
Automatic Software Generation for System Level Design

Haobo Yu, Rainer Doemer, Daniel Gajski

CECS Technical Report 03-18
May 14, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{haoboy,doemer,gajski}@ics.uci.edu

1

Automatic Software Generation for System Level Design

Haobo Yu, Rainer Doemer, Daniel Gajski

CECS Technical Report 03-18
May 14, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{haoboy,doemer,gajski}@ics.uci.edu

Abstract

Raising the level of abstraction to system level promises to enable faster exploration of the design space at early stages.
While software is playing an increasingly important part in embedded systems, today it is still a common practice to imple-
ment embedded software manually after HW/SW partitioning of the system. It is much desired that the designer can get the
embedded software implementation directly from the system specification used in high level exploration. This paper presents
a method of automatically creating embedded software from system level specification. We demonstrate the effectiveness
of the proposed method by a tool which can generate efficient C code from system models written in system level design
language(SLDL). The code generated is compliant to the ANSI C standard thus can be accepted by most compilers.

2

Contents

1 Introduction 1

2 Related Work 2

3 Design Flow 2

4 Task Creation 3
4.1 Concurrency . 3
4.2 Synchronization . 4

5 Task Code Generation 4
5.1 Code Generation Rules . 4
5.2 An Illustrative Example . 5
5.3 The Algorithm . 6
5.4 CoSimulation with System Model . 7

6 Operating System Targeting 7
6.1 Task Management . 7
6.2 Task Synchronization . 7
6.3 Binary Code Creation . 8

7 Experimental Results 8

8 Summary and Conclusions 8

i

List of Figures

1 System design flow . 2
2 Software generation flow . 3
3 Refinement example . 4
4 Task creation . 4
5 Synchronization refinement . 4
6 An illustrative example . 5
7 Task management implementation . 7
8 Channel implementation . 8

ii

Automatic Software Generation for System Level Design

Haobo Yu, Rainer Doemer, Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

{haoboy,doemer,gajski}@cecs.uci.edu

Abstract

Raising the level of abstraction to system level promises
to enable faster exploration of the design space at early
stages. While software is playing an increasingly impor-
tant part in embedded systems, today it is still a common
practice to implement embedded software manually after
HW/SW partitioning of the system. It is much desired that
the designer can get the embedded software implementa-
tion directly from the system specification used in high level
exploration. This paper presents a method of automatically
creating embedded software from system level specification.
We demonstrate the effectiveness of the proposed method
by a tool which can generate efficient C code from system
models written in system level design language(SLDL). The
code generated is compliant to the ANSI C standard thus
can be accepted by most compilers.

1 Introduction

In order to handle the ever increasing complexity and
time-to-market pressures in the design of embedded sys-
tems, raising the level of abstraction to the system level
is generally seen as one solution to increase productivity.
Many system level design languages (SLDLs)[3, 4] and
methodologies have been proposed in the past to address
the issues involved in system level design. The typical
system level design process usually starts from an abstract
system specification model, partitions the specification to
HW/SW components and ends with the detailed implemen-
tation model [14]. Much work has been done in synthe-
sizing the HW part of the system. However, most indus-
trial embedded software is still created manually from the
system specification [18]. It is desired that the embedded
software can be generated from the system specification au-
tomatically.

In the system specification, the functionality of an em-
bedded system is described as a hierarchical network of

modules (or processes) interconnected by hierarchical chan-
nels. Syntactically, these can be described in SLDLs as a
set of behavior, channel and interface declarations. Dur-
ing system synthesis, the specification functionality is par-
titioned onto multiple processing elements (PEs), such as
DSP, custom hardware. Those behaviors mapped onto gen-
eral or application specific microprocessors will later be im-
plemented as embedded software.

Mapping functionality described in SLDL to a software
implementation usually means getting rid of all SLDL lan-
guage elements (e.g. module declarations, process declara-
tions, channels or complex data-types). Since the predomi-
nant SLDLs are C/C++ extensions [3, 4], directly compiling
SLDL to produce the binary code for the target micropro-
cessors is possible but highly inefficient. The main reason
is that the large simulation kernel for the SLDL is included
in the compiled code. Besides, most target compilers for
embedded processors may not even support C++ at all but
just C [16]. While SLDL is used mainly for modeling and
simulation of designs at system level, much overhead is in-
troduced to support the system level features (e.ghierarchy,
concurrency, synchronization). However, these features are
not necessarily needed for the target SW code. Considering
the limited memory space and execution power of embed-
ded processors, we need to generate compact and efficient
software code for implementation.

