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Abstract

Many recently proposed system-level design methodologies share the characteristic that the design flow starts from a
golden, executable specification model. The specification model is captured by the designer and describes the desired system
behavior in a purely functional way. As the starting point for the system-level design process, it will later be gradually
refined through a series of interactive and automated steps down to an actual implementation. Therefore, having a clear and
unambigious input model as defined by this manual is crucial for effective design space exploration.

In this report, we will describe and define a system specification style guide using the SpecC language and the design flow
in the System-on-Chip Design Environment (SCE) as an example. Following some general guidelines for developing efficient
specification models, detailed rules that define the specification modeling style are given. For the example of SCE used in this
report, specification models are written in version 2.0 of the SpecC language. On top of the basic SpecC syntax and semantics,
the modeling rules impose additional restrictions for a proper and valid specification model. Finally, steps required to convert
an existing C description into a specification model are outlined and some conversion examples are given.
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Abstract

Many recently proposed system-level design methodolo-
gies share the characteristic that the design flow starts
from a golden, executable specification model. The spec-
ification model is captured by the designer and describes
the desired system behavior in a purely functional way. As
the starting point for the system-level design process, it will
later be gradually refined through a series of interactive
and automated steps down to an actual implementation.
Therefore, having a clear and unambigious input model as
defined by this manual is crucial for effective design space
exploration.

In this report, we will describe and define a system
specification style guide using the SpecC language and
the design flow in the System-on-Chip Design Environment
(SCE) as an example. Following some general guidelines
for developing efficient specification models, detailed rules
that define the specification modeling style are given. For
the example of SCE used in this report, specification mod-
els are written in version 2.0 of the SpecC language. On
top of the basic SpecC syntax and semantics, the modeling
rules impose additional restrictions for a proper and valid
specification model. Finally, steps required to convert an
existing C description into a specification model are out-
lined and some conversion examples are given.

1 Introduction

The System-On-Chip design environment (SCE) is an ex-
ample of an implementation of a state-of-the-art system-
level design methodology [1]. SCE is a framework that
combines a set of tools under a common graphical user
interface (GUI). Using this framework, the designer can
take an initial specification down to an actual implemen-
tation through a series of interactive and automated steps.
Starting from a purely functional description of the desired
system behavior, an implementation of the design on a het-

erogoeneous system architecture with multiple processing
elements (PEs) connected through system busses is pro-
duced at the end of the design flow.

1.1 System Design Flow

The SCE system-level design methodology is shown in
Figure 1. The SCE methodology is a set of four models
and three transformation steps that take a system specifica-
tion down to an RTL implementation [1].

The system design flow consists of two main parts: (a)
system synthesis, and (b) a backend for hardware and soft-
ware synthesis. In the SCE methodology, system synthesis
is further subdivided into two orthogonal tasks, architec-
ture exploration and communication synthesis. Architec-
ture exploration implements the computation behavior of
the specification on a set of processing elements that form
the system architecture. Communication synthesis, on the
other hand, implements the communication functionality
of the specification over the system busses.

Each system synthesis and backend task refines the
model of the design at the current stage of the design pro-
cess into a new model representing the details of the imple-
mentation added during the synthesis step. At the output of
each task, the model of the design reflects the implementa-
tion decisions made in the previous step. At the same time,
each model forms the input to the next task.

The system-level design process starts off with a speci-
fication of the desired system behavior. This specification
model is written by the user and forms the input to the de-
sign process.

In the SCE methodology, the first task of system syn-
thesis is architecture exploration. Architecture exploration
selects a set of processing elements and maps the compu-
tation behavior of the specification onto the PEs. Archi-
tecture exploration refines the specification model into the
intermediate architecture model. The architecture model
describes the PE structure of the system architecture and
the mapping of computation behaviors onto the PEs, in-
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Figure 1: SCE design flow.

cluding estimated execution times for the behavior of each
PE.

Architecture exploration is followed by communication
synthesis to complete the system synthesis process. Com-
munication synthesis selects a set of system busses and
protocols, and maps the communication functionality of
the specification onto the system busses. Communication
synthesis creates the communication model which reflects
the bus architecture of the system and the mapping of com-
munication onto the busses.

The communication model is the result of the system
synthesis process. It describes the structure of the system
architecture consisting of PEs and busses, and the imple-
mentation of the system functionality on this architecture.
It is timed in both computation and communication, i.e.
simulation detail is increased by events for estimated exe-
cution and communication delays.

The communication model is a structural view at the sys-
tem level. At the same time, the specification of the func-
tionality of each PE of the system in the form of a behav-

ioral view at the register-transfer level forms the input to
the RTL synthesis of those components in the backend. In
a hierarchical fashion, each PE is synthesized separately in
the backend and the behavioral view of the PE is replaced
with a structural view of its RTL or instruction-set (IS) mi-
croarchitecture. The result of this backend process is the
implementation model.

