! hardware abstraction layer
/!l Interrupt control logic
behavior MyDSP.ICL(IMyDSP_Bus_Protocol bus, IMyDSPIntHandlers handlers)
void main(void) {
handlers .intHandler ();
}
}
/l Bus-functional layer
behavior MyDSP.BF (out signal bit[31:0] Addr,
signal bit[31:0] Data,
out signal bit[2] Ctrl ,
in signal bit[1] Int)
{
note _.PEBF.BUS = "MyDSP.Bus”;
note _PEHAL_MODEL = "MyDSP_HAL";
note Int._PEINT_.HANDLER = "intHandler”;
MyDSP_Bus_Master protocol (Addr, Data, Ctrl); // bus protocol
MyDSP.HAL hal(protocol);
MyDSP.ICL icl(protocol , hal);
void main(void) {
try {
hal . main ();
interrupt (rising Int) {
icl.main();
}
}
i

(b) Bus-functional layer

Listing 9: Example of bus-functional model for programmable PE (continued).
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1 import "MyDSP_Bus”; /I bus protocol
2

3 interface IMyDSP_IntHandlers {

4 void intAhandler (void);

5 void intBhandler (void);

6 };

7

8 behavior MyDSPHAL(IMyDSP_Bus_Protocol protocol)

9 implements IMyDSP_IntHandlers

10 {

11 MyDSP_Bus_LinkAccess link (protocol); // bus data link access
12 MyDSP_Bus.MemAccess mem(protocol); // bus memory access
13

14 void intAhandler (void) {

15

16 void intBhandler (void) {

17 }

18

19 void main(void) {
20

21 };

(a) Hardware abstraction layer (HAL)

Listing 10: Example of bus-functional model for PE with interrupt controller.

ever an interrupt is detected. The control behavior (List-

ing 11(b)) watches the status register, signals interrupts to

the core, and pgrforms interr_up_t ackn_owledge cycles onthej, agapter channel =

PE bus according to the priority of interrupts as long as channel  adapter_name pins

there are interrupts pending. 5?1F#:g:ﬁ;tsdecilr;treaggﬁzsagft’}'

3.2.4 |P Adapters pins =
(¢ pin_list )y
For IP PEs with fixed computation and communication
functionality (see also Section 3.1.5), communication with Pn-fst =
the IP can generally not be synthesized arbitrarily but has Flgin list *; pin
to adhere to the proprietary IP protocol on all levels. Apart -
from the IP bus model that describes the lower layers pin = _ o _
of IP communication in the bus protocol database, bus- ~ Pndrecton  signal  bit sign bit vector pin_name
functional IP models therefore need to supply a complete iy girection =

protocol stack in the form of an IP adapter that covers com- <nothing>
munication with the IP from the abstract, message-passing | in
level down to the pins of the IP bus. I ;‘gut

IP adapters are SpecC channel definitions with an inter-
nal body as shown in Figure 10. The name of the channelbit_sign =
defines the name of the adapter and has to match the cor- ~ <nothing>
responding annotation at the bus-functional PE model (see I z'r?gigged
Section 3.2.1,PE. BF_ ADAPTERannotation).

On the one side, adapter channels connect to the |Pbit vector = _ '
through their list of ports of bitvector signal type that has bit T const_expression " const_expression
to match the list of wires in the IP bus and hence the list of | bit T const_expression 1
IP pins with reversed directions. On the other side, adapter
channels export methods through implemented interfaces Figure 10: Format of IP adapters.
that provide message passing communication with the IP
equivalent to the set of channels connecting to the ports of
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import "MyDSP_HAL"; /! hardware abstraction layer
/I Interrupt control logic
behavior MyDSP.ICL (IMyDSP_Bus_Master bus, IMyDSPIntHandlers handlers ,
in signal bit[1] Int, in signal bit[1] Busy)
{
void main(void) {
unsigned bit[0:0] vec;
while (Int && !Busy) { I/l process pending interrupts
vec = bus.acklntr (); /1 acknowledge , receivevector
switch(vec) { // call corresponding interrupt handler
case 0: return handlers .intAhandler ();
case 1: return handlers .intBhandler ();
}
}
}
}
/I Processor core

behavior MyDSPHW (out signal bit[31:0] Addr,
signal bit[31:0] Data,

signal bit[2] Ctrl ,

in signal bit[1] Int)

-~

MyDSP_Bus_Master protocol (Addr, Data, Ctrl); // bus protocol
MyDSP.HAL hal(protocol);
MyDSP.ICL icl(protocol, hal, Int, Ctrl[0]);

void main(void) {

try {
hal . main ();

interrupt (Int, Ctrl) {
icl.main ();

}

(b) Processor core layer

Listing 10: Example of bus-functional model for PE with interrupt controller (continued).
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1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import "MyDSP_HW"; /I processor core

import "MyDSP_IC"; /I interrupt controller
behavior MyDSP.BF ( signal bit[31:0] Addr, Il bus
signal bit[31:0] Data,
signal bit[2] Ctrl ,
in signal bit[1] intA | /] interrupts
in signal bit[1] intB)
{
note _.PEBF_.BUS = "MyDSP_Bus”;
note _PEHAL_MODEL = "MyDSP_HAL";
note intA._PEINT_.HANDLER = "intAhandler”;
note intB._PEINT_HANDLER = "intBhandler”;
signal bit[1] Int = 0; [/l interrupt line
MyDSPHW hw(Addr, Data, Ctrl, Int); /I processor core
MyDSP.IC ic (Addr, Data, Ctrl, Int, intA, intB); // interrupt ctrl
void main(void) {
par {
hw. main ();
ic.main ();
}
}
i

(c) Bus-functional layer

Listing 10: Example of bus-functional model for PE with interrupt controller (continued).

interface type in the behavioral IP model (Section 3.1.5). 3.3 Cycle-Accurate PE Models

For every port in the behavioral IP model, the IP adapter - S

channel has to provide corresponding reverse methods. Td-or PEs with fixed functionality (i.e. programmable PEs
avoid name C|ashes in the adapter’ method names are Suf\N|th ﬁxed Communication fUnCtionaIity or IPs W|th ﬁXed

fixed with ‘_’ plus the name of the port in the behavioral Ccomputation and communication functionality) the PE
model. database has to contain a cycle-accurate implementation

model of the PE in addition to the (mandatory in those
cases) bus-functional PE model. At its interface, a cycle-

Internally, adapter channels describe the implementation @ccurate model has to match exactly the interface of its cor-
of IP communication by mapping each message down to its 'esponding bus-functional model. Hence, a cycle-accurate
proper sequence of events on the IP bus wires for transfer-model is a SpecC behavior with ports of signal bitvector
ring data, synchronization, etc. IP communication can be fype representing pins and the general format of cycle-
described directly in the body of the adapter or hierarchi- accurate models is the same as for bus-functional models
cally through a stack of other protocol channel instances Shown in Figure 8. Directions, types, names, and order
(e.g. partly using IP bus protocol models out of the bus Of ports have to be the same as in the corresponding bus-
database). functional model.

A cycle-accurate model has to have an external or in-
ternal body providing a clock cycle accurate simulation

An example of an IP adapter for communication with model of the PE implementation. Therefore, compared to
the IP introduced in Listing 8 is shown in Listing 12. The the bus-functional model, the pin interface is the same but

adapter connects to the IP bus throdgtdr, Data, andCtrl the timing is refined and more accurate.
ports. It implementsendinput andreceiveoutputmeth- For programmable PEs, the cycle-accurate model has to
ods corresponding to thaput andoutputports of the be- implement an instruction set simulation (ISS) that takes the

havioral IP model. Internally, the methods drive and sam- name of the object code for the processor generated within
ple the bus wires according to the IP protocol to exchange SCE as a parameter and executes the instructions therein
data and synchronize with the IP. cycle by cycle.
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ehavior MyDSP_ICDetect (in signal bit[1] intr, out signal bit[1] flag)

~~ O

void main(void)

while (true ) {
wait (rising intr);
flag = 1;

}

© 0O ~NOO O WN R

—

[N
o
—

(a) Interrupt detection logic

1 import "MyDSP_Bus”; /I bus protocol
2
3 behavior MyDSP_ICCtrl (IMyDSP_Bus_Slave bus , signal bit[2] ISR,

4 out signal bit[1] Int)

5

6 void main (void) {

7 while (true) {

8 while (1 ISR) wait(ISR); /1 wait for interrupt

9

10 Int = 1; /1 signal interrupt condition
11 if (ISR[0])

12 bus.acklntr (0); /! wait for acknowledge ...
13 else if(ISR[1]) /Il ...and send vector

14 bus.acklintr (1);

15 Int = 0; Il reset interrupt condition
16 }

17 }

18 };

(b) Control logic

Listing 11: Example of interrupt controller model.
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1 import "MyDSP_Bus”; Il bus protocol
2
3 import "MyDSP_ICDetect”; // detection logic
4 import "MyDSP_ICCtrl”; /I controller
5
6 behavior MyDSP.IC(in signal bit[31:0] Addr, /1 PE bus
7 signal bit[31:0] Data,
8 in  signal bit[2] Ctrl ,
9 out signal bit[1] Int,
10 in signal bit[1] intA | Il interrupts
11 in signal bit[1] intB)
12 {
13 MyDSP_Bus_Slave protocol (Addr, Data, Ctrl); // bus protocol
14
15 signal bit[2] ISR = 0; /] status register
16
17 MyDSP_ICDetect intAdetect(intA, ISR[0]); /I detection logic
18 MyDSP_ICDetect intBdetect(intB, ISR[1]);
19
20 MyDSP_ICCtrl ctrl(protocol, ISR, Int); Il control
21
22 void main(void) {
23 par {
24 ctrl.main ();
25 intAdetect.main ();
26 intBdetect.main ();
27 }
28 }
29 };
(c) Interrupt controller model
Listing 11: Example of interrupt controller model (continued).
1 channel IP_Adapter (out signal bit[1] ready ,
2 in signal bit[1] ack ,
3 signal bit[31:0] dat)
4 implements [IP_Adapter
5 {
6 void sendinput(int input)
7 A
8 dat = input;
9 ready = 1b;
10 wait (rising ack);
11 }
12
13 void receiveoutput(int &output)
14 {
15 ready = 0b;
16 wait(falling ack);
17 xoutput = dat;
18 }
19 };

Listing 12: Example of IP adapter model.
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For IPs, the cycle-accurate model in SpecC has to cor- RTL descriptions for IPs in SpecC can be at any level,
respond to the RTL description of the IP that has to be e.g. behavioral, FSMD-style, structural or even gate-level
available outside of SCE in the form of synthesizable (soft RTL descriptions are possible. Furthermore, if an IP model
core) or gate-level (hard core) HDL (e.g. VHDL or Ver- is available in the form of an external simulator that satis-

ilog) code. fies the requirements, it can be plugged in by providing a
SpecC wrapper in the same manner as for ISS models de-
3.3.1 Instruction Set Models scribed in Section 3.3.1. In any case, the PE database does

not pose any restrictions on the body of cycle-accurate IP
For an instruction set model, the body of the cycle-accurate models and existing guidelines for RTL modeling can be
PE behavior contains SpecC code that executes an instrucfollowed freely.
tion set simulation of the processor’s object code generated
through SCE. The instruction set simulation reads instruc-
tions from the supplied object file and executes them cycle
by cycle while simulating their effects on the pins of the 4 Bus Protocols
PE model. Instruction set models can trade of accuracy in

terms of timing observed at the PE's pins versus simulation 1he s database contains models of busses including asso-
speed depending on the granularity of simulated cycles.  jateq protocols where the term “bus” refers to communi-

Existing instruction set simulators (ISS) for PES can be ¢ation structures in general, e.g. networks and their proto-
plugged into the SpecC simulation as long as they pro- 4|5 Models taken out of the bus database are used within

vide a C level API that allows hooks into the simulation gcE to implement and synthesize communication inside
flow to observe and manipulate the PE pins. The cycle- e PEs connected to the busses of the system.
accurate SpecC behavior in the PE database acts as a wrap- Bus models in the bus database consist of a stack of

per around calls to the ISS API and gets later linked agamStprotocol layers At the bottom of the stack, the physical

the ISS libraries to create the co-simulation executable. . ; . .
. S ; layer is connected to the actual physical bus wires and it
The wrapper code advances simulation time and drives and.