Various design methodologies exits for designing em-
bedded software. Many of these starts from an abstract
model of (UML[2], EFSM[19]). However,little work has
been done on software code generation from system level
design language (SLDL) [3, 4]. In this paper, we address
this problem by describing a tool which can automatically
generate efficient C code from the system specification writ-
ten in SLDL.

The rest of this paper is organized as follows: Section
2 gives an insight into the related work on software code
generation in system design. Section 3 describes how the
automatic software generation is integrated with the system
level design flow. Details of the code generation process are

1

covered in Section 4, Section 5 and Section 6. Experimental
results are shown in Section 7 and Section 8 concludes this
paper with a brief summary and an outlook on future work.

2 Related Work

Some related work can be found on code generation for
embedded software. There are approaches to automatic
code generation from DSP graphical programming environ-
ments, such as Ptolomy [21], from graphical finite state ma-
chine design environments (e.g StateCharts [17]), or from
synchronous programming languages (e.g Esterel) [7].

In [20], a software synthesis approach from a concur-
rent process specification through intermediate Petri-Net is
given. The proposed method applies quasi-static schedul-
ing to a set of Petri-Nets to produce a set of corresponding
state machines, which are then mapped syntactically to the
final software code. In [8], a way of combining static task
scheduling and dynamic scheduling in software synthesis is
proposed. In [12], a method for automatic generation of
application-specific operating systems and corresponding
application software for a target processor is given. While
these approaches mainly focus on software scheduling is-
sues, no efficient code generation method from system spec-
ification is described.

In POLIS [6], software synthesis fromCo-design Finite
State Machine(CFSM) is presented. Code generation is
performed in two steps: (1) transformation of the CFSM
specification into as-Graphand (2) translation ofs-Graph
into portable C code. A small customized operating system
consisting of a scheduler and drivers for the I/O channels
is used to correctly implement the run-time behavior of the
input CFSMs. This work, however, is mainly for reactive
real time systems and can’t be easily extended to other more
general frameworks.

In [9], software code generation from a high-level model
of operating system called SoCOS is presented. However,
SoCOS requires its own proprietary simulation engine and
it requires manual refinement to get the software code. In
[18], software generation from SystemC SLDL based on
the redefinition and overloading of SystemC class library
elements is presented. Their approach use the same Sys-
temC code both for the system-level specification and for
the target binary code generation. However, they have very
strict requirements with regards to the input SystemC model
(e.g no event wait/notify are allowed inside process and the
processes lack a sensitivity list). Besides, there is no infor-
mation regarding how the processes in the input SystemC
model get scheduled in the final implementation, which is
very important considering the real time requirements of the
embedded software.

Implementation Model

RTOS

IP

RTL

IP

H/W

Synthesis

Interface

Synthesis

C Code

Generation

Transaction Level Model

Specification Model

Architecture Partition &

Communication

Synthesis

Task

Creation

Figure 1. System design flow

3 Design Flow

System level design is a process with multiple stages
where the system specification is gradually refined from an
abstract idea down to an actual implementation. Figure 1
shows a typical system level design flow [11]. The system
design process starts with the specification model written
by the designer to specify the desired system functional-
ity. During system synthesis, the specification functionality
is then partitioned onto multiple processing elements (PEs)
and the communication synthesis generates the bus func-
tional model in which a communication architecture con-
sisting of busses and bus interfaces is synthesized to imple-
ment communication between PEs. Note that during com-
munication synthesis, interrupt handlers will be generated
inside the PEs as part of the bus drivers.

Due to the inherently sequential nature of PEs, behav-
iors mapped to the same PE need to be serialized. Depend-
ing on the nature of the PE and the data inter-dependencies,
behaviors are scheduled statically or dynamically (In case
of dynamic scheduling, a scheduling kernel is required for
the final implementation). For each PE, the design specifi-
cation is written in SLDL as a hierarchical network of be-
haviors/processes interconnected by channels. While in the
implementation, the SW portion of the design is described
as a set of tasks (processes) scheduled by a real time kernel
(usually a RTOS). Thus creating multiple tasks from sys-
tem specification and generating ready to compile C code
for each task are the two major tasks of software implemen-
tation in system level design.

