System-on-Chip Environment (SCE)

Tutorial

Samar Abdi
Junyu Peng

Rainer Doemer
Dongwan Shin

Andreas Gerstlauer
Alexander Gluhak
Lukai Cai
Qiang Xie
Haobo Yu
Pei Zhang

Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425
+1 (949) 824-8919
http://www.cecs.uci.edu

System-on-Chip Environment (SCE): Tutorial
by Samar Abdi, Junyu Peng, Rainer Doemer, Dongwan Shin, Andreas Gerstlauer,
Alexander Gluhak, Lukai Cai, Qiang Xie, Haobo Yu, Pei Zhang, and Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine

Irvine, CA 92697-3425

+1 (949) 824-8919
http://www.cecs.uci.edu

Published September 23, 2002
Copyright © 2002 CECS, UC Irvine

Table of Contents

I | 11 oo (8 o{ o] o [T R PO PTPR SRR 1
1.1 MOTIVALION ...ttt b e e 1
1.2, SCE GOAIS.. .ottt ettt 2
1.3. Models fOr SYStemM DESIGN.......cciuiierierieeeeie e 2
1.4. System-on-Chip ENVIFONMENT..........cccoiiieieiicicre e 4
1.5, GSIM VOCOUBeitirienieieieiee ettt ettt b ene s 4
2. Getting Started with SPecifiCation............cccceviiieieiie s 7
2.1, SCE WINAOW ...ttt bt 7
@ o= g I o] (0] 1= X SRS 8
2.3. Open specification MOUEL...........ccuieriiiiiieee e 13
2.4. Browse specification Modelcccooeeiiiiiiiiii e 19
2.5. Validate specification MOdelcccooveiiiiiieiiie e 24
2.6. Profile specification model...........ccccooveiiiiiiiicc e 31
2.7. Analyze profiling rESUILSccvviiieeecece e 34
3. Architecture EXPIOFationc.ccccoiiveiiiiiierieceee e 43
3.1, Try PUIE SOTEWAIEceveceeeeee e 43
3.2. EStimate PerfOrmManCeccceueiiiieeie e 56
3.3. Try software/hardware Partition............cccoeeeririeenenene s 60
3.4. Architecture refiNBMENTccoiiiiiiiee e 68
3.5. Browse architecture model............ocooiiiiiiiiiii e 71
3.6. Validate architeCture MOdel..........ccooiiiiiierieie e 76
3.7. EStimate PerfOrmManCecccccueiiiieieceeie e 80
4. CommuNICation SYNTNESIS.......ccviieiiiiiice e 85
4.1. SeleCt DUS ProtOCOISccveeeieeie e 85
4.2. Map channels t0 DUSEScovveieieiiee e 90
4.3. Communication refiNeMENT..........coouiiiieiee e 92
4.4. Browse communication MOdelccoveiiiiniiiinie e 96
4.5. Validate communication MOdel.............coeveiiiiiniiieii e 101
5. Implementation SYNTNESISc.cooiiiiiei s 105
5.1. Select RTL COMPONENTScceeiiiiieiesieeiesie ettt 105
5.2. RTL refiNemMENT ... 122
5.3. Browse RTL MOGeloviiiiiiiiiieie e 131
5.4. Validate RTL MOELccooiiiiiiiiiiesieseeee e 138
5.5. SW COUR QENEIALIONo.vveviiieiesiieiie sttt 141
5.6. Validate implementation modelccooveiiiiiiiiinii e 148
I @0 (o4 [U15] o] o RSP TSPPURR 155
RETEIEINCES ...ttt sttt et bt sbe e e b nneenne s 157

Chapter 1. Introduction

The basic purpose of this tutorial is to guide a user through our System-on-Chip design
environment (SCE). SCE helps designers to take an abstract functional description of
the design and produce an implementation. We begin with a brief overview of our SoC
methodology, describing the design flow and various abstraction levels. The overview
also covers the user interfaces and the tools that support the design flow.

We then describe the example that we use in this tutorial. We selected the GSM Vocoder
as an example for a variety of reasons. For one, the Vocoder is a fairly large design and
Is an apt representative of a typical component of a system on chip design. Moreover,
the functional specification of the Vocoder is well defined and publically available from
the European Telecommunication Standards Institute (ETSI).

The tutorial gives a step by step illustration of using the System-on-Chip Environment.
Screenshots of the GUI are presented to aid the user in using the various features of SCE.
Over the course of this chapter, the user is guided on synthesizing the Vocoder model
from an abstract specification to a clock cycle accurate implementation. The screenshots
at each design step are supplemented with brief observations and the rationale for mak-
ing design decisions. This would help the designer to gain an insight into the design
process instead of merely following the steps. We wind up the tutorial with a conclusion
and references.

1.1. Motivation

System-on-Chip capability introduces new challenges in the design process. For one,
codesign becomes a crucial issue. Software and Hardware must be developed together.
However, both Software and Hardware designers have different views of the system and
they use different design and modeling techniques.

Secondly, the process of system design from specification to mask is long and elaborate.
The process must therefore be split into several steps. At each design step, models must
be written and relevant properties must be verified.

Thirdly, the system designers are not particularly fond of having to learn different lan-
guages. Moreover, writing different models and validating them for each step in the
design process is a huge overkill. Designers prefer to create solutions rather than write
several models to verify their designs.

It is with these aspects and challenges in mind that we have come up with a System-
on-Chip Environment that takes off the drudgery of manual repetitive work from the

Chapter 1. Introduction

designer by generating each successive model automatically according to the decisions
made by the designers.

1.2. SCE Goals

SCE represents a new technology that allows designers to capture system specification
as a composition of C-functions. These are automatically refined into different models
required on each step of the design process. Therefore designers can devote more effort
to the create part of designing and the tools can create models for validation and syn-
thesis. The end result is that the designers do not need to learn new system level design
languages (SystemC, SpecC, Superlog etc.) or even the existing Hardware Description
Languages (Verilog, VHDL).

Consequently, the designers have to enter only the golden specification of the design and
make design decisions interactively in SCE. The models for simulation, synthesis and
verification are generated automatically.

Chapter 1. Introduction

1.3. Models for System Design

Figure 1-1. SCE Exploration Engine

Refinement Validation
User Interface (RUI) User Interface (VUI)
P cOmpne
el > coie | R
Spec. optimization — Profile
4 Profiling Profiling Specification model
weights Simulate
< Profiling data
\ 4
Allocation v
Beh. partitioning »| Arch. refinement
Scheduling / RTOS — Esfiiaie
1 Comp. /1P Architecture model
models Simulate
< Estimation results
\ 4
Protocol selection v
Channel partitioning »{ Comm. refinement
Arbitration — Estimate
4 Communication mode
models Simulate
< Estimation results
\ 4
Cycle scheduling v
Protocol scheduling » Impl. refinement
SW assembly
mplementation model Simulate

The SoC system-level design methodology is shown in the figure. It consists of 4 lev-
els of model abstraction viz.specification, architecture, communication and implemen-
tation models.Consequently, there are 3 refinement steps viz. architecture refinement,
communication refinement and implementation refinement. These refinement steps are
preformed in the order as given. As shown in the figure, we begin with an abstract
specification model. The specification model is untimed and has only the functional
description of the design. Architecture refinement transforms this specification to an ar-
chitecture model. It involves partitioning the design and mapping the partitions onto the
selected components. The architecture model thus reflects the intended architecture for
the design. The next step of Communication refinement adds system busses to the de-
sign and maps the abstract communication between components onto the busses. The

Chapter 1. Introduction

result is a timing accurate communication model (bus functional model). The final step
is implementation refinement which produces clock cycle accurate RTL model for the
hardware components and instruction set specific code for the processors. All models
are executable and can be validated through simulation. Moreover, all transformations
are formally defined and proven for refinement of one model to another.

1.4. System-on-Chip Environment

The SCE provides a environment for modeling, synthesis and validation. It includes a
graphical user interface (GUI) and a set of tools to facilitate the design flow and perform
the aforementioned refinement steps. The two major components of the GUI are the
Refinement User Interface (RUI) on the left and the Validation User Interface (VUI)
on the right. The RUI allows designers to make and input design decisions, such as
component allocation, specification mapping. With design decisions made, refinement
tools can be invoked inside RUI to refine models. The VUI allows the simulation of all
models to validate the design at each stage of the design flow.

Each of the boxes is corresponding to a tool which performs a specific task automatically.
Profiling tool is used to obtain the characteristics of the initial specification, which serves
as the basis for architecture exploration. Refinement tool set automatically transforms
models based on relevant design decisions. Estimation tool set produces quality metrics
for each intermediate models, which can be evaluated by designers.

With the assistance of the GUI and tool set, it is relatively easy for designer to step
through the design process. With the editing, browsing and algorithm selection capa-
bility provided by RUI, a specification model can be efficiently captured by designers.
Based on the information profiled on the specification, designers input architectural de-
cisions and apply the architecture refinement tool to derive the architecture model. If the
estimated metrics are satisfactory, designers can focus on communication issues, such
as protocol selection and channel partitioning. With communication decisions made, the
communication refinement tool is used to generate the communication model. Finally,
the implementation model is produced in the similar fashion. The implementation model
is ready for RTL synthesis.

Chapter 1. Introduction

1.5. GSM Vocoder

Figure 1-2. GSM Vocoder

_| Long-Term
Pitch Filter x
Delay / Adaptive codebook + Short-term
- - — Speech
Q Synthesis Filter P
Residual / 10th-order LP filter

Pulses

Fixed codebook

The example design used through out this tutorial is the GSM Vocoder system , which is
employed worldwide for cellular phone networks. The figure shows the GSM Vocoder
speech synthesis model. A sequence of pulses is combined with the output of a long
term pitch filter. Together they model the buzz produced by the glottis and they build the
excitation for the final speech synthesis filter, which in turn models the throat and the
mouth as a system of lossless tubes.

The example used in this tutorial encodes of speech data comprised of frames. Each
frame in turn comprises of 4 subframes. Overall, each sub-frame has 40 samples which
translate to 5 ms of speech. Thus each frame has 20 ms of speech and 160 samples.Each
frame uses 244 bits. The transcoding constraint (ie. back to back encoder/decoder) is <
10 ms for the first subframe and < 20 ms for the whole frame (4 subframes).

The vocoder standard, published by the European Telecommunication Standards Insti-
tute (ETSI), contains a bit-exact reference implementation of the standard in ANSI C.
This reference code was taken as the the basis for developing the specification model.
At the lowest level, the algorithms in C could be directly reused in the leaf behaviors
without modification. Then the C function hierarchy was converted into a clean and
efficient hierarchical specification by analyzing dependencies, exposing available par-
allelism, ets. The final specification model is composed of 13,000 lines of code, which
contains 43 leaf behaviors.

Chapter 1. Introduction

Chapter 2. Getting Started with Specification

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to the series of exploration
and refinement steps in the SoC design methodology. Moreover, the specification model
defines the granularity for exploration through the size of the leaf behaviors. It exposes
all available parallelism and uses hierarchy to group related functionality and manage
complexity. In this chapter, we go through the steps of creating a project in SCE and
intiating the system design process. The various aspects of the specification are observed
through simulation and profiling. Also, the model is graphically viewed with the help of
SCE tools.

Chapter 2. Getting Started with Specification

N
[N
n
0O
M
2
2
Q
Q
2

Eile Edit Miew Project Synthesis Yalidation Windows Help
Dz ml [&0e XebB K (ae 0

[
Design IDescription I

X conpile | sinuiete | analyze | efne | snel |

[Ready A

On launching the System on Chip Environment (SCE), we see the above GUI. The GUI
is divided broadly into three parts. First is the Project Management window on the top
left part of the GUI, which maintains the set of Models in the open projects. This window
becomes active once a project is opened and a design is added to it. Secondly, we have
the design management window on the top right where the currently active design is
maintained. It shows the hierarchy tree for the design and maintains various statistics
associated with it. Thirdly, and finally, we have the logging window at the bottom of the
GUI, which keeps the log of various tools that are run during the course of the demo.
We keep logs of compilation, simulation, analyses and refinement of models.

The GUI also consists of a tool bar and shortcuts for menu items. The File menu handles
file related services like opening designs, importing models etc. The Edit menu is for
editing purposes. The View menu allows various methods of graphically viewing the
design. The Project menu manages various projects. The Synthesis menu provides for
launching the various refinement tools and making synthesis decisions. The Validation
menu is primarily for compiling or simulating models.

Chapter 2. Getting Started with Specification

2.2. Open project
£ I
Eile Edit View Emjectl aynthesis Validation Windows Help

Design | Descripti @ Close
Save

Save A5

Add Design
Becent Projects —

Settings...

X Compie | Sinulate | Analyzs | Refine | Shell |

Open Project

)

The first step in working with SCE is opening a project. A project is associated with
every design process since each design might impose a different set of databases or
dependencies. The project is hence used by the designer to customize the environement

for a particular design process. We begin by selecting Project—Open from the menu
bar.

Chapter 2. Getting Started with Specification

2.2.1. Open project (cont’d)

Eile Edit Miew Project Synthesis Yalidation Windows

Help

Lack in: |aa’h0mefsabdifdemuf

@. [dopen_loop
e [dprocessing
_ARTL [Jspeechfiles

[dclosed_loop [Jupdate

D codehook . vocoder.sce
A camman

[1Ip_analysis

File name: |vocoder.sce

Models File type: SCE Project Files (*.sce)

=l

I Open |

Cancel |

H Compile |

|

Select project to open...

)

A file selection window pops up. For the purpose of the demo, a project is pre-created.
We simple open it by selecting the project "vocoder.sce” and Left click on Open on

right corner of the the pop-up window.

10

Chapter 2. Getting Started with Specification

2.2.2. Open project (cont’d)

Eile Edit View Emjectlgynthesis Walidation Windows

Design | Descripti

Save A5

Add Design
Becent Projects —

Settings...

X conpile | sinuiete | analyze | efne | snel |

Project Settings

)

Since we need to ensure that the paths to dependencies are correctly set, We now check

the settings for this precreated Vocoder project by selecting Project— Settings from
the top menu bar.

11

Chapter 2. Getting Started with Specification

2.2.3. Open project (cont’d)

| ER[E=1lES]

Eile Edit Miew Project Synthesis Yalidation Windows Help

N/ nl &oe | x| K |2k
|

Design I Description

Campiler |_

Include path: |comm0n

Import path: I_analysis:upen_lonp:cIosed_lnop:cudebouk:update:prncessing

Library path: |

Libraries: I
Defines: |
Undefines: |
Options: I—V
]
H Compile |!
Help | Ok | Cancel
i A

[Ready

)

We now see the compiler settings showing the import path for the model’s libraries and
the ’-v’ (verbose) option. The Include path setting gives the path which is searched for
header files. The import path is searched for files imported into the model. The library
path is used for looking up the libraries used during compilation. There are also set-
tings provided for specifying which libraries to link against, which macros to define and
which to undefine. These settings basically form the compilation command. To check
the simulator settings, Left click on the Simulator tab.

12

Chapter 2. Getting Started with Specification

2.2.4. Open project (cont’d)

[EEIE

Eile Edit Miew Project Synthesis Yalidation Windows Help

N/ nl &oe | x| K |2k
|

Design I Description

_ Simulator |

Cutput
~ Mo terminal | Enahle logging to file

w Terminal window

“ External console: [«<term -title %e -

Simulation command:

Izs.-’spch_unx.inp nodt<hit nodt< && diff -5 speechfiles/nodi<_good bit nodi< hit

H Compile |!

Help | ok | cancel

[Ready A

We now see the simulator settings showing the simulation command for the Vocoder
model. There are settings available to direct the output of the model simulation. As
can be seen, the simulation output may be directed to a terminal, logged to a file or
dumped to an external console. For the demo, we direct the output of the simulation
to an xterm. Also note that the simulation command may be specified in the settings.
This command is invoked when the model is validated after compilation. The vocoder
simulation processes 163 frames of speech and the output is matched against a golden
file. Press OK to proceed.

13

Chapter 2. Getting Started with Specification

2.3. Open specification model

= FEE
Eile | Edit Miew Project Synthesis Yalidation Windows Help
[[Hew.. T FIEEEIE R
. = Dpen... CHrl+ 0 fpee
& Close CHrl+ _I
Reload Cirl+R
Reload All
W save Cirl+3
Save Ag.
Il zave a1
Itpart...
Export..
& Erint Ctrl+P
Froperties...
Recent Files -
Exit Cirl+ G

X Compile | sinulate | Analyze | Refne | shell |

Open design (Ctrl+0)

)

We start with the specification that was already captured as a model. We open this model
to see if it meets the imposed constraints. Once the model is validated to be "golden”, we
will start refining it and adding implementation details to it. \WWe open the specification
model for the Vocoder example by selecting File—Open from the menu bar.

14

Chapter 2. Getting Started with Specification

2.3.1. Open specification model (cont’d)

Eile Edit Miew Project Synthesis Yalidation Windows

Help

De | MW &0 KBy K5 -]

Lack in: |aa’h0mefsabdifdemuf

A camman

@. [dopen_loop
e [dprocessing
_ARTL [Jspeechfiles

[dclosed_loop [Jupdate
(dcodebook [lib.sir

[testbench.sir

[1Ip_analysis

File name: |

File type: SIR files (".s5ir)

I Open |

Cancel |

SIR files (".5ir)
SpecC files (*.5c)

Freprocessed SpecC files (".si)

4|

Select design to open...

)

A file selection window pops up showing the SpecC internal representation (SIR) files.
The internal representation files are a collection of data structures used by the tools in the
environment. They uniquely identify a SpecC model. At this time however, the design
is available only in its source form. We therefore need to start with the sources. Select

"SpecC files (*.sc)" to view the source files.

15

Chapter 2. Getting Started with Specification

2.3.2. Open specification model (cont’d)

Eile Edit Miew Project Synthesis Yalidation Windows

Help

N |mE &0 o] xR] &[] &

R

[dclosed_loop [Jupdate 7 monitar.sc

Lack in: |aa’h0mefsabdifdemuf

E. [(Jopen_loop [biteat.sc
e [dprocessing [J cod_12k2.5c
_ARTL [Jspeechfiles [codersc

(Jdcodehook] EFR_Coder_public.sc [stimulus sc
(Jcommon [arg_handler.sc [subframes sc
[jlp_analysis D bitzcod.sc esthench.sc

File name: |testbench.sc

Models File type: SpecC filas {*.sc)

I Open |

= | Cancel |

|

X compile |

Select design to open...

)

A new window pops up showing the available source files of the GSM Vocoder design
specification. Select the file containing the top hierarchy of the model. In this case, the
file is "testbench.sc.” The testbench instantiates the Design under Test (DUT) and the
corresponding modules for triggering the testvectors and for observing the outputs. To

open this file Left click on Open.

16

Chapter 2. Getting Started with Specification

2.3.3. Open specification model (cont’d)

= T ————— [BEIE
Eile Edit Miew Project Synthesis Yalidation Windows Help
N 2@ 3| |-t)o' XK@ K FEE| Be | ®
[w|al X
Design IDescrlptmn I e [J Mame |Type I
& ttx_mode hool
& heww_frame avent
& serial_hits unsigned hit[243:0]

@ setialhits_ready avent
o speech_samplas it 2:0] [160]

o tedt<_ctrl unsigned hit[5:0]
& coder Coder
& monitor Monitor
& stimulus Stimulus
S
_Hiersrchy [[Behavios | _]

X conple | simuate | anaiyze | efne | sell |

[nput testenchse
Output: <internal representation=

Dumping..
Input: <internal representation=
Qutput: "testbench.sir"

Done.