The implementation model is a cycle-accurate, struc-
tural description of the RTL/IS architecture of the whole
system. In a hierarchical fashion, the implementation
model describes the system structure and the RTL structure
of each PE in the system. Simulation detail is increased
down to the clock level, i.e. the timing resolution is in terms
of clock events for each local PE clock.

1.2 SpecC Language

The SCE methodology is supported by the SpecC system-
level design language [2]. The SpecC language as an ex-
ample of a modern system-level design language (SLDL)
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was developed to satisfy all the requirements for an effi-
cient formal description of the models in the SCE method-
ology. It supports behavioral and structural views and con-
tains features for describing a design at all levels of ab-
straction.

In the SpecC methodology, all four models of the design
process starting with the specification model and down to
the implementation model are described in the SpecC lan-
guage. One common language removes the need for te-
dious translation. Furthermore, all the models in SpecC
are executable which allows for validation through simu-
lation, reusing one single testbench throughout the whole
design flow. In addition, the formal nature of the models
enables application of formal methods, e.g. for verification
or equivalence checking.

1.3 Specification Model

As outlined previosuly, the specification model is the input
to the SCE design flow. It is captured graphically or textu-
ally by the designer in the form of SpecC code to specify
the system functionality to implement. All other models of
the SCE design flow will be generated automatically from
the specification model through a sequence of interactive,
GUI-assisted refinement steps. As such, the specification
model needs to precisely and unambiously describe the de-
sired system behavior on top of the SpecC language se-
mantics. Furthermore, the specification model defines the
possible design space for exploration and quality of im-
plementation results therefore depends to a large extent on
the characteristics of the specification model. For example,
any premature references to implementation detail will pre-
vent exploration of solutions outside of the scope imposed
by such restrictions.

In this manual, we define how to describe a specification
of a system that can serve as the input to a modern system-
level design process using SCE and the SpecC language
as an example. First, a set of general guidelines for writ-
ing good specification models will be given in Section 2.
Then, in Section 3, specific and detailed rules and restric-
tions imposed on the specification model style are defined.
Finally, Section 4 describes how straight-line C code can
be efficiently converted into a SpecC specification model.

2 Modeling Guidelines

The specification model is the input of the SCE design
flow. It is captured by the user to specify the desired sys-
tem functionality. The specification is a behavioral view
of the system, i.e. it describes the desired functionality in
an abstract manner. The specification model is a purely
functional model, free of any implementation details. For

example, objects at the specification level are abstract enti-
ties that do not correspond to real physical components.

A key aspect of the specification model is to separate
computation from communication. On the one hand, this
is a requirement for composability of a system out of com-
ponents including the reuse of pre-existing IP components.
On the other hand, this separation of concerns allows to im-
plement computation and communication in two separate
steps of the design flow.

2.1 Computation

In terms of computation, the specification is hierarchically
composed of SpecC behaviors. Behaviors are arranged
sequentially, concurrently, or in a mix of both, i.e. in a
pipelined fashion. Behaviors at the leaves of the hierarchy
contain basic algorithms in the form of straight-line C code
that perform arithmetic and logical operations on data. In
addition to temporary data, leaf behaviors will encapsulate
any permanent storage required by the algorithm.

2.1.1 Granularity

The basic, indivisible units of granularity for design space
exploration are SpecC behaviors. That is, during the design
process the specification will be partitioned along behav-
ior boundaries but behaviors at the leaves of the hierarchy
form the smallest, indivisible units for exploration. There-
fore, leaf behaviors contain basic algorithms in the form
of C code, reading from their inputs, processing a data set,
and producing outputs.

Algorithms of the specification model are split into leaf
behaviors along the boundaries defined between reading
and writing of data structures. On the other hand, all the
code needed to process a complete, consistent data set
should be kept together in one leaf behavior.

Also, the ratio of communication to computation should
be minimized yet the size of the leaf behaviors be kept
small and manageable with well-defined, sensible inter-
faces and possible reuse in mind. As a rule of thumb, what
would be a traditional C function will become a leaf be-
havior with typically half a page to maximally two pages
of code.

2.1.2 Hierarchy

At each level of hierarchy, the system should be com-
posed of self-contained blocks with well-defined interfaces
enabling easy composition, rearrangement, and reuse.
Closely related functionality is grouped through hierarchy.
Higher-level behaviors encapsulate tightly coupled groups
of subbehaviors such that the ratio of external to internal
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communication is minimized. On the other hand, the num-
ber of subbehaviors per parent should be kept small and
manageable. As a guideline, behaviors typically have 2-5
children on average.

At each level, the behavior hierarchy should be clean.
Different behavioral concepts shouldn’t be mixed in the
same level. A behavior is either a hierarchical compo-
sition of subbehaviors or a leaf behavior with sequential
code. Similarly, a hierarchical behavior is either a sequen-
tial, parallel, pipelined or FSM composition of subbehav-
iors but does not contain arbitrary C code.