. ; : implements the bus primitives defined by the bus proto-
samples pins on the SpecC side by controlling the 1SS Suc.hcol for data transfers, synchronization and arbitration. On

itrr:;tr?;éz.smes can be synchronized on events atthe PE IOIr}op of the physical layer, the media_acc_ess_ layer prO\_/ides
Listing 13 shows an example of such a simple SpecC an abstraction of external co_mmumcanon _m_to data Im_ks_
instruction set model wrapper around an existing ISS for gnd MEmory accesses by using and cqmblmng bus primi-
o R tives to regulate media accesses and slice abstract data into
the PE example from Listing 9. After initialization of the bus words. Note that even though these layers are loosely

ISS (line 15 and line 16), the instruction set model sim- ;
. . based on the OSI reference model, they do not necessarily
ulates one clock cycle of the ISS (line 21) in an endless L
match the OSI definitions exactly.

loop (line 18). In each cycle, the model drives the ISS’s . o
asynchronous inputs (line 19) and it checks for any I/O Each protocol layer can have two separate sides with dif-
instructions executed in the ISS. In case of external bus ferentimplementations for bus masters and bus slaves. The

reads (line 23) or bus writes (line 27), the model simu- different models of the two protocol Iayer_s for bus mod_els
lates a corresponding bus cycle via calls to the PE’s bus&'® stored as SpecC channels_or behaviors (for passive or
protocol model (line 10) imported from the bus protocol active protocol models, respectively). Each channel or be-
database (line 3). In case of a normal processor cycle, thehavior provides a protocol |_mplementat|on for one S|_ngle
instruction set model simply advances time on the Specc PE connected to the bus, i.e. each connected PE imple-

side corresponding to the simulated time spent in the ISS ments a bus protocol by creating internal instances of the
(line 31). required protocol models. Physical layer models connect

to the bus wires through ports of the model and pins of the
332 IP Model PE. Higher-level models are stacked on top of each other
o odels via interfaces implemented by each model where a model

For IPs with fixed functionality, the Cyc|e_accurate PE calls the methods of the model beneath it via pOI’tS of cor-

model has to provide a RTL description of the IP that can responding interface type.

be plugged into the system simulation as is. The body of At the top-level of the bus database, all channels and

the cycle-accurate PE behavior can be internal or externalbehaviors that are part of the same bus model are then
where parts or all of the model can be supplied as an exter-grouped together under a single, top-level bus channel that
nal shared library created through the IP mechanism of the acts as a container representing the overall bus protocol in
SpecC compiler 6cc ', Section A.1). the bus database.
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1 #include "iss.h” /1 1SS C interface

2

3 import "MyDSP_Bus”; /1 bus protocol

4

5 behavior MyDSP.ISS (out signal bit[31:0] Addr,

6 inout signal bit[31:0] Data,
7 inout signal bit[2] Ctrl ,
8 in signal bit[1] Int)
9

10 MyDSP_Bus_Master protocol (Addr, Data, Ctrl); // bus protocol
11
12 void main(void) {

13 bit [31:0] data;

14

15 iss_startup (); /1 initialize 1SS
16 iss_load (OBJECINAME) ; // load program
17

18 while (true ) { [/l run simulation
19 iss_intr = Int; /1 drive ISS input
20

21 iss_.exec (); /! run DSP cycle
22

23 if (iss.IR == MOVEMRD) { /1 bus read?

24 protocol.readLong (isAR, &data);

25 iss.DR = data;

26

27 else if(iss.IR == MOVEMWR) { /I bus write?

28 protocol.writeLong (issAR, iss.DR);

29

30 else { /!l normal cycle
31 waitfor (1e9 / CLOCKFREQUENCY);

32 }

33 }

34 }

35 };

Listing 13: Example of instruction set simulation (ISS) PE model.
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4.1 Bus Channels A bus channel has to have an internal body that defines
) the set of wires of the bus and the protocol stacks for im-
Bus channels represent bus protocols in the bus databaséyiementation of the bus protocol inside partners connected
For each bus in the bus database there must be one bug, and communicating via the bus. Bus wires are defined
channel and t_he sef[ of bus channels defines the list of busOy instances of variables of signal bitvector type with op-
protocols available in the database. Bus channels are usejong| initializers defining default values for driving a bus
for bus allocation and they act as a container for all pro- wire. Protocol stacks are given as instances of channels
tocol models aqd other information like attributes and pa- o pehaviors describing protocol models at different lay-
rameters associated with a bus. ers. For each protocol model associated with the bus, an
instance of that channel or behavior has to exist in the bus
channel. Furthermore, every wire has to be connected to at
least one channel or behavior instance. Mappings of wires
to ports of low-level instances and of instances at lower
layers to ports of instances of higher layers thereby define

4.1.1 General Format

bus_channel = = o
channel bus_name no_port_opt the proper connectivity to assemble protocol stacks inside
implements_interface_opt PEs.
{' bus_body_list 7 In addition to the definition of the communication hi-
no_port_opt = erarchy implementation, bus channels also carry a num-
<nothing> ber of annotations for general database management, at-
Q) tributes (Section 4.1.2), and optional parameters (see Sec-
bus_body_list = tion 2.2.2). ,
bus_body General annotations for database management store ba-
| bus_body _list bus_body sic information about the protocol organization (Table 21).

Specifically, the following general annotations are attached

bus_body =
_ocy to bus channels:

note_definition
| wire_definition

| instance_declaring_list _BUSLIBRARY Name describing the bus database the
| method_definition channel is a member of. Used to distinguish between
) - bus and other channels, i.e. required for bus protocol
wire_definition = h |
signal  bit_sign bit_vector wire_name channels.
initializer_opt *;
_BUSCATEGORame of the category the bus belongs
bit_sign = to. Bus categories are mandatory and are used to clas-
<nothing> sify busses into different groups for bus allocation and
| signed .
| unsigned selection.
bit_vector = _BUSCOMMENBrief description of the bus that will be
bit [ const_expression " const_expression T used and displayed as an aid during selection and al-
| bit T const_expression '] location.
initializer_opt = .
<nothing> _BUSADDRPORT Name(s) of the variable(s) represent-
| *=" const_expression ing the wire(s) over which addresses are communi-
cated. Either a single string or a complex annotation
Figure 11: Format of bus channels. with a list of strings. Required for busses that support
addressing.

A bus channel is created through a special SpecC chan- BUSDATAPORT Name(s) of the variable(s) represent-
nel definition. The general format of bus channels in shown |ng the Wire(s) over which data is communicated. Ei-
in Figure 11. The name of the bus channel defines the name ther a single string or a complex annotation with a list
of the bus protocol in the bus database. A bus channels of strings. Required for all busses.
does not have any ports but it can implement interfaces to
optionally expose bus communication interfaces instanti- . BUSMASTERPROTOCOIName of the channel or be-
ated internally as described below for documentation and havior providing the implementation of the data trans-
readability purposes. fer protocol physical layer for bus masters. The
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| Name || Description | Type | Default ]
_BUSLIBRARY Name of parent bus database String -
_BUSCATEGORY Name of bus category String
_BUSCOMMENT Bus description String
_BUSADDRPORT Name of the bus wire carrying addresses String -
-BUSDATAPORT Name of the bus wire carrying data String -
-BUSMASTERPROTOCOL| Name of data transfer protocol master model String -
-BUSSLAVEPROTOCOL || Name of data transfer protocol slave model String -
_BUSMASTERNT Name of synchronization protocol receiver model String -
_BUSSLAVEINT Name of synchronization protocol sender model String -
_BUSMASTERACCESS Name of bus request model of arbitration protocol String -
-BUSSLAVEACCESS Name of bus grant model of arbitration protocol String -
_BUSMASTERLINK Name of data link master model String -
_BUSSLAVELINK Name of data link slave model String -
_BUSMASTERMEM Name of memory access model String -
_BUSREADMETHOD Name of media access layer read method String -
-BUSWRITEMETHOD Name of media access layer write method String -

Table 21: General annotations for bus protocol channels.

named channel or behavior has to exist in the bus
database. Required for all busses. See Section 4.2.2.

_BUSSLAVEPROTOCOIName of the channel or behav-
ior providing the implementation of the data transfer

behavior has to exist in the bus database. Required
for busses where masters have to participate in a sep-
arate media access protocol among hosts attached to
the bus. See Section 4.2.4.

protocol physical layer for bus slaves. The named . BUSMASTERLINK Name of the channel providing the

channel or behavior has to exist in the bus database.
Required for all busses. See Section 4.2.2.

_BUSMASTERNT Name of the channel or behavior
providing the implementation of the synchronization

media access layer implementation for data links in-
side bus masters. The named channel has to exist in
the bus database. Required for all busses. See Sec-
tion 4.3.2.

protocol physical layer for bus masters, i.e. event de- BUSSLAVELINK Name of the channel providing the

tection on the receiver side. The named channel or
behavior has to exist in the bus database. Required for
busses that support interrupt lines. See Section 4.2.3.

_BUSSLAVEINT Name of the channel or behavior pro-

media access layer implementation for data links in-
side bus slaves. The named channel has to exist in
the bus database. Required for all busses. See Sec-
tion 4.3.2.

viding the implementation of the synchronization pro- _BUSMASTERMEMName of the channel providing the

tocol physical layer for bus slaves, i.e. event genera-
tion on the sender side. The named channel or be-
havior has to exist in the bus database. Required for
busses that support interrupt lines. See Section 4.2.3.

_BUSMASTERACCESSName of the channel or behav-
ior providing the arbitration protocol implementation
for bus accesses by bus masters. The named channel
or behavior has to exist in the bus database. Required
for busses where masters have to participate in a sep-
arate media access protocol among hosts attached to
the bus. See Section 4.2.4.

_BUSSLAVEACCESSName of the channel or behavior
providing the arbitration protocol implementation for
bus accesses by bus slaves. The named channel or
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media access layer implementation for external mem-
ory accesses inside bus masters. The named channel
has to exist in the bus database. Required for busses
that support shared memories. See Section 4.3.3.

_BUSREADMETHODName of the media access layer

method for bus read accesses. The named method has
to exist in all link and memory access media access
layer channels (see Section 4.3.2 and Section 4.3.3).
Required for all busses.

_BUSWRITEMETHOIDName of the media access layer

method for bus write accesses. The named method
has to exist in all link and memory access media
access layer channels (see Section 4.3.2 and Sec-
tion 4.3.3). Required for all busses.



Note that different protocol model annotations can pointto .BUSBANDWIDTHMaximal bandwidth of the bus, i.e.
the same behavior or channel, i.e. a protocol implementa- throughput of the bus at 100% utilization.

tion can provide more than one of the mandatory or op-

tional functionalities within the restrictions noted in the -BUSCOST Cost of the bus. The cost unit depends on the
rest of this Section 4. database (e.g. price or area).