[Ready

Note that a new window pops up in the design management area. It has two
sub-windows. The sub-window on the left shows the Vocoder design hierarchy. The
leaf behaviors are shown with a leaf icon next to them. For instance, we see two leaf
behaviors: "stimulus™ which is used to feed the test vectors to the design and "monitor"
which validates the response. "Coder" is the top behavior of the Vocoder model. It can
be seen from the icon besides the "Coder" behavior that it is an FSM composition. This
means the Vocoder specification is captured as a finite state machine. Also note in the
logging window that the SoC design has been compiled into an intermediate format.
Upon opening a source file into the design window, it is automatically compiled into its
unique internal representation files (SIR) which in turn is used by the tools that work on
the model.

17

Chapter 2. Getting Started with Specification

2.3.4. Open specification model (cont’d)

[=[Elf]

Eile Edit Miew Project Synthesis Yalidation Windows Help

Dz g g voe xbn X BEFEE| 8| 0

= | a X
Design IDescription I[- [J MName 5, ITVPB i
W seq] g I BooT
®- & Ip_analysis o rc in short int [4]
ini o+ reset_flag in boal
1 _h if shart int [11]
1l in shaort it [11]
o scal_fac in sho int
o+t _ctrl inout unsigned hit[
o ¥aD_flag hool
Snodbe_setilags Modts_Setflags
&nop Mop
£ open_loop Boo_otx T _Dtx _
A for_init Ryvad computation WAD Computation |
— =
_Hiersrchy [[Behavios ¢ | _]

[nput testenchse
Output: <internal representation=

Dumping..
Input: <internal representation=
Qutput: "testbench.sir"

Done.

X Conpie | Sinulste | Anaiyze | Refne | shell |

[Ready

The model may be browsed using the design hierarchy window. Parallel composition is
shown with || shaped icons and sequential composition with *:” shaped icons.On select-
ing a behavior in the design hierarchy window, we can see the behavior’s characterstics
in the right sub-window. For instance, the behavior "vad_Ip" has ports shown by yellow
icons, variables with grey icons and sub-behaviors with blue icons.

18

Chapter 2. Getting Started with Specification

2.3.5. Open specification model (cont’d)

==
Eile Edit Miew Project Synthesis Yalidation Windows Help

Dz g g voe xbn X BEFEE| 8| 0

wlalx
; — I [
Design IDescrlptmn I A | Mame L Mame Type
=4 Main T o+ dt<_mode in baol
i E— “hew_frame in evant
|]
O @ pre =5 arial out unsigned bitf22
_: Hierarchy.. Leviabits_ready out event
Lo Connectivity... peach_samples in bit[12:0] [160]
B ¥ cod lsolate dbt=_ctrl aut unsigned hit[s:
- wrap rm shart int [57]
H eset_flag_1 bool
Elatten eset_flag_2 ool
Delete Del kpeech_frame shart int [160]
Rename YN short int [160]
T Change Type S S
Hierarchy Set &5 Top-Level
Graphs -

5 compie | simiste | anayze | Reine | Shel |
| [hput eswencher
H Output: <internal representation=
Dumping..

Input: <internal representation=

Qutput: "testbench.sir"
Done.

[Ready

Before making any synthesis decisions, it is important to understand the composition of
the specification model. It is useful because the composition really tells us which fea-
tures of the model may be exploited to gain maximum productivity. Naturally, the most
intuitive way to understand a model’s structure is through a graphical representation.
Since system models are typically very complex, its more convenient to have a hier-
archical view which may be easily traversed. SCE provides for such a mechanism. To
graphically view the hierarchy, from the design hierarchy window, select "Coder". Right
click and select Hierarchy. Notice that the menu provides for a variety of services on
individual behaviors. We shall be using one or more of these in due course.

19

Chapter 2. Getting Started with Specification

2.4. Browse specification model

[=[Elf]

dation Windows Help

Window Miew

Type

in o+ dt<_mode in kool
r & new_frame in event
re_process o serial out unsigned bit[z2

|- seq
. encoder_hami
L@ filter_and_sca

o serialbits_ready aut event
o speech_samples in bit[12:0] [160]

f- & coder_12k2 o tocibe_ctrl out unsigned bit[5:
—-'SEEU G prm shart int [57]
o B Ip_analysis @ reset_flag_1 boal
A init @reset flag_2 bool
1l seqi @ speech_frame shart int [160]
::i—:gg—‘z o 5yn shart int [160]

E
v [[Behaviors [¢ | f]

Done.

[Ready

A new window pops up showing the Vocoder model in graphical form. As noted earlier,
the specification is an FSM at the top level with three states of pre-processing, the bulk
of the coder functionality itself and finally post-processing.

20

Chapter 2. Getting Started with Specification

2.4.1. Browse specification model (cont’d)

dation Windows Help

Window View |

Connectivity

.[Mame Type

Zoom in Cirl++
o dt«_mode in bool
Z0Ti) G Cik= o new_frame in event
Add level Cirl+A - pre_process o serial out unsigned bit[2<

|- seq

| & encoder_homi o serialbits_ready out event

L @Ffilter_and_sca o speech_samples in bit]12:0] [160]
- 1 coder_1_2|<2 - 7 et _crl out unsigned bit[5:
-4 seqt @prm short int [57)

Eemove level Cirl+R

o B Ip_analysis @ reset_flag_1 boal
A init @reset flag_2 bool
1l seqi @ speech_frame shart int [160]
A az_lsp_1 & 5yn short int [160]
Waz 1sp 2 PR e o e
T =
y [Behaviors ¢ | f |

Done.

[Ready

At this stage, we would like to delve into greater detail of the specification. To view
the model graphically with higher detail, select View—:Add level Perform this action
TWICE to get a more detailed view. As can be seen, the View menu provides features
like displaying connectivity of behaviors, modifying detail level and zooming in and out
to get a better view.

21

Chapter 2. Getting Started with Specification

2.4.2. Browse specification model (cont’d)

)

dation Windows Help

Window View |

Connectivity

Zoom in Cirl++ Type
o dt«_mode in bool
Z0Tin G Cilk= o new_frame in event
Add leval Cirl+ &, - pre_process o serial out unsigned bit[22

|- seq

& encoder_hori o serialbits_ready out event
L@ iter_and sca o speech_samples in bt 2:0] [160]

Eemove level Cirl+R

- 8 coder 12k2 o+t _ctrl aut unsigned hit[s:
L seq G prm shart int [57]
o B Ip_analysis @ reset_flag_1 boal

Ao init @reset_flag_2 hool

1l seqi @ speech_frame shart int [160]

:az_:sp_; & syn short int [160]
az_Isp

E
v [[Behaviors [¢ | f]

S ——

Done.

[Ready

Zoom out to get a better view by selecting View—sZoom out

22

Chapter 2. Getting Started with Specification

2.4.3. Browse specification model (cont’d)

dation Windows Help

Window Miew

Type

o dt«_mode in bool

& new_frame in event

- & pre_process o serial aut unsigned bit[z
::Zi?oder comilT || [¢F seriatbits_ready ot event

@ titor. and soa| || [spesch_samples in bit12:0] [160]

8 coder 12k2 o tocibe_ctrl out unsigned bit[5:

—-'SEEU G prm shart int [57]

o B Ip_analysis @ reset_flag_1 boal

A init @reset_flag_2 bool
1l seqi @ speech_frame shart int [160]
A az_lsp_1 & 5yn short int [160]
Waz 1sp 2 P e o e
T =
y [Behaviors ¢ | f |

Done.

[Ready

Scroll down the window to see the FSM and sequential composition of the Vocoder
model. Note that the specification model of the GSM vocoder does not contain much
parallelism. Instead, many behaviors are sequentially executed. This is due to the several
data dependencies in the code. For our implementation, this is an important observation.
Since there is not much parallelism in the code to exploit, speedup can be achieved only
by use of faster components. One way to speed up is to use dedicated hardware units.

23

Chapter 2. Getting Started with Specification

2.4.4. Browse specification model (cont’d)

:.:_. Window | Miew

€ Close Cri+'

dation Windows

Type

f- § pre_process

|- seq

. encoder_hami
L@ filter_and_sca
- § coder_12k2

|- seq

o B Ip_analysis

A init
I seq
W az_lsp 1

Waz 1sp 2

E
by [[Behaviors [¢ |

o
g
=%
g
o
g
)
@
@
@
@

dt+_mode in bool
new_frame in event

serial out ungigned hit[2£
serialbitz_ready aut event
speech_samples i hit[12:0] [160]
txclt<_ctrl aut unsigned hit[s:
prm shart int [57]
reset_flag_1 hool

reset_flag_g hool
speech_frame short int [160]

54N short int [160]

_

Done.

[Ready

Exit the hierarchy browser by selecting Window—:Close

24

Chapter 2. Getting Started with Specification

2.5. Validate specification model

| ER[E=1lES]

Help

Design IDescripti €3 Close !

Type
= o dt«_mode in bool
Save As.. & new_frame in event
W iy I_ff:_szrofess o serial out unsigned bit[z2
T i A o serialbits_ready out event
Recent Projects — _:?nwder—hom' o speech_samples in hit[12:0] [160]
- @ filter_and_sca) -
Settings... BF ! coder 12k2 o+t _ctrl out unsigned hit[5:
|- seq G prm shart int [57]
o B Ip_analysis @ reset_flag_1 boal
A init @reset flag_2 bool
1l seqi @ speech_frame shart int [160]
A az_lsp_1 & 5yn short int [160]
Waz sp 2 P R,
S —)
_Hiersrchy [[Behavios ¢ | _]

5 compie | simiste | anayze | Reine | Shel |
| [hput eswencher
H Output: <internal representation=
Dumping..

Input: <internal representation=

Qutput: "testbench.sir"
Done.

&dd Desgign to Project

We must now proceed to validate the Specification Model. Remember that we have
a "golden" output for encoding of the 163 frames of speech. The specification model
would meet its requirements if we can simulate it to produce an exact match with the
golden output. In practice, a more rigorous validation process is involved. However, for
the purpose of the tutorial, we will limit ourselves to one simulation only. Start with
adding the current design to our Vocoder project by selecting : Project—Add Design

25

Chapter 2. Getting Started with Specification

2.5.1. Validate specification model (cont’d)

= EIE
Eile Edit Miew Project Synthesis Yalidation Windows Help
Dz 3d g/ 90 xbB K FEE]|Ge o
X =]
’ — [
Design |Descr|pt|0n| A Hame [J Mame % Type
Ltestbench.sir F-AF Main o dix_mode in hool
i & new_frame in event
|]
OF & pre_process o serial out unsigned bit[z2
- seq Il |67 seriatbits_ready out event
. encoder_hami o
o speech_samples in hit[12:0] [160]
L@ filter_and_sca - i
F- & coder_12k2 o+t _ctrl aut unsigned hit[s:
|- seq G prm shart int [57]
- B Ip_analysis @reset_flag_1 bool
A init @reset_flag_2 bool
1l seqi @ speech_frame shart int [160]
A az_lsp_1 & 5yn short int [160]
Waz sp 2 P R,
—
_Hiersrchy [[Behavios ¢ | _]

M conpll | Sinulste | Analyie | Refne | snai |
| [hput eswencher
Output: <internal representation=
| | Dumping...

Input: <internal representation=

Qutput: "testbench.sir"
Done.

[Ready

The project is now added as seen in the Project Management workspace on the left in
the GUI.

26

Chapter 2. Getting Started with Specification

2.5.2. Validate specification model (cont’d)

[EEIE

Eile Edit Miew Project Synthesis Yalidation Windows Help

Type

Open o dt«_mode in bool
& new_frame in event
Delete Del [e_pracess o serial out unsigned bit[z2

sl | e seriaibitz_ready out event
encoder_homi

filter and sca o speech_samples in bit[12:0] [160]

H Coder_1_2K2 B 7 et _crl aut unsigned hit[s:
M seq @pm shart it [57]

1 Ip_analysis g reset_flag_1 hool

Bename...

Change Description...

Ao init @reset_flag_2 hool

1l seqi @ speech_frame shart int [160]

A az_lsp_1 & 5yn short int [160]
Waz sp 2 P R,

I~

p— T =
_Hiersrchy [[Behavios ¢ | _]

X Comple | Sinulate | Analyzs | Refine | Shell |

[nput testenchse
Output: <internal representation=

Dumping..
Input: <internal representation=
Qutput: "testbench.sir"

Done.

[Ready

We must now rename the project to have a suitable name. Remember that our method-
ology involved 4 models at different levels of abstraction. As these new models are pro-
duced, we need to keep track of them. Right click on "testbench.sir" and select Rename
Rename the design to VocoderSpec. This indicates that the current model corresponds
to the topmost level of abstraction namely the Specification level. Note that the exten-
sion ".sir" would be automatically appended. Also note that a model may be made active
(Open), Deleted, Renamed and described by Right click on its name in the Project win-
dow.

27

Chapter 2. Getting Started with Specification

2.5.3. Validate specification model (cont’d)

=T _—
Eile Edit Miew Project 3Synthesis Vglidatinnl Windows Help
| N Erq'I (= I é“b €l | &~ Instrumentation
- Compile | ——
Simulat [
SHMUse _ e Type
O D B o+ dt<_mode in hool
Kill simulation . [& new_frame in event
Wiew Log... o serial out unsigned bit[z2
Profile omi o serialbits_ready put gvent
sta o speech_samples in bit[12:0] [160]
analyze P beatbe_ctrl out unsigned bit[s:
Evaluate @prm short int [57)]
Metrics... 3 o reset_flag_1 hoal
Estimates @ reset_flag_g hool
— ¢ speech_frame short int [160]
[Esilineits —‘2 & 5yn short int [160]
:I: . Stgp FR T SR Y S| PP S B Y L et
_Hiersichy [[Behaviors | _|

5 compie | simiste | anayze | Reine | Shel |
| [hput eswencher
H Output: <internal representation=
Dumping..

Input: <internal representation=

Qutput: "testbench.sir"
Done.

Compile

After the project is renamed to VocoderSpec.sir, we need to compile it to produce an exe-
cutable. Since we are in the phase of validating the specification model, we should make
it executable by compiling it. This may be done by selecting : Validation—Compile
Note that the validation menu also provides for Code instrumentation which is used for
profiling. Moreover, we have choices for simulating the model, Opening a simulation
terminal. Killing an existing simulation, Viewing the log, Profiling, Analyzing simula-
tion results, Model Evaluation, displaying Metrics and Estimates etc. All these features
will be used in due course of our system design process.

28

Chapter 2. Getting Started with Specification

2.5.4. Validate specification model (cont’d)

[=[Elf]

Eile Edit Miew Project Synthesis Yalidation Windows

Help

Dz g g voe xbn X BEFEE| s o

. encoder_hami
L@ filter_and_sca
- § coder_12k2

|- seq

o B Ip_analysis

A init
I seq
W az_lsp 1

Waz 1sp 2
I~

p— T =
_Hierarchy [TBehaviors 1C| 1

| Mame [J Mame Type
4 Main o+ dt<_mode in kool
i & new_frame in event
BF- & pre_process o serial out unsigned bit[22
A seqT o serialbits_ready out event

o speech_samples
o ecibe_ctrl

@ prm

o reset_flag_1

@ reset_flag_g

¢ speech_frame
@syn

in hit[12:0] [160]
aut unsigned hit[s:
shart int [57]

hool

hool

shart int [160]
shart int [160]

_

M conpll | Sinulse | Analyie | Refne | snai |
| [hput vocoderspec.ec
Output: "vacoderSpec.o”
Linking...

Input: "YocoderSpec.o”

Cutput: "Wocoderspec”
Done.

[Ready

Note that in the logging window we see the compilation messages and an output exe-

cutable "VocoderSpec" is created.

29

Chapter 2. Getting Started with Specification

2.5.5. Validate specification model (cont’d)

[=[Elf]

Eile Edit Miew Project 3Synthesis Vglidatinnlﬂinduws
| N Erq'I (= I é“b &l | &~ Instrumentation

Help

_Hierarchy [TBehaviors [1C| 1

=B e e
Compile =
Simulat [
almuate _ | [[Mame i Type
O el E o+ dt<_mode in boal
Kill simulation - [l o nenw_frame in event
Wiew Log... o serial out ungigned hit[2£
Profile omi o serialbits_ready put gvent
sca o speech_samples in bit[12:0] [160]
Analyze 6 becte_ctrl out unsigned bit[s:
Evaluate @prm shart int [57]
Metrics... 3 o reset_flag_1 hoal
Estirnates @ reset_flag_g hool
- ¢ speech_frame short int [160]
Esillnaiz _12 &5y short int [160]
= @ PR T

_

Output: "VocoderSpec.o”
Linking...

Input: "YocoderSpec.o”

Cutput: "Wocoderspec”
Done.

% Compie | Sinulate | Anaiyze | Refne | shell |

nput: GocoaerSpec.cc

Simulate

The next step is to simulate the model to verify whether it meets our requirements or
not. This may be done by selecting : Validation— Simulate

30

Chapter 2. Getting Started with Specification

2.5.6. Validate specification model (cont’d)

S T
E) i)) .) Help
— [HEE
_| frame=147 encoding delay = 0,00 mz
e frame=148 encoding delay = 0,00 me
— frame=149 encoding delay = 0,00 ms
(] frame=150 encoding delay = 0,00 mz IType
T frame=1h1 encoding delay = 0,00 mz
frame=152 encoding delay = 0,00 me in bool
frame=153 encoding delay = 0,00 ms in evant
frame=154 encoding delay = 0,00 mz) :
frame=155 encoding delay = 0,00 ms out unsigned hitfz<
frame=156 encoding delay = 0,00 me out event
frame=157 encoding delay = 0,00 ms i Bt
frame=158 encoding delay = 0,00 ms n blt[1;'D] i BD_]
frame=153 encoding delay = 0,00 ms out unsigned bit[5:
frame=160 encoding delay = 0,00 ms shart int [57]
frame=161 encoding delay = 0,00 ms baal
frame=162 encoding delay = 0,00 ms oo
frame=163 encoding delay = 0,00 ms hool
done, 163 frames encoded shart !m [160]
short int [160]
les speechfiles/nodtx_good.bit and nodtx.bit are identical)
nulation exited with status 0 I
ezz return to continue ..,

X conple | sz | anlze | Retne | stel |

% wterm -title WocoderSpec -e /hindsh -c AocoderSpec speechfilesfspoh_unxing nodt hit nodt< && diff -5 speechfiles/nodt<_good.hi
t nodb< bit; echo "Simulation exited with status $%" ;echo "Press return to continue " ;read confirm

[Ready A

Note that an xterm pops up showing the simulation of the Vocoder specification model
on a 163 frame speech sample. The simulation should finish correctly which is indicated
by the exit status being ’0’. It can be seen that 163 speech frames were correctly simu-
lated and the resulting bit file matches the one given with the vocoder standard. It may
be noted that each frame has an encoding delay of 0 ms. This is a consequence of the
fact that our specification model has no notion of timing. As explained in the methodol-
ogy, the specification is a purely functional representation of the design and is devoid of
timing. For this reason, all behaviors in the model execute in 0 time thereby giving and
encoding delay of 0 for each frame. Press RETURN to close this window and proceed
to the next step.