2.1.3 Encapsulation

In general, information should be localized as much as
possible. This includes code (functions, methods), stor-
age (variables), and communication (port variables, chan-
nels). Each hierarchical unit (behavior) encapsulates and
abstracts as many local details as possible, hiding them
from the higher levels. Hierarchical behaviors encapsu-
late dependencies and communication of a group of sub-
behaviors, providing only an interface to their combined
functionality.

At the leaves, behaviors encapsulates all the code and
storage needed by the algorithm. As mentioned above,
global, static variables become member variables of the
leaf behavior. Furthermore, global functions that are called
out of leaf behaviors should be avoided. Instead, depend-
ing on size and number of callers, consider converting
functions into separate leaf behaviors that get instantiated
as subbehaviors of the caller, or move global functions into
the calling behavior where they become local methods. An
exception are small helper functions with a few lines of
code that are used ubiquitously and can be considered ba-
sic operations (on the same level as additions or multipli-
cations).

2.1.4 Concurrency

Any concurrency available between independent behaviors
should be exposed through their parallel or pipelined com-
position. That is, all behaviors that do not have any con-
trol or data dependencies (or data dependencies only across
iterations) should be arranged to execute in a concurrent
fashion. Furthermore, the behavior hierarchy should be
constructed in such a way as to maximize the number of
independent behaviors and hence the available parallelism.

Dependent behaviors, on the other hand, should gener-
ally not be arranged in a concurrent fashion. Instead, their
dependencies should be captured explicitly through tran-
sitions. An exception are rare (control) dependencies be-
tween otherwise highly independent top-level tasks, for ex-
ample. In those cases, communication and synchronization

are modeled using channels between the tasks.
In general, concurrent behaviors in the specification

model should reflect the available parallelism in the spec-
ification. Therefore, they should be as independent as
possible. Data or control dependencies between behav-
iors at the specification level should be explicitly captured
through the behavior hierarchy. Instead of concurrent be-
haviors that communicate or synchronize through variables
or events, the behaviors should be split into independent
parts that can run in parallel and dependent parts that have
to be executed sequentially.

2.1.5 Time

The specification model is untimed and all behaviors exe-
cute in zero logical time. Therefore, the only events in the
system are events for synchronization in order to specify
causality. The ordering of events in the system is based
on causal relationships only and there is no notion of time.
The system is partially ordered based on causality as de-
termined by the explicit or implicit dependencies between
behaviors. As the design flow progresses, timing informa-
tion that will be added to the system will successively in-
troduced additional order based on delays.

Apart from the untimed behavior, however, the specifi-
cation model can contain constraints for execution times of
parts of the specification. During the design process, it then
has to be assured that any time introduced into the model
does not violate any of the constraints.

2.2 Communication

In terms of communication, exchange of data between be-
haviors in the specification model is encapusulated into
SpecC channels that connect behaviors through ports.
Channels describe how data and synchronization messages
are transfered between two communication partners in an
abstract way.

2.2.1 Semantics

In general, behaviors at the specification level communi-
cate via message-passing channels. Behaviors exchange
data by sending and receiving messages over communica-
tion channels with appropriate semantics. In the case of
a sequential composition, message-passing degenerates to
simple variables. Data is exchanged by reading and writing
from/to the variable. In the case of a parallel composition
with simple synchronization only, the synchronization is
implemented via a single event. In the general case of data
communication between concurrent behaviors, however, a
message-passing channel is instantiated.

4



The specification model instantiates channels out of a
SpecC channel library with pre-defined, known semantics.
The library contains channels with abstract communication
semantics like buffered and unbuffered message-passing,
FIFOs, shared-memory semaphores/mutexes, and so on.
By using the predefined channels out of the library, com-
monly needed communication functionality is available for
integration into the specification model.

Note that the specification models of channels do not
imply any specific implementation of their abstract seman-
tics. The code inside the channel is for simulation of the
correct semantics during execution only. It is the task of
communication synthesis to refine those abstract channels
into an actual implementation of the desired semantics us-
ing the available system bus protocols and PE interfaces.

2.2.2 Dependencies

Data dependencies should be reflected explicitly in the be-
havioral hierarchy as transitions between behaviors, either
through a sequential composition or conditionally using
the fsm statement. In this case, channels degenerate to
simple variables connecting behaviors, and the need for
implicit synchronization through message-passing is elim-
inated.

All dependencies are explicitly captured through the
connectivity between behaviors and no hidden side ef-
fects exist. Global variables should be avoided completely.
Static variables accessed from a single leaf behavior be-
come member variables of that behavior. Global variables
used for communication have to be turned into explicit de-
pendencies in the form of connectivity as behaviors are
only allowed to exchange data through their ports.