An example of a bus channel is shown in Listing 14.
The bus channel defines a bus protocol naMgbSPBus
that is part of the “busses” library and belongs to the “Pro-
cessor” category (the example being the protocol for the
MyDSPprocessor from the PE database bus-functional ex-

amples, see Section 3.2). The bus channel annotations pro-gys pATAWIDTH Number of bits in bus data words

_BUSADDRWIDTH Number of bits in bus addresses (e.g.
number of wires in the address bus or bitwidth of ad-
dress field in bus frames). Determines the size of the
bus address space.

sections. The bus provides the mandatory models for the amount of data transfered in a single regular bus cy-
data transfer protocol physical layéyDSPBus Master cle.

on the master side aldyDSP Bus Slaveon the slave side)
and the media access layer lifMYDSPBus Link for both _BUSCHARWIDTH Number of bits in a basic bus char-
sides) implementations. The bus supports shared memory  acter for memory accesses where bus characters are

communication and it defines the corresponding media ac- memory words aligned at unit address boundaries
cess layer implementationMyDSPBus MemAccessor (one bus character per address), i.e. width of small-
performing memory accesses from a master). In both est addressable memory unit.

cases, link and memory type communication is provided _
throughreadandwrite methods of the corresponding chan- -BUSALIGNMENTBoundary at which whole bus data

nels. Finally, the bus defines a built-in synchronization pro- words are aligned in the bus address space, i.e. the
tocol MyDSPBus IntGeneratdor interrupt generation on address of a any part of a bus word modulo the align-
the slave side anMyDSPBus IntDetectfor interrupt de- ment determines the address of the corresponding

tection on the master side) but does not support arbitration ~ Whole bus data word.
to regulate bus accesses (IBRUSMASTERACCESSan-
notation), i.e. it does not support multiple masters to be
connected.

The bus channel example contains variable instances
defining the basic bus wires (address Buklr, data bus
Data, and control line€trl) and two built-in interrupt lines
(intA andintB). On top of the wires, protocol stacks forthe 4.1.3 Weight Tables

master and slave side of th_e bus are deﬂ_ned _by InStant'at'Weight tables of buses are described through weight table
ing all the channels named in the annotations in the proper

. . ) . annotations attached to the bus channels. Weight table an-
hierarchy. Physical layer instances connect directly to the . . . . .

: . : notations can be given using the format defined previously
wires for basic busnfaster slave and interrupt protocols

(masterint slavelnt, respectively. On top of that, me- in Section 2.2.3. Specifically, the weight annotations can

X . . : . be attached to buses are listed in Table 23. Each one is
dia access layer instances for linksgsterLinkslaveLing used by at least one desian metrics after mapoing svstem
and memory accessemdsterMemconnect to the physi- y 9 bping sy

. . Lo channels to system buses. The weight annotations and ex-
cal bus protocol implementations to use the bus primitives " . . )
: amples of their represented design metrics are:
provided by them.

Note that bus character width multiplied by the bus align-
ment must not necessarily be equal to the bus data word
width in case memory accesses use only partial data words,
for example.

_BUSWEIGHTTRAFFIC_STATIC Each item in the
weight table represents the occupied bus data words
by a storage unit (such as a variable) of the system
channel with a certain item type and data type on the
bus.

4.1.2 Attributes

Basic characteristics and metrics of busses and protocols
are described through attribute annotations attached to the
bus channels. Attribute annotations can be given using the This is used to compute the static traffic. One design

format defined previously in Section 2.2.1. Specifically, metric represents the port width of the system chan-
the following attributes can be attached to bus channels nel. It equals to the traffic when each port of the chan-
(Table 22): nel is accessed once.
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import
import
import

"MyDSP_Bus.Int”; /l interrupt protocol
"MyDSP_Bus_Link”; // data link media access
"MyDSP_BusMem”; /I memory media access

note _.BUSLIBRARY = "busses”;
note .BUSCATEGORY = "Processor”;
note BUSCOMMENT = "Bus_example”;

1
2
3
4
5 channel MyDSPBus() {
6
7
8
9 note . BUS ADDR_PORT = "Addr”;

10 note .BUS.DATA_PORT = "Data”;

11 note BUSMASTERPROTOCOL = "MyDSRBus_Master”;

12 note -BUSSLAVE_.PROTOCOL = "MyDSPBus.Slave”;

13 note .BUS.MASTER.INT = "MyDSP_Bus_IntDetect”;

14 note _BUS_SLAVE_INT = "MyDSP_Bus_.IntGenerate”;

15 note .BUSMASTERLINK = "MyDSP _Bus_LinkAccess”;

16 note _BUS_SLAVE_LINK = "MyDSP _Bus_LinkAccess”;

17 note -BUSMASTERMEM = "MyDSP_Bus.MemAccess”;

18 note .BUSWRITEIMETHOD = "write”;

19 note .BUSREAD.METHOD = "read”;

20

21 signal bit[31:0] Addr; /] bus wires

22 signal bit[31:0] Data;

23 signal bit[2] Ctrl = 00b;

24 signal bit[1] intA = 0b; /l interrupt lines

25 signal bit[1] intB = 0b;

26

27 MyDSP_Bus_Master master (Addr, Data, Ctrl);// master stack

28 MyDSP_Bus_LinkAccess masterLink(master);

29 MyDSP_Bus_.MemAccess masterMem (master);

30 MyDSP_Bus_IntDetect masterintA (intA);

31 MyDSP_Bus_IntDetect masterIntB (intB);

32

33 MyDSP_Bus_Slave slave (Addr, Data, Ctrl);// slave stack

34 MyDSP_Bus_LinkAccess slavelLink(slave);

35 MyDSP_Bus.IntGenerate slavelntA (intA);

36 MyDSP_Bus_IntGenerate slavelntB (intB);

37 };

Listing 14: Bus channel example.
| Name || Description | Unit | Type | Default]

_BUSBANDWIDTH || Max. throughput bits/s | double| 0.0
-BUSCOST Cost double| 0.0
_BUSADDRWIDTH || Address bus width bits uint 8u
_BUSDATAWIDTH || Data bus width bits | uint Ou
_BUSCHARWIDTH || Memory character width bits uint 8u
-BUSALIGNMENT || Bus word address alignment addr | uint 1u

Table 22: Bus channel attribute annotations.

| Name || Metric | Unit | Type [ Default]
_BUSWEIGHTTRAFFIC_STATIC Static traffic words | double| 0.0
_BUSWEIGHTTRAFFIC_DYNAMIC|| Dynamic traffic words | double| 0.0

Table 23: Bus channel weight annotations.
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_BUSWEIGHTTRAFFIC_DYNAMICEach item in the
weight table represents the occupied bus data words
by a storage unit (such as a variable) of the system
channel with a certain item type and data type on the
bus.

This is used to compute the dynamic traffic. One de-
sign metric represents the dynamic traffic of the de-
sign. It equals to the amount of traffic going through
the ports of the system channel during simulation.

Besides the weight annotation, the item header anno-protocol_model =

tation and data header annotation are also required. The
header annotations are displayed in Table 24.

protocol_channel
| protocol_behavior

protocol_channel =

4.2 Physical Layer

Physical layer protocol models provide primitives for

channel  protocol_name pins
implements interface_list
{ internal_declarations_opt }

atomic bus transactions at their interfaces and they describg,oco| pehavior =

the basic timing of events (value changes) on the wires of
the bus for each primitive. Timing diagrams of bus trans-
actions are represented through state machines and associ-

behavior  protocol_name pins
implements interface_list
{ internal_declarations_opt }

ated timing constraints defining the possible sequences ofyns =

driving and sampling bus wires. Physical layer protocol
models are used in the SCE design flow to provide models

of the protocol behavior on the wires of the bus both for PM-st =

system simulation and for synthesis of protocol implemen-
tations in actual hardware.

'( pin_list 'y

pin
| pin_list *; pin

In general, a bus can have separate physical protocols’" =

for basic data transfers, synchronization, and arbitration. A

pin_direction signal  bit_sign bit vector pin_name

protocol model provides a description for implementation pin_direction =

of the protocol in a PE connected to the bus’ wires. Each <nothing>
physical protocol can have two separate models with dif- I g‘ut
ferent implementations for bus master and bus slave type | 4
PEs.
bit_sign =

<nothing>
4.2.1 General Format | signed

| unsigned

The general format of physical layer protocol models is

shown in Figure 12. Physical layer models are defined asbit_vector =

either SpecC channels for passive models or SpecC behav-
iors for active models. In case of active models, the be-
havior defines anain method that has to be executed con-
currently with the main computation inside a PE for busses
where a PE needs to constantly participate in the protocol.
For example, an active slave side might be necessary to an-
swer and decline polling requests in case of a protocol that
requires an acknowledge from slave to master to complete
a transfer.

In both cases, the physical layer model defines a set of
methods and exports them through an implemented inter-
face such that higher layers can use physical layer ser-
vices for communication by calling appropriate methods
as needed. Internally, a physical layer channel or behavior

31

bit T const_expression "’ const_expression T
| bit T const expression 7T

Figure 12: Format of physical layer protocol models.



| Name | Type | Default |

-BUSWEIGHTTRAFFIC_HEADERDATATYPE|| in Table 10 -
-BUSWEIGHTTRAFFIC_HEADERTEMTYPE || in Table 8 -

Table 24: Header annotations for traffic metrics.

models the corresponding protocol for driving and sam- Addr, Data, andCtrl wires of the bus through ports of the
pling the bus wires through their ports of bitvector signal channels. Furthermore, the protocol state machines are en-
type. The list of ports has to match a subset of the list of closedindo-timing  constructs to specify the constraints
bus wires such that physical layer models can be connectecbn timing that have to be obeyed when implementing the
to the wires through pins of the bus-functional PE. protocol.

4.2.2 Data Transfer Protocol

The mandatory data transfer protocol is the core of the bus
and it describes primitives for transferring native bus words
distinguished by bus addresses. It has to provides methods
for all atomic bus cycles available over the core bus, in- As explained in the previous section, the data transfer pro-
cluding special types like burst mode, etc. tocol generally only supplies inherent one-way synchro-
In case of a master/slave arrangement (separate model§ization from master to slave. However, in order to im-
for master and slave side), the master side is actively initi- Plement reliable communication with guaranteed data de-
ating bus cycles and the slave slide can only passively listenlivery, two-way synchronization between communication
on the bus for the start of a cycle to participate in. Conse- partners is required. Therefore, a bus can supply an op-
quently, methods on the slave side are considered block-tional, distinct synchronization protocol to efficiently send
ing and only return when the transfer has been completedeévents from slave to master. Usually, this means an inter-
successfully with the corresponding master. In order to en- rupt protocol and interrupt wires through which a slave can
able polling, methods on the master side, on the other hand,send interrupts to a master.

must not block even if no corresponding slave is available |4 the same manner as data transfer protocols (see Sec-

to successfully complete the transfer (note that in order to o 4.2.2), interrupt protocols can be arranged as sepa-

satisfy this requirement, active slaves might be necessary torate models for master side and slave side, or as one com-

answer and decline a transfer if no data is available through 0n model acting as both master (when sending) and slave

higher layers). (when receiving). In both cases, the master and slave sides
In case there is no distinction between masters andhaye to implement thereceiveandi_sendinterfaces out

slaves (master model and slave model are the same), theyf the standard SpecC channel library to receive and send
single data transfer protocol model acts both as master andeyents, respectively.

slave where for each transfer the sending side is assumed to
be the master and the receiving side the slave. Apart from
that, the same restrictions for the sending (master) and re-
ceiving (slave) methods apply.