31

Chapter 2. Getting Started with Specification

2.6. Profile specification model

e e e L —x
Eile Edit Miew Project 3Synthesis Vglidatinnl Windows Help
NOe [[[él:; ¥y & | § - Instrumentation
Compile
Simulat
Simulate . _ Type
O D B o+ dt<_mode in bool
Kill simulation . [& new_frame in event
Wiew Log... o serial out unsigned bit[z2
Profile omi o serialbits_ready put gvent
—_— o speech_samples in bit12:0] [160]
Analyze P beatbe_ctrl out unsigned bit[s:
Evaluate @prm short int [57)]
Metrics... 3 o reset_flag_1 hoal
Estimates @ reset_flag_g hool
- ¢ speech_frame short int [160]
[Esilineits —‘2 & 5yn short int [160]
E . Stgp PR T R S B | R S R Y | et
_tterarchy [[Beaviors €| { _|

X conple | sz | anlze | Retne | stel |

% wterm -title WocoderSpec -e /hindsh -c AocoderSpec speechfilesfspoh_unxing nodt hit nodt< && diff -5 speechfiles/nodt<_good.hi
t nodb< bit; echo "Simulation exited with status $%" ;echo "Press return to continue " ;read confirm
Simulation exited, exit status: 0

Prafile 4

In order to select the right architecture for implementing the model, we must begin by
profiling the specification model. Profiling provides us with useful data needed for com-
parative analysis of various modules in the design. It also counts the various metrics like
number of operations, class and type of operation, data exchanged between behaviors
etc. These statistics are collected during simulation. Profiling may be done by selecting
: Validation—Profile

32

Chapter 2. Getting Started with Specification

2.6.1. Profile specification model (cont’d)

[=I[Bl[]
Eile Edit Miew Project Synthesis Yalidation Windows Help

Dz g g voe xbn X BEFEE| s o

= | a X
[
| Mame =)
Main MName Type
B & Coder
- pre_process ¢ db_mode in kool
¥ seq a8 news_frame in event
— & encoder_homi ¢ serial out unsigned bit[z
.—.'ﬂlter_and_sca e serialbits_ready out event
G- & coder2k2 ! speech_samples in bit[12:0] [160]

|- seq

o B Ip_analysis P it _ctr out unsigned hit[s

%’init = @ prm short int [57]

| | =00 - ¢ reset_flag_1 hoaol

W az_lsp 1 @ reset flag_2 bool

'az lsp 2 — ~canaarh frama shnrt int 11K
S — = | B

_Hiersrchy [[Behaviors [¢ | { _Raw

X Cotipile | Siulate | Analyze | Refine | Sheil |
g g

Oompuiing stafistics 1or operaions
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling

[Ready

The logging window now shows the results of the profiling command. Note that there
is a series of steps for computing statistics for individual metrics like operations, traffic,
storage etc. Once these statistics are computed. they are annotated to the model and
displayed in the design window.

33

Chapter 2. Getting Started with Specification

2.6.2. Profile specification model (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8gd g va % B aaEEEIE]
""" H[I Mame [J [Computation | Data Heap Connections | Traffic
A -4 rain aperations] | [variables] |[hlocks] | [acessars] [transfers]
[1433199286 989 4413 27054
o+ § pre_process 1 489
A seqt 1 0
| AF encoder_homin 244 163
.—,ﬂlter_an d_scale 1 0
i '_ng:;a:zkz 4160 26243
[§ Ip_analysis 5 163
W init 57 171 1141
= Bl seql 1 3 1305
Waz_lsp_1 1 z 327
M az_lsp_2 160 320 32858
& copyt 160 160 G52
m-Evad_Ip 6 24 B52
I seq2
grolspeeen [y | o w off
=l [T T = [A : I
Maodels | Imports |5|£ Hierarchy | Behaviars | Cr)lé] Raw I
X Compile | Simulate | Analyze | Refne | Shell |
COMpUTING STatsics 10r operaions i
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

It may also be noted that the design management window now has new column entries
that contain the profile data. Maximize this window and scroll to the right to see vari-
ous metrics for behaviors selected in the design hierarchy. The current screenshot shows
"Computation”, "Data", "Connections™ and "Traffic" for the top behavior "Coder". Com-
putation essentially means the number of operations in each of the behaviors. Data refers
to the amount of memory required by the behaviors. Connections indicate the presence
of inter-behavior channels or connection through variables. Traffic refers to the actual
amount of data exchanged between behaviors. The metrics may also be obtained for
other behaviors in the design besides the coder.

34

Chapter 2. Getting Started with Specification

2.7. Analyze profiling results

=|vocoder.sce - 30C Enviranment - [3hifi_Signals - YacaderSpec - YocoderSpec sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
INEIETFIE YRS ElsEEEEIE)
) 3l
Mame =l Code
1 = g MName Type M [state
4 encoder_homingframe_te & shift_signals 163
.—'ﬂ"er—a”d—sca'e A7 old_exc inout short int [314]
B & coder_1zkz & ald_speech inout shart int [320]
el old_wsp inout short int [303]
7 tedbs_ctrl out unsigned hit[5:0]
P talts_etrl_cur in unsigned kit[5:0]
=R /
~l [1 | =] T =
Models | Imports |-_, | g Hierarchy | Eehaviars | Channels | FRiaw
X Compile | Simulate | Analyze | Refne | Shell |
COMpUTING STatsics 10r operaions &
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behaviar prafiling J‘
[Ready A

Once we have the profiling results, we need a comparative analyses of the various behav-
iors to enable suitable partitioning. Here we analyze the six most computationally inten-
sive behaviors viz. "Ip_analysis", "open_loop", "closed_loop", "codebook_cn", "update™
and "shift_signals.” They may be multi-selected in the design hierarchy by pressing CN-
TRL key and Left clicking on them. These particular behaviors were selected because
these are the major blocks in the coder_12k2 behavior, which in turn is the central block
of the entire coder. Thus the selected behaviors show essentially the major part of the ac-
tivity in the coder. We ignore the pre-processing and the post-processing blocks, because
they are of relatively lower importance.

35

Chapter 2. Getting Started with Specification

2.7.1. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Update - VocoderSpec - VocoderSpec.sir’] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
IDB[EIﬁ[éHOOIX\I[Q%Hl |@ae|o|
MName -\ o Ct
[s MName Type N [st
—'encuder_hnmingframe_te SDUpdate BE52
.—'ﬂlter_and_scale - ana out short int
O & coder 12k Lo ag in shart int [11]
o CM_excitation_gain in short int
- code in short int [40]
o e inout shart int [40]
e gain_code in short int
e gain_pit in short int
o i_subfr in int
-7 mem_err out shart int [10]
- mem_w0 aut short int [10]
Source.. set_ﬂag in hool
Hierarchy.. ech_i in short int [40]
B . nth_i Uut short int [40]
=) ., Connectivity... P T T P o L. £
~ 1~ ! Isolate =
Models | Imports I: | q/| Hierarchy | Behaviors | Char |
Hrap
ﬂ Compile | Simulate | Analyze | Refine | Shell | Elatten
i COMPUINg S1atsics 10r operaions — Delete Del _\
Cnmput!ng stat!st!cs for traffic Renatne
Cotputing statistics for storage
Annatating statistics to SIR file Change Type
End: Behavior profiling Set &s Top-Level
: Graphs I operation...
Operation graph Traffic... A

In order to select a suitable architecture for the Vocoder, we must perform not only
an absolute but a comparative study of the computation requirements of the selected
behaviors. SCE provides for graphical view of profiling statistics which may be used for
this purpose. After the multi-selection, we Right click and select: Graphs—Operation

36

Chapter 2. Getting Started with Specification

2.7.2. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Open_Loap - testhench - testhench.sir* [read-anly]] [EEE
]_E|i|e Edit ‘iew Project Svnthesis ‘alidafion ‘Window: Help =|=| %]
— = | testhench - Operation Graph |[=][=[]
1IE= : 5 | @
—| Window Miew Arrange [
B [
ol Operation Profile [| Mame Type
mi Rel. operations
. & Open_Loop _ .
.c.,..,p.m.,.. o et in shart int [4][11]
- - dbs_mode in hool
M - — e P .. -¢7 p_speech in shart int *
¢+ ptch aut bool
e reset_flag in hool
M- - — e e P T0_max_1 out short int
P TO_max_2 out short int
@ TO_min_1 out short int
Ll i o . L T0_min_z2 aut short int
0P barite_ctr in unsigned it[s:
o i =G wsp inout short int ©
. . . L o apl shot int [11]
& e S }@f || F oan2 shart int [11]
Py f 3}“# hoas bt i 147 /
o7 S * o oo
- ~] =
Models [Imports | Saurces T[T Hierarchy [Behaviors | Channels Raw |
__ﬂ Compile | Simulate | Analyze | Refine | Shell |
Compuing stalisics 1or operaiions _\
Computing statistics for traffic
Caomputing statistics for starage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

We now see a bar graph showing the relative computational intensity of the various be-
haviors in the selected behaviors. Essentially, the graph shows the number of operations
on the Y-axis for the individual behaviors on the X-axis. Double Left click on the bar
for codebook_cn to view the distribution of its various operations. Note that we select
"codebook_cn™ because it is the behavior with the most computational complexity.

Note that the bars representing the computation for "codebook_cn™ and "closed_loop™
have two sections. The lower section is filled with red color and the upper section is par-
tially shaded. Each speech frame consists of four sub-frames and the behaviors "code-
book _cn" and "closed_loop™ are executed for each subframe in contrast to other behav-
iors in the graph, which are executed once. Hence the filled section of the bar represents
computation for each execution of behavior and the complete bar (including the shaded
section) represents computation for the entire frame.

37

Chapter 2. Getting Started with Specification

2.7.3. Analyze profiling results (cont’d)

|m YocoderSpec - VocoderSpec.sir]

End:

BEehavior profiling

[EERX
_| i Help x|x| x|
e e
K]
—| #indow Miew Arrange
— | codebook_cn - Operation Chart |:||E||7 0 Marme Type 1 Ct
D [st
7| | Fel. operations Window Customize & Update G52
T Computation o ana. aut shart int
[operations] o Ag - in shortint [11]
FM— - — - o CM_excitation_gain in short int
Raw: - code in short int [40]
[l contron o exc_ inout short int [40]
2M-— - — - lnccess e gain_code in short int
l ALU - gain_pit in shart int
l Other P i_subfr in int
MW -7 mem_err out shart int [10]
- mem_wo aut short int [10]
o 7 reset_flag in kool
. 7 speech_i in shor int [40]
ﬁ“ - synth_i out shortint [40]
|| & o AT bbb e s, - £
.] | =
Models | Imports Raw
I . codehook_cn —,
X Compile | Simme T
P T 1] T
E anpuung sta'ﬂs TCS 107 GPEranons 5
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file

)

[Ready

4

A new window pops up showing a pie chart. This pie chart shows the distribution of
various operations like "ALU", "Control", "Memory Access" etc. We are interested in

seeing the types of ALU operation for this design. To do this double Left click on the
ALU (green) sector of the pie chart.

38

Chapter 2. Getting Started with Specification

2.7.4. Analyze profiling results (cont’d)

g sce - nvironment - [Update - VacoderSpec - VocoderSpec.sir] [EEE
g o ; ; . ; Help || %]
T |Vacoderspec - Operation Graph =1 I .l
b
—{| window Wiew Arange I
— = | codebook_cn - Operation Chart [[=I[=iR]H Ct
= _| — P Mame Type ¥l [st
|| Rel- operations Window Customize SDUpdate G52
M - — - - .
Computation b ana aut shart int
|MDDF_CH - Operation Chart {[==i] in short int [11]
sl - — - — P _gain in short int
RS ERERIEE in short int [40]
ALU inout short int [40]
B B [operations)] in short int
in short int
Raw: in int
MW [l 1t aLu aut short int [10]
out short int [10]
o in baol
. i sho int [40]
ﬁ“ out shart int [40]
|| & o - £
= - =
Models [Imports
c
X | compile | Simumm——rme =
= p T T
i CompUang stansics 1q _\
Computing statistics fi
Computing statistics fi codebook_cn
Annotating statistics t
End: Behavior profiling J‘
[Ready A

A new window pops up showing another pie chart. This pie chart shows the distribution
of ALU operations. It can be seen that all the operations are integer operations, which
is typical for signal processing application like the Vocoder. Since all the operations are
integral, it does not make sense to have any floating point units in the design. Instead,
we need a component with fast integer arithmetic like a DSP. To see the distribution of
these integer operations, again double Left click on the pie chart.

39

Chapter 2. Getting Started with Specification

2.7.5. Analyze profiling results (cont’d)

|m - Wocoderspec - VocoderSpec sir’]

[EERX
it Vi i Help =(~|x|
T | - Operation Graph mlﬁlmb I .l
| window view Arrange |
o %lmeraﬁun Chart (== | riame Type n ;tc
i Rel.ql::eralions Window Customize & Update G52
Computation b ana aut shart int
|meration Chart {[==i] in short int [11]
sl - — -)) _gain in short int
Window Customize in ot int 14
= lcodeboak_cn - Operafion Chart ||Q|E|Et ©o]
ZHI— - — - Window Customize
Int ALU
M . [operations] 10]
10]
Raw:
o [l 1ot Avith .
5* . Int Comp 4]D
& o [wtshire ([| /
- w?) .
. . Int Logic =
Models [Imports
C
__ﬂ Compile | S Uirare—y—r T
i COMpUing statsics 1q 5
Computing statistics fi
Computing statistics fi
Annotating statistics t
End: Behavior profiling codebook ch J‘
[Ready A

A new window pops up showing another pie chart. This pie chart shows the distribution
of the type of integer operations. We can see that the majority of the operations is integer

arithmetic. To view the distribution of the arithmetic operation types, again double Left
click on the sector for "Int Arith."

40

Chapter 2. Getting Started with Specification

2.7.6. Analyze profiling results (cont’d)

= vocoder.sce - S0C Enviranment - [Update - VocoderSpec - VocoderSpec.sir’] [EEE
g o ; ; o ; Help || %]
T |mgc - Operation Graph mlﬁlmb I .l
| window view Arrange |
o =|\codeboak_cn - Operafion Chart (== | riame Type n ;tc
i Rel.ql::!eralions Window Customize & Upaate B52
Computation b ana aut shart int
|W0peration Chart {[==i] in short int [11]
4 - ain in short int
M Window Customize -gam i snorn gy
= lcodeboak_cn - Operafion Chart ||Q|E|E|‘ ©o]
1
Rl Window QU31'31§|M— Dperation Chart [=I[E1=]
Window Customize
[T - - -
Int Arith
[operations]
o
" Raw:
& 0nt .
| I | R
Wodels | Imports [-=nt
C I Along
_,-m .
X Compile | SimLems—g o T D ! .
i 1 | |:| pint L
: CompUang stansics 1q g ot Y
Computing statistics fi P !
Caomputing statistics f B it
annotating statistics t [l others
End: Behavior profiling
i codehook_cn
[Ready]

We can now observe the distribution of arithmetic operations like "multiplication”, "ad-

dition", "increment", "

decrement”, etc. on a new pie chart. Note that 3/4 ths of the op-

erations are additions or multiplications, thus it would be a good idea to have these two
operations directly supported by a specific hardware unit.

41

Chapter 2. Getting Started with Specification

42

Chapter 3. Architecture Exploration

Architecture exploration is the design step to find the system level architecture and map
different parts of the specification to the allocated system components under design con-
straints. It consists of the tasks of selecting the target set of components, mapping behav-
iors to the selected components and implementing correct synchronization between the
components. Note that the components themselves are independent entities that execute
in a parallel composition. In order to maintain the original semantics of the specifica-
tion, the components need to be synchronized as neccessary. Architecture exploration
is usually an iterative process, where different candidate architectures and mappings are
experiemented to search for a satisfactory solution.

As indicated earlier, the timing constraint for the Vocoder design is the real time re-
sponse requirement, i.e., the time to encode and decode the speech should be less than
the speech time. The test speech has a 3.26 seconds duration. Therefore, the final im-
plementation must meet this time constraint. In this chapter we see how we arrive at
a suitable architecture with keeping this requirement in mind and using the refinement
tool.

43

Chapter 3. Architecture Exploration

3.1. Try pure software

The goal of our exploration process is to implement the given functionality on a minimal
cost architecture and still meet the timing constraint. The first approach is to implement
everything in software so that we do not have the overhead of adding extra hardware and
associated interfaces. To accomplish this, we first select a processor out of our compo-
nent database. Thereafter, we map the entire specification on to this processor. Once the
mapping is done, we invoke the analysis tool to see if the processor alone is sufficient to
implement the system.

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - YocoderSpec.sir'] |Q|E|E
[] Eile Edit View Project Synthesis | Walidation Windows Help == x|
| = [(= [é“b Processing elements... _l|%) I .l
— Kap Mariables
%I_N o en > Al N T no|C
Design oi| |~ BS Architecture Refinement Ame ¥pe [st
Busses... ame_te & Update B3z
» - ana out short int
@ Map Channels —cF A in shart int [11]
glz Communication Refinement | CM_excitation_gain in short int
RTL Units._ - ¢ code in short int [40]
- o e _i inout short int [40]
RTL Synthesis... -
- 2 - ain_code in shot int
Import Decisions... ¢ ain_pit in short int
@ stop _ - i_subfr in int
- mem_err aut short int [10]
b - mem_w0 aut short int [10]
e reset_flag in boal
. ||| o speech_i ir shart int [40]
ot - synth_i out short int [40]
Er ¥ poslprocess £ A benthe ot b il LS. £
~l [1 | =] | =
Models | Imports |-_, | g Hierarchy | Eehaviars | Channels | Raw |
X Compile | Simulate | Analyze | Refne | Shell |
COMPUTNG STnsics 10r Operaiions 5
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
Frocessing element allocation A

We begin by exploring the available set of components in the database. This is required
to select a suitable processor. To view all available components and select the desired

processor, go to the Synthesis menu on the menu bar and select Processing ele-
ments .

44

Chapter 3. Architecture Exploration

3.1.1. Try pure software (cont’d)

§| vocodersce - S0C Environment - [Update - YocoderSpec - VocoderSpec.sir'] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz 8d g vae % B aaEEEIE]
........................ = e
Desig E
Name |Type |Clock [MHz] |Program [kB] |Data (k8] [mnstruction [oits) | Data [bits] | char [pits
OK |
Cancel |
Help |
Add...
Remove |
Tables... |
|
- =
Mode
X oy
i £
] | =)
A
End: Behaviar profiling J‘
[Ready A

Now a PE Allocation window pops up. This window includes a table to display impor-
tant characteristics of components selected for the design. In addition, it also provides
a number of buttons (on the right side) for user actions, such as adding a component,
removing a component, and so on. Since we have not allocated any component at this

point, the table has no entry.

To view the component database and select the desired component, press the Add but-

ton.