If the relationship of concurrent behaviors in the specifi-
cation model extends beyond synchronization through pure
events and necessitates some actual form of data commu-
nication, the specification needs to clearly separate such
communication from the normal computation by encapsu-
lating communication functionality in the form of chan-
nels.

3 Modeling Style

In general, the SCE specification input model is written in
SpecC and as such has to adhere to the syntax and seman-
tics of the SpecC language [2]. However, to form a valid
specification model that can be input into the SCE design
flow, additional rules and restrictions on top of the SpecC
base have to be adhered to as defined in this section. Note
that, apart from that, unless otherwise noted here, any valid
SpecC code is an acceptable specification model.

Design MonitorStimulus

Main

Figure 2: Specification model top-level structure.

Figure 2 and Figure 3 show an example template for a
valid specification model. A specification model has to be
an executable SpecC model, i.e. it has to define aMain
behavior. Usually, a specification model consists of a test-
bench that surrounds the actual design to be implemented.
Typically, a testbench consists of stimulating (Stimulus )
and monitoring (Monitor ) behaviors that are executing
concurrently to the acutal design (Design ) in the top-
mostMain behavior, and that drive the design under test
and check the generated output against known good values.

The design to be implemented is defined by a single
SpecC behavior (Design ) which in turn can be hierar-
chically composed out of a tree of subbehaviors. For a
valid specification model, all the behaviors that are part
of this tree have to comply with the rules and restrictions
for describing computation and communication that will
be defined in the following sections. Note, however, that
these restrictions do not apply to the testbench part. There-
fore, the testbench can be freely described using any valid
SpecC code.

3.1 Computation

The computational part of the specification is described
through the execution semantics of the hierarchy of SpecC
behaviors that form the design to be implemented. For a
valid specification model, this behavior hierarchy has to be
clean. A clean hierarchy is defined as a tree of behaviors
in which every behavior is either a leaf behavior or a hi-
erarchical composition of subbehaviors as defined in the
following sections.

3.1.1 Leaf Behaviors

In each leaf behavior, the behaviormain() method con-
tains a piece of straight-line, plain ANSI-C code. Specifi-
cally, the following rules define the restrictions that apply
to leaf behaviors.
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import ” c doub le handshake ” ;

behav ior St im u lus ( i s e n d e r i n p u t )f / / S t i m u l i c r e a t o r
vo id main (vo id ) f

5 / / wh i l e ( . . . ) f . . . ; i n p u t . send (. . . ) ; . . . g
g

g ;

behav ior Moni tor ( i r e c e i v e r o u t p u t )f / / Output m on i to r
10 vo id main (vo id ) f

/ / wh i l e ( . . . ) f . . . ; o u t p u t . r e c e i v e (. . . ) ; . . . g
g

g ;

15 behav ior Design ( i r e c e i v e r i n p u t , i s e n d e r o u t p u t )f / / System des ign
/ / . . .

vo id main (vo id ) f
/ / fsm f . . . g

20 g
g ;

behav ior Main ( ) f / / Top l e v e l
c doub le handshake i n p u t , o u t p u t ;

25
St im u lus s t i m u l u s ( i n p u t ) ;
Design des ign ( i n p u t , o u t p u t ) ;
Moni to r m on i to r ( o u t p u t ) ;

30 i n t main (vo id ) f
par f

s t i m u l u s . main ( ) ;
des ign . main ( ) ;
m on i to r . main ( ) ;

35 g
g

g ;

Figure 3: Specification model top-level code.

Rule 1 A leaf behavior must not contain any channel or
behavior instances. It can, however, contain instances of
variables.

Rule 2 A leaf behavior has exactly one method, the
main() method. Generally, themain() method con-
tains any plain, valid ANSI-C code. Of the SpecC-specific
types, expressions and statements, only the following are
permitted:

(a) calls to channel methods through behavior ports of
interface type (see also Section 3.2.1),

(b) notify andwait statements on behavior ports of
event or signal type,

(c) declarations of and operations on variables or ports
of bit , long long , long double , or bool ba-
sic type, and

(d) do-timing constructs to specify constraints.

Rule 3 For leaf behaviors that should be implementable
in hardware, depending on the capabilities of the backend

tool used for hardware synthesis, additional restrictions
might apply (e.g. most tools can not synthesize pointers).
If any of these restrictions are violated, the corresponding
leaf behavior will be limited to a software implementation.
In order to allow the greatest possible flexibility for explo-
ration, these restrictions should be followed as much as
possible for all leaf behaviors.

Rule 4 Generally, leaf behaviors can make calls to global
functions. However, leaf behaviors that call global func-
tions can only be mapped to PEs that provide a native im-
plementation of each global function in the processor li-
brary (i.e. as a link-level library in software or a dedicated
functional unit in hardware). Therefore, global functions
should be avoided completely as much as possible.