Listing 15 and Listing 16 show an example of a data
transfer protocol model. The data transfer protocol inter-
face shown in Listing 15 provides primitives for reading

4.2.3 Synchronization Protocol

If the synchronization protocol annotations in the bus
channel point to the data transfer protocol model(s), two-
way synchronization with blocking transfers on both sides
has to be implemented as part of the data transfer proto-
col, and no separate synchronization protocol is available
or necessary. Similarly, if no synchronization protocol is
and writing data operands of different sizes from/to the supplied, no event transfer mechanism is available as part

bus in one shot. Since bus addresses have to be aIignec‘i”c the bus.
correctly, the slice of addresses accepted by each primitive  An example of a basic synchronization protocol to send
depends on the size of the operand. interrupts from a slave to a master is shown in Listing 17.
The example protocol is defined as two separate pas-On the master side (Listing 17(a)), the interrupt detection
sive models in the form of channels for the master side logic channel receives events by recognizing rising edges
(Listing 16(a)) and the slave side (Listing 16(b)). Both on the interrupt line connected to its port. On the slave
sides implement the same data transfer protocol interfaceside (Listing 17(b)), the interrupt generation logic chan-
IMyDSP BusProtocol shown previously. Internally, the  nel sends events by creating a pulse on the interrupt line
sequence of statements in the methods drive and sample theéhrough its port.
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9
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1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

interface IMyDSP_Bus_Protocol
{
void readByte (bit [31:0] addr, bit[7:0] =xdata);
void readWord (@it [31:1] addr, bit[15:0] xdata);
void readLong (bit [31:2] addr, bit[31:0] xdata);
void writeByte (bit [31:0] addr, bit[7:0] data);
void writeWord (bit [31:1] addr, bit[15:0] data);
void writeLong (bit [31:2] addr, bit[31:0] data);
s
Listing 15: Example of a data transfer protocol interface.
channel MyDSP_Bus_Master ( 1 channel MyDSP_Bus.Slave (
out signal bit[31:0] Addr, 2 in signal bit[31:0] Addr,
signal bit[31:0] Data, 3 signal bit[31:0] Data,
out signal bit[2] Ctrl) 4 in signal bit[2] Ctrl)
implements IMyDSP_Bus_Protocol 5 implements IMyDSP_Bus_Protocol
{ 6
void readLong (it [31:2] A, 7 void writeLong (bit [31:2] A,
bit [31:0] *D) { 8 bit [31:0] D) {
do { 9 do {
I11: Addr = A @ 00b; 10 11: wait(rising Ctrl);
Ctrl = 01b; 11 if ((A!= Addr[31:2]) ||
waitfor (10); 12 (Ctrl[1])) goto I1;
12: «D = Data; 13 waitfor (5);
Ctrl = 00b; 14 12 : Data = D;
} timing { 15 } timing {
range(I11; 12; 10; ); 16 range(I11; 12; ; 10);
} 7 )
} 18}
19
void writeLong (bit[31:2] A, 20 void readLong (bit [31:2] A,
bit[31:0] D) { 21 bit [31:0] xD) {
do { 22 do {
I11: Addr = A @ 00b; 23 wait(rising Ctrl);
Data = D; 24 if ((A!= Addr[31:2]) ||
Ctrl = 11b; 25 ('Ctrl[1])) goto I1;
waitfor (10); 26 11: waitfor (5);
12: Ctrl = 00b; 27 12: xD = Data;
} timing { 28 } timing {
range(l1; 12; 10; ); 29 range(11; 12; ; 10);
} 30 }
} a1}
32
/1 33 /1
b 34}

(a) Master side

(b) Slave side

Listing 16: Example of data transfer protocol model.
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1
2
3

4
5
6
7
8

9
10
11
12
13

import "i_receive”; import "i_send”;

channel MyDSP_Bus_IntDetect ( channel MyDSP_Bus_IntGenerate (

1
2
3
in signal bit[1] intr 4 out signal bit[1] intr
) 5 )
implements i_receive 6 implements i_send
{ 7
void receive (void) 8 void sendvoid) {
{ 9 intr = 1;
wait(rising intr); 10 waitfor (5);
} 11 intr = 0;
12 }
¥ 13},
(a) Interrupt detection logic (b) Interrupt generation logic
Listing 17: Example of synchronization protocol model.
4.2.4 Arbitration Protocol bly choosing among modes) of the bus data transfer proto-

) col. Note that the media access layer does not implement

If the bus supports multiple masters connected to the bus, 5y additional synchronization (e.g. through the synchro-
it has to supply an arbitration protocol that is used to regu- nization protocol) but rather inherits the synchronization
late accesses to the shared bus wires. In a centralized arbigemantics from the underlying data transfer protocol.
tration scheme, the master side of the arbitration protocol  1he media access layer consists of two parts, models for
instantiated in each master communicates with the slavejyjementation of bi-directional data links and models for
side of the arbitration protocol instantiated in an additional ,.cesses to shared memories connected to the bus. Manda-
arbiter component attached to the bus. In a distributed ar-y,y gata link models provide primitives to create point-to-
bitration scheme, there is no slave side of the arbitration point logical links for exchanging data between two com-
protocol and the master sides of the protocol in each mas-inication partners attached to the bus. Optional memory
ter regulate accesses among themselves. ~access models are required if the bus supports shared mem-

The master side of the arbitration protocol can ei- gries and addressing of and access to PE storage. In both
ther be provided as a separate physical layer protocolcases, media access layer models can consist of separate

model or it can be a built-in part of the data transfer jmplementations for use in bus master and bus slave type
protocol in which case the arbitration master annotation pgg.

(. BUSMASTERACCESS see Section 4.1.1) points back

to the data transfer protocol model. In case of a separate

arbitration protocol, the master side arbitration protocol 4-3-1 General Format
model has to implement thesemaphorenterface out of

the standard SpecC channel library for acquiring and re- mac model =

leasing access to the bus. In either case, arbitration has t0 ~,.2c channel

be made available for each PE that will act as a data trans- "| mac_behavior
fer protocol master if multiple masters sharing the bus are

supported mac_channel =

channel mac _name (' port_list ')
implements  interface_name

. ' internal_declarations_opt }

4.3 Media Access Layer

mac_behavior =

Media access layer models abstract accesses to the actual behavior mac_name '( port list 'y
physical medium through the protocol into canonical inter- implements _interface_name

.. . {" internal_declarations_opt '} ’;
faces for regulated, non-conflicting exchange or communi-
cation of data of arbitrary size and type. Hence, the me-
dia access layer regulates conflicting bus accesses in case ~ Figure 13: Format of media access layer models.
the bus supports multiple masters through the bus arbitra-
tion protocol, and it slices data chunks into bus words or  The general format of media access layer models is
frames that are transmitted using the primitives (and possi- shown in Figure 13. In the same manner as physical layer
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models (see Section 4.2.1), active or passive media ac- Listing 19 shows and example of a data link media ac-
cess layer models can be created through SpecC behaviocess layer model. This example shows a model that can be
or channel definitions, respectively. Media access modelsused for both masters and slaves assuming that no arbitra-
connect to underlying physical layer models for data trans- tion is present. If arbitration is supported by the physical
fers and arbitration through ports of corresponding inter- layer, the calls to data protocol primitives in the data link
face type. For use by higher-level models created within model on the master side would have to be enclosed in ar-
SCE, a media access model has to define a set of meth-bitration method calls. Apart from arbitration, the data link
ods in its body and export them through an implemented model slices the packet of data supplied as a parameter to
interface. thereadandwrite methods into bus words using data trans-
Since they will be accessed and used by automatically fer protocol primitives for byte and long word transfers to
generated code, media access layer interfaces have to adtransmit as much data as possible in each bus cycle. The
here to a certain canonical format. As defined in Figure 14, same bus address supplied as method parameter is used for
a media access layer interface defines a set of methods foall transfers of the packet.
transferring a block of data over the bus using a bus ad-
dress to distinguish between different logical connections 4 3.3  Memory Access
made over the same physical bus. Consequently, a media
access method has no return value and takes three paramlhe memory access part of the media access layer pro-
eters: a bus address of integral type corresponding to thevides methods for accessing bytes of data stored in a shared
range of addresses available on the bus, a pointer to a dat&nemory PE attached to the bus. Since memories need
block, and the size of the data block in bytes. A media ac- t0 support random access, data bytes in all memories at-
cess layer interface has to define exactly two methods fortached to the bus have to be individually distinguishable.
reading and writing a block of data from/to the bus where Therefore, bus addresses are used to select among different
the names of the methods have to match the correspondingharacters stored in memory where each character holds a
annotations at the bus channel (see Section 4.1.1). certain amount of bytes as defined by the bus (see Sec-
An example of a media access layer interface is shown tion 4.1.1) and where consecutive bytes in memory are ac-
in Listing 18. The interface has the two required methods cessed as consecutive characters on the bus. Consequently,
read and write that each take address, data pointer, and for each memory access the address supplied is the address
length parameters. Corresponding to a 32-bit bus addresg)f the first character in the block of data to be accessed and

range, address and length parameters anensfgned the length of the block divided by the bus character size
long type. determines the range of bus addresses accessed. Gener-

ally, addresses supplied by higher layers generated through
SCE cannot be assumed to be properly aligned in any way,
i.e. the memory access model has to take care of properly
The data link part of the media access layer is used to trans-aligning data on the bus.
fer streams of data packets between logical endpoints in- A media access layer memory model consists of master
side PEs attached to the bus where two logical endpointsand slave sides for initiating and serving shared memory
define a bi-directional, point-to-point logical link. Since accesses over the bus. The master side provides methods
streams only support sequential access (no random accessyyith names matching the corresponding bus channel an-
bus addresses are used to distinguish among different logi-notations (Section 4.1.1) for reading and writing blocks of
cal links on the bus only, i.e. data link models use the same data bytes from/to memory used in PEs that access shared
bus address supplied as parameter for all bytes in a packetstorage over the bus. The slave side, on the other hand,
Addresses supplied to data link model methods are used agprovides methods for serving incoming random memory
addresses on the bus where addresses can be assumed aacesses used in PEs that provide shared storage (e.g. ded-
be aligned on bus word boundaries as defined in the busicated shared memory PES).
channel annotations (see Section 4.1.1). An example of a memory access client model is shown
The data link part of the media access layer can provide in Listing 20. As in the example of the data link model
different master and slave sides of the model if the under- shown in the previous section, the memory access model
lying data transfer protocol in the physical layer differen- slices the block of data into bus words and transfer the data
tiates between bus masters and slaves and if separate funaising primitives provided by the physical layer data trans-
tionality is needed. For example, acquiring and releasing fer protocol model. Similarly, in case the physical layer of
access to the bus through calls to the arbitration protocol is the bus supports arbitration, data protocol primitives have
only needed on the master side, if supported by the bus atto be enclosed in arbitration call to regulate bus accesses
all. on the bus master side. In contrast to the data link model,

4.3.2 Data Links
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a s WN PP

mac_interface =

'{ mac_declaration_list '} '}

mac_declaration_list =
mac_declaration

| mac_declaration_list mac_declaration

mac_declaration =
note_definition

| mac_method_declaration

mac_method_declaration =

void method_name (' addr_param ’, data_param ’, len_param ) ’;

addr_param =

integral_type_specifier param_name

data_param =
void * param_name

len_param =

integral_type_specifier param_name

Figure 14: Format of media access layer interfaces.

interface IMyDSP_Bus.Access

void write (unsigned

b

long addr, void* data , unsigned long len);

void read (unsigned long addr, void* data , unsigned long len);

Listing 18: Example of media access layer interface.
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1 import "MyDSP_Bus_Protocol”; /I physical layer

2

3 import "IMyDSP_Bus_Access”; /I MAC interface

4

5 channel MyDSP_Bus_LinkAccess(IMyDSPBus_Protocol protocol)

6 implements IMyDSP_Bus_Access

7 {

8 void write (unsigned long addr, void« data , unsigned long len) {
9 unsigned charx p;

10

11 for (p = (unsigned charx)data ; len >=4; len —=4, p += 4)
12 protocol .writeLong (addr[31:2], £p)[7:0] @ (x(p+1))[7:0] @
13 (x(p+2))[7:0] @ (x(p+3))[7:0]);
14 for ( ; len; len——, p++)