45

Chapter 3. Architecture Exploration

3.1.2. Try pure software (cont’d)

= |vocoder.sce - SoC Environment - [Update - YocoderSpee - VocoderSpec.sir'] |Q|E|E|
=|FE Selection IE3|
Categories: Companent | Max. clock paHz) [wiPs | cost [Program kE] |Data kE) [instruction [pits] | D:
DsP AMD_KE 400.0 2000 1000 640 4.0 3z 32
Processor AMD_K7 700.0 3500 120.0 B4.0 64.0 32 32
Mem ARM1020 325.0 1500 23.0 640 B4.0 32 32
Custam Harcware| |[&RM720 1000 500 230 64O B4.0 az 32
Contraller ARMIZD 250.0 1250 230 640 B4.0 32 32
IDT_32300 100.0 500 5.0 640 64.0 32 32
Intel_P1 200.0 1000 45 640 B4.0 32 32
Intel_P2 550.0 2000 230 B40 B4.0 32 32
Intel_P3 500.0 4500 90.0 G40 B4.0 32 32
MIPS3Z 100.0 500 100 640 64.0 32 32
MIPS64 350.0 2000 200 640 B4.0 B4 B
Motorola_BE000 20.0 200 35 B4D B4.0 32 32
Motorola_GE010 120.0 1000 230 640 B4.0 32 32
Motorola_Coldfre 120.0 1000 23.0 640 126.0 32 32
Uitrasparcll 480.0 2500 100.0 64.0 B4.0 B4 B
=] =)] |
Help | (018 I Cancel |
Z
[Ready 4

Now a PE Selection window is brought up. The left side of the window (Categories
) lists five categories of components stored in the database. The right side of the window
displays all components within a specific category along with their characteristics. As
shown in the above figure, since the Processor category is selected on the left side, 15
commonly used processor components are displayed in detail on the right side.

The Component description includes features like maximum clock speed, measure of
the number of instructions per second, a cost metric, cache sizes, instruction and data
widths and so on. These metrics are used for selecting the right component. Remember
that the profiling data has given us an idea of what kind of component would be suitable
for the application at hand.

46

Chapter 3. Architecture Exploration

3.1.3. Try pure software (cont’d)

i

D3P
Frocessar

hdem
Custam Hardware
Caontroller

Now if we go to the Mem category, a number of memory components will be displayed
in detail on the right side of the window. If the memory in the processor is insufficient
for the application, we can add external memory components from this table.

47

Chapter 3. Architecture Exploration

3.1.4. Try pure software (cont’d)

[=[Elf]

D3P

Frocessar

kdem

Custam Hardware

Caontroller i _80_C_

Now if we go to the Controller category, a number of widely used microcontroller
components will be displayed in detail on the right side of the window.

48

Chapter 3. Architecture Exploration

3.1.5. Try pure software (cont’d)

vocodersce - S0C Environment - [Update - YocoderSpec - VocoderSpec.sir] Q@@
% Companent | Max. clock paHz) [wiPs | cost [Program kE] |Data kE) [instruction [pits] | D:
AD_Sharc_DsP 50.0 0.0 4587 160 3z.0 16 3z
Processor Motorola_DSPSEE00 60.0 G600 3 320 i
hdem TI_C5dx 50.0 0.0 100 640 64.0 16 16
Custom Hardware TI_Co5= 144.0 2440 100 G40 B4.0 16 16
Controller TI_Ch2x 166.0 1200.0 20.0 G40 64.0 16 15
TI_CBdx 300.0 2400.0 4000 640 64.0 16 16
TI_CE7x 100.0 G6000.0 150 640 64.0 16 16
-~ =] T =

Help | I (018 Cancel |
2
[Ready 4

Through earlier profiling and analyzing, we found out that integer multiplication is the
most significant operations in the original specification. Therefore, a fixed-point DSP
would be desirable for this design.

Under the DSP category, a number of commercially available DSPs are displayed.
These DSP components are maintained as part of the component library and may be
imported into the design upon requirement. Since the Vocoder design project was sup-
ported by Motorola, our first choice is DSP56600 from Motorola.

Left clickthe Motorola_ DSP56600 row to select it. Then click OK button to confirm
the selection.

49

Chapter 3. Architecture Exploration

3.1.6. Try pure software (cont’d)

§| vocodersce - S0C Environment - [Update - YocoderSpec - VocoderSpec.sir'] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
D2 Bl 8 vwa(x X[[FFE] B e 0]
........................ = xlce
Desig E
_EE Mame | Type Clock [MHz] |Program [KB] | Data [kB] |Instruction [bits] | Data [hits
FS0Il /otorola_DSFPSEE00 B0.0 32.0 £i4.0 24 16 | OK |
Cancel |
Help |
Add... |
Remove |
Tahles... |
|
~ =
Maode
X oy
i £
] | =)
)
End: Behavior profiling J‘
[Ready A

Now the PE Selection goes away and the PE Allocation table has one row that
corresponds to our selected component, which has a type of Motorola_DSP56600. This
new component was named as PEO by default. To make it more descriptive for later

reference, it is desirable to rename it.

To rename it, just left click in the Name column of the row. The cursor will be

blinking to indicated that the textfield is ready for editing.

50

Chapter 3. Architecture Exploration

3.1.7. Try pure software (cont’d)

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - YocoderSpec.sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 vwa % X[EEE] B @ | 0]
_ T=TPE Allacation [x][ee
Desig E
Mame | Type Clock [MHz] |Program [KB] | Data [kB] |Instruction [bits] | Data [hits
DSP hotorola_DESP56600 60.0 3z2.0 QK |
Cancel |
Help |
Add.. |
Remave |
Tahles... |
|
- =
Maode
X ¢y
i £
] | =)
24
End: Behaviar prafiling J‘
[Ready A

We will simply name the component as "DSP" since it is the only component used in
the design at this instance. Proceed by typing "DSP" in the textfield and press return to
complete the editing. Then press the OK to finish component allocation.

51

Chapter 3. Architecture Exploration

3.1.8. Try pure software (cont’d)

=|vocoder.sce - 30C Enviranment - [Update - VacoderSpec - YocoderSpec.sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis WValidation Windows Help == x|
Dz 8gd g va % B aaEEEIE]
=x[I
i |Type IF'E |-\ r MEmE
by Coder & Update
re_process Fre_Process e ana
seql Fre_Process_Seql i A
encoder_homingframe_test Encoder_Homingframe_Test | CM_excita
filter_and_scale Filter_fnd_scale .
= = 7 cod
Coder_12kE gcu e.
Coder_12kZ_Seq1 e e
¢ gair_code
Jpen_Loop -+ gain_pit
Subframes ¢ i_subfr
Subframes_Init o merm_err
Subframes_Body1 o merm_w0
e reset_flag
e speech_i
- synth_i
it b
N [~ -] -~

Madels | Imports I-_,l q||_Hierarchy | Behaviors | Channels Raw I

X Compile | Simulate | Analyze | Refne | Shell |
i COmpLUTING STafsics 10f Operations i
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling

|I:?;eady A

Now that the allocation phase is complete, the PE Allocation table goes away and we
return to the design window showing the design hierarchy tree.

52

Chapter 3. Architecture Exploration

3.1.9. Try pure software (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 0d 8ve [xbB X[FE| G0
L L E LT L TR e e T e e HI J [
[. |Type [Mame
S T | (| (% cocer
Pre_Process o dtx_mode
A Hierarchy... Pre_Process_Seql - new_frame
A Connectivity. . _test E_thnd;r—dHUSm'”lgfram' - serial
L ilter_and_Scale N
1§ o lsolate Coder_12k2 _gser'a'br:ts—f
A wirap Coder_12k2_Seq? [SpeRCh_st
Elatt LP_analysis e pecibs_ctl
Bf =N Open_Loop [@prm
£ Delete Crel Subframes - @ reset_flag_
Subframes_Init - @ reset_flag_
Rename Subframes_Bodyl - @ speech_fri
| Change Type Closed_Loop L o syn
_ Subframes_Body2
Set &3 Top-Level ¢ Tedtx_ctrl_
[———— Codehook_CN &cou - 12_k
| Graphs =3 Update / —mcu ‘er_
~I I.- | I - -] =
Madels | Imports |-_, | q||_Hierarchy | Behaviors | Channels Raw I
armpile inulate nalyze efine]
X compile | Simulate | Anal Refine | shel
COMpUTING STatsics 10r operaions &
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behaviar prafiling J‘
[Ready A

Before we move on, the top level behavior of the design needs to be specified. This is
necessary because the specification model may have some test bench behaviors, which
are not going to be included in the final design. It may be recalled that the project we are
working with invloves not only the design under test(DUT) but also the behaviors that
drive it. For example, the Monitor and Stimilus behaviors are just testbench behaviors
while the Coder behavior is the real top level behavior of the design. To specify the
Coder as the top level behavior, right click on coder to bring up the drop box menu
then left click on Set As Top-Level .

53

Chapter 3. Architecture Exploration

3.1.10. Try pure software (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 0d 8ve [xbB X[FE| G0
: Mame |Type Al Mame
Design Dif A - 4 tain
B B ocoderSpec.siv iy Coger & Coder
o | ore_process Pre_Frocess e dtx_mode
A seq? Fre_Frocess_Seq? L naw_frame
A encoder homingiame test EReoaer Homirngiiam ¢ serial
L sitter_ang_scale Fidter And Scale L serialbits |
oF ¥ coder 1242 Coder 12%8 s -
& seq7 Coger 1248 Seq? ¢ speech_s
1o anaisiz LP Anzivsis e pecibs_ctl
s-Eopern ivop Opesr_Loop [@pm
mHE D subiames Subdames - @ reset_flag.
MW o it Suwbiraines_ it - @ reset_flag_
M o boay? Subfiames_Bodyl |= - @ speech_fri
e cioses ioop Ciogsed Lo @ syn
M ior_boai Submames_Boay 2 PN
£ dcodetook_cn Codebook_CM @ - -
| =
~I I.- | I - -] =
Madels | Imports |5|£ Hierarchy | Behaviors | Channels Raw I
X Compile | Simulate | Analyze | Refne | Shell |
COMpUTING STatsics 10r operaions i
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

As shown in the figure, when the top level behavior Coder is specified, the names of all
its child behaviors are italicised to distinguish them from the test bench behaviors. In
general, any behavior which needs to be tested can be set as top level. So, in a generic
sense, the design under test can be identified by the italicized font.

54

Chapter 3. Architecture Exploration

3.1.11. Try pure software (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 0d 8ve [xbB X[FE| G0
N |]
|Type IF'E |-\ r MEmE
Coger s Coder
Pre_Process e dtx_mode
Fre_Frocess_SeqT - new_frame
;gcaa‘er} ﬁam.ﬂ;?gf?ame_fes? i};&a‘eﬂr_ j&sﬁzxﬂgﬁame_ Fazt ¢ serial
or and_scate Tiher And_Scate -
and_ A - Ihit
cder TEHE Coder 1262 gse”a r:S—f
seq? Coder 1242 Seq? [SpeRCh_st
1 (o anaisis LP Araiysis e pecibs_ctl
Ebopen ioop Open_Loop [@pm
Ersubitames Subirames - @ reset_flag_
S Eogls Swbames_inidt - @ reset_flag_
M o body? Sublrames_Boay T = - @ speech_fr:
e oiose doop Ciosed Loop @ syn
M ior_bodv Subtames_Bogys PN
£ deodetook_cn Codebosk_CM 8‘; dor 124
1 wpaore Lipdate / B mcu ‘er_ /
A —] o I | [
Madels | Imports I-_, | q||_Hierarchy | Behaviors | Channels | Raw I
ompile imulate nalyze efine e
X compile | Simulate | Anal Refine | shel
COMpLUTING STatstcs 10 Operanons Y
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
[Ready A

As mentioned earlier, we will map the whole design to the selected processor. This is
done by assign the top level behavior Coder to DSP. Left click inthe PE columnin
the row for the Coder behavior. A drop box containing allocated components comes
up. Left click on DSP to map behavior Coder to DSP.

It should be noted that any kind of mapping is allowed. However, since we are inves-
tigating a purely software implementation, everything in the design gets mapped to the
DSP.

55

Chapter 3. Architecture Exploration

3.1.12. Try pure software (cont’d)

Annotating statistics to SIR file
End: Behaviar prafiling

= | wocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsi’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8gd g va % B aaEEEIE]
|Type I Mame
Coder & Coder
m- 1 e process Fre_Frocess o dtx_mode
A seq? Fre_Frocess_Seq? L naw_frame
A encoder homingiame test EReodaar Homiingivam. ¢ serial
L sitter_ang_scale Fidtar And Scade L serialbits |
oF ¥ coder 1242 Coder 18kE s h -
W seq? Coder 1248 Seq? [SpeRCh_st
1o anaisiz (P Anziysis e pecibs_ctl
s-Eopern ivop Opeir_Loop [@pm
mHE D subiames Submames - @ reset_flag.
MW o it Subiraines il - @ reset_flag_
M o boay? Subfames_Body T - @ speech_fri
e cioses ioop Ciosed Lo @ syn
M ior_boai Supmames_Boay s PN
£ dcodetook_cn Cogebook_CM 8‘; dor 124
1 wpaote Lipgate B mcu ‘er_
~l 1=~ I =] =
Madels | Imports |-_, | q||_Hierarchy | Behaviors | Channels Raw I
X Compile | Simulate | Analyze | Refne | Shell |
i COMPUTNG Statstcs Tar operations _\
Computing statistics for traffic
Computing statistics for storage

[Ready

%

As we can see now, the descendant behaviors are all highlighted in red to indicated that

they are mapped to the DSP component.

56

3.2. Estimate performance

Chapter 3. Architecture Exploration

= | wocoder.sce - 50C Environment - [Coder - YocoderSpec - YocoderSpecsi’] |Q|E|E
[] Eile Edit View Project Synthesis Walidation | Windows Help == x|
| N Erq'I (= I é“b e I I E r Instrumentation |f@ e I .l
— Compile
H[I P i - [Mame
Diesign Dif A Er g wain | 2imulate
B 2 ocoderspec sir R Open Teminal - & Coder
o Kl simulation .- - —¢#? dbe_mode
- . Fre_Frocess_Seql - new_frame
L Viewlog.. e tast ERcodar Homingtaime | o5 serial
~ Profile Filter And_ Seate c#? serialbits_
o & Coder 1242 & -]
Analyze Coder 1262 Seqt -7 speech_s:
g Evaluate (P Anziysis G it _ctrl
B Metrics... Spen_Loop ~epm
iz . Subiames I ¢ reset_flag_
Estimates Subibames_ it - @ reset_flag_
Estimate Subfames_Body T - @ speech_fri
Ciosed Lo - ~syn
@ =top Supames_BodyZ i bedtx ol |
L doodebook_cn Cogebook_CM 8‘; dor 124
1 wpaote Lipgate B mcu ‘er_ /
- =)= T = =
Models | Imports |-_,| q||_Hierarchy | Behaviors | Channels | Raw I
X Compile | Simulate | Analyze | Refne | Shell |
COMpLUTING STatstcs 10 Operanons Y
Computing statistics for traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Behavior profiling J‘
Analyze A

The next step is to analyze the performance of this architecture. Recall that we have a
timing constrint to meet. We must therefore check if a purely software implementation
would still suffice. If not, we will try some other architecture. Now we can analyze the
performance of this pure software mapping by selecting Validation menu and select

Analyze .

57

Chapter 3. Architecture Exploration

3.2.1. Estimate performance (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 vwa % X[BEE] B @ | 0]
— [J Code Computation | Data.
Mame Type N [instructions] [cyclpes] [chars
B B ncoderSpel & Coder 1 240239673 2]
o dt<_mode in hoal
el new_frame in event
- serial out unsigned hit[243:0]
e serialbits_ready out event
|-+ speech_samples in hit[12:0] (160]
-0 bectt_ctrl aut unsigned kit[5:0]
= @prm shart int [57]
I @reset_flag_1 hool
- @reset_flag_2 hool
I @speech_frame shortint [160]
— g syn short int [160]
= & teot<_ctrl_val unsigned hit3:0]
—Sicoder_12k2 Coder_12kZ 163 1456526 g1
£ @ainnot_owoonoo Moot Pecmonn ima - Al ¥4
F S (| S | = 1 I =
Models IEL'A Hierarchy DLIA] Raw | DsP I

X Compile | Simulate | Analyze | Refne | Shell |
STaf. retargetanle profng

£
Generating internal data structure for profiling
Deriving rawy statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
£
2

[Ready

As we can see in the logging window, a retargeted profiling is being performed. Notice
in the log information that raw statistic generated during profiling are used here. The raw
statistics are take as an input to the analysis tool that generates statistics for the current
architecture. Since, we know the parameters of the DSP, the analysis tool can provide a
more accurate measure of actual timing. When that is done, the profiled data is displayed
in the design window with the DSP tab. Notice that this tab has appeared at the bottom
of the design data. The total computation time is shown in terms of number of DSP clock
cycles.

58

Chapter 3. Architecture Exploration

3.2.2. Estimate performance (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
0 i«[EQ I é“b G I ¢ B ~ Instrumentation B @ I .l
Compile -
4 — | |Tume M Code Computation | Data
Design B4 Main Simulate ¥R [instructions] | [cwcles] [chars
L] ﬁ"-.-"|:||::|:||:1Er'EipE| Open Terminal - 1 240239679 ild}
Kill simulation - | 1 bool
View Log... in even.t _
——— | outunsigned hit[24.3:0]
Profile v out event
analyze 5 in bit[12:0] [160]
Evaluate out unsignad kit[5:0]
Metrics... shart int [57]
- bool
Estimates hoal
— Estimate short int [160]
hort int [160]
Stoy 8
. .f ——r— unsigned hit3:0]
—Sicoder_12k2 Coder_12kZ 163 1456526 g1
£ @ainnot_owoonoo Moot Pecmonn ima - Al ¥4
S — = | | i = I =
models [[img | A | Hierarchy [| { CRaw] psp |

X Compile | Simulate | Analyze | Refne | Shell |
STam. refargetanle profinng i
Generating internal data structure for profiling
Deriving rawy statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
£
2

Show estimated values

The number of computation cycles is a relevant metric for observation. However, it must
be converted to an absolute measure of time so that we may directly verify if this ar-
chitecture meets the demands. To find out the real execution time in terms of seconds,
we turn on the option for estimation as follows. Go to Validation menu and select
Estimates .

59

Chapter 3. Architecture Exploration

3.2.3. Estimate performance (cont’d)

=vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 vwa % X[BEE] B @ | 0]
e [J Mame IType |N |Cnde |Cnmputati0n IData |Hea|
Design & Coder 1 40039947 us 17396 B
L] B vocoderspe | dt<_mode in bool
e new_frame in event
¢ serial out unsigned hit[243:0]
o serialhits_ready out event
o speech_samples in bit[12:0] [160]
- talt_ctrl out unsigned hit[5:0]
= @ prm short int [37] 114 B
- @reset_flag_1 hool 2B
- areset_flag_g bool 2B
- @speech_frame shortint [160] 0B
- @asyn shart int [160] 0B
= @ tedt_ctrl_wval unsigned hit[5:0] [IN=}
—Sbcoder_12k2 Coder_12kZ 163 247804 us 16265 B
/ —%post_prncess Post_Process 163 00us G228 /
-] = -1 T =

F =
Models IEL'A Hierarchy DLIA] Raw | DsP I

X Compile | Simulate | Analyze | Refne | Shell |
STam. refargetanle profinng i
Generating internal data structure for profiling
Deriving rawy statistics from SIR file
Computing weighted statistics
Annotating weighted statistics to SIR file
End: retargetable profiling
£
2

[Ready

As seen in the design window, the computation time is in terms of us . As we can
see in the row of behavior Coder , the estimated execution time (~ 4.00 seconds)
exceeds the timing constraint of 3.26 seconds. Therefore, the pure software solution
with a single Motorola_DSP56600 does not work. We, therefore, need to experiment
with other architectures.

60

Chapter 3. Architecture Exploration

3.3. Try software/hardware partition

From what we observed while studying the vocoder specification, the design is mostly
sequential. There is not much parallelism to exploit. What we need to reduce the execu-
tion time is a much faster component than the DSP we used. Some of the critical time
consuming tasks may be mapped to a fast hardware. In this iteration, we will try to add
one hardware component along with the DSP to implement the design. As we found out
earlier, one of the computationally intensive and critical part in the Vocoder is the Code-
book behavior. We hope to speed it up by mapping it to a custom hardware component
and execute the remaining behaviors on the DSP.