In our software generation flow shown in Figure 2, these
two tasks are carried in two separate steps. Task creation is
the first step, where the behaviors are converted into tasks
with assigned priorities. Synchronization as part of com-
munication between processes is refined into OS-based task
synchronization. In order to evaluate the output multi-task

2

system model (e.g. in terms of the scheduling algorithm) at
this moment (i.e. before the actual binary implementation),
we use a high level model of the underlying RTOS [15].
The RTOS model provides an abstraction of the key features
that define a dynamic scheduling behavior independent of
any specific RTOS implementation. The output model gen-
erated from the task creation step consists of multiple PEs
communicating via a set of busses. Each PE runs multi-
ple tasks on top of its local RTOS model instance. There-
fore, the output model can be validated through simulation
or verification to evaluate different dynamic scheduling ap-
proaches (i.e. round-robin, priority-based) as part of system
design space exploration.

In the next system design step, each PE in the archi-
tecture model is then implemented separately. During this
process, tasks generated in the previous step are converted
into compilable C code for the chosen processor by our au-
tomatic software generation tool. By replacing the SLDL
description of the multi-task system with the C code cre-
ated in this step, the designer can co-simulate and validate
the output C code using the system model. Note that the
RTOS model is still used as an environment to provide the
task-scheduling and inter-task communication support for
the generated C code.

As the last step, the validated C code is compiled into the
processor’s instruction set and services of the RTOS model
are mapped onto the API of a specific commercial or custom
RTOS. The final binary executable for the chosen processor
is generated by linking the compiled code against the RTOS
libraries.

4 Task Creation

In system design, the specification is written in SLDL as
a network of hierarchical behaviors. However, in the im-
plementation, many designers use a task-based approach,
where a set of tasks are scheduled by a preemptive, priority-
driven real time kernel. The software task generation pro-
cess converts the design specification into a RTOS based
multi-task model. Essentially, the task creation step syn-
thesizes theconcurrencyandsynchronizationelements con-
tained in the SLDL description.

In this section, we illustrate the task generation process
through a simple yet typical example (Figure 3). The un-
scheduled model (Figure 3a) executes behaviorB1 followed
by the parallel composition of behaviorsB2andB3. Behav-
iors B2 andB3 communicate via two channelsC1 andC2
whileB3communicates with other PEs through a bus driver.
Note that as part of the bus interface implementation, the in-
terrupt handlerISRfor external events signals the main bus
driver through a semaphore channelS1.

Task

Parameters

Unscheduled Model

Task Creation

Multi-Task Model

W

Z

X

Y

W

ISR
 S1

PE

protocol

read()

write()

B

u

s

d
r

i
v

e

r

B

u

s

d
r

i
v

e

r

PE

C Code Generation

ISR
 S1

PE

protocol

read()

write()
B

u
s

d

r
i
v

e

r

B

u

s

d
r

i
v

e

r

RTOS Model

T1

T3
T2

PE

Task table

T1: X priority: 1

T2: W, Y priority: 0

T3: Z priority: 2

C Code

ISR
 S1

PE

B

u
s

d

r
i
v

e

r

B

u
s

d

r
i
v

e

r

RTOS Model

PE

C Code

Binary Image

OS Targeting

Compile and Link

protocol

C code simulation

RTOS

Model

RTOS

Lib

Figure 2. Software generation flow

4.1 Concurrency

Concurrency is supported by SLDL to express the par-
allel executing behaviors in system specification (e.g.par
statement). However, due to the sequential execution nature
of the processors, the concurrent processes in software PE
need to be scheduled for the final implementation. Depend-
ing on the data inter-dependencies between these processes,
they are scheduled statically and dynamically. In case of
dynamic scheduling, we need to convert these concurrent
processes in the specification into RTOS-based tasks. Gen-
erally speaking, it involves dynamic creation of child tasks
in a parent task. In this process, each SLDL concurrency
statement (par) in the specification description is refined
to dynamically fork child tasks as part of the parent’s exe-