3.1.2 Hierarchical Behaviors

A hierarchical behavior is a composition of several subbe-
havior instances in a sequential, parallel, pipelined or FSM
fashion. More specifically, the following rules must be fol-
lowed when composing hierarchical behaviors.
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Rule 5 A hierarchical behavior has exactly one method,
the main() method, and themain() method contains
exactly one statement that is either

� a seq ,

� a par ,

� a pipe , or

� a fsm statement.

Rule 6 A hierarchical behavior generally contains in-
stances of subbehaviors that execute inside the hierarchi-
cal behavior’s composition statement (by calling subbe-
haviormain() methods). However, each subbehavior in-
stance can be called at most once inside the composition.
Subbehavior instances communicate through ports, vari-
ables and channel instances of the hierarchical behavior
mapped to subbehavior ports (see Section 3.2.2).

Rule 7 For the expressions in the arguments of apipe()
statement and in theif() statements offsm transitions
the same rules and restrictions as for the C code in leaf
behaviors (Section 3.1.1) apply.

3.2 Communication

All communication in the specification model, both inside
the design to be implemented and between the testbench
and the actual design, is described through variables and
channels that connect ports of behaviors.

3.2.1 Behavior Interfaces (Ports)

The list of ports of a behavior defines the interface between
the behavior and its environment, i.e. behaviors are only
allowed to communicate with other behaviors through their
ports.

Rule 8 Behaviors can have ports of standard (variable)
type with direction or of interface type. In case of standard
ports, ports that are of pointer type are not allowed. For
ports of interface type, only interfaces that are part of the
standard SpecC channel library are allowed.

Rule 9 Behaviors are not allowed to export any methods,
i.e. they cannot implement any interfaces.

Rule 10 Behaviors are not allowed to (directly or indi-
rectly, e.g. through a call to a global function) access vari-
ables and channels that are outside of their local scope.
Therefore, code inside behaviors can only reference vari-
ables or call methods of interfaces that are defined inside
the behavior as ports or local instances. Hence, accesses
of global variables or channels are forbidden.

3.2.2 Connectivity (Variables and Channels)

Inside hierarchical behaviors, the connectivity of subbe-
haviors instances is defined by mapping ports of the hier-
archical behavior or or instances of variables and channels
onto the ports of the subbehaviors.

Rule 11 Ports of subbehavior instances inside a behavior
can only be connected to the behavior’s ports or to vari-
ables or channels instantiated inside the behavior. Hence,
it is not allowed to map other subbehavior instances onto
a subbehavior port.

Rule 12 Given the restrictions on standard port types (see
Section 3.2.1), variables used for connections (i.e. mapped
to ports) must not be of pointer type.

Rule 13 Variables with storage classpiped are only al-
lowed inside hierarchical behaviors with apipe compo-
sition (see Section 3.1.2) to connect subbehaviors that act
as pipeline stages.

Rule 14 Only channels out of the standard SpecC channel
library are allowed to be instantiated and mapped to ports.

4 C Code Conversion

In many cases, system design projects can leverage exist-
ing C code that describes all or part of the desired system
functionality. In order to feed into the SCE design flow,
such C models need to be converted into corresponding
SpecC system models following the guidelines and rules
described in Section 2 and Section 3, respectively.

The rest of this chapter will outline this process by show-
ing how a straight-line C model can be converted into a
valid SpecC specification model. For more information
and details, please refer to [4].

4.1 Code Refinement

The code refinement process can be divided into two steps,
namely,syntactic refinementandsemantic refinement.

4.1.1 Syntactic Refinement

As a first step of C code conversion, syntactic refinement
converts a C program into a semantically equivalent SpecC
program through purely syntactical conversions.

Basically, syntactic refinement converts the C functional
call hierarchy into an equivalent SpecC behavioral hierar-
chy. In general, each C function is converted into a SpecC
behavior and behaviors are composed hierarchically ac-
cording to the hierarchy of function calls in the C program.
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If necessary, adjustments to the behavior granularity can be
made during this step.

An important aspect of this refinement process is to
make data dependencies in the C code explicit by exposing
and converting them into corresponding behavior depen-
dencies through ports and connections. On the one hand,
function parameters and arguments can be directly con-
verted into behavior ports. On the other hand, however,
global variables need to be localized and any accesses to
formely global variables have to be routed through ports of
the hierarchy.

4.1.2 Semantic Refinement

On top of syntactic refinement, semantic refinement is con-
cerned with removing artifical restrictions imposed on the
description by the limitations of the semantics of the C lan-
guage. Based on the extended semantics of the system-
level design language, the specification is refined to model
the desired system behavior in a more natural way.