61

Chapter 3. Architecture Exploration

3.3.1. Try software/hardware partition (cont’d)

§|_\aocoder.sce - 5o0C Environment - [Coder - WocoderSpec - YocoderSpec.sir'] ||Q|E|E
[5] Eile Edit ¥iew Emject §ynthesis| Validation Windows Help == x|

10 i’n[=g= I é“b Processing elements... _l|% ¢ I .l
I Map Wariables

@ 8 IType | I+ | Code | Computation IData | Hea)

Y I 0o Architecture Refinement 1 2003994 7 us 17396 B
el Busses.. in hoal
E)
5 Map Channels in event

e o aut unsigned bit[243:0]
g|g Communication Refinement Ly out event

E RTL Units... ples in bit[12:0] [160]
% RTL Synthesis.. out unsigned hit[5:0]
shart int [57] 114 B
Import Decisions... ool > B
@ Stop hool 2B
J F @speech_jrame shortint [160] ez B
- @syn short int [160] jz0 B
= @ tedt_ctrl_wval unsigned hit[5:0] [IN=}
—Sbcoder_12k2 Coder_12k2 163 242804 us 16265 B
—prost_prncess Post_Process 163 00us G228 /
-] -1 | =

F =
Models IEL'A Hierarchy D

Raw | DSP |

X Compile | Simulate | Analyze | Refne | Shell |
i STam. refargetanle profinng i
Generating internal data structure for profiling
Deriving rawy statistics from SIR file J
£
2

Computing weighted statistics
Annatating weighted statistics to SIR file
End: retargetable profiling

Frocessing element allocation

As we did earlier, while selecting the processor, go to the Synthesis menu and select
Processing elements .

62

Chapter 3. Architecture Exploration

3.3.2. Try software/hardware partition (cont’d)

= vocoder.sce - S0C Enviranment - [Cader - VocaderSpec - YacaderSpec.si’] ||Q|E|E
[C] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

IR IEEYES ElsEEEEIE)

Desig
TEY| [rame [Type [clock pHz) [Program (kE] [Data (k&) [instruction [bits] [Data ot
DSF__ Motorala_DSF56600 0.0 320 540 2] 76 oK

Cancel

41

Help

Add...
Remove |
Tahles... |
£
e =
Maode
X ¢y
i g
] | =)
)
Annotating weighted statistics to SIR file
End: retargetable profiling
i £
[Ready A

This time, the PE Allocation table pops up. As we can see, the previously allocated
DSP is displayed. To insert the hardware component, press Add button to go to our
database.

63

Chapter 3. Architecture Exploration

3.3.3. Try software/hardware partition (cont’d)

D3P HW_Harvard 120.0 2400 1.0 32

dard 100.0 1000 1.0

Frocessar HY
kem

Custom Hal

Controller

In the Custom Hardware category, two general types of hardware components are
displayed. Here we will use the standard hardware design with a datapath and a control
unit. Select the HW_Standard and press OK to confirm the selection.

64

Chapter 3. Architecture Exploration

3.3.4. Try software/hardware partition (cont’d)

§| vocodersce - S0C Environment - [Main - YocoderSpec - WocoderSpec.sir] ||Q|E|E
{] Eile Edit ¥iew Project Synthesis Validation Windows Help == x|
D2 Bl 8 vwax X[[FFE] B e 0]
A| [mame [Type [crock pHz) [Program k8] [Data [kB] | instruction bits] | Data (ot 1693
DSF Motorola_DSPS6600 60.0 32.0 4.0 24 15 Ok |
PEC HW_Standard 100.0 128 32
Cancel |
Help |
9266
Add... 428
3572
Remave |
Tahles... |
-
Mode
__H Cq
] | =
A
[Ready 4

Now the HW_Standard component is added to the PE Allocation table. In the same
way we did for the DSP component, we simply rename it to "HW" to distinguish it.
Notice that for the hardware component, some metrics are flexible. For instance, the
clock period may be changed. However, we stay with the current speed of 100 Mhz for
demo purpose.

65

Chapter 3. Architecture Exploration

3.3.5. Try software/hardware partition (cont’d)

=|vocoder.sce - 30C Enviranment - [Main - VocoderSpec - YocoderSpec.sif |Q|E|E
] Eile Edit View Pmject Synthesis Walidation Windows Help == x|
Dz 8@ 8 ve X X[EEE] B @ | 0]
.. —
Desig ns]
3| [wame [Type [crock pHz) [Program k8] [Data [kB] | instruction bits] | Data (ot 1693
DSP Motarola_DSPSEGON B0.0 32.0 6400 24 16 [ok
HW HW_Standard 100.0 128 32
Cancel |
Help |
59286
mid.. | [[422
9572
Remove |
Tahles... |
-~
hode
__H Cq
] | =
A
[Ready A

After we renamed it, press OK button to complete component allocation.

66

Chapter 3. Architecture Exploration

3.3.6. Try software/hardware partition (cont’d)

= | wocoder.sce - 50C Environment - [Codebook - YocoderSpec - VocoderSpec sir'] |Q|E|E
7] Eile Edit View Pmject Synthesis Walidation Windows Help == x|
NI IEIEEES B aaEEEIE]
S X [
i |Type IF'E | 31l vame
coder Coger o5F & Codebook
.E".,."|:||::|:||:1Er'EiF|E| B 1 oo : PIOLEss Fre_Process i ana
B & comer TEKE Codar 12RE o code
W seq7 Coger TERE_SeqT e e
1 i_analvsis LFAnaisis |) d
w-E b open ioop Operr_ Loop gga?n_c? i
m-Ebsuprames Subitames e gain_pl
M o it Subrames_init —G7h1
s bodv? Subfames_ Bady —CF res?
£ heizzed loop Closed Loog G270
MW ior_bodyE SubfamesBooys ot
D comenook_ci Cogebost_CM = Ly
Nop BT
: Seq7 I @ codeb
Code_T@AG_35bits — @htb
Cogebook_Seqs Al | [wres2h /
ESU— =] |] =
Models | ImE: | A|[_Hierarchy | Benaviors | channels | Raw | D3P I
__E Compile | Sitmulate | Analyze | Refine | Shell |
[Ready A

Remember we have already specified the top level behavior and mapped all behaviors
to DSP in the first iteration. That information is still there and we do not have to specify

it again. We only need to map the Codebook behavior to the HW component, as
suggested earlier.

Browse the hierarchy tree to locate behavior Codebook . Click on Codebook in the
"PE" column. Click on HW in the drop box to map Codebook to HW. This would map
the entire subtree of behaviors under Codebook to custom hardware.

67

Chapter 3. Architecture Exploration

3.3.7. Try software/hardware partition (cont’d)

§| vocodersce - S0C Environment - [Codehook - VYocoderSpec - WocoderSpec.sir] ||Q|E|E
{] Eile Edit ¥iew Project Synthesis Validation Windows Help == x|
NI IEIEEES B aaEEEIE]
X [
i |Type IF'E | Sl MEmE
Design .’ o LR A= T
] ; ;. e —————
B B ncoderSpel % i lp_anasis LF_Analysis & Codebook
m-E b apen ioop Cperr_ Loop | ana
- psubdames SupRmes &
L o i Sublames it o code
| @ oyt Subtizmes Body T o exc
B eiozed ioop Gioses Loop o gain_code
M o podvz Subrames_BooyE 7 gain_pit
- codebook_cim Cogebook_CMN et
Mop i i resg
. 4 ¢ TO
Cogebosk_SeqT | o
B B coge TaGT Code TOAE 3bids &
o | P Codebosk_5eq? ey
W i o _code Buitd CI_Code | vz
[T]; HE Lipdate I @ codeb
M o end SubiamesEnd - @hlb
N SR Sicade £ s e £
SSR— || | I S| =
Madeals | ImE:l 1 Hierarchy | Behaviors | Channels | Raw | DSP
__E Compile | Simulate | Analyze | Refine | Shell |
[Ready 4

After the mapping, we will see the subtree rooted at Codebook is highlighted in blue in
contrast to the rest behaviors in red that are mapped to DSP.

68

3.4. Architecture refinement

Chapter 3. Architecture Exploration

=|vocoder.sce - 30C Enviranment - [Cadebook - VocoderSpec - Vocoder3pec.sir'] |Q|E|E
7] Eile Edit ¥iew Project §ynthesis| Walidation Windows Help == x|
| = [(= [é“b Processing elements... _l|%) I .l
..... Map Mariables I
H[@ i |Type IF'E | i MEmE
Design E’ 09 Architecture Refinement CITEr_TIRE_ ooy T
H LF_Anziisis [y —
- Codehonk
N Busses.. Open_Laop 8’_(9 s
EE2 78 Map Channels Subirames o6 cod
Fore o icafion Ref ’ Subrzmes_inidt mo cooe
| 2|8 Communication Refinemen Subitames_ Bogy 1 o axc
3 RTL Units... Closed Loop —g gain_code
: . Subrames_Bodyé o gain_pit
= fa RTL Synthesis.. Codepook_CH o 11
Import Decisions... 0,0 | res?
e
. ! T
@ stop Cofebook_Seql s
1 coge 1440 Code TOAE 3bids &
I 522 Codebosk_5eq? ey
W i o _code Buitd CI_Code o yz
[T]; 1 upaiate Lipdate [@codeb
W ior ang Subiames Fnd - @hib
. _ @
P Shift Sirmads s o £
U =0 [-] =
Models | ImE:l 1 Hierarchy | Behaviors | Channels | Raws | D3P
__E Compile | Sitmulate | Analyze | Refine | Shell |
Architecture Refinement 4

Now we can refine the specification model into an architecture model, which will exactly
reflect the this architecture and mapping decisions. This can be done either manually or
automatically. As we mentioned earlier, an architecture refinement tool is integrated in
SCE. To invoke the tool, go to Synthesis menu and select Architecture Refinement
. The tool changes the model to reflect the partition we created and also introduces
synchronization between the parallely executing components. Note that we have not
decided to Map variables explicitly to components. For demo purposes, we will leave
this decision to be made automatically by the refinement tool. However, it needs to
be mentioned that the designer may choose to map variables in the design as deemed

suitable.

69

Chapter 3. Architecture Exploration

3.4.1. Architecture refinement (cont’d)

=|vocoder.sce - S0C Enviranment - [Codebook - YocoderSpec - VocoderSpec s |Q|E|E
7] Eile Edit View Pmject Synthesis Walidation Windows Help == x|
Dz 8g g vae % K| EEE B e | e
Type PE i
A ST |L,3‘Ift'r_ TERE_ 5T I | MName
. . : L
B = ocoderSper % § l_anapsis LF_Analsis &» Codebook
m-E b apen ioop Cperr_ Loop | ana
- subtames Subrrames &
L o it Subrames_init o code
| @ oyt Subtizmes Body T o exc
[o e R — - oo o -+ gain_code
| o poaye =) Architecture Refinement [x] T ¢ gain_pit
m-E b comebook_c T _g b
[Behavior refinement | U —(p_r:DSZ
I Variahle refinement 7 L
551t o7
= Scheduling refinemeant g2 Py
| i o yz
[T]; 1 update - ¢ codeb
W ior ang |_ o - @hlb
L il oo civmais start ﬂl s e £
E— = A |] =
Models | ImE-_, | 1 Hierarchy | Behaviors | Channels | Raws | D3P
__E Compile | Sitmulate | Analyze | Refine | Shell |
Freparing refinement... 4

A dialog box pops up for selecting specific refinement tasks of architecture refinement.
By default, all tasks will be performed in one go. Now press the Start buttonto start the
refinement. It must be noted that the user has an option to do the architecture refinements
one step at a time. For instance, a designer may want to stop at behavior refinement if
he is not primarily concerned about observing the memory requirements or the schedule
on each component. Nevertheless, in our demo we perform all steps to generate the final

architecture model.

70

Chapter 3. Architecture Exploration

3.4.2. Architecture refinement (cont’d)

§| wocodersce - S0C Environment - [Main - WocoderSpec - YocoderSpec.arch.sir [read-only]] ||Q|E|E

[C] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
DNz d@ s oo xbE X FFEl 860

L F | I

Mame B Code
I MName Type N I
C.5iF W coer & rain 1
B8vocoderspec.arch.sir A manitor - g dt<_mode bool
A stimulus I @ new_frame avent
= ¢ serial_hits unsigned hit[243:0]

- ¢ serialbits_ready event
— @speech_samples bit[12:0] [160]
- @ tdtx_ctrl unsigned bit3:0]

—& coder Coder 1
& monitor Monitor 1
L & stimulus Stimulus 1
P (= | AT | =

Models | Imports | Sources | Hierarchy | Eehaviars | Channels | Raw | DsSP | HW |

__E Compile | Simulate | Analyze | Refine | Shell |
— 3 glohal channels q

7|
[Ready A

As displayed in the logging window, the architecture refinement is being performed. Af-
ter the refinement, the newly generated architecture model VocoderSpec.arch.sir is
displayed to the design window. It is also added to the current project window, under the
specification model VocoderSpec.sir to indicate that it was derived from Vocoder-
Spec.sir . Please note that, while the architecture refinement only took a few seconds
to generate, a whole new model has been created. For example, 1693 lines of code were
deleted, 2290 lines of new code were added and 387 lines of code were modified by the
refinement tool.

71

Chapter 3. Architecture Exploration

3.5. Browse architecture model

In this section we will look at the architecture model to see some of its characteristics.

= vocoder.sce - S0C Enviranment - [Cader - Vocaderérch - YVacoderarch sif [EEE
B8 Eile Edit Miew | Project Synthesis Yalidation Windows Help =~ x|
Source.. % ElEGESEEIE
Hierarchy...
~Comeetoiy. e [1yee
Design _ onmeeviy- o dbx_mode in bool
B {HVocoder, Graphs = o nesy_frame in event
I—m Trace.. o+ serial out unsgigy
Quality Metrics... o serialbits_ready out evernt
—_— | o speech_samples in bit[12:0
E ShTGeY TESIEmE: o bectts_ctrl out unsigr
te:= Show Children O AR_CC_ch_ana_HW_to_DSP _CH_shai
Customize .. rAR_CC_code_DSP_to_HW _CH_shoi
@ AR_CC_code_HW_to_DSP _CH_shoi
o AR_CC_exc_i_ DSP_to_HW _CH_shoi
»AR_CC_gain_code_HW_to_D35P _CH_shai
O AR_CC_gain_pit_D3P_to_HW _CH_shoi
0 AR_CC_h1_DSP_to_HwW _CH_shoi
AR_CC_L_pn_seed_t«_DSP_to_HW _CH_int
AR_CC_L_pn_seed_ts_HW_to_DEP _CH_int /
~l [- | | N o
Madels | Imports | Sources Hierarchy | Behaviors | Channels J
__ﬂ Compile | Simulate | analyze | Refine | Shell |
Yiew graphical hierarchy A

Since the top level behavior is Coder , the test bench behaviors are not changed during
architecture refinement. Therefore let’s select the Coder by clicking in the correspond-
ing row in the design window. We would like to see how the design looks when it is
mapped to the selected architecture. To view the hierarchy of the new Coder behavior,
goto view menu and select Hierarchy .

72

Chapter 3. Architecture Exploration

3.5.1. Browse architecture model (cont’d)

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif |Q|E|E
98 File Edit Miew Project Synthesis Validation Windows Help == x|
= B@ 8| wax X EEE] & @ ®
§| Coder - Vocoderérch - SpecC Hieraﬂr_ (=]
— = B T |Type
Desi|| Mindow Yiew o di_mode in bool
& : [|| | rev_frame in event
i coder o serial out unsige
i e serialhits_ready out event
[i H ¢ speech_samples in hit[12:0
: Oob-cdix_ctrl out unsgigy
: v AR_CC_ch_ana_HW_to_D3P _CH_shoi
: v AR_CC_code_DSP_to_HW _CH_shoi
i AR_CC_code_HW_to_DSP _CH_shaoi
O AR_CC_exc_i_DSP_to_HW _CH_shoi
O AR_CC_gain_code_HW_to_DSP _CH_shal
O AR_CC_gain_pit_DSP_ta_HW _CH_shoi
v AR_CC_h1_DSP_to_HW _CH_shoi
@ AR_CC_L_pn_seed_t<_DSP_to_HW _CH_int
@ AR_CC_L_pn_seed_t<_HW_to_DSP _CH_int /
= =T T == | =
Madeals | Imports | Sources Hierarchy | EBehaviors | Channels J
__E Compile | Sitmulate | Analyze | Refine | Shell |
[Ready A

A window pops up, showing all sub-behaviors of the Coder behavior. As we can see,
the top level behavior Coder in the architecture model is composed of two new behav-
iors, DSP and HW, which were constructed and inserted during architecture refinement.
These behaviors at the top level indicate the presence of two componenets selected in the
architecture. Note that they are also composed in parallel, which represents the actual
semantics of the architecture model.

73

Chapter 3. Architecture Exploration

3.5.2. Browse architecture model (cont’d)

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif |Q|E|E
98 File Edit Miew Project Synthesis Validation Windows Help == x|
= B@ & wax K EFE B ® @
= Cader- Vacoderarch - SpecC Hierarchy Chart [EEIE
— = — |/ Mame % |Type
Desi| | Window M o+ dt=_made in hool
E Connectivity 1 & nesy_frame in event
Zoom in Ctrl++ Coder o+ serial aut unsigy
z) i i e serialhits_ready out event
coomaut Lt T ¢ speech_samples in hit[12:0
Add level Chrl+ o teclbe_ctrl out unsigr
RBemove level Ctl+R @ AR_CC_ch_ana_HW_to_DsP _CH_shoi
— - — O &F_CC_code_DSP_to_HW _CH_shoi
i AR_CC_code_HW_to_DSP _CH_shaoi
O AR_CC_exc_i_DSP_to_HW _CH_shoi
rAR_CC_gain_code_HW_to_DsP _CH_shaoi
rAR_CC_gain_pit_DSP_to_HW _CH_shol
T AR_CC_h1_DSP_ta_HW _CH_shoi
@ AR_CC_L_pn_seed_t<_DSP_to_HW _CH_int
@ AR_CC_L_pn_seed_t<_HW_to_DSP _CH_int /
] -~ | =
Mo J
X q
[Ready A

We would now like to see how the DSP and HW behaviors are communicating. This will
verify if the refinement process was correctly executed. Go to View menu and select
Connectivity to see the connectivity between DSP and HW components.

74

Chapter 3. Architecture Exploration

3.5.3. Browse architecture model (cont’d)

o5 Eile Edit Miew Project Synthesis Validation Windows

[=[Elf]
Help »|~| x|

I~ —|
iG]

X

Window Wiew

(& R_CC_ L_pn_seed_t_HW_to_DSH

AR_GC_TO_DSP_to_Hy

AR_CC_ch_ana HW_to_DSP

AF_GC_code_DSP_to HW

AR_CC_code HW to_DSP

AR_CE_enc_ LDSP_fo_Hw

AR_CC_gain_code_HY. fo_DSP

AR_GO_gain_pit_DSP_to_HW

AR_CC_h1_D5P_to_Hv

AR_CC_tes2_DSP_fo_HW

4 R_CC_frdbi_cir_cur_DSP_to_H

AR_CC_ MR DSP_to_HW

AR_CC_W1_DSP_to_Hw

AR_CC_y2 DSP_to_HW

AR_CC_y2_HW to_DSP

=]

ool
vent
unsigy
event
it[1z:0
unsigy
H_shol
H_shol
H_shol
H_shol
H_shal
H_shal
H_shol
H_int
H_int

[Ready

)

Enlarge the new window and scroll down to view the connectivity of the two compo-
nents. We can see that DSP and HW components are connected through global variable
channels, which were inserted during the architecture refinement. This is different from
the original specification model, where only global variables were used for communica-

tion.