15 protocol.writeByte (addr xp);

6}

17

18 void read (unsigned long addr, voidx data , unsigned long len) {
19 unsigned charx p;

20 bit [31:0] I;

21 bit[7:0] b;

22

23 for (p = (unsigned charx)data ; len >=4; len —=4, p += 4){
24 protocol.readLong (addr[31:2], &I);

25 xp = [[31:24]; «(p+1) = 1[23:16]; x(p+2) = 1[15:8]; =(p+2) = 1[7:0];
26

27 for ( ; len; len——, p++) {

28 protocol.readByte (addr, &b);

29 *p = b;

30 }

31 }

32 };

Listing 19: Example of media access layer data link model.
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1 import "MyDSP_Bus_Protocol”; /I physical layer

2

3 import "IMyDSP_Bus_Access”; /I MAC interface

4

5 channel MyDSP_.BusMemAccess (IMyDSPBus_Protocol protocol)

6 implements IMyDSP_Bus_Access

7 {

8 void write (unsigned long addr, void« data , unsigned long len) {
9 unsigned char xp;

10

11 for (p = (unsigned charx)data; len && (addr % 4); p++, lep—)
12 protocol.writeByte (addr++ xp);

13 for (; len >=4; p += 4, len —=4)

14 protocol .writeLong (addr[31:2]++,«p)[7:0] @ (x(p+1))[7:0] @
15 (x(p+2))[7:0] @ (x(p+3))[7:0]);
16 for (; len; p ++, len——)

17 protocol.writeByte (addr++ xp);

18 }

19

20 void read (unsigned long addr, void« data , unsigned long len) {
21 unsigned char xp;

22 bit [31:0] I;

23 bit [7:0] b;

24

25 for (p = (unsigned charx)data; len && (addr % 4); p++, lepr—) {
26 protocol.readByte (addr++, &b);

27 *p = b;

28

29 for (; len >=4; p += 4, len —=4) {

30 protocol.readLong (addr[31:2]++, &1);

31 xp = [[31:24]; «(p+1) = 1[23:16]; x(p+2) = 1[15:8]; =(p+2) = 1[7:0];
32

33 for (; len; p ++, len—=) {

34 protocol.readByte (addr++, &b);

35 xp = b;

36 }

37 }

38 };

Listing 20: Example of media access layer memory access master model.
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however, the memory access model also chooses data pro-
tocol primitives such that proper alignment is ensured. Fur-
thermore, the model generates correct bus addresses by in-
crementing addresses for consecutive characters in the data
block.

5 RTL Units

The RTL database contains models of register transfer
level units such as functional units, storage units and lo-
cal busses. RTL units are represented by SpecC behaviors
in the RTL database. For each RTL unit, a corresponding
behavior declaration needs to exist in the database. rtl_behavior =
The RTL units will be used for RTL component allo- behavior  unit_name ports body_opt '
cation and the generation of the final RTL netlist. Dur- body_opt =
ing the RTL synthesis process, operations, variables and <nothing>
data transfers in the behavioral description of the design | { internal_declarations_opt '} 7

are bound to these RTL units.
ports =

(¢ port_list 'y
port_list =

5.1 RTL Behaviors
port

RTL behaviors represent the RTL units in the RTL | port list *; port

database. For each RTL unit, there must be one RTL be- -

havior which describes its basic characteristics in form of pot=.... ..~

attributes and parameters. port_direction bit_sign bit_vector port_name

port_direction =
<nothing>
| in
| out
| inout

5.1.1 General Format

An RTL behavior is created through a special SpecC be-
havior definition. The general format of RTL units is
shown in Figure 15. The name of the behavior defines the bit_sign =
name of the RTL unit in the RTL database. RTL behaviors <”°.thi”9d>
should accurately reflect the component ports in terms of I E'r?ggned
number and order.
RTL behaviors carry a number of annotations for gen- bit vector = s o
eral database management, attributes (Section 5.1.2), and F'tbitr %922%;"2;932220;] ,‘i’,onSt—eXpress'O” ]
optional parameters (see Section 2.2.2). P
Table 25 lists the general annotations that are attached ) ] )
to RTL behaviors for database managementand in orderto ~ Figure 15: Format of RTL unit behavior models.
describe basic information about the corresponding RTL
unit. In detail, the following annotations have to be sup-
plied:

_RTLIBRARY Name describing the RTL database the be-
havior is a member of. Used to distinguish between
RTL and other behaviors, i.e. required for RTL behav-
iors.

_RT_.CATEGORWame of the category the RTL unit be-
longs to. RTL unit categories are mandatory and are
used to classify RTL units into different groups for
RTL allocation and selection.
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| Name || Description | Type | Default ]
_RT_LIBRARY Name of parent RTL database String -
-RT_.CATEGORY| Name of RTL unit category String
_RT_.COMMENT|| RTL unit description String
_RT_.CLASS RTL unit classification (see Table 26) uint Ou
RT_DATATYPE|| Type of data processed by RTL unit (see Table 27) uint Ou

Table 25: General annotations for RTL unit behavior.

_RT_COMMENBrief description of the RTL unit that will
be used and displayed as an aid during selection and
allocation.

_RT_CLASS Class the RTL unit belongs to, i.e. type of
unit. See Table 26.

_RT_DATATYPEData type of the RTL unit, i.e. type of
data the unit can process. See Table 27.

| Value | Class |

0 Functional unit
1 Memory

2 Register

3 Register file

4 Bus

Table 26: Classification of RTL units.

RTL units must be classified into 5 different categories:
functional units, memories, registers, register files and lo-
cal busses. Functional units can perform operations like
addition, subtraction, multiplication, and so on. A func-
tion unit may take more than one clock cycle to perform
an operation (multi-cycle operation), or can be pipelined
to reduce the clock period.

Secondly, storage units can store data which will be used
in the next computation. These include memories, regis-
ters, and register files.

Finally, local busses are wires used to transfer data be-
tween functional units and storage units.

| Value | Datatype |

0 Integral
1 Floating point
2 Fixed point

Table 27: RTL unit data types.

The behavioral description of a design contains differ-

5.1.2 Attributes

Basic characteristics and metrics of RTL units are de-
scribed through attribute annotations attached to the RTL
behaviors. Attribute annotations can be given using the
format defined previously in Section 2.2.1. Specifically,
the following attributes can be attached to an RTL behav-
ior (Table 28):

_RT_COST Cost of the RTL unit. The cost unit depends on
the database (e.g. price or area).

_RT_.POWERPower consumption rating of the RTL unit,
i.e. usually average power consumption when not
idling. The power unit iaV.

_RT_AREA Area of the the RTL unit. The area unitrisn?

_RT_SIZE The size of the storage unit in words, i.e. num-
ber of words which the storage unit can store.

_RTBITWIDTH The bit width of the RTL unit, i.e. how
wide the RTL unit is.

_RT.DECIMALWIDTH The bit width for mantissa of
floating point type unit or for fractional part of fixed
point type unit.

_RT_DELAY Worst case delay for the RTL unit. The unit
isns

_RTINPUT_DELAY The delay from the input to the in-
ternal data buffer for multi-cycle/pipelined units. The
default value is Qs It also indicates the write time to
write a value to the memory. This attribute is associ-
ated with clocked units.

_RT.OUTPUTDELAY The delay to obtain the output data.
For storage units, it indicates the read time to read a
value from the memory. This attribute is associated
with clocked units.

_RT_STAGESThis indicates how many pipeline stages the
RTL unit has. The default value is Ou.

ent data types of variables. These data types are classified

as: integral type, floating point type, and fixed point type
as shown in Table 27. RTL units perform operations with
these types of operands and store results in the same type
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_RTINTERVAL This indicates how often the RTL unit
can receive input data in number of clock cycle (data
introduction interval). The default value is Ou



| Name || Description | Unit | Type [ Default ]|
-RT_COST Cost double| 0.0
-RT_.POWER Power consumption w double| 0.0
_RT_AREA Physical size mm? | double| 0.0
-RT_SIZE Storage size words | ulong Oul
_RTBITWIDTH Data width bits uint 8
RT_DECIMALWIDTH || Fractional part width bits uint Ou
_RT_.DELAY Worst case stage delay ns double 0.0
_RT_INPUT_DELAY First stage delay ns double 0.0
-RT.OUTPUIDELAY || Last stage delay ns | double| 0.0
-RT_STAGES Number of pipeline stages uint Ou
_RT_IINTERVAL Data introduction interval uint Ou

Table 28: RTL behavior attribute annotations.

| Name || Description | Type | Default]
-RT_PIN_TYPE port type unsignedint] Ou
_RT_ACTIVE_HIGH || the portis active high or not bool true
_RT_.CLKPOS clock polarity of capturing data bool true

Table 29: RTL unit port attribute annotations.

Also, the ports of RTL units have some attributes as ports and control ports. The operations in the RTL input
shown in Table 29. description will be bound to the RTL units which can per-
_RT.PIN_TYPE Type of port. See Table 30. form these o_peratlons_. Taple 31 lists all operations which

can be used in operation field.

_RTACTIVE_HIGH This indicates whether the portisac-  In addition, we should have a way to describe IP units
tive high or not. e.g. if reset is asserted to high and the like MAC, DCT, and so on. Because the functionality of
design is reset, then reset port is active high. an IP unit can't be described by a primitive SpecC oper-

ator, we use a function call to point to the IP unit in the
operation field (string in Table 31. In the design, if the
designer wants to map a function calac to MAC unit,
the MAC unit should havenac in the operation field of
_RT_OPERATIONS Note that only global functions are
supported for this mapping.

Listing 21 shows RT_-OPERATIONSof an ALU unit
which can perform the arithmetic operations additie), (

_RT_CLK.POS The clock polarity when the input data is
sampled. This attribute is associated with each data
port. e.g. if data is sampled at the positive edge of the
clock, this attribute for the data port should be set to
true.

| Value | Port type|

0 | Data subtraction {), increment ¢-+), decrement{—) and

1 Control comparison{=, ! =), as well as the logic operations logic
2 Address and/or (&&, ||). These operations and the associated /O
3 | Clock ports and control ports are defined B§T.OPERATIONS

4 Reset in the ALU unit. For example, as shown in line 12 in List-

ing 21, controlinputtrl  of ALU should be setto 0x0000
for the ALU to perform addition of values at input part
andb. The result of the addition will come out of the out-
put portsum.

Table 30: RTL unit port types.

The porttypes of an RTL unit are classified as: data type,
control type, address type, clock type, and reset type as
listed in Table 30.