The main aspect of semantic refinement is to expose all
available parallelism in the specification using parallel and
pipelined compositions of the SpecC language wherever
possible. Neither the concept of pipelining nor parallelism
exists within the C language. However, to efficiently per-
form exploration, a system level design model must pro-
vide these two concepts.

Parallel Two behaviors are combined in a parallel compo-
sition if the execution sequence of the two behaviors
does not influence the simulation result. Otherwise,
the two behaviors are defined as behavior-sequential.

Pipelined If, within a sequential programming model, a
number of behaviors are executed one after another
in a loop body, and one behavior communicates only
with the next behavior, then the behaviors should be
composed in a pipelined fashion.

4.2 Basic Constructs

In this section, we specify guidelines for C to SpecC trans-
lation for different control statements by recognizing some
basic patterns in a typical input C program.

4.2.1 If (no else) Statement

An If statement (Figure 4(a)) is clean, if the code inside
the braces of if condition (If Clean Code Segment) is a se-
quence of data statements only and if there are no calls
to other behaviors. For this type of statement, we can get
valid SpecC code just by wrapping the whole block of the
If statement as is into a leaf behavior.

C Code

��� C	e�
 Code

If(cond�	

Clean code segment

�

��� �
	e�
 Code

If(cond�	

�nclean code segment

�

��eC ���
��o���� �o


���

���

� ��cond��

�� Clean code

segment

�

Behavior encapsulating if code


���

���cond��es

no
�nclean code

�egment����

�nd

Behavior (If)

�f�fs���loc�

��� representing if state�ent

Figure 4: If statement.

An If statement (Figure 4(b)) is unclean, if the code in-
side the braces of the if condition (If Unclean Code Seg-
ment) is a composite of data statements as well as calls to
other behaviors.StartandEndstates are fictitious dummy
states which correspond to entrance and exit, respectively
inside If fsm block. First task for converting this type of
code is transformingIf Unclean Code Segmentinto a com-
posite behavior which is clean in SpecC.If condition check
can be transformed to aYes/No FSM(Finite State Machine)
as it resembles decision making as it resembles decision
making. If the condition is satisfied then the behavior rep-
resentingIf Unclean Code Segmentwill be called.

4.2.2 If Else Statement

An If Else statement (Figure 5) differs from an If statement
(Figure 4) on including anElsepart. An If statement is a
subset of an If Else statement since an If statement does
not have an Else part. An If Else statement (Figure 5(a)) is
clean if the code inside the braces of if condition (If Clean
Code Segment) and else condition (Else Clean Code Seg-
ment) are sequences of just data statements and there are no
calls to other behaviors. For this type of statement, we can
get valid SpecC code just by wrapping the whole blocks of
If Clean Code SegmentandElse Clean Code Segmentwith
the condition check into a leaf behavior.

An If Else statement (Figure 5(b)) is unclean if it satis-
fies one of the conditions below:

(a) If part Code Segment is Unclean

(b) Else part Code Segment is Unclean
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��� C	e�
 Code
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If Clean code segment
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��	
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�
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 Code
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�
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SpecC ���	
�������	
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���cond��e
 no
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e��en����

���

Behavior (If)

Behavior encapsulating if else code
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�� �lean code 
e��en

��l
e�
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�

Unclean code


e��en�el
e�

SpecC ���	
�������	

���

start
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 no

Unclean code


e��en����

���

Behavior (If)

(a)

Behavior encapsulating if else code

If_else_fsm

Behavior (���e)

��� representing if else state�ent��� representing if else state�ent

���cond��

�� �lean code 
e��en

��l
e�

�l
e �lean code �e��en

�

Figure 5: If Else statement.

(c) Both If and Else Code Segments are Unclean

To derive a valid SpecC code, first we need to make one
composite behavior for each of If and Else Unclean code
segments. Then, we can introduceYes/No FSMfor the con-
dition check. If the condition is satisfied, we make a call
to the If composite behavior. Otherwise, we call the Else
composite behavior.

4.2.3 While Statement

A While statement (Figure 6(a)) is clean ifWhile Clean
Code Segmentis a sequence of just data statements and
there are no calls to other behaviors. For this type of state-
ment, we can get valid SpecC code just by wrapping the
whole block of the While statement as is into a leaf behav-
ior.

A While statement (Figure 6(b)) is unclean ifWhile Un-
clean Code Segmentis a composite of data statements as
well as calls to other behaviors. First step in converting
this type of code is transformingWhile Unclean Code Seg-
mentinto a composite behavior which is clean in SpecC.
If condition checkcan be transformed to aYes/No FSMas
it resembles decision making. If the condition is satisfied
then the behavior representingWhile Unclean Code Seg-
mentwill be called and then the control loops back to the
condition checking. This will repeat until the condition be-
comes false. Then, Exit state (End) will be called which
signifies end of the while statement.