3

(a) unscheduled model
 (b) multi-task model

PE

RTOS Model

B

u

s

d
r

i
v

e

r

IP

HW

B

u

s

uP

B2
 B3

B1

ISR

IP

HW

B

u

s

B2
 B3
C1

C2

uP

S1
 S1

B

u

s

d
r

i
v

e
r

PE

B

u

s

d
r

i
v

e

r

B2

B1

Task

B2

Task

B3

C1

C2

Task_PE

ISR

Figure 3. Refinement example

1 behavior B2B3()
2 {B2 b2();
3 B3 b3();
4 void main(void)
5 {
6

7

8

9 par
10 { b2.main();
11 b3.main();
12 }
13

14 }

(a) before

1 behavior B2B3(RTOS os)
2 {Task_B2 task_b2(os);
3 Task_B3 task_b3(os);
4 void main(void)
5 {Task t;
6 task_b2.os_task_create();
7 task_b3.os_task_create();
8 t = os.fork();
9 par {

10 task_b2.main();
11 task_b3.main();
12 }
13 os.join(t);
14 }

(b) after

Figure 4. Task creation

cution. After the child tasks finish execution and thepar
exits, the system joins with the children and resumes the
execution of the parent task by the underlining RTOS [15].

This step is illustrated by our example in Figure 4. The
par statement in the input model (line 9-12 in Figure 4a)
is converted to dynamically fork and join child tasks as part
of the parent’s execution (line 6-13 in Figure 4(b)). During
this refinement process, theos taskcreatemethods of the
children are called to create the child tasks (line 6,7 in Fig-
ure 4(b)). Then,fork is inserted before thepar statement
to suspend the calling parent task by the RTOS model be-
fore the children are actually executed in thepar statement.
After the two child tasks finish execution and thepar exits,
join is inserted to resume the execution of the parent task by
the RTOS model.

1 channel C1()
2 { event eRdy;
3 event eAck;
4 void send(...)
5 { ...
6 notify eRdy;
7 ...
8 wait (eAck);
9 ...

10 }
11 };

(a) before

1 channel C1(RTOS os)
2 {os_event eRdy;
3 os_event eAck;
4 void send(...)
5 { ...
6 os.evet_notify(eRdy);
7 ...
8 os.event_wait(eAck);
9 ...

10 }
11 };

(b) after

Figure 5. Synchronization refinement

4.2 Synchronization

Synchronization in the system specification is imple-
mented using channels or SLDL events. During the task
creation process, the RTOS model provide routines to re-
place the SLDL synchronization primitives. Allevent in-
stances are replaced with instances of RTOS model events
os eventandwait / notify statements are replaced with
RTOS modeleventwait / eventnotify calls [15]. Later all
these RTOS model routines will be implemented by real
RTOS library calls.

Figure 5 shows the synchronization refinement for our
example: thenotify / wait statement insidechannel
C1 in the input model (line 6,8 in Figure 5a) is refined into
two event handling interface routines of the RTOS model in
the output model (line 6,8 in Figure 5(b)).

5 Task Code Generation

After the task creation, those behaviors and channels
mapped to a processor are refined into multiple software
tasks scheduled by a RTOS model. Tasks communicate by
using the synchronization primitives of the RTOS model.
Each software task is written in SLDL as hierarchical be-
haviors (computation part of the task) and channels (com-
munication part of the task). The task code generation step
creates the C code for each task from the SLDL task de-
scriptions.

5.1 Code Generation Rules

The code generation process converts the SLDL descrip-
tion of tasks into ANSI C code. The main idea is that we
convert the behaviors and channels into Cstruct and
convert the behavioral hierarchy into the C language struct
hierarchy, i.e. a hierarchy of structs. Rules for C code gen-
eration are as follows:

4

1
 behavior
 B1(
 int
 v)

 {

 int
 a;

5

 void
 main(
 void
)

 {

 a = 1;

 v = a *2;

10
 }

 };

 behavior
 B2(
 int
 v1,
 int
v2)

{

15
B1 b11(v1);

 B1 b12(v2);

 void
 main(
 void
)

 {

20
 b11.main();

 b12.main();

 }

 };

25
 behavior
 Task1

 {

int a;

 int b;

 B2 b2(a,b);

30
 void
 main(
 void
)

 {

 b2.main();

 }

 };

1
struct
B1

{

 int
 (*v) /*port*/;

 int
 a;

5
};

 void
 B1_main(
 struct
 B1 *this)

{

(this->a) = 1;

(*(this->v)) = (this->a) * 2;

10
 }

 struct
 B2

 {

int
(*v1) /*port*/;

 int
 (*v2) /*port*/;