5.2 Examples

5.1.3 Operations . . .
P In this section, we will take a closer look at how we can de-

The annotationRT_OPERATIONSIefines the operations  scribe RTL components with examples. We will describes
which the RTL unit can perform and the associated I/O how functional units and storae units and busses look like.
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_RT_OPERATIONS =
{ operation_list '}

operation_list =
operation
| operation_list ’,’ operation

{ output_ports ’;’ input_ports ) '{ control_list '} '}

operation =

{ name '} '{ ports_list ¥ ¥
ports_list =

ports

| ports_list ’,' ports
ports =
output_ports =

port_name

| { port_name_list '}
input_ports =

port_name

| { port_name_list '}
port_name_list =

port_name

| port_name_list ’; port_name
control_list =

control

| control_list ’;’ control
control =

{ port_name ', const_expression '}

Figure 16: Format ofRT_.OPERATIONS&nnotation.

| Operators| Description

|| Operators| Description

++ post-increment
++: pre-increment
+: positive
~ not
/ division
+ addition
<< shift left
< less than
<= less than or equal to
== equal to
& bitwise and
| bitwise or
Il logical or
= assignment (write data to storage unit)
string name of function call for IP

post-decrement
pre-decrement
negative

multiplication

modulo

subtraction

shift right

greater than

greater than or equal to
not equal to

bitwise exclusive or
logical and

logical not

array access (read data from storage unit)
concatenation

Table 31: operators irRT_.OPERATIONS
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#ifndef BITWIDTH
#define BITWIDTH 32u
#endif

out

signal unsigned bit[BITWIDTH —1:0] sum,

signal unsigned bit[0:0] status ,

in signal unsigned bit[BITWIDTH —-1:0] a,
in signal unsigned bit[BITWIDTH —1:0] b,

1
2
3
4
5 behavior alu (out
6
7
8

9 in

10

11 note alu._.RT_.OPERATIONS =
2 {7+, {{{’sum’},  {a
13 { e, {{{Tsum'h, {0
14 {{"sum” }, {"
15 { eer, {{{Tsum'h,
16 {{"sum” }, {”
7 {7, {{{tsumth, {0
18 {0, {{{’sum’},{
19 {77, {{{"sum'}, {7
20 {'=, {{{’sum’}, {0
20 {7 {{{rsumth, {7
22 {'&, {{{/sum’},  {
23 {7, {{{/sum'}, {0
24 {7, {{{rsum'}, {7
25 { ">=", {{{"status”}, {”
26 { "> {{{"status"}, {”
27 { == {{{"status”}, {”
28 { "1=" {{{"status"}, {”
29 { "<=", {{{"status”}, {”
30 { "< {{{"status"}, {”
31 };

- - J -
o
—

{
a
a
b
a
b
a
a
a
b
a
a
a
a
a
a
a
a
a
a

signal unsigned bit[3:0]

A e ey A A A e A A o o e b P e e i by A
e L e Yo S S S SN I S SR

CoOOCOTCOTOOTOO
R e e e i L R ]

"ctrl”,
"ctrl’
"ctrl”,
"ctrl”,
"ctrl”
"ctrl”
"ctrl”,
"ctrl”,
"ctrl”,
"ctrl”,
"ctrl”
"ctrl”
"ctrl”
"ctrl”,
"ctrl”,
"ctrl”,
"ctrl”
"ctrl”
"ctrl”

", 0000ub},

, 0000ub},
, 00001 ub}

, 0011ub}
, 0100ub}
, 0101 ub}

', 1001 ub}
, 1010ub}
, 1011ub}

ctrl);

0000ub},
0000ub},

0010ub}

’, 0001 ub}

, 0001 ub}

H
, 0001 ub}

1
T
1

" 0001ub}}}}},
1
T
1

I3g
Hh
, 0000ub}}}1}}

Listing 21: Example of RT.OPERATIONSnnotation.
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5.2.1 Functional units

Listing 22 shows an example of a simple behavior for an
RTL unit. The behavior nameau is part of the "rtl” li-
brary and belongs to the "Functional Unit” category. The
delay, area, cost and power afu are configurable at-
tributes and are scaled by the bit width. Tale is not
pipelined as shown in line 23. Thwain function body
describes the functionality of tredu including timing. It
containswhile statement to describe thatu runs for
good andwait statement with sensitivity list for simula-
tion. Input ports in combinational circuit can be included
in a set of sensitivity list. To describe the delay of the unit,
we usewaitfor  statement as shown in line 41. Note that
the value inwaitfor ~ statement is as same as that of the
RT_DELAYattribute.

Now, we will show how to describe a pipeline functional
unit. Listing 23 shows an example of a 3-stage pipline mul-
tiplier unit which is named to behavionult _p. In order
to describe the behavior of pipeline stages, we may use
sub-behaviors such asagel , stage2 andstage3 in
themult _p. These sub-behaviors are runnig in parallel as
shown in Listing 23. In the behaviatagel , the value
of input ports is latched to internal registers. The behavior
stage2 performs multiplication and stores its result to an
internal register. In the behavistage3 , the result of the
multiplication will be latched to output port. This unit is
working at rising edge of clock.

5.2.2 Storage units

Listing 24 shows a simple registerg which samples data

at the rising edge of a clock whdoad is asserted and
otherwise, outputs the data after output delay. The clock
clk isincluded in sensitivity list because this unit is edge-
triggered sequential circuit.

Listing 25 shows a register fileg which has two read
ports and one write port. It samples data at the rising edge
of a clock and stores it into an internal memdyf with
an address. It also outputs the data from the memory with

References
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the addres. This unit has 3 configurable parameters such as

bit width, address width and size.

5.2.3 Busses

Listing 26 shows a bus which is a wire in RTL design. Even
though the bus unit is defined in RTL component library
to contain its attributes, it will be instantiated in a design.
Instead, we will use signal variables to represent busses in
the design.
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#define BITWIDTH_DFLT 32u

#ifndef BITWIDTH
#define BITWIDTH BITWIDTH DFLT
#endif

behavior alu(out signal unsigned

note
note
note
note
note
note
note
note
note
note
note

/1
s

note

b

out signal unsigned
in signal unsigned
in signal unsigned
in signal unsigned

alu ._RT_LIBRARY ="rtl”;
alu ..RT_.CATEGORY =
alu._RT_CLASS =0u;
alu ._RT_DATATYPE =0u;

alu ._RT_BITWIDTH =
alu ._RT_DELAY =
alu ._RT_STAGES =0u;
alu ._RT_AREA =
alu._RT_COST =
alu ._.RT_.POWER =
alu ._.RT_OPERATIONS ={

bit[BITWIDTH —1:0] sum,
bit[0:0] status ,
bit[BITWIDTH —1:0] a,
bit[BITWIDTH —1:0] b,
bit[3:0] ctrl);

"Functional.Unit";

BITWIDTH;
0.52 % (BITWIDTH/4);

BITWIDTH * 0.000297,;
BITWIDTH * 2.8;
= BITWIDTH « 0.00005;

"+ { { {’sum”}, {"a”, "b” }, { {”ctrl”, 0000ub} } } } }

alu ._.SIRPARAMETERS = {

{ "BITWIDTH” , BITWIDTH _DFLT, { {2u, 64u} }, "Bitwidth”, "bits” }

(a) Declaration

Listing 22: Example of RTL unit.
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1 #include "alu.sh” /1 declaration

2

3 behavior alu(out signal unsigned bit[BITWIDTH —1:0] sum,
4 out signal unsigned bit[0:0] status ,
5 in signal unsigned bit[BITWIDTH —-1:0] a,
6 in signal unsigned bit[BITWIDTH —1:0] b,
7 in signal unsigned bit[3:0] ctrl)
8 {

9 note ctrl._RT_PIN.-TYPE = 1lu;

10

11 void main(void)

12 {

13 unsigned bit[BITWIDTH —1:0] res;

14

15 while (1)

16

17 wait(a, b, ctrl);

18 switch(ctrl)

19

20 case0000ub: res = a + b;

21 break;

22 11

23

24 waitfor 0.52x(BITWIDTH/4);

25 sum = res;

26 }

27 }

28 };

(b) Definition

Listing 22: Example of RTL unit (continued).
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#define BITWIDTH_DFLT 32u
#ifndef BITWIDTH
#define BITWIDTH BITWIDTH DFLT
#endif
(a) Macros
#include "mult.sh” /! macros

behavior mult (out signal unsigned

note
note
note
note
note
note
note
note
note
note
note

mult
mult
mult
mult
mult
mult
mult
mult
mult
mult
mult

in signal unsigned
in signal unsigned

bit[BITWIDTH —1:0] result ,
bit[BITWIDTH —1:0] a,
bit[BITWIDTH —1:0] b,

in signal unsigned bit[0:0] clk);
.-.RT_LIBRARY ="rtl”;
._RT_CATEGORY = "Functional-Unit”;
..RT_CLASS =0u;
._RT_DATATYPE =0u;
.-RT_BITWIDTH = BITWIDTH;
._RT_DELAY = 0.60 % (BITWIDTH / 4);
..RT_STAGES = 3u;
..RT_AREA = BITWIDTH * BITWIDTH % 0.000297,
.-RT_COST = BITWIDTH % BITWIDTH % 2.8;
..RT_POWER = BITWIDTH % BITWIDTH % 0.00005;

..RT_OPERATIONS

.{ "k, { {"result”}, {"a”, "0" }, {} }}

note mult._SIRPARAMETERS = {

b

{ "BITWIDTH" , BITWIDTH .DFLT, { {2u, 64u} }, "Bitwidth”, "bits” }

(b) Declaration

Listing 23: Example of 3-stage pipelined multiplier.
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#include "mult.sh” /1 macros
behavior stagel (out signal unsigned bit[BITWIDTH —1:0] reg-a,
out signal unsigned bit[BITWIDTH —1:0] reg-b,
in signal unsigned bit[BITWIDTH —1:0] a,
in signal unsigned bit[BITWIDTH —1:0] b,
in signal unsigned bit[0:0] clk) {
void main(void) {
while (1) {
wait (clk rising); reg.a = a; regbh = b;
b}
}
(c) First stage
#include "mult.sh” /1 macros
behavior stage2 (out signal unsigned bit[BITWIDTH —1:0] reg-c,
in signal unsigned bit[BITWIDTH —1:0] reg.a,
in  signal unsigned bit[BITWIDTH —1:0] reg.b,
in signal unsigned bit[0:0] clk) {
void main(void) {
while (1) {
wait (clk rising); reg-c = reg.a x reg.b;
b}
i
(d) Second stage
#include "mult.sh” /1 macros
behavior stage3 (out signal unsigned bit[BITWIDTH —1:0] result ,
in signal unsigned bit[BITWIDTH —1:0] reg.-c,
in signal unsigned bit[0:0] clk) {
void main(void) {
while (1) {
wait (clk rising); result = regc;
b}
}

(e) Third stage

Listing 23: Example of 3-stage pipelined multiplier (continued).

48



1 #include "mult_p.sh” 1/

2

declaration

3 import "mult_pl”; /] stage 1
4 import "mult_p2”; /I stage 2
5 import "mult_p3”; /1 stage 3
6
7 behavior mult (out signal unsigned bit[BITWIDTH —1:0] result ,
8 in signal unsigned bit[BITWIDTH —-1:0] a,
9 in signal unsigned bit[BITWIDTH —1:0] b,
10 in signal unsigned bit[0:0] clk)
11 {
12 note clk._RT_PIN.-TYPE = 3u;
13
14 signal unsigned bit[BITWIDTH —1:0] reg.a, regb, regc;
15
16 stagel Ul (rega, regb, a, b, clk);
17 stage2 U2 (regc, rega, regb, clk);
18 stage3 U3 (result, reg , clk);
19
20 void main(void) {
21 par {
22 Ul.main ();
23 U2.main ();
24 U3.main ();
25 }
26}
27},
(f) Definition
Listing 23: Example of 3-stage pipelined multiplier (continued).
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#define BITWIDTH_DFLT 32u
#ifndef BITWIDTH

#define BITWIDTH BITWIDTH DFLT
#endif

behavior reg(out signal unsigned bit[BITWIDTH —1:0] outport,
in signal unsigned bit[BITWIDTH —1:0] inport ,
in signal unsigned bit[0:0] load ,
in signal unsigned bit[0:0] clk);

note reg..RT_LIBRARY ="rtl”;

note reg..RT_.CATEGORY = "Register”;

note reg..RT_.CLASS =2u;

note reg..RT_-DATATYPE Ou;

note reg..RT_BITWIDTH BITWIDTH;

note reg..RT_INPUT_.DELAY 0.4 + (BITWIDTH * 0.01);

note reg..RT.OUTPUTDELAY 0.2 + (BITWIDTH *« 0.01);

note reg..RT_AREA 0.00006« BITWIDTH;

note reg..RT_-COST 1.0« BITWIDTH;

note reg..RT_.POWER =
note reg..RT_OPERATIONS =

{07, { { {"outport”}, {
}{”=", {{{ {

note reg ..SIRPARAMETERS ={

b

0.000001« BITWIDTH;