C Code

��� C	e�
 Code

While(cond��
While Clean code segment

�

��� �
	e�
 Code

While(cond��
�nclean code segment

�

��eC ���
��o�����o


���

���

While(cond��

hile��le�n�code

�e��en�

�

Behavior encapsulating while code

�eha�io� ��hile�

����

���cond�
�e

no

�nclean code

segment��hile�
�nd

while_fsm_block

FSM representing while statement

Figure 6: While statement.

4.2.4 Do While Statement

A Do While statement (Figure 7) is just a small modifica-
tion to the While statement (Figure 6). In the While state-
ment, the condition is checked first before executingWhile
(Un)clean Code Segment. On the contrary, in the Do While
statement, first theDo While (Un)clean Code Segmentis
executed and then the condition is checked.

A Do While statement (Figure 7(a)) is clean ifDo While
Clean Code Segmentis a sequence of just data statements
and there are no calls to other behaviors. For this type of
statement, we can get valid SpecC code just by wrapping
the whole block of the Do While statement as is into a leaf
behavior.

A Do While statement (Figure 7(b)) is unclean ifDo
While Unclean Code Segmentis a composite of data state-
ments as well as calls to other behaviors. First step in con-
verting this type of code is transformingDo While Unclean
Code Segmentinto a composite behavior which is clean in
SpecC.If condition checkcan be transformed to aYes/No
FSMas it resembles decision making. When executed, first
the behavior representingDo While Unclean Code Seg-
mentis called then the If condition checked withYes/No
FSM. If the condition satisfies, then the behavior repre-
sentingDo While Unclean Code Segmentwill be called
and then the control loops back toYes/No FSM. This will
repeat until the condition becomes false. Then, Exit state
(End) will be called which signifies end of the do while
statement.
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C Code
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do {

do while Clean code segment

� While�cond�

(�) �nlean Code

� �e�C 	
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�do while�

��d

�� �hile������l�
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do�

do while Clean

code segment

� �hile�cond�

Behavior encapsulating do while code
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do {

do while �nClean code segment

� While�cond�

Figure 7: Do While statement.

4.2.5 For Statement

C Code
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Figure 8: For statement.

A For statement (Figure 8) is just a small modification
to the While statement (Figure 6). In the While state-
ment, there is only one block of code (While (Un)clean
Code Segment) where as in the For statement, along with
For (Un)clean Code Segmentthere are two more blocks of
code. One block isinit statements and the other ispost
statements.Init statements are executed once at the start
of the For statement block.Poststatements are executed
everytime theFor (Un)clean Code Segmentis executed.

A For statement (Figure 8(a)) is clean ifFor Clean Code

Segmentis a sequence of just data statements and there are
no calls to other behaviors. For this type of statement, we
can get valid SpecC code just by wrapping the whole block
of the For statement as is into a leaf behavior.

A For statement (Figure 8(b)) is unclean ifFor Unclean
Code Segmentis a composite of data statements as well as
calls to other behaviors. First step in converting this type
of code is transformingFor Unclean Code Segmentinto a
composite behavior which is clean in SpecC. Then trans-
form init and post statements to appropriate clean SpecC
behaviors. Generally, init and post statements contain
some variable initialization, increment and decrement op-
erations. So, they can be easily translated to leaf behaviors
if they contain just the data statements and no calls to other
behaviors. Otherwise, they are transformed to composite
behaviors.Condition checkcan be transformed to aYes/No
FSMas it resembles decision making.

When executed, first the behavior representingInit state-
ment is called once and then theYes/No FSMis called. If
the condition is satisfied then the behavior representingFor
Unclean Code Segmentwill be called followed byPostbe-
havior and then the control loops back toYes/No FSM. This
loop will repeat until the condition becomes false. Then,
Exit state (End) will be called which signifies end of the
for statement.

4.3 Composite Constructs

This section deals with translating C code with various
combinations of basic constructs into SpecC code.

4.3.1 Clean While and If Statements

C Code

��� C	e�
 Code

While(cond��
while Clean code segment

���cond�i���

���Clean code

���i�

else�

�lse�Clean code

���else

���while

��eC ���
��o�����o


���

�hile�cond��

�hile Clean code segment

���cond�i���

���Clean code

���i�

else�

�lse�Clean code

���else

���while

Behavior encapsulating while if code

Figure 9: Combination of clean While and If statements.

A While statement is combined with an If statement as
Figure 9 depicts. But both statements are clean. So, the
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translation is simple as we wrap both these statements into
a simple leaf behavior.

4.3.2 Unclean While and If Else Statements

While(cond��

hile �n�le�n code��e��en�

��(cond�i���

����n�le�n code

���i�

el�e�

�l�e��n�le�n code

���el�e

���hile

If_fsm_block

Figure 10: Combination of unclean While and If Else state-
ments.