75

Chapter 3. Architecture Exploration

3.5.4. Browse architecture model (cont’d)

Desil | Window | Miewy
E € Close Cirl+W [rseed_bir_ o DS

AR_GC_TO_DSP_to_HY

AR_CC_ch_ana HW_to_DSP

AF_GC_code_DSP_to HW

AR_CC_code HW to_DSP

AR_CE_enc_ LDSP_fo_Hw

AR_CC_gain_code_HY. fo_DSP

AR_CC_gain_pit DSP_fo_HW

AR_CC_h1_D5P_to_Hv

AR_CC_tes2_DSP_fo_HW

4 R_CC_frdbi_cir_cur_DSP_to_H

AR_CC_ MR DSP_to_HW

AR_CC_W1_DSP_to_Hw

I~ —|
iG]

AR_CC_y2 DSP_to_HW

AR_CC_y2_HW to_DSP

X

[=I[Bl[]
98 File Edit Miew Project Synthesis Validation Windows Help == x|
............... | =1 .

=]

ool
vent
unsigy
event
it[1z:0
unsigy
H_shol
H_shol
H_shol
H_shol
H_shal
H_shal
H_shol
H_int
H_int

[Ready

)

After checking the new architecture model, we can close the pop up window and go

back to the design window.

76

3.6. Validate architecture model

Chapter 3. Architecture Exploration

arch.sir [read-only]] Q @ @
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Oz @@ &[vo Xba J[F I%@[q
X
Mame _J Code
I Name Type i
Design I L yp [statemer
=2V ocoderSpec. sir Homain 1
L/ ocaderspec.archsir || D ose - g dbx_mode hool
i pre_process — e new_frame event
L]
i coger TERE L g serial_hits unsigned bit[z43:0]
F;Wposf_pmcess - ¢ serialbits_ready event
8 codetook - @speech_samples hit12:0] [160]
Fronitor g beeite_ctr unsigned bit[:0]
A stimulus —& coder Coder 1
& monitor Monitor 1
L & stimulus Stimulus 1
I =)= | =] = I -
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | Raw | DsSP | HW |
E Complle | Simulate | Analyze | Refine | Shell |
i -3 glokal channels i
End of Schedule Refinement
[Ready A

Like we did for the specification model, we also change the name of the new model
to be VocoderArch.sir in the project window. The renaming is just for the purpose of
maintaining a nomenclature schema and to correctly identify the individual models.

77

Chapter 3. Architecture Exploration

3.6.1. Validate architecture model (cont’d)

= vocoder.sce - 50C Enviranment - [Main - VocoderArch - YocoderArch.sir’] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
| N Erq'I (= I é“b e I 3 E r Instrumentation |f@ e I .l
Compile 1
) =]
P Mame Type M
Design [Cescriptior ~ Simulate I yp
=2V ocoderSpec. sir Open Terminal - & Main 1
» = Yocodersrch.siv Kill simulation - — g dbs_mode hoal
) eSS — g new_frame event
VIEWLDQ... o TARE | n
- = & serial_hits unsigned hit[243:0]
Profile L process I @ setialbits_ready event
Analyze - codebook — @ speech_samples biff12:0] [160)
Bl g bedtx_ctr unsigned bit[5:0]
Metrics... —Sﬁcndgr Coder !
. & monitor Monitor 1
4 EgliveiEs L & stimulus Stimulus 1
Estimate
.Stgp
= I L | I -
Models | Imparts | Sources | Hierarchy | Eehaviors | Channels | Raw | D3P | HW |
__E Compile | Simulate | Analyze | Refine | Shell |
— 3 global channers _\
Compile A

So far we have graphically visualized the automatically generated architecture. We have
seen that in terms of its structural composition, the model meets the semantics of an
architecture level model in our SoC methodology. However, we also need to confirm that
the model has not lost any of its functionality in the refinement process. In other words
the new model must be functionally equivalent to the specification. We will validate the
architecture model through simulation. But first we need to compile the model into an
executable. To compile the architecture model to executable, go to Validation menu
and select Compile .

78

Chapter 3. Architecture Exploration

3.6.2. Validate architecture model (cont’d)

=|vocoder.sce - S0C Enviranment - [Main - Yacoderfrch - YocoderArch sif |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
|D#Inﬁié ')@IX[:' Instrumentation |f@@ I.l
Compile 1
T eEE T | Mame Type P
Design I Descriptior ___ Simulate _ yp
=2V ocoderSpec. sir Open Terminal - & Main 1
» = Yocodersrch.siv Kill simulation - — g dbs_mode hoal
View Log eSS — g new_frame event
LRSI e TARE L g serial_bits unsigned bit[z43:0]
Profile L process I @ setialbits_ready event
Analyze - codetonk I~ o spesch_samples bif1 2:0] [160)
Eweluaie @ becite_ctr unsigred bitfs:0]
e —& coder Coder 1
T & monitor Monitor 1
4 EgliveiEs L & stimulus Stimulus 1
Estimate
.Stgp
= I L | I -
Models | Imparts | Sources | Hierarchy | Eehaviors | Channels | Raw | D3P | HW |
__E Compile | Sitmulate | Analyze | Refine | Shell |
i TApUL "W OCoderarch.ce 5
Output: "Vocodersrch.o”
Linking...
Input: "Yocoderarch.o”
Cutput: "Wocoderarch”
Done. JI
Simulate A

The messages in the logging window shows that the architecture model is compiled suc-
cessfully without any syntax error. Now in order to verify that it is functionally equiva-
lent to the specification model, we will simulate the compiled architecture model on the
same set of speech data used in the specification validation. Go to Validation menu
and select Simulate .

79

Chapter 3. Architecture Exploration

3.6.3. Validate architecture model (cont’d)

=|vocoder.sce - S0C Enviranment - [Main - Yacoderfrch - YocoderArch sif |Q|E|E
[CLFile Edit View Project Senthesis Validation Window: Help == x|
— = | Yocoderarch [=][=l[x]
_| frame=147 encoding delay = 0,00 mz
e frame=148 encoding delay = 0,00 me
— frame=149 encoding delay = 0,00 ms T 1
(] frame=150 encoding delay = 0,00 mz ame ype
frame=1h1 encoding delay = 0,00 mz ;
E frame=152 encoding delay = 0,00 me P 1ain !
frame=153 encoding delay = 0,00 ms — @ db_mode boal
frame=154 encoding delay = 0,00 mz — @ new_frame event
frame=155 encoding delay = 0,00 ms
frame=156 encoding delay = 0,00 me B Gser?al—_blts unsigned bit[243:0]
frame=157 encoding delay = 0,00 ms — ¢ serialbits_ready event
frame=158 encoding delay = 0,00 ms | it 7
frame=159 encoding delay = 0,00 ms @ speech_samples blt[1_2.U] [E.U]
frame=160 encoding delay = 0,00 mg — o bdt<_ctrl unzigned bitf3:0]
frame=161 encoding delay = 0,00 ms —Sﬁcnder Coder 1
frame=162 encoding delay = 0,00 ms |]]
frame=163 encoding delay = 0,00 ms Sﬁmlunltor ManItDr !
— & stimulus Stimulus 1
done, 163 frames encoded
Files speechfiles/nodtx_good,bit and nodtx.bit are identical
imulation exited with status 0
resz return to conkinue L, .,
[T~ | == I -
Models | Imparts | Sources | Hierarchy | Behaviors | Channels | Raw | D3P | HW |
__E Compile | Simulate | Analyze | Refine | Shell |
| [% =term -tite vocoderarch -e findsh -¢ AVocadersrch speechfiles/spoch_unxing nodt<hit nodts && diff -5 speechfiles/nodt<_good. bit
nodt=.hit; echo "Simulation exited with status §7" ;echo "Press return to continue " ;read confirm
[Ready A

The simulation run is displayed in a new terminal window. As we can see, the architec-
ture model was simulated successfully for all 163 frames speech data. The result bit file
is also compared with the expected golden output given with the Vocoder standard. We
have thus vreified that the generated architecture model is functionally correct. It must
be noted as before that the testing process requires fairly intensive execution, but for the
demo purposes we will omit multiple simulations and just show the concept.

80

Chapter 3. Architecture Exploration

3.7. Estimate performance

=|vocoder.sce - S0C Enviranment - [Main - Yacoderfrch - YocoderArch sif ||Q|E|E
[F] Eile Edit View Project Synthesis Validation | Windows Help =|=| x|
10 iﬁ-[nﬁ[@lo@lxg = Instrumentation B @ I .l
Compile 1
—_—] _J
i Mame Type M
Design I Descriptior ~ Simulate _ P
=2V ocoderSpec. sir Open Terminal - &rain 1
" yocoderarch.sir Eill simulation - — @ ut<_mode bool
View Log eSS — g new_frame event
B R L g serial_bits unsigned bit[z43:0]
Erofile SLprCess - @ seralbits_ready event
Analyze - codenook L o speech_samples bit]l 2:0] [160]
SpalEE - L bt _ctr unsignad bit[5:0]
. & coder Coder 1
- & monitor Monitor 1
o (Eeife L& stimulus Stimulus 1
Estimate
. Stap
i~ | = | -
Models | Imparts | Sources | Hierarchy | Behaviors | Channels | Raw | D3P | HW |

E Compile | Simulate | Analyze | Refine | Shell |

% wterm -title Wocoderarch -e fbindsh -¢ AVocaderarch speechifilessspch_un<inp nodi<hit nodt< && diff -5 speechfilesimodt<_gaod bit
nodt=.hit; echo "Simulation exited with status §7" ;echo "Press return to continue " ;read confirm
Simulation exited, exit status: 0

Analyze 4

So far we have verified that the generated architecture model is semantically and func-
tionally correct. However, the whole idea behind the architecture exploration process is
to ensure that design constrints are met. If may be recalled that we abondoned the pure
software implementation because it failed on meeting the timing constraint. It is now
time for us to verify if the timing is met by using the combined software/hardware de-
sign. To evaluate this software and hardware partitioning, go to Validation menu and
select Analyze .

81

Chapter 3. Architecture Exploration

3.7.1. Estimate performance (cont’d)

= vocoder.sce - 30C Enviranment - [Behavior_DSP - YocoderArch - Vocoderérch.sir] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
|Dw[nﬁiél|oo[3<\[<klll [Be 0]

e i | _J me |Type I i I Code I Computation | I
Design -4 tiain Behavior_DSP 1 2669435.0 us |
L :fIVDCDderSPEf W coder Lo BR_CC_ch_ana_HW_to_DSP _IR_short_int__10_

focoder; || | 8R_CC_code_HW_to_DSP _IR_short_int__40_
Lo 8R_CC_exc_i_DSP_to_HwW _I15_short_int__40_
Los? AR_CC_gain_code_HW_to_DSP _IR_short_int
Los? AR_CC_gain_pit_DSP_to_HW _I5_shor_int
LoP AR_CC_h1_DSP_to_HwW _IS_short_int__40_
'monitur_ vl AR_CC_resz_DSP_to_HW _I5_short_int__40_
AF stimulus Lo? nR_CC_TO_DSP_to_HW _I5_short_int
Lo BR_CC_sn_DSP_ta_HW _I5_short_int__40_
Lo aR_CC_yw1_DSP_ta_HW _I5_short_int__40_
Lo 8R_CC_yw2_DEP_ta_HW _I5_short_int__40_
Lo BR_CC_y2_HW_to_DSP _IR_short_int__40_
Lo dix_mode in bool
Lo new_frame in event /
~I | I | -1 I =
tadels | Im L'A Hiararchy [LIAI Ramw | DsP | Hw |

E Compile | Sitmulate | analyze | Refine | Shell |

i COMpUING Safistcs Tor rame i

Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file

End: Profiling and retargetable profiling Jl

|I:?;eady A

As we can see in the logging window, a profiling retargeted at the DSP is being per-
formed. When it finishes, the profiled data is presented in the design window. Clicking
DSP in the hierarchy tree, we find out that the execution of software part (behavior
Behavior_DSP) takes 2.67 seconds.

82

Chapter 3. Architecture Exploration

3.7.2. Estimate performance (cont’d)

=|vocoder.sce - S0C Enviranment - [Codebook_CHN_HW - YocoderArch - YocoderArch.sir’] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 vwa % X[EEE] B @ | 0]
73{ Mama [J |Type IN ICode IComputation |Data
Design -4 tiain hook_CM_HW 1 5437034 us 10872
W coger R_CC_ch_ana_HW_to_DSP _IS_short_int__10_
R_CC_code_HW_ta_DSP _I5_shaort_int__40_
R_CC_exc_i_DSP_to_HW _IR_short_int__40_
R_CC_gain_code_HW_to_DSP _I5_shor_int
F_CC_gain_pit_DSP_to_HW _IR_shor_int
F_CC_h1_DSP_to_HW _IR_short_int__40_
¥ J monitar R_CC_resz_DSP_to_HW _IR_short_int__40_
AF stimulus R_CC_TO_DSP_to_HW _IR_shor_int
R_CC_xn_D&SP_to_Hw _IR_shor_int__40_
F_CC_y1_DEP_to_HW _IR_shaor_int__40_
F_CC_y2_DSP_to_HW _IR_shar_int__40_
F_CC_y2_H¥_to_DSP _I5_shaort_int__40_
_ana shart int [10] 4C
hde shart int [40] 16 /
~l =R =l &= | I
Madels lmlLﬁ Hierarchy DLIA] Raw | DSP | HW I

X Compile | Simulate | Analyze | Refne | Shell |

COMpUING Safistcs Tor rame i
Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file

End: Profiling and retargetable profiling Jl

|I:?;eady A

Clicking HW in the hierarchy tree, we can see that the execution time for the hardware
part (behavior Codebook CN_HW) is 0.54 seconds. Since the Codebook behavior
was executed in sequential composition with the rest of the design, the latency of the
design is the sum of DSP and HW execution time, which is 3.21 seconds. Recall that the
timing requirement is to be less than 3.26 seconds for the given speech data. Therefore,
the current architecture and mapping are acceptable. We have therefore found a suitable
architecture that we may map our specification to This concludes the step of architecture
exploration.

83

Chapter 3. Architecture Exploration

84

Chapter 4. Communication Synthesis

Communication synthesis is the second part of the system level synthesis process. It re-
fines the abstract communication between components in the architecture model. Specif-
ically, the communication with variable channels is refined into an actual implementa-
tion over wires of the system bus. The steps involved in this process are as follows.

We begin with allocation of system buses and selection of bus protocols. A set of system
buses is selected out of the bus library and the connectivity of the components with
system buses is defined. In other words, we determine a bus architecture for our design.

This is followed by grouping of abstract variable channels . The communication be-
tween system components has to be implemented with busses instead of variable chan-
nels. Thus these channels are grouped and assigned to the chosen system busses. Once
this is done, the automatic refinement tool produces the required bus drivers for each
component. It also divides variables into slices whose size is the same as width of the
data bus. Therefore that each slice can be sent or recieved using the bus protocol. The
entire variable is sent or recieved using multiple transfers of these slices.

85

Chapter 4. Communication Synthesis

4.1. Select bus protocols

2|3 Communication Refinement [

o AR_CC_gain_code_HW_to_DSP _IR_short_int

§| vocodersce - S0C Environment - [Eehavior_DSF - Yocoderdrch - Yocoderarch.sir] ||Q|E|E
[C] Eile Edit ¥iew Emject §ynthesis| Validation Windows Help == x|
N [(= [é“b Pracessing elements... _l|% ¢ I .l
ey 2 Map Wariables
2 B Map ¥ [J Mame Type
Design 0o Architecture Refinement Si?Beha\-'ior DSP
Busses.. | |- aR_CC_ch_ana_HW_to_DSP _IR_short_int__10_
73 Map Channels P AR_CC_code_HW_to_DSP _IR_shart_int_40_
o AR_CC_ewc_i_DSP_ta_HW _I5_shart_int_40_

End: Profiling and retargetable profiling

RTL Units... e AR_CC_gain_pit_D3P_to_HW _I5_shor_int
s RTL Synthesis... o AR_CC_h_DSP_to_Hw _I5_short_int__40_
o AR_CC_resz_D3P_to_Hw _15_short_int__40_
Impart Decisions... | AR_CC_TO_DSP_ta_ HW _I5_short_int
@ Stop - BR_CC_sn_DSP_to_Hw _I5_short_int__40_
o AR_CC_y1_DSP_ta HW _I5_shaort_int__40_
o AR_CC_y2_DEP_to HW _I5_shart_int__40_
o AR_CC_y2_HW_to_DSP _IR_shart_int__40_
- dix_mode in bool
- new_frame in event /
] =] | ==l = -~
Models | Imports_| Soullé Hierarchy | Behawiors | Charllﬂ Raw | DSP [Hw |
X Compile | Simulate | Analyze | Refne | Shell |
COMpUING Safistcs Tor rame i
Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file

J

Bus allocation

%

As explained earlier, we begin by selecting a suitable bus for our system. Note that in
the presence of only two components, one bus would suffice. However, in general the
user may select multiple buses if the need arises. Bus allocation is done by selecting

Synthesis—sBusses from the menu bar.

86

Chapter 4. Communication Synthesis

4.1.1. Select bus protocols (cont’d)

£ [=[Elf]
[C] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz Ed 8 ve [xbB X[FE| G0

BEus Allocation

|¢_-|_ Mame |Type |Masters | Cost | Description

Remove

Tables...

Mode

End: Profiling and retargetable profiling

[Ready

A new window pops up showing the bus allocation table. Since there are no busses
selected at the time, this table is empty. We now click on Add to add bus(es) from the
protocol database.

87

Chapter 4. Communication Synthesis

4.1.2. Select bus protocols (cont’d)

Standard IBM PowetPC 750CKe inte
Simple 600_Porta 0.288 B 24 0 Motorola DSPSEGE00 extern
Processar . . Motarala PowerPC interface
Motorala PowerPC
MIPS intetface

[Ready

)

A new window pops up showing the contents of the protocol database. The column on
the left shows the three categories of protocols. During component selection for archi-
tecture exploration, we had a classification of components. Likewise, the classification
here shows us the available types of busses. On selecting a particular category by Left
click, the busses under that category are displayed. For our demo purposes, we select the
Processor bus "Motorola_DSP56600 PortA™ and click OK.

Note that the architecture chosen for the design has an impact on the selection of busses.
More often that not, the primary component in the design dictates the bus selection
process. In this case, we have a DSP with an associated bus. It makes sense for the
designer to select that bus to avoid going through the overhead of generating a custom
bus adapter.