15
 struct
 B1 b11;

 struct
 B1 b12;

 };

void
B2_main(
 struct
 B2 *this)

{

20
 B1_main(&(this->b11));

 B1_main(&(this->b12));

}

 struct
 Task1

 {

25
 int
 a;

 int
 b;

 struct
 B2 b2;

 };

void
Task1_main(
 struct
 Task1*this)

30
 {

 B2_main(&(this->b2));

}

 struct
 Task1 task1 =

 { NULL, /* a init value*/

35
 NULL, /* b init value*/

 { &(task1.a), /*port v1 of b2 */

 &(task1.b), /*port v2 of b2*/

 { &(task1.a), /*port v of b11*/

 NULL /* v init value */

40
 }, /*b11*/

 { &(task1.b), /*port v of b12*/

 NULL, /*v init value*/

 }, /*b12*/

 } /*b2*/

45
 };

 void
 Task1()

 {

 Task1_main(&task1);

 }

(a) SpecC Code
 (b) C Code

R3

R1

R4

R2

R
5

R
2

Figure 6. An illustrative example

• R1: Behaviors and channels are converted into C
struct and their structural hierarchy is represented
by the Cstruct hierarchy,

• R2: Child behaviors and channels are instantiated
struct member inside the parentstruct . Vari-
ables defined inside a behavior or channel are con-
verted into data members of the corresponding C
struct ;

• R3: Ports of behavior or channel are converted into
data members of the corresponding Cstruct ;

• R4: Functions inside a behavior or channel are con-
verted into global functions with an additional param-
eter added representing the behavior to which the func-

tion belongs;

• R5: A static struct instantiation for each PE is
added in the end of the output C code to allocate the
data used by the task. Port mappings for the behav-
iors and channels inside the task are reflected in the C
struct initialization;

5.2 An Illustrative Example

Figure 6 is a simple example illustrating the code gen-
eration process. Figure 6a shows a software taskTask1in
SpecC language. It consists of one instance of behaviorB2.
BehaviorB2 is hierarchical and it consists of two instances
of behaviorB1executing sequentially. Figure 6(b) is the au-
tomatically generated C code from our tool. In figure 6, we
can find the examples of the six rules for code generation
process:

• R1: behaviorB1 (line 1 in Figure 6a) is converted into
struct B1(line 1 in Figure 6b);

• R2: int a defined in behaviorB1(line 4 in Figure 6a)
is converted toint a inside struct B1 (line 4 of
Figure 6b). In the input code, behaviorB2contains two
instances of behaviorB1(line 15,16 in Figure 6a), in
the output C code,struct B1 contains two instance
of struct B2 (line 15,16 in Figure 6b).

• R3: functionmain inside behaviorB1 (line 13 in Fig-
ure 6a) is converted to a global functionB1 mainin the
C output code (line 6 in Figure 6b). One additional pa-
rameter,struct B1 * this is added reflecting that this
function belongs to behaviorB1 in the specification.
Because there might be multiple instances ofB1 and
each has its own data members. In case only one in-
stances exists. This parameter can be optimized away.
Note that, inside functionB1 main, references to data
members of behaviorB1 are replaced by references to
the data members ofstruct B1. For example, inside
functionB1 main, the variablea in the input code (line
8 in Figure 6a) is replaced bythis→a in the output code
(line 8 in Figure 6b);

• R4: portint v1 and portint v2 of behaviorB2 (line
13 in Figure 6a) are represented byint *v1, int *v2
insidestruct B2 (line 13,14 in Figure 6b). Note that
all the ports are represented by pointer type. Again, op-
timization maybe be applied to get rid of these pointers
later.

• R5: the data used by taskTask1is statically allocated
through the instantiation ofstruct Task1(line 33
to line 45 in Figure 6b). Note that the initial values
for data members in sidestruct Task1are all set at

5

Algorithm 1 GenerateCCode(SIRDesign, BTask)

1: for all BehaviorB∈ SIRDesign do
2: if IsChildBehavior(B,BTask) then
3: GenerateC4Behavior(B);
4: end if
5: end for
6: for all ChannelC∈ SIRDesign do
7: if IsChildChannel(C,BTask) then
8: GenerateC4Channel(C);
9: end if