In Figure 10, a While statement which is unclean is com-
bined with an If Else statement. The unclean While state-
ment translation is done according to Figure 6 and the If
Else statement translation is done according to Figure 5.
Since the If Else statement is a sequence toWhile Un-
clean Code Segment, a new finite state (iffsm block) is
introduced just after the behavior representingWhile Un-
clean Code Segment. So, the final translation is nothing but
plugging the right FSMs which represent the basic building
blocks at the right places (Figure 11).

Figure 12 shows another example that differs from the
previous combination (Figure 10) in the sequence of exe-
cution ofIf ElseandWhile Unclean Code Segment. As the
Figure 13 illustrates, theWhile Unclean Code Segmentis
the sequence to the If Else statement. Appropriate changes
(flipping the basic blocks) are made to the sequence of ex-
ecution in Figure 13 which differs from Figure 11.

4.4 Example

Figure 14 depicts a complex nesting of one for loop, two
Do while loops, one If Else statement and one While
loop. Here, only While block has calls to other behaviors.
While block is a Composite behavior having two sequential
leaf behaviors namedleaf behavior1 andleaf behavior2.
The code segments in all other blocks are clean as they
only have data statements. But, since While block is the
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Figure 11: FSM for combination of unclean While and If
Else statements.

while ���le	� 
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�

Figure 12: Second combination of unclean While and If
Else statements.
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Figure 13: FSM for second combination of unclean While
and If Else statements.

for(init; cond; post){
clean code segment 1;
do{

clean code segment 2;
do{

clean code segment 3;
if(cond_if){

clean code segment 4;

}//if
else{

while(cond_while){

leaf_bahavior_1.main();
leaf_bahavior_2.main();

}//while 
}//else

}while(cond_do_while_2);
}while(cond_do_while_1);

}//for

For block

Do While block 1

Do While block 2

If Else block 

While block 

For block

Do While block 1

Do While block 2

If Else block 

While block 

Figure 14: Complex example of nesting.

inner most block inside the nesting, it is propagating un-
clean behavior to the If Else block. The If Else block, in
turn makes the Do While block 2 unclean. The Do While
block 2 makes the Do While block 1 unclean which in turn
makes the For block unclean. So, this is like aripple ef-
fectwhere unclean behavior in the deepest child behavior
makes the top most parent unclean.

We can adopt two approaches to get a valid SpecC code
out of this huge complex nesting of different basic blocks:
a top-down or a bottom-up approach.

When we apply a top-down flow on Figure 14, ordering
follows this pattern:

1. For Block

2. Do While Block 1

3. Do While Block 2

4. If Else Block

5. While Block

If we follow a bottom-up approach, the order is reversed.
First we work on the inner most block, make it clean, then
work on the its immediate parent block and so on, till we
reach the top most block.

For this example, we will show a top-down approach in
making this complex example clean.

4.4.1 Translation: Step 1

While working on the top most block, we abstract the
next level block and we include it as a child behavior.
The For block (Figure 15) has a small modification from
Figure 8. Figure 8 contains a behavior encapsulating a
for unclean code segment but Figure 15 has a compos-
ite behavior with two sequential behaviors. One of the
two sequential behaviors is the leaf behavior encapsulat-
ing cleancodesegment1 and the other one isabstracted
Do While behavior1.
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Figure 15: Step 1 - For Block.

4.4.2 Translation: Step 2

Do while Block 1 (Figure 16) is a parent to
Do while Block 2. We can abstract the latter as a simple
behavior following the execution ofcleancodesegment2.
So, the simplest translation possible is embedding
cleancodesegment2 into a leaf behavior and abstract-
ing Do while Block 2 as a simple behavior. Finally,
by modifying Figure 7 so that the hierarchial behavior
reflects two sequential behaviors (cleancodesegment2
and DoWhile block 2) in substitution of the un-
cleancodesegment, we get a valid SpecC translation.

4.4.3 Translation: Step 3

Step 3 (Figure 17) is similar to step 2 (Figure 16) except
thatDo while Block 2 hasIf Else blockas the child block.

4.4.4 Translation: Step 4

If Elseblock (Figure 18) hasWhile block as the child
block and Figure 18 depicts the difference from Figure 5
in that else blockis a composite sequential behavior con-
sisting of a clean leaf behavior forcleancodesegment3
and anabstracted while(child) behavior.

4.4.5 Translation: Step 5

Step 5 (Figure 19) depicts the inner most while block.
This while block has a sequence of two behaviors named
leaf behavior1 and leaf behavior2. Figure 19 depicts

FSM representing do while blocks
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Figure 16: Step 2 - Do While Block 1.

FSM representing do while blocks
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Figure 17: Step 3 - Do While Block 2.
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FSM representing if else and while blocks
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Figure 18: Step 4 - If Else Block.
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Figure 19: While Block.

the difference from Figure 6 in that there is a com-
posite sequential behavior containingleaf behavior1 and
leaf behavior2.
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