88

Chapter 4. Communication Synthesis

4.1.3. Select bus protocols (cont’d)

= vocoder.sce - 30C Enviranment - [Behavior_DSP - YocoderArch - Vocoderérch.sir] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8gd g va % B aaEEEIE]
""""""""""""" =|Bus Allocation |_|z
Desig I
E-g Marme |Type IMasters |Cost |Descripti0n o
BusD Motorola_DEPSBE00_Porta 1.0 rotorola DEP3EE00 external memaory interfac QK | ho
ho_
Cancel |
Help | Ho_
ho_
Add.. ho_
ho_
Remove | ho_
ha_
Tahles... |
|
- =
Maode
X ¢y
i £
] | =)
28
End: Profling and retargetable profiling Jl
[Ready A

The selection is now displayed in the bus allocation table as shown in the screen shot. A
default name of "BusQ" is given to identify this system bus. In order to include this bus
in the design, we need to specify which component is going to be the master on the bus.
This is done by Left click under the "Masters™ column. Since this bus is for the Motorola
56600 processor that we have chosen, the master is the processor. Recall that the name
given to the processor component was "DSP." We thus enter the name "DSP" under the
"Masters"” column and press RETURN.

89

Chapter 4. Communication Synthesis

4.1.4. Select bus protocols (cont’d)

= | wocoder.sce - 50C Environment - [Behavior_DSP - YocoderArch - YocoderArch sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis WValidation Windows Help == x|
NI IEIEEES K| EEE] B e | o
5 E | Bus Allocation lz
Desig I
E_Q Mame | Type Masters | Cost | Description i}
Bus0 Motorola_D: 6600_Porta DSP 1.0 hotorala BE00 external memaory interfac || Ok]
io_
Cancel |
Help | Ho_
ho_
Add.. | O_
fo_
Remove | ho_
fo_
Tables... |
|
~—— =
Maode
X ¢y
) ~
] | =)
2
End: Profling and retargetable profiling Jl
[Ready A

The bus selection is now complete and we can finish off with the allocation phase by
Left clicking on OK.

90

Chapter 4. Communication Synthesis

4.2. Map channels to buses

= | vocoder.sce - 50C Environment - [Behavior_DSF - VocoderArch - Vocoderarch sir] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
N 1@ &8 |va| X B EEEEIE
[
. E[|Type |F'E |Elus I.J Mame
Design BrBehavior_D5F
B EvocoderSpe ¢ aR_cc_el
I I : T HIl rdencce
b0,
LR L9 BR_CC_e
- CodeboOk WA Godetock g L C—e_
aonitar B -
Stimulusg o7 BR_CC_g:
- BR_CC_hr
P BR_CC_re
8 AR_CC_T
P BR_CC_sr
o aR_Co_y
i BR_CC_y:
o BR_CC_y:
e dte_mode
o nesw_frame /
S — == = Fd =
Models | Im Hierarchy | Behaviors | Channels | Jaw | DSF
. | o] ose]|
__ﬂ Compile | Simulate | Analyze | Refine | Shell |
TOMPUTNG STausics 107 Tamt _\
Computing Instance to Instance traffic
Computing statistics for storage
Annotating statistics to SIR file
End: Profiling and retargetable profiling Jl
[Ready A

Once the bus allocation has been done, we need to group the channels of the architecture
model and assign them to the system buses. Recall that in the architecture model, we had
communication between components with abstract variable channels. We now have to

assign those variable channels to the system bus.

Expand the design hierarchy window and scroll to the right to find a new column entry

for Bus.

91

Chapter 4. Communication Synthesis

4.2.1. Map channels to buses (cont’d)

= vocoder.sce - 30C Enviranment - [Cader - Yaocoderérch - YocoderArch sir'] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

IR IEEYES ElsEEEEIE)

|Type

[
| Mame

der s Coder
Befavior 556 D5F - o dtx_mode
Codeboak_GH_HW AW T 7 new_frame
v LofehaoR _WR Codedonk L+ serial
gior:tljtlirs —g serialbits_|
- speech_sz
8 bedits_ctrl
e AR_CC_cl
B AR_CC_o
o AR_CC_es
- AR_CC_g
D AR_CC_g:
o aRr_co_h
I AR_CC_re

PRI

o
m
m
=
w
il

=]
Models

i = |

] -
Hierarchy | Behaviors | Channels | Rany I DSP & | 1

X Compile | Simulate | Analyze | Refne | Shell |

COMpUING Safistcs Tor rame i
Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file

End: Profiling and retargetable profiling Jl

.

|I:?;eady A

Like component mapping, bus mapping may be done by assigning variable channels to
buses. However, to speed things, we may assign the top level component to our system
bus. Since we have only one system bus, all the channels will be mapped to it. This is
done by Left clicking in the row for the "Coder" behavior under the bus column. Select
the defualt "Bus0" and press RETURN.

92

Chapter 4. Communication Synthesis

4.3. Communication refinement

= vocoder.sce - 30C Enviranment - [Cader - Yaocoderérch - YocoderArch sir'] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
| = [(= [é“b Processing elements... _l|%) I .l
G Map Mariables I
’ |T5"P9 |PE |Elus I'J Mame
Design 0o Architecture Refinement
Busses... Coder & Coder
Befavior 556 D5F o dtx_mode
5 Map Channels Codebock_CH_HW Hll | o5 new,_frame
7 coed 818 Communication Refinement _WA_Codebook e sarial
RTL Units M.DI"IIIDF —(}o serialbits_l
S Stimulus Py
% RTL Synthesis.. &mpdm i 1
Import Decisions... o ,&,R_Ec_m
@ Stop O AR_CC_o
o AR_CC_es
- AR_CC_ g
o aR_CC_g:
owaR_CC_h
I AR_CC_re /
~l I 1 =
Models Im-_,l 1 Hierarchy | Behaviors | Channels | Rany I DSP & | 1
X Compile | Simulate | Analyze | Refne | Shell |
COMpUING Safistcs Tor rame &
Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file
End: Profiling and retargetable profiling Jl
Communication refinement A

Now that we have completed bus allocation and mapping, we may proceed with commu-
nication refinement. Like architecture refinement, this process automatically generates
a new model that reflets our desired bus architecture. To invoke the communication re-
finement tool, select Synthesis— Communication Refinement from the menu bar.

93

Chapter 4. Communication Synthesis

4.3.1. Communication refinement (cont’d)

=|vocoder.sce - 50C Enviranment - [Cader - Vocaderérch - Yacoderérch.sif |Q|E|E
[] Eile Edit View Project Synthesis Validation Windows Help == x|
Dz 8g g vae % K| EEE B e | e
R]
|T5"P9 |PE |Elus I'J Mame
Coder || |82 Coder
Befavior 556 D5F o dtx_mode
Codedoak_CN_HIW Al - new_trame
v LofehaoR _WR Codedonk ¢ serial
Monitar - serialbits_i
Communication Refinement -7 speech_s:
Rdbeil
[channel refinement | _(EDF-.R_CC_E
— | _Ci
= Protocol ingertion oy aR_Co_es
I~ Inlining o AR_CC_g;
o aR_CC_g:
owaR_CC_h
|| Start Cancel | T AR_CC_re /
~l | | = 7| Lo | = =
Models Im-_,l 1 Hierarchy | Behaviors | Channels | Rany I DSP & | 1
X Compile | Simulate | Analyze | Refne | Shell |
COMPUIng stafisiics far ramc &
Computing Instance to Instance trafic
Computing statistics for storage
Annotating statistics to SIR file
End: Profiling and retargetable profiling Jl
Freparing refinement... A

A new window pops up giving the user the option to perform various stages of the
refinement. The user may choose to partially refine the model without actually inserting
the bus, and only selecting the channel refinement phase. This way, he can play around
with different channel partitions. Likewise, the user might want to play around with
different bus protocols while avoiding "Inlining” them into components. This way he
can plug and play with different protocols before generating the final inlined model.
By default all the stages are performed to produce the final communication refinement.
Since we have only one bus, and hence a default mapping, we opt for all three stages
and Left click on Start to proceed.

94

Chapter 4. Communication Synthesis

4.3.2. Communication refinement (cont’d)

SaC Environment - [Main - Yocoder&rch - Vocaderdrch.comm.sir [read-only]] [=][=][>]
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 vae X X[BEE] B @ | 0]
...................... | I
Mame i
[Mame Type
Design up
m-{2]vocoderSpec.sir W coger o tain
@98 vocoderarch.si A monitor @ dit_mode bool
L Wocoderdrch.comen.sir M stimulus I & new_frame event
I & serial_hkits unsigned hit[2-
- & serialbits_ready event
- @ speech_samples hit[12:0] [160]
- o tecits_ctrl unsigned hit[3:
& coder Coder
&5 monitor Monitor
L 8 stimulus Stimulus
= 1 | =]) S — -
Madels | Imports | Sources | Hierarchy | Behaviors | Channels Raw | DSP | HW
__E Compile | Simulate | Analyze | Refine | Shell |
| [Femapping component pons m assign .. i
Cleaning up variable channels from the design ..
writing SIR file "/homessabdifdemady ocoderArch.comm.sir'... Done,
Communication refinement successfully performed. JI
[Ready A

During communication refinement, note the various tasks being performed by the tool
in the logging window. The tool reads in channel partitions, groups them together, im-
ports selected busses and their protocols, implements variable channel communication
on busses and finally inlines the bus drivers into respective components. Once commu-
nication refinement has finished, a new model is added in the project manager window.
It is named VocoderArch.comm.sir. Also note that we have a new design management
window on the right side in the GUL.

95

Chapter 4. Communication Synthesis

4.3.3. Communication refinement (cont’d)

=|vocoder.sce - 30C Enviranment - [Main - YocoderArch - YocoderArch.comm sir [read-only] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz Wa[s[0e[xbB J[FE[BS 0]
X 1
Mame ri
[Marme Type
Design |]l ¥p
=2V ocoderSpec sir I coger Brmain
B39 vocoderarch sir ¥ monitor | @ dt<_mode kool
5 |. Vocoderdrchco - o il I & new_frame event
e I ¢ serial_hkits unsigned b
Delete Del - ¢ serialbits_ready event
Open Input - @ speech_samples hit[12:0] [16
- o teoits_ctrl unsigned b
Recreate
& coder Coder
Rename... &5 monitor Monitor
Change Descriptian... L 8o stimulus Stimulus
I~ 1 I D N S — -
Madels | Imports | Sources | Hiararchy | Behaviors | Channels Raw | DSP | HW
E Compile | Simulate | Analyze | Refine | Shell |
.| [Femapping component pors i design .. il
Cleaning up variable channels from the design ..
writing SIR file "/homessabdifdemady ocoderArch.comm.sir'... Done,
Communication refinement successfully performed. JI
[Ready

We now need to give our newly created communication model a reasonable name. To do
this Right click on "VocoderArch.comm.sir" in the project manager window and select
Rename from the poped up menu. Now rename the model to VocoderComm.sir.

96

Chapter 4. Communication Synthesis

4.4. Browse communication model

§| vocodersce - S0C Environment - [Coder - YocoderComm - YocoderComm.sir'] ||Q|E|E
[C] Eile Edit ¥iew | Eroject Synthesis Validation Windows Help == x|
Ds[@ souce. X Q[EFE]S | 0]
Hierarchy.. I
| {| Mame I
Design Connectivity... L & @ hiain Mame Type
E-{3vocoder Graphs = & Coder
®-38voct Trace.. A manitor ¢ dt_mode in hool
- A stimulus L i
Quality Metrics... ¢ new_frame in event
= - ¢ serial out unsig
2= Show Testbench |- serialhits_ready out even
k2= Show Children o speach_samples in bit]1 2:
T oustomize | G talts_ctrl aut unsi
e L o Busl_A bit[15:0)
- @Busd_D hit[23:0]
— @ Bus0_MCS event
— ¢ BusO_nRD hool
— ¢ Busl_n¥R hoal
@ Intr_Busd_HwW event
& DsP Behaviol
@ PP ¥ |
[~ 1 | D]) S — -
Madels | Imports | Sources | Hiararchy | Behaviors | Channels Raw | DSP | HW
__E Compile | Simulate | Analyze | Refine | Shell |
| [Femapping component pons m assign .. 5
Cleaning up variable channels from the design ..
Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed. JI
Viewy graphical hierarchy A

Like we did after architecture refinement, we browse through the communication model
generated by the refinement tool. We have to first check whether it is semantically and
structurally representing a model as described in our SoC methodology. To observe the
model transformations produced by communication refinement, we need a graphical
view of the model. This is done by Left clicking to choose the "Coder" behavior in the
design hierarchy window and selecting View—sHierarchy from the menu bar.

97

Chapter 4. Communication Synthesis

4.4.1. Browse communication model (cont’d)

=|vocoder.sce - S0C Enviranment - [Cader - YocaderComm - YacoderComm.sir'] |Q|E|E
[CLFile Edit View Project Svnthesis Validation Windows Help == x|
— = | Coder - YocoderComm - SpecC Hier%@@@i ——
—| Window Wiew d §§||E|E tn"H% = I .l
T o] i
D LOMMEEY Hame Type
= Zootn Ih Cttl++ 8o Coder
Zoom out Cirl+- M anitar ¢ dtx_mode in hool
Cadd level cies | imulus & new_frame in event
—— ¢ serial out unsic
w e serialhits_ready out even
i L speech_samples in bit]1 2:
P tedibe_ctrl out unsig
- @ Busi_& hit[15:0]
- @Bus0_D hit[2:3:0]
— @Busi_MCS event
— ¢ BusO_nRD hool
— ¢ Busl_n¥R boal
= @ ntr_BusO_HwW event
& DsP Behaviol
S b
= 1 | || v
Madeals | Imports | Sources | Hierarchy | Behaviors Channels Raw | DSP Hid
__E Compile | Simulate | Analyze | Refine | Shell |
.| [Femapping componemnt pons n gesgn ... &
Cleaning up variable channels from the design ..
Writing SIR file "fhomessabdiddema’y ocoderarch.comm.sir.. Dane.
Communication refinement successfully performed. JI
[Ready A

A new window pops up showing the model with DSP and HW components. We have
to observe the bus controllers generated during refinement and the added details to the

model. Hence, we select View—Add level from the menu bar to view the model with
greater detail.

98

Chapter 4. Communication Synthesis

4.4.2. Browse communication model (cont’d)

Window View |

Connectivity

Zoom in

mioll ==

Zoom out
Add level

Eemove level

|

Cirl++
Cirl+-

Cirl+&
Ctrl+R

[=I[Bl[]
Help || x|
!
| Mame Type
I (% Cocer
o di+_mode in hoal
e new_frame in event
¢ serial out unsig
e serialhits_ready out even
¢ speech_samples in bit]1 2:
P tedibe_ctrl out unsig
- @Bus0_A hit[15:0]
- @Bus0_D hit[23:0]
— @Busi_MCS event
— ¢ BusO_nRD hool
— ¢ Busl_n¥R boal
= @ ntr_BusO_HwW event
& DsP Behaviol
@ oot

Writing IR file "home/sahdidemo/YocoderArch.commsir... Done.
| | Communication refinement successfully performed.

[Ready

In the next level of detail, we can now see the interrupt handler "sO_HW_handler" be-
havior added in the master to serve interrupts from the HW slave. To view the actual
wire connections of the system bus, enlarge window and select View—; Connectivity

from the menu bar.

99

Chapter 4. Communication Synthesis

4.4.3. Browse communication model (cont’d)

[=[Elf]

Window Miew

=lol |]

|

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

[Ready

The wire level detail of the connection between components can now be seen in the
window. Note that the system bus wires are distinguished by green boxes. Hence we see
that the bus is introduced in the design and the individual components are connected
with the bus instead of the abstract variable channels. On observing the hierarchical
view further, we can see the drivers in each components. These drivers take the original
variables and implement the high-level send/receive methods using the bus protocol.

100

Chapter 4. Communication Synthesis

4.4.4. Browse communication model (cont’d)

[=[Elf]

w| | x|
S=[ES

€ Close Cri+'

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

We have thus seen that the structure of communication model follows the semantics of
the model explained in our methodology. We may complete the browsing session by
selecting Window—Close from the menu bar.

101

Chapter 4. Communication Synthesis

4 5. Validate communication model

=|vocoder.sce - S0C Enviranment - [Cader - YocaderComm - YacoderComm.sir'] |Q|E|E
[] Eile Edit View Project Synthesis \-falidationl Windows Help == x|
|Dﬁrinﬁ[§ ')@IX[:' Instrumentation |f@@l.|
= Compile 0
- [1| ame Type
Design | i Sifmulate
& {3V ocoderSpec sir Open Terminal - [|| |5 Cocer
=29 vacaderarch sir Eill simulation ¢ dt<_mode in bool
.| YocoderComm.sir View Log.. P new_frame in even.t
¢ serial out unsig
Profile -7 serialbits_ready out even
Analyze |- speech_samples in hit[12:
Evaluate 7 telte_ctrl aut unsic
M - @ Busl_a bit{15:0]
. - @ Busl_D bit[23:0]
~ Estimates - @ Busd_MCS event
Estimate — ¢ BusO_nRD hool
. Stap — ¢ Busl_n¥R boal
B —— = @ ntr_BusO_HwW event
& DsP Behaviol
@i ot i
= 1 | || v
Madels | Imports | Sources | Hiararchy | Behaviors | Channels Raw | DSP | HW
E Compile | Simulate | Analyze | Refine | Shell |
| [Femapping component pors N design .. il
Cleaning up variable channels from the design ..
Writing SIR file "/homessabdifdemosy ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed. JI
Compile

As a direct analogy to the validation of the architecture model, we have a step for vali-
dating the communication model. The newly generated model has already been verified
to adhere to our notion of a typical communication model. We must now verify that
the communication model generated after the refinement process is functionally cor-
rect or not. Towards this end, the model is first compiled. This is done by selecting
Validation—Compile from the menu bar.

102

Chapter 4. Communication Synthesis

4.5.1. Validate communication model (cont’d)

=|vocoder.sce - 30C Enviranment - [Cader - YacoderComm - YocoderComm.si] |Q|E|E
[] Eile Edit View Project Synthesis Walidation | Windows Help == x|
|D#Inﬁié ')@IX[:' Instrumentation |f@@ I.l
= Compile 0
- [i 1| ame Type
Design |pif [_Smuiste |
& L] Vocaderspec sir Open Terminal - ||| (5> Coder
=29 vacaderarch sir Eill simulation ¢ dt<_mode in bool
.| YocoderComm.sir View Log.. P new_frame in even.t
s ¢ serial out unsig
Profile -7 serialbits_ready out even
Analyze |- speech_samples in hit[12:
Evaluate 7 telte_ctrl aut unsic
M - @ Busl_a bit{15:0]
. - @ Busl_D bit[23:0]
~ Estimates - @ Busd_MCS event
Estimate — ¢ BusO_nRD hool
. Stap — ¢ Busl_n¥R boal
B ————— = @ ntr_BusO_HwW event
& DsP Behaviol
@i ot i
= 1 | || v
Madels | Imports | Sources | Hiararchy | Behaviors | Channels Raw | DSP | HW
__E Compile | Sitmulate | Analyze | Refine | Shell |
i TRRUT "YoCOderComm.ce il
Output: "VocoderComm.o”
Linking...
Input. "YocoderComm.o"
Cutput: "WocoderComm"
Done. JI
Simulate A

The model should compile without errors and this may be observed in the logging win-
dow. Once the model has successfully compiled, we must proceed to simulate it. This is
done by selecting Validation— Simulate from the menu bar.