{ {"load”, 1ub} } } } }.
"inport”}, {} } } }

{ "BITWIDTH” , BITWIDTH DFLT, { {1u, 128u} }, "Bitwidth”, "bits” }

(a) Declaration

Listing 24: Example of register.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
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#include "reg.sh” // declaration
behavior reg(out signal unsigned bit[BITWIDTH —1:0] outport,
in signal unsigned bit[BITWIDTH —1:0] inport,
in signal unsigned bit[0:0] load ,
in signal unsigned bit[0:0] clk)
{
note load ._RT_PIN_.TYPE = 1u;
note clk._RT_PIN.-TYPE = 3u;
void main(void)
{
unsigned bit[BITWIDTH —1:0] buf;
while (1)
wait(clk rising);
if (load == 1ub){
waitfor 0.4+ (BITWIDTHx0.01); // input delay
buf = inport;
else {
waitfor 0.2+ (BITWIDTHx0.01); // output delay
outport = buf;
}
}
}
}
(b) Definition
Listing 24: Example of register (continued).
#define BITWIDTH.DFLT  32u
#define SIZE.DFLT 16ul
#define ADDRWIDTH.DFLT 4u
#ifndef BITWIDTH
#define BITWIDTH BITWIDTH DFLT
#endif
#ifndef SIZE
#define SIZE SIZEDFLT
#endif

#ifndef ADDRWIDTH
#define ADDRWIDTH ADDRWIDTH_DFLT
#endif

(a) Macros

Listing 25: Example of register file.
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#include "rf.sh” /1 macros

behavior RF(out signal unsigned bit[BITWIDTH —1:0] outA,
out signal unsigned bit[BITWIDTH —1:0] outB,
out signal unsigned bit[BITWIDTH —1:0] outC,
in signal unsigned bit[BITWIDTH —1:0] inport,
in signal unsigned bit[ADDRWIDTH—-1:0] raA,
in signal unsigned bit[ADDRWIDTH—-1:0] raB,
in signal unsigned bit[ADDRWIDTH—-1:0] wa,
in signal unsigned bit[0:0] reA,
in signal unsigned bit[0:0] reB,
in signal unsigned bit[0:0] we,
in signal unsigned bit[0:0] clk);

note RF._RT_LIBRARY

note RF..RT_.CATEGORY "RegisterFile”;

note RF._RT_.CLASS = 3u;

note RF._.RT.DATATYPE =0u;

note RF._RT_SIZE = SIZE;

note RF._RT_BITWIDTH = BITWIDTH;

note RF._RT_INPUT.DELAY = 0.5 + (SIZE * 0.001) + (BITWIDTH * 0.01);
note RF._.RT.OUTPUTDELAY = 1.0;

note RF._RT_.STAGES Ou,;

note RF._.RT_CLOCK 2;

note RF._RT_AREA 0.00006 % (BITWIDTH/2) * (SIZE/4);

note RF._.RT_.COST
note RF._RT_.POWER

note RF._RT_OPERATIONS

Tl

~

6.0+ (BITWIDTH/2) * (SIZE/4);
0.00002« (BITWIDTH/2) * (SIZE/4);

{1, {{ {"outA”}, {}, {{"reA”, 1ub} } },
{{"outB"}, {}, {{"reB", 1ub} } } } },
{=, {{{}, {"inport”}, { {"we”, 1ub} } } } }

note _SIRRPARAMETERS = {

{ "BITWIDTH" , BITWIDTH .DFLT, { {1u, 128u} }, "Bitwidth”, "bits”

{ "SIZE” , SIZEDFLT, { {1ul, 128ul} }, "Size”,

"words” },

{ "ADDRWIDTH” , ADDRWIDTH.DFLT, { {1u, 128u} }, "Address.width”, "bits” }
1

(b) Declaration

Listing 25: Example of register file (continued).

52



1
2
3
4
5
6
7
8
9

10
11
12
13
14 {
15
16
17
18
19
20
21
22
23
24

#include "RF.sh” /I declaration

behavior RF(out signal unsigned bit[BITWIDTH —1:0] outA,

out signal unsigned bit[BITWIDTH —1:0] outB,
out signal unsigned bit[BITWIDTH —1:0] outC,
in signal unsigned bit[BITWIDTH —1:0] inport,
in signal unsigned bit[ADDRWIDTH—-1:0] raA,

in signal unsigned bit[ADDRWIDTH—-1:0] raB,

in signal unsigned bit[ADDRWIDTH—-1:0] wa,

in signal unsigned bit[0:0] reA,
in signal unsigned bit[0:0] reB,
in signal unsigned bit[0:0] we,
in signal unsigned bit[0:0] clk)

note raA._RT_PIN_.TYPE 2u;

note raB._.RT_PIN_.-TYPE 2u;

note wa._RT_PIN_TYPE 2u;

note reA._RT_PIN_.TYPE = 1lu;

note reB._RT_PIN_TYPE lu;
note we._RT_PIN_-TYPE lu;
note clk._RT_PIN_.TYPE 3u;
note reA._RT_.ACTIVE_HIGH = true;
note reB..RT_.ACTIVE_HIGH = true;
note we._.RT_ACTIVE_HIGH = true;

(c) Definition

Listing 25: Example of register file (continued).

26
27
28
29

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47},

void main(void)

{
unsigned bit[BITWIDTH —1:0] buf[SIZE];

while (1)

wait (clk rising);

if (we ==1) {
waitfor 0.5+(SIZEx0.001)+(BITWIDTHx0.01); // input delay
buf[wa] = inport;

else if(reA == 1) {
waitfor 1.0; // output delay
outA = buf[raAl;

}
else if(reB == 1)
waitfor 1.0; // output delay
outB = buf[raB];
}
}
}

(d) Definition (continued)

Listing 25: Example of register file (continued).
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1 #define BITWIDTH_DFLT 32u

2

3 #ifndef BITWIDTH
4 #define BITWIDTH BITWIDTH _.DFLT

5 #endif

6

7 behavior bus(inout signal unsigned bit[BITWIDTH —1:0] data)
8 {

9 note bus.RT_LIBRARY = "rtl”;

10 note bus .RT_.CATEGORY = "Bus”;

11 note bus.RT_.CLASS =4u;

12 note bus..RT_.DELAY =1.0;

13 note bus..RT_AREA = BITWIDTH % 0.0000001;
14 note bus.RT_POWER = BITWIDTH x 0.000001;
15 note bus..RT_.COST = BITWIDTH * 2.0;

16 note bus.RT_PROTOCOL ={"read”, "write”};

17 note bus..RT_BITWIDTH = BITWIDTH;

18

19 note bus.SIRPARAMETERS ={

20 {"BITWIDTH" , BITWIDTH DFLT, { {2u, 64u} }, "Bitwidth”, "bits”
21

22 unsigned bit[BITWIDTH —1:0] buf;

23

24 void recv (unsigned bit[BITWIDTH —1:0] idata) {
25 buf = idata;

26

27 unsigned bit[BITWIDTH —1:0] send (X

28 return buf;

29}

30

31 void main(void) {

32 while (1) {

33 waitfor 1.0;

34 recv(data);

35 data = send();

36 }

37 }

38 };

I3 %

Listing 26

: Example of bus.

54



A Manual Pages

This appendix contains the documentation in the form of manual pages for tools included in SCE that are used for database
management.
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A.1 scc - SpecC Compiler

NAME
scc — SpecC Compiler

SYNOPSIS
scc—h
sccdesign command [ options]

DESCRIPTION
sccis the compiler for the SpecC language. The main purposeaié to compile a SpecC source program into
an executable program for simulation. Furthermeies serves as a general tool to translate SpecC code from
various input to various output formats which include SpecC source text, SpecC binary files in SpecC Internal
Representation format, and other compiler intermediate files.
Using the first command syntax as shown in the synopsis above, a brief usage information and the compiler version
are printed to standard output and the program exits. Using the second command syntax, the spsaified
is compiled. By defaultsccreads a SpecC source file, performs preprocessing and builds the SpecC Internal
Representation (SIR). Then, C++ code is generated, compiled and linked into an executable file to be used for
simulation. However, the subtasks performedsbgare controlled by the givecommandso that, for example,
only partial compilation is performed with the specifiesign.
On successful completion, the exit value 0 is returned. In case of errors during processing, an error code with a
brief diagnostic message is written to standard error and the program execution is aborted with the exit value 10.
For preprocessing and C++ compilati@ecrelies on the availability of an external C++ compiler which is used
automatically in the background. By default, the GNU compilesr/g++is used.

ARGUMENTS

design  specifies the name of the design; by default, this name is used as base name for the input file and all
output files;

COMMAND

The commancdhas the format suffix12 suffix2,wheresuffix1and suffix2specify the format of the main input

and output file, respectively. This command also implies the compilation steps being performed. By default,
the command —sc2out is used which specifies reading a SpecC source file (e.g. design.sc) and generating an
executable file (e.g. a.out) for simulation. All necessary intermediate files (e.g. design.cc, design.o) are generated
automatically.

Legal command suffixes are:
sc SpecC source file (defaullesign.sc)
si preprocessed SpecC source file (defadgfsign.si)
sir  binary SIR file in SpecC Internal Representation format (defaekign.sir)

cc C++ simulation source file (defaulttesign.cc)
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h C++ simulation header file (defautiesign.h)

cch  both, C++ simulation source file and C++ header file (defaldsign.canddesign.h)

o] linker object file (defaultdesign.o)

out executable file for simulation (defaulttesign);however, with the —ip option, a shared library will be pro-
duced (defaultlibdesign.so)

OPTIONS

-V | =w| -vwv

—W | —Ww | -www

—=sn

increase the verbosity level so that all tasks performed are logged to standard error (default:
be silent); at level 1, informative messages for each task performed are displayed; at level 2,
additionally input and output file names are listed; at level 3, very detailed information about
each executed task is printed,;

increase the warning level so that warning messages are enabled (default: warnings are disabled);
four levels are supported ranging from only important warnings (level 1) to pedantic warnings
(level 4); for most cases, warning level 2 is recommended (—ww);

enable debugging of the generated simulation code (default: no debugging code); this option
disables optimization;

enable optimization of the generated simulation code (default: no optimization); this option
disables debugging;

enable intellectual property (IP) mode; when generating a SIR binary or SpecC text file, only
declarations of symbols marked public will be included (the public interface of an IP is created);
when generating C++ code, non-public symbols will be output so that they will be invisible
outside the file scope; when compiling or linking, the compiler and linker are instructed to create
a shared library instead of an executable file (creation of an IP simulation library);

suppress creation of new log information when generating the output SIR file (default: update
log information); see also section ANNOTATIONS below;

suppress source line information (preprocessor directives) when generating SpecC or C++ source
code (default: include source line directives);

suppress all annotations when generating SpecC source code (default: include annotations);

—st tabulator steppingset the tabulator stepping for SpecC/C++ code generation; this setting is used for code in-

dentation; a value of 0 will disable the indentation of the generated code (default: 4);

—sT system tabulator steppirget the system tabulator stepping)(for SpecC/C++ code generation; if set, tab

characters will be used for indentation; if a value of 0 is specified, only spaces will be used for
indentation (default: 8);

—sw line wrappingset the column for line wrapping; in code generation, any line longer than this value is subject

—i input file

—0 output file

to line wrapping; if a value of 0 is specified, no line wrapping will be performed (default: 70);

specify the name of the input file explicitly (defauttesign.suffix1)the name ’-’ can be used to
specify reading from standard input;

specify the name of the final output file explicitly (defauesign.suffix2)the name ’-’' can be
used to specify writing to standard output;