10: end for
11: for all FunctionF ∈ SIRDesign do
12: if IsCalledInBehavior(F ,BTask) then
13: if IsMemberFunc(F ,BTask) then
14: B = GetParentBehavior(F);
15: GenerateC4MemberFunction(F ,B);
16: else
17: GenerateC4GlobalFunction(F);
18: end if
19: end if
20: end for
21: TopInst= FindInstance(BTask)
22: GenerateStructInstance(TopInst);
23: GenerateTaskCall(BTask);

this time. This includes the port mapping information
for behavior instancesb11,b12,b2. For example, the
port mapping of behavior instanceb2 (line 29 in Fig-
ure 6a) is reflected instruct B2 instantiation(line
36,37 of Figure 6b). The advantage of this approach
is that the C compiler does the port mapping at com-
pile time rather than the program calculates at run time.
The goal here is to optimize the code at compile time
as much as possible, such that the run-time is reduced
to a minimum.

Note that the C code generated has very clear struc-
ture. There are three code parts for a task, namely, the
struct definition part, the function definition part and the
struct instantiation part. After the system compilation,
the function definition part become the code segment while
the struct instantiation part will become the data seg-
ment for the final object file.

5.3 The Algorithm

We have implemented a code generation tool that can
convert the software part of an embedded system described
in SpecC into efficient, read-to-compile ANSI C code. The
two main algorithms for this sofware,Algorithm1 andAl-
gorithm2 reflect the five rules for software code generation
in the previous section.

Algorithm 2 GenerateStructInstance(Inst)
1: for all Port P∈ InstS do
2: PrintPortMapping(P,Inst);
3: end for
4: for all Memember VariableV ∈ InstS do
5: PrintInitValue(V,Inst);
6: end for
7: for all Behavior Instancebhvrinst∈ Inst do
8: GenerateStructInstance(bhvrinst);
9: end for

10: for all Channel Instancechnlinst∈ Inst do
11: GenerateStructInstance(chnlinst);
12: end for

Algorithm1 generate C code for a task described in
SpecC. The input toAlgorithm1 is the SpecC Internal
Representation[10] for the whole designSIRDesign and the
top level behavior for a software taskBTask.

In Algorithm1, there are several functions used :

• IsChildBehavior(B, BTask) returns true ifB is a
child behavior inside behaviorBTask;

• IsChildChannel(C, BTask) returns true ifC is a
child channel inside behaviorBTask;

• IsCalledInBehavior(F , BTask) returns true if
function F is used inside behaviorBTask or any child
behavior of behaviorBTask;

• IsMemberFunc(F , BTask) returns true if functionF
is a member function of behaviorBTaskor is a member
function ofBTask’s child behavior;

• GenerateC4Behavior(B) generates the
C struct definition for behavior B and
GenerateC4Channel(C) generates the C
struct definition for channelC;

• GenerateC4MemberFunction(F , B) generates
the C code for member functionF of behaviorB and
GenerateC4GlobalFunction(F) generates the
C code for global functionF ;

• GenerateTaskCall(BTask) generates the main
function code for taskBTask;

• GenerateStructInstance(TopInst) generates
the C struct instantiation forTopInst. It is de-
scribed inAlgorithm2;

Algorithm 2 implements Rule 5 in Section 5.1.
GenerateStructInstance(Inst) is a recursive func-
tion. It prints port mapping ofInst (line 1-3 inAlgorithm2)
and set the initial value for its data members (line 4-6 inAl-
gorithm2). Then it instantiates the child behaviors and child

6

RTOS model API POSIX pthread API

task create pthreadcreate
task terminate pthreadexit
task kill pthreadkill
f ork
join pthread join
task sleep
task resume

Table 1. Task management routines

channels insideInst by calling itself recursively(line 7-12 in
Algorithm2).

5.4 CoSimulation with System Model

As shown in Figure 2, to validate the software, the C
code is co-simulated with the other part of the system using
the SLDL simulator as a simulation backplane. In this pro-
cess, the C code is imported to the design and wrapped by
SLDL modules. The software part of the system specifica-
tion code is then replaced by the C wrapper using the simu-
lator’s plug’n’play capabilities. Task scheduling and inter-
task communication are supported by the RTOS model.
From the simulation result, the designer can get feedback
as regards to the timing properties of the system implemen-
tation. Some import parameters (i.e. scheduling algorithm
and task priority) are determined and checked in this step.

6 Operating System Targeting

After the generated task code(in ANSI C) is validated
through the co-simulation. The operating system targeting
step generates the final read-to-compile C code. In this pro-
cess, all the RTOS model interfaces routines will be mapped
to real RTOS system calls.

6.1 Task Management

In the target processor, task management is handled by
the real RTOS calls. Without loss of generality, we use
the POSIX pthread interface, which is supported by many
RTOS[1, 5]. As shown in Table 1, some of the task man-
agement routines in the RTOS model can be mapped to a
corresponding pthread interface routine. For those routines
which can’t be mapped to pthread interfaces (task sleepand
task resume), we implemented them using target specific
instructions.

Figure 7 shows the generated C code for the example in
Figure 4. In the output C code, two behaviorsTaskB2 and
TaskB3(which represents two tasks in RTOS model) are
turned into two POSIX threads (line 5 and line 10). They

1 struct B2B3
2 { struct Task_B2 task_b2;
3 struct Task_B3 task_b3;
4 };
5 void *B2_main(void *arg)
6 { struct Task_B2 *this=(struct Task_B2*)arg;
7 ...
8 pthread_exit(NULL);
9 }

10 void *B3_main(void *arg)
11 { struct Task_B3 *this=(struct Task_B3*)arg;
12 ...
13 pthread_exit(NULL);
14 }
15 void *B2B3_main(void *arg)
16 { struct B2B3 *this= (struct B2B3*)arg;
17 int status;
18 pthread_t *task_b2;
19 pthread_t *task_b3;
20 /*task_b2.os_task_create()*/
21 pthread_create(task_b2, NULL,
22 B2_main, &this->task_b2);
23 /*task_b3.os_task_create()*/
24 pthread_create(task_b3, NULL,
25 B3_main, &this->task_b3);
26 /*t = os.fork()
27 par {
28 task_b2.main();
29 task_b3.main();
30 }*/
31 /*os.join(t)*/
32 pthread_join(*task_b2, (void **)&status);
33 pthread_join(*task_b3, (void **)&status);
34 pthread_exit(NULL);
35 }

Figure 7. Task management implementation

are created dynamically inside the threadB2B3 main (line
21 and line 24). The RTOS model routine calls (code com-
mented out) are replaced by their corresponding phtread in-
terface counterparts.

6.2 Task Synchronization

In our RTOS model, tasks are synchronized by event
wait/notify or through SLDL channels. In the final target
software implementation, IPC (inter process communica-
tion) mechanisms (mutex, semaphore, mailbox, FIFO etc)
are normally provided by RTOS to support task synchro-
nization. Implementing synchronization means replacing
all events and event-related primitives in the specification
with corresponding event handling routines of the RTOS li-
brary. Also, if the semantics of channels are known (e.g.
fifo channel, semaphore channel), they can be replaced di-
rectly by an equivalent service of the actual RTOS library
routines.

During the operating system targeting process, task
synchronization routines in the RTOS model will be re-

7

1 struct C1
2 { event_handle eRdy;
3 event_handle eAck;
4 };
5

6 void C1_send(struct C1 *this...)
7 {...
8 os_notify(this->eRdy);
9 ...

10 os_wait(eAck->eAck);
11 ...
12 }

Figure 8. Channel implementation

placed by RTOS IPC routines: the RTOS model event
handling routinesevent wait andevent notify are
replaced by two C functions:os wait(eventhandle) and
os noti f y(eventhandle). Depending on the target RTOS,
these two functions can be implemented in different
ways (for example, these two functions can be imple-
mented by usingWAIT/POSToperation on a zero-valued
semaphore). At the same time, all the standard li-
brary channels (c os semaphore, c os mutex, etc) can be
directly mapped to the corresponding RTOS IPC rou-
tines. The remaining user defined channels can be imple-
mented by using combinations ofos wait(eventhandle)
andos noti f y(eventhandle).

Figure 8 shows the generated C code for the exam-
ple in Figure 5. In the output C code, a C structC1
(line 1) contains the the data members inside channelC1.
Note that the SLDL event is replaced by C data structure
eventhandle. FunctionC1 send (line 6) implement the
sendmethod of channelC1. Note that the first parameter
of functionC1 sendis a pointer to the C structC1.

6.3 Binary Code Creation

Depending on the number of tasks and the selected
RTOS, a makefile is created for the chosen target platform.
The generated C code can be compiled and linked against
the RTOS libraries to create the final binary executable file.