57



—Dmacrodef

-U

—Uundef

—Ldir

—llib

—Pdir

do not define any standard macros; by default, the maB&@ECC._ is defined automatically (it is
set to 1); furthermore, implementation dependent macros may be defined; this option suppresses
the definition of all these macros;

define the preprocessor maenacrodeto be passed to the preprocessor;

do not undefine any macros; by default, few macros are undefined automatically (in order to
allow C/C++ standard header files to be used); this option is implementation dependent;

undefine the preprocessor maarwdefwhich will be passed to the preprocessor as being unde-
fined; the macraindefwill be undefined after the definition of all command-line macros; this
allows to selectively suppress macros from being defined in the preprocessing stage;

clear the standard include path; by default, the standard include path consists of the directory
$SPECCIinc; this option suppresses the default include path;

appendlir to the include path (extend the list of directories to be searched for including source
files); include directories are searched in the order of their specification; unless suppressed by
option —I, the standard include path is automatically appended to this list; by default, only the
standard include directories are searched;

clear the standard library path; by default, the standard library path consists of the directory
$SPECCIlib; this option suppresses the default library path;

appenddir to the library path (extend the list of directories to be searched for linker libraries);
the library path is searched in the specified order; unless suppressed by option —L, the standard
library path is automatically appended to this list; by default, only the standard library path is
searched;

when linking, do not use any standard libraries; the default libraries are displayed when calling
the compiler with the —h option; the —| option suppresses linking against theses standard libraries;

passlib as a library to the linker so that the executable is linked agéimslibraries are linked
in the specified order; unless suppressed by option —I, the standard libraries are automatically
appended to this list; by default, only standard libraries are used;

reset the import path; clear the list of directories to be searched for importing files; by default,
the current directory is searched first, followed by the standard import directory $SPECC/import;
this option suppresses this standard import path;

appendlir to the import path, extending the list of directories to be searched for importing files;
import directories are searched in the order of their specification; unless suppressed by option
—P, the standard search path is automatically appended to this list; by default, only the standard
import path is searched;

—xpp preprocessacall redefine the command to be used for calling the C preprocessor (default: "g++ -E -x ¢ %p

%i -0 %0"); the preprocessor call must contain three markers %p, %i and %0, which indicate the
options and file names used in the call; in the specified string, the %p marker will be replaced
with the list of specified preprocessor options; the %i and %0 markers will be replaced with the
actual input and output filenames, respectively;

—xcc compilercall redefine the command to be used for calling the C/C++ compiler (default: "g++ -c %c %i -0

%0"); the compiler call must contain three markers %c, %i and %0, which indicate the options
and file names used in the call; in the specified string, the %c marker will be replaced with the
list of specified compiler options; the %i and %0 markers will be replaced with the actual input
and output filenames, respectively;
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—xId linkercall  redefine the command to be used for calling the linker (default: "g++ %i -0 %0 %l"); the linker
call must contain three markers %l, %i and %0, which indicate the options and file names used
in the call; in the specified string, the %l marker will be replaced with the list of specified linker
options; the %i and %0 markers will be replaced with the actual input and output filenames,
respectively;

—Xp preprocessaoption pass an option directly to the C/C++ preprocessor (default: none);
—xc compileroption pass an option directly to the C/C++ compiler (default: none);

—xl linker_option pass an option directly to the linker (default: none);

ENVIRONMENT

SPECC s used to determine the installation directory of the SpecC environment where SpecC standard include
files (directory $SPECC/inc), SpecC standard import files (directory $SPECC/import), and SpecC sys-
tem libraries (directory $SPECC/lib) are located.

SPECCLICENSEFILE determines the license file (path and file name) to be used by the SpecC environment; if
undefined, the environment varial3® ECCis used as the path to the license file called "license.sce”;
if neither SPECCLICENSEFILE nor SPECCexist, the file "license.sce” is searched in the current
directory;

ANNOTATIONS

The following SpecC annotations are recognized by the compiler:

_SCELOG contains the log information of the SIR file; this global annotation is created and maintained auto-
matically by the SpecC compiler and the SpecC tool set and can be used to determine the origin and
the operations performed on the design modeCELOG is a composite annotation consisting of
a list of log entries, ordered by time of creation; each log entry consists of a time stamp, command
line, source file, version info, and an optional comment;

-SCCRESERVELSIZE for external behaviors and channels (IP components), this indicates the size reserved in
the C++ class for internal use; the annotation type is unsigned int; if found at class definitions, this
annotation is checked automatically for reasonable values; for IP declarations, the annotation can
be created automatically with the —ip option;

_SCCPUBLIC for global symbols, this annotation indicates whether the symbol is public and will be visible in a
shared library; the annotation type is bool; this annotation only is recognized with the —ip option;

VERSION

The SpecC compilesccis version 2.2.b.

AUTHOR

Rainer Doemexdoemer@ics.uci.edtl

COPYRIGHT

(c) 1997-2003 CECS, University of California, Irvine
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SEE ALSO

gcdl), g++1), sir_deletg]l), sir_dependl), sir_import(l), sir_isolate(l), sir_list(l), sir_note(l), sir_renamg(l),
sir_strip (1), sir_tree(l), sir_wrap(l)

BUGS, LIMITATIONS
Variables of enumerator type cannot be initialized at the time of their declaration. The SpecC compiler issues a (false)

error message in this case. As a simple work-around, however, enumerator variables can be initialized by use of standard
assignment statements at the beginning of their lifetimes.
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A.2 sir _gen - SpecC Design Generator
NAME

sir_gen — part of the SpecC SIR tool set

SYNOPSIS

sir_gen[ options] design parameter..]

DESCRIPTION

sir_gen generates a parametrized design from a SpecC source template by creating a SIR file that contains the
SpecC Internal Representation of the design.

sir_gen reads the SpecC source file for the givaesign,applies theparametersgiven on the command line,
optionally performs name mangling, and writes the resulting SIR file ford#sgnor for its mangled design

name. Parameters are applied to the design by defining corresponding preprocessor macros when reading in the
SpecC source template. Input and output file names can be overwritten using the —i and —o options.

On successful completion, the exit value 0 is returned. In case of errors, an error code with a diagnostic message
is written to standard error and the program execution is aborted with the exit value 10. In this case, no output is
produced.

ARGUMENTS

design  specifies the main design name to generate; if no —i option is specificed, the file nhame for the input
source template is deduced by appending the suffix ’.sc’ to this name; if no —o option is specified, the
generated design will be written into a SIR file with the (possibly mangled, see —m option) name of the
design plus the suffix '.sir’;

parameterspecified a parameter to be applied when generating the design; syntacticathneetelis a key/value
pair separated by an assignment character ('=', no whitespac&eykpecifies the name of the param-
eter, while thevaluespecifies the value to apply to the parametefalaieis given using standard SpecC
syntax for constants; each key/value pair will create a corresponding preprocessor definition while read-
ing of thedesignsource file, i.e. the source code is templated using the capabilities of the preprocessor
to modify code generation based on the parameter definitions;

OPTIONS

—h prints a short usage and version information and then quits;

—i input file specifies the name of the input source file template explicitly; the name ’-’ can be used to specify
reading from standard input;

—-m  enables name mangling; the design name and the names of all global, non-imported definitions (behaviors,
channels, interfaces, functions, and variables) are mangled by appending a unique suffix to the name; by
default, the suffix will be generated from the given ordgracameterset; note that mangling of the design
name will change the name of the output file accordingly;

—msuffixenables name mangling and specifiesaifixused to mangle names explicitly;

-n suppresses the creation of new log information when generating the output SIR file; by default, log informa-
tion in the main design file is updated automatically (see also section ANNOTATIONS below);
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—0 output file specifies the name of the output design file explicitly; the name ’-’ can be used to specify writing to
standard output;

—-v| —vv| —vvv set the verbosity level so that actions performed are logged to standard error (default: be silent);

-w| ... | -wwww set the warning level so that warning messages are enabled (default: standard warnings are dis-
played); four levels are supported ranging from only important warnings (level 1) to pedantic warnings (level
4);

-D do not define any standard macros; by default, the ma&BECC._ is defined automatically (it is set to 1);
furthermore, implementation dependent macros may be defined; this option suppresses the definition of all
these macros;

—Dmacrodefdefine the preprocessor maenacrodeto be passed to the preprocessor;

-uU do not undefine any macros; by default, few macros are undefined automatically (in order to allow C/C++
standard header files to be used); this option is implementation dependent;

—Uundefundefine the preprocessor macnmadefwhich will be passed to the preprocessor as being undefined; the
macroundefwill be undefined after the definition of all command-line macros; this allows to selectively
suppress macros from being defined in the preprocessing stage;

—I clear the standard include path; by default, the standard include path consists of the directory $SPECC/inc;
this option suppresses the default include path;

—Idir appendlir to the include path (extend the list of directories to be searched for including source files); include
directories are searched in the order of their specification; unless suppressed by option —I, the standard
include path is automatically appended to this list; by default, only the standard include directories are
searched;

-P resets the import path; the list of directories to be searched for import is cleared; by default, the current
directory is searched first, followed by the standard import directory $SPECC/import; this option suppresses
this standard import path;

—Pdir appenddir to the import path, extending the list of directories to be searched for importing files; import
directories are searched in the order of their specification; unless suppressed by option —P, the standard
search path is automatically appended to this list; by default, only the standard import path is searched;

ENVIRONMENT

SPECC s used to determine the installation directory of the SIR tool set where SpecC standard include files
(directory $SPECC/inc), and SpecC standard import files (directory $SPECC/import) are located.

SPECCLICENSEFILE determines the license file (path and file name) to be used by the SIR tool set; if undefined,
the environment variabIlS8PECCis used as the path to the license file called "license.sce”; if neither
SPECCLICENSEFILE nor SPECCexist, the file "license.sce” is searched in the current directory;

ANNOTATIONS
The following SpecC annotations are recognizedioygen:

_SCELOG contains the log information of the SIR file; this global annotation is created and maintained auto-
matically by the SpecC compiler and the SpecC tool set and can be used to determine the origin and
the operations performed on the design modeCELOG is a composite annotation consisting of
a list of log entries, ordered by time of creation; each log entry consists of a time stamp, command
line, source file, version info, and an optional comment;
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_SIRPARAMETERSpecifies the set of valid parameters that can be applied to the global definition to which
this annotation is attachedSIRPARAMETERSs a composite annotation consisting of a list of
template parameters; each entry consists of the parameter name, the parameter default value, and
the parameter range; the parameter range is given as a list that can contain both discrete values and
pairs of min/max values;

MACROS

During processing of the SpecC source template inpusiilegenwill define preprocessor macros that correspond
to the key/value pairs given as parameters on the command line.

In addition, the following preprocessor macros are setihyenduring reading of the source file:

_SIRMANGLED.SUFFIX contains the name mangling suffix chosen via the —m option; if name mangling is
disabled, the macro is not defined;

VERSION

The SpecC SIR tool set is version 2.2.b.

AUTHOR

Andreas Gerstlauetrgersti@ics.uci.edu

COPYRIGHT

(c) 1997-2003 CECS, University of California, Irvine

SEE ALSO

scql), sir_deletg]), sir_depend]), sir_import (I), sir_isolate(l), sir_list(l), sir_note(l), sir_renamg(l), sir_statg),
sir_strip (1), sir_tree(l), sir_wrap(l)

BUGS, LIMITATIONS
It is generally not possible to perform name mangling in a fully canonical fashion (e.g. mangling of strings or mangling in

the presence of multiple, disparate template definitions in the desigmgenonly performs limited mangling by default.
Therefore, the user should explicitly choose the mangling scheme.

63