7 Experimental Results

We applied the software generation tool to the design of
a voice codec for mobile phone applications [13]. The orig-
inal specification contains 11,570 lines of SpecC code. Af-
ter SW/HW partitioning and scheduling, the system model
contains 26,476 lines of code. We used the code profiling
tool to the partitioned system model, about 13,288 code op-
erations are inside the S/W part. Finally, we applied our
software generation tool to the design and it generated 7,882
lines of C code from the system specification.

To create the final executable, the model was com-
piled into binary code for the ARM processor and the
RTOS model was replaced by theµC/OS-II real time op-
erating system. The final executable image size is 75KB
(47KB code/28KB data) in which the vocoder software is
52KB(33KB code/19KB data).

8 Summary and Conclusions

In this paper, we presented the steps for generating
embedded software from system specification written in
SLDL. The automation of embedded software creation pro-
cess frees the designer from the tedious and error-prone
work of creating software manually after SW/HW parti-
tion. Since the final software is derived from the specifi-
cation, validation of the software code become easier than
the manually written code. Also, the designer doesn’t need
to maintain two different versions of system code (software
specification and software implementation).

We developed a tool of creating ANSI C code from the
SLDL. Experiments are performed to show the usefulness
of the tool in system design. Currently the tool is written
for SpecC SLDL because of its simplicity. However, the
concepts in this paper can also be applied to SystemC.

Future works includes automatically generating co-
simulation model from the generated software binary image
and instruction set simulator to test the performance as well
as validating the generated code with the hardware part.

References

[1] QNX. Available: http://www.qnx.com/.

[2] Rational. http://www.rational.com/uml/index.html.

[3] SpecC. http://www.specc.org/.

[4] SystemC. http://www.systemc.org/.

[5] VxWorks.http://www.vxworks.com/.

[6] F. Balarin et al.Hardware-Software Co-design of Em-
bedded Systems – The POLIS approach. Kluwer Aca-
demic Publishers, January 1997.

[7] F. Boussinot and R. de Simone. The ESTEREL Lan-
guage. InProceedings of the IEEE, September 1991.

[8] J. Cortadella. Task generation and compile time
scheduling for mixed data-control embedded soft-
ware. InProceedings of the Design Automation Con-
ference, June 2000.

[9] D. Desmet et al. Operating system based software gen-
eration for system-on-chip. InProceedings of the De-
sign Automation Conference, June 2000.

8

[10] R. Domer. The SpecC internal representation. Tech-
nical report, University of California, Irvine, January
1999.

[11] D. Gajski et al. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, January
2000.

[12] L. Gauthier et al. Automatic generation and targeting
of application-specific operating systems and embed-
ded systems software.IEEE Trans. on CAD, Novem-
ber 2001.

[13] A. Gerstlauer et al. Design of a GSM Vocoder using
SpecC Methodology. Technical Report ICS-TR-99-
11, University of California, Irvine, Feburary 1999.

[14] A. Gerstlauer and D. Gajski. System-level abstrac-
tion semantics. InProceedings of International Sym-
posium on System Synthesis, October 2002.

[15] A. Gertlauer, H. Yu, and D. Gajski. RTOS modeling in
system level design.Proceedings of Design Automa-
tion and Test in Europe(DATE), 2002.

[16] T. Grötker, S. Liao, G. Martin, and S. Swan.System
Design with SystemC. Kluwer Academic Publishers,
2002.

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, A. Shtull-Trauring, and
M. Trakhtenbrot. Statemate: a working environ-
ment for the development of complex reactive sys-
tems. IEEE transactions on software engineering,
April 1990.

[18] F. Herrera, H. Posadas, P. Snchez, and E. Villar. Sys-
tematic embedded software generation from systemc.
Proceedings of Design Automation and Test in Eu-
rope(DATE), 2003.

[19] Y. Jiang and R. K. Brayton. Software synthesis
from synchronous specifications using logic simula-
tion techniques.Proceedings of Design Automation
Conference (DAC), June 2002.

[20] B. Lin. Software synthesis of process-based concur-
rent programs. InProceedings of the Design Automa-
tion Conference, 1998.

[21] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. Soft-
ware synthesis for dsp using ptolemy.Journal of VLSI
Signal Processing, 1995.

9