103

Chapter 4. Communication Synthesis

4.5.2. Validate communication model (cont’d)

=|vocoder.sce - 30C Enviranment - [Cader - YacoderComm - YocoderComm.si] |Q|E|E
[CLFile Edit View Project Senthesis Validation Window: Help == x|
— = | YocoderComm [=][=l[x]
_| frame=147 encoding delay = 0,10 me
e frame=148 encoding delay = 0,10 ms [J
— frame=149 encoding delay = 0,10 ms Sl T
(] frame=150 encoding delay = 0,10 ms ame ype
frame=1h1 encoding delay = 0,10 mz
E frame=152 encoding delay = 0,10 ms - 8;C0der)
frame=153 encoding delay = 0,10 ms G dbe_mode in bool
frame=154 encoding delay = 0,10 ms s new_frame in event
frame=155 encoding delay = 0,10 ms . .
frame=156 encoding delay = 0,10 ms _Cpser?al _ out unsig
frame=157 encoding delay = 0,10 ms o serialhits_ready out even
frame=158 encoding delay = 0,10 ms e speech samples in bit12:
frame=159 encoding delay = 0,10 ms Cp P . P [N
frame=1R0 encoding delay = 0,10 ms G teeite_ctrl out unsic
frame=161 encoding delay = 0,10 ms - @ BusO_A hit[15:0]
frame=162 encoding delay = 0,10 ms | droe
frame=163 encoding delay = 0,10 ms @Busl_D bit23:0]
— @Busi_MCS event
done, 162 frames encoded - @ BusO_nRD hoaol
Files speechfiles/nodtx_good,bit and nodtx.bit are identical [@ Busl_nWR hoal
imulation exited with status 0O = @ ntr_BusO_HwW event
resz return to conkinue L, ., —SFDSF' Eahaviol
|| @ P 7
1= TTR=1 | D]) S — el
Madels | Imports | Sources | Hierarchy | Behaviors | Channels | Raw | DSP | Hw
__E Compile | Simulate | Analyze | Refine | Shell |
| [% wterm -title vocoderComm -e /binsh -c /VocaderCamm speachfiles/spoh_unxing nodb<bit nodts && diff -3 speechfiles/nodt<_good.
bit nodt< hit, echo "Simulation exited with status $7" ;echo "Press return to continue .." ;read caonfirm
[Ready A

An xterm now pops up showing the simulation in progress. Note that simulation is con-
siderably slower for the communication model than for the architecture and communi-
cation model. This is because of the greater detail and structure added during the re-
finement process. Also, it may be noted that there is non-zero encoding delay. This is
because the new model is timed and takes into account the delay caused during compu-
tation and communication.

With the completion of correct model simulation, we are done with the phase of com-
munication synthesis. Our new model now has two components connected by a system
bus. The model is now ready for implementation synthesis.

104

Chapter 5. Implementation Synthesis

Once we are done with communication synthesis and have obtained a communication
model, we have to generate a cycle-accurate implementation from it. The functional-
ity of each component is described for the given set of RTL components or processor
instruction-set. In the RTL refinement process, the timing is refined to individual clock
cycles based on each component’s clock period. The major steps of this refinement step
encompass the three parallel tasks for different parts of the communication model. They
are enumerated as follows.

Firstly, we have to generate cycle accurate model for custom hardware components,
which must eventually be synthesized into a netlist of RTL units.

Secondly, the behaviors mapped to a programmable processor must be compiled into the
processor’s instruction set and linked against its RTOS. The linking is required only if
the processor allows for dynamic scheduling.

Finally, the bus interfaces and drivers must be refined. The protocol functionality is
converted into a cycle true implementation of bus protocols on each component. This
requires generation of bus interfaces on the hardware components and assembly code
for bus drivers on the software side. The result of all these steps is a cycle accurate
model as desired in our SoC methodology. This model can be used as an input to the
standard EDA tools.

105

Chapter 5. Implementation Synthesis

5.1. Select RTL components

=|vocoder.sce - S0C Enviranment - [Euild_Code - YocoderCamm - YacaderComm.sif |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
INEIETFIEEYES ElsEEEEIE)
I
H[I Mame 31| name
Design | Desciig | E arhain & Build_Code
=]V ocoderSpec. sir - I coger o cod
=29 vacaderarch sir DSP o9 codvec
+|-WocoderCammsir iAW h
l B A gindx
1 W codebock k
B B _inits_comebook & sign
- & codebook &y
HE==
O & cowe Tai4d
HE=Er /
1 I - | =
Madels | Imports | Sources | Hierarchy [Behaviors | Channels | Raw | DSP | Hiw I
__E Compile | Simulate | Analyze | Refine | Shell |
| [% wterm -title vocoderComm -e /binsh -c /VocaderCamm speechfiles/spch_unxing nodb<bit nodtx && diff -5 speechfiles/nodts_good.
bit nodt< hit, echo "Simulation exited with status $7" ;echo "Press return to continue .." ;read caonfirm
Simulation exited, exit status: 0
[Ready A

After we produce a valid communication model, the next step is to generate the clock
cycle accurate model. Essentially, we have to perform RTL refinement for the behaviors
mapped to hardware and software compilation for the behaviors mapped to software.
We first look at the RTL refinement part. To demostrate the concept of RTL refinement
for the hardware part, we choose a suitable behavior. Browse the hierarchy in the design
hierarchy window and select by Left clicking the "build_code" behavior. We shall be
performing RTL refinement on this behavior.

106

Chapter 5. Implementation Synthesis

5.1.1. Select RTL components (cont’d)

|vocoder.sce - 50C Environment - [Build_Code - YocaoderComm - YocoderComm.sir]

O & cowe Tai4d

(=B
[C] Eile Edit ¥iew | Eroject Synthesis Validation Windows Help == x|
D=s[@ __sovee. K KEE] B e 0]
: Hierarchy... oo
———— .y. H[Mame A [J Mame
Design _ Comneelvile descrig| | @ tain & Euili_Coue
E-{3vocoder Graphs = - I coger o cod
m-BEvocc Trace.. QSEW o codvec
Quality Matrics... I EDHW gh
————— inex
|%—|§Sh0w Testhench B & _wr codebook g
- : B B _inits_codebook sign
322 Show Children o & codedook y
Customize... 1 seg7?

HE=Er

o —

Models | Imports | Sources | Hierarchy | Behaviars | Channels |

Raw | DEP | HW I

E Compile | Simulate | Analyze | Refine | Shell |

bit nodt< hit, echo "Simulation exited with status $7" ;echo "Press return to continue .." ;read caonfirm
Simulation exited, exit status: 0

% wterm -title VocoderComm -2 /hindsh -c AVocoderComm speechfiles/spoch_umxing nodb<bit nodt: && diff -3 speechfiles/nodt_good.

Wiew source

)

We begin by looking at the source code of "build_code" behavior to see what kind of
constructs it posseses. This is done by selecting View— Source from the menu bar.

107

Chapter 5. Implementation Synthesis

5.1.2. Select RTL components (cont’d)

§| vocodersce - S0C Environment - [Build_Code - VocoderComm - YocoderComm.sir]

[EEIE

[7] Eile

| build_code.sc - SpecC Editor

|E3Eﬂﬁz Help =|| x|

Models I

X | compil

import. "hazic_op":

behavior Build_Code (in MWordle

in HordlE

out HWordle
in Hordls
out Wordle
out Wordle
i
wolid main{woid)
£
Int i. ki

Eile Edit Miew
. 4 =
Design AA09/13/02 <gerstly Merged in fixes for input of scrtl tool _Code
tk{ﬁVgC A4 01408502 <gerstly Merged in port splitting from 'arch' branch Lod
gy f £ 01708702 <gerstl> Updsted to comply with extended port checking Lo
me s 08/12/98 <gerstl> FOevee
#include “typedef . =h" nix
#include "cnst.sh" | Eign

codvec[M].
=zign[L_SUBFR].
cod[L_SUBFR].
hIL_SUEFR].
y[L_SUEFR].
indx[107}

Wordle j. track. index. _sign[NB_PULSE]. code[L_SUBFR].

Int pO. pl. p2. p3. pd. P5.

pE, p7. pE. P92

[ose] rw |

indice=[10];

% mter Hord32 =@ ke chfiles/nodts_good.

bit nodt

Simulat] for ¢1 = 0 1 < L_CODE; i++}

i
code[i] = 0f
F |

. INS Line: 21 Col:1_J
[Ready 2

The source code editor window pops up showing
"Build_Code"

108

the source code for behavior

Chapter 5. Implementation Synthesis

5.1.3. Select RTL components (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code - YocoderComm - YocoderCormm.sir |Q|E|E
B[R E§| huild_code.sc - SpecC Editor | =T Eely PRI
10 |[Fle gdit view
..................... - -
Design ; code[i] = 0z Code
o Ve for i = 03 i < NB_TRACK: i++} Fod
E“nn i codvec
indices[i] = -1:
3 nix
ign
for fk = 0 k < ME_PULSE: k++3
£

/= read pulse position =/
i = codvec[k]:

/% read =ign =7
J = signlil: =
index = mult {i. 6554): f* index = pozssh =4
S% track = poskh =/

track = sub {i, extract_l {L_shr ¢L_mult {index, 53, 132):

if {g » O

-E -
todels | codelil = add (codelil. 4096): DSP | HW |

_signlk] = 8192;

X | compil

3
% e elze eechfiles/nodt<_good.
bit nod £
Situlat code[i] = sub (code[il. 40963:
_zignlk] = -8192:
index = add {index, 83:
} /
| INS Line: 21 Col: 1|
[Ready

L

Scroll down the window to find that the behavior code has loops and conditional con-
structs. So, RTL refinement for this behavior will show that the tool can handle these
constructs.

109

Chapter 5. Implementation Synthesis

5.1.4. Select RTL components (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code - YocoderComm - YocoderCormm.sir |Q|E|E
[Ele F= huild_code.sc - SpecC Editor | =T Eely PRI
Eile | Edit Miew
[bews Cirl+l Y
EE” &= Open... Ctrl+O _Code
Yoco . Fod
5 Ctrl+5 P_TRACK: i++} I
g [zave ik Fodvec
Save As.. 1s
Recent files - nix
€ Close Clrl+W p_PULSE: k++} "
T
/= read pulse position =/
i = codvec[k]:
/% read =ign =7
J = =ignlil: =
index = mult {i. 6554): f* index = pozssh =4
S% track = poskh =/
track = sub {i, extract_l {L_shr ¢L_mult {index, 53, 132):
if {g » O
£ =
Madels | codeli] = add (code[i]. 409E): DSF_| Hw |
_zign[k] = 8192; S
X | compil 3
[% ter else e chfiles/nodt<_gaad.
bit nod £
Situlat code[i] = sub (code[il. 40963:
_zignlk] = -8192:
index = add {index, 83:
3 /
INS [ine: 21 Col 1)

[Ready

Close the source code editor window by selecting File—Close

110

Chapter 5. Implementation Synthesis

5.1.5. Select RTL components (cont’d)

=|vocoder.sce - S0C Enviranment - [Euild_Code - YocoderCamm - YacaderComm.sif |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
| = [(= [=1 Processing elements... _l|%) I .l
Map Yariables I
@ P 31| name
Design 0o Architecture Refinement & Build_Code
E—:QVocoderSpec.sir Busses.. &+ ng
=]=] i
ﬁ—unocndemrc.sw . % Map Channels o codvec
.| YocoderComm.sir & h
£l Communication Refinement b1 B ine
: 1 W codebock k
RTL Units.. b B _inits cogebook & sign
s RTL Synthesis... [B cosebook y
HE==
Import Decisions... B- B coge 7048
@ stop
£
1 I - | =
Madels | Imports | Sources | Hierarchy [Behaviors | Channels | Raw | DSP | Hiw I
__E Compile | Simulate | Analyze | Refine | Shell |
| [% »term -title ocaderComm -& /ain/sh -c /¥ acoderCanmm speechiilesfspoh_un=ing nodt<bit nodt< && diff -5 speechfiles/nodt<_good.
bit nodt< hit, echo "Simulation exited with status $7" ;echo "Press return to continue .." ;read caonfirm
Simulation exited, exit status: 0
RTL unit allocation 4

In order to perform refienement, we need to have RTL units that will be used to generate
the structural RTL model. The next step is thus to select RTL units for allocation. To
perform the allocation select Synthesis— RTL Units from the menu bar.

111

Chapter 5. Implementation Synthesis

5.1.6. Select RTL components (cont’d)

[=[Elf]

E] Eile Edit Miew Project Synthesis Validation Windows

Help »|~| x|

N H@ & e x B iaEEEEE

RTL Component Allocation

®-13|| |Mame |Type |Cost | Description

Mode

x

hit
Si

Remove

[Ready

)

An RTL allocation window pops up just like for components and busses. Left click on

Add to see the available units on the database.

112

Chapter 5. Implementation Synthesis

5.1.7. Select RTL components (cont’d)

HEX

]
o
f2=1
[l
w0

Description

hem &

MEM B

MEM

Code memory (Yocoder)
gray memary (Wocader)
Indices memory (Mocoder)
KMemary

Scal_yZ Memory (Vocoder)
Sign memary (Vocoder)

H memary (Yocoder)

Y32 Memary (Mocoder)

0
]
]
0
0
]
]
0
0
]
]
0
0
]
]
0
0

=

A new window pops up for RTL unit selection. There are various categories for the RTL
units listed on the left-most colunm. Left click on "mem" to see the memory units and
their properties.

Note the various types of available memories. The units are parameterized and come
with several metrics that may be used to make the optimal allocation choice.

113

Chapter 5. Implementation Synthesis

5.1.8. Select RTL components (cont’d)

Delay [ns] |Latency [ns]

]
o
f2=1
[l
w0

Description

Address Register

count memaory

Data Register

Instruction Register

Program Counter

pipeline register

32-hit register

16-hit register

register with synchronous enahle |
Status Register

0
]
]
0
0
]
]
0
0
]

[Ready A

Left click on "reg" to see the registers and their properties.

114

Chapter 5. Implementation Synthesis

5.1.9. Select RTL components (cont’d)

Description

Ahsaolute Yalue (Mocaden
Aksolute Walue

Adder Vocoder)

Adder

Je2-hit ALU

16-hit ALU

arithmetic shifter

Binary Counter with dynamic cc
Barrel shifter

Comparataor

Z-function comparator
G-function comparatar
Carry save adder
Decrementer
Combinational divider
Divider {Vocoder)

Divider {Wocoder)
Extractor (Wocoder)
Extractor (Vocoder)
J2-hit Incrementer

16-hit Incrementer
incrementer & decrementer
Abzolute value (Vocoder)
Adder (Wocoder)

Adder (WVacader)

Comnaratnr Adocndern

=

0
]
]
0
0
]
]
0
0
]
]
0
0
]
]
0
0
]
]
0
0
]
]
0
0
il

Likewise we have a set of functional units. It may be seen that the functional unit alloca-
tion must ideally comply with the profiling data. As seen during profiling, we have inte-
ger arithmetic operations in plenty. Therefore, it makes sense to allocate integer ALUSs.
Left click on "FU" to see the various functional units and their properties.

115

Chapter 5. Implementation Synthesis

5.1.10. Select RTL components (cont’d)

Delay [ns] |Latency [ns] |Stages |Cost | Power [W] | Description

16-hit bus
32-hit bus

HEX

[Ready

Left click on "bus" to see the available busses and their properties. These busses will be
used for internally connecting the RTL units within the HW component.

116

Chapter 5. Implementation Synthesis

5.1.11. Select RTL components (cont’d)

Latency [ns] Cost | Power [W] | Description

0o 60.0 200 synchronous(single clock) FIFO
0.0 0.0 200 synchronous(single clock) stack

ather

=

Left click on "other" to see units that do not fit in above categories.

117

Chapter 5. Implementation Synthesis

5.1.12. Select RTL components (cont’d)

[=[Elf]

RTL Unit Selection

100.0 20.0 32-hit Register File
1000 20.0 TE-hit Register File

[Ready 4

Left click on "RF" to see the various register files and their properties. Since selecting a
large number of units for our example takes a lot of time, a preallocated set of RTL units
may be directly imported into the design. Exit the RTL Unit Selection window by Left
clicking on Cancel.

118

Chapter 5. Implementation Synthesis

5.1.13. Select RTL components (cont’d)

= FEE
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz g g ve xbn X EFEE]8s| o
S RTL Component Allocation M C
Desig [s
|¢_-|_ Mame |Type | Cost | Description 1
1
1
1
Remave
==
Mode
X
i B —
Cly

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

[Ready

Exit the RTL component allocation window as well by Left clicking on Cancel.

119

Chapter 5. Implementation Synthesis

5.1.14. Select RTL components (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code - YocoderComm - Y ocoderCormm. sir'] |Q|E|E
[O] Eile | Edit Wiew Project Synthesis WValidation Windows Help == x|
| [[ew. cu-N [@ | ¢ K EEE] B e | e
L =2 DpEn... Citl+0 foo
— F2 [[l| Mame [J Mame ITy
De € Close il | Descript |1 & @rvaain &»Build_Code
= Reload Ctrl+R - I coser & cod out
Reload All Q‘S’D o codvec in g
— f & n)
[Save Citl+5 g w25 5 incix o
SaE I _wr codebook _ _
= B B _indts_comebook & sign 3
& save Al - ¥ cogebook &y out
Bl § sog?
\port.. 1 coqe THAR
Export...
& Brint Ctrl+P
Froperties...
Recent Files -
Exit Ctrl+Q =
-l | A -
Madels | Imports | Sources | Hierarchy | Behaviors | Channels | Raw | DSP | HW I
__E Compile | Simulate | Analyze | Refine | Shell |
| [Femapping component pons m assign .. i
Cleaning up variable channels from the design ..
Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed. JI
Import design A

We now begin the RTL refinement process by importing the preallocated set of RTL

units by selecting File—Import from the menu bar.

120

Chapter 5. Implementation Synthesis

5.1.15. Select RTL components (cont’d)

= [vocoder.sce - 50C Enviranment - [Build_Code - YocaderComm - YacoderComm.sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz @a[s[0e[xbB J[FE[BS 0]
I Mame [Mame ITy
Design I Descriptil E—'Main SPEIuiId_Code
=]V ocoderSpec sir W coder o cod out
=29 vacaderarch sir %qsp o cadvec in
= open E h in s
indx out
Look in: |3 /omevsabdirdemor | &l ek =] || in ¢
.. Cp_analysis [7 wocoderarch.in.siv [vocaderct || oul
P Jopen_loop [] vocoderarchins.sic [WocoderCe
B RTL (processing [vocoderarch sir [Wocodersg
_dclosed_loop [_1speechfiles [wocoderCaomm.in.sir [vocodersg
_lcodeboaok _Jupdate [7 wocoderComm.ins.sir - [] YocoderSy
_Jcomman D Yocoder&rch.analyzed.sir D YocoderComm.rlin.sir D Yocodersy
1 | =)
File name: | I Open |

Models [[mports || Fie type: SIR files (i) =y Cancel | DsP_ | Hw |

2
H Campile | SimulETE | =140 | RETTE | =hEl |
| [Femapping component poms 1n dasign .,

Cleaning up variable channels from the design ..

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

Select design to import..

|
y

The library consisting on the RTL unit allocation for this design is kept under the "RTL"

directory in the demo directory. In the file selection window that pops up, double Left
click on "RTL" to enter the directory.

121

Chapter 5. Implementation Synthesis

5.1.16. Select RTL components (cont’d)

§| vocodersce - S0C Environment - [Build_Code - VYocoderComm - YocoderComm.sir] ||Q|E|E

[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|

Dz 8g g vae % B aaEEEIE]
X

Mame ITy
Design &sBuild_Code
E—Q\mcoderSpec.sir & cad out
=29 vacaderarch sir & cadvec in
—— h in s
indx aut
Look in: | —A/homessabdifdemo/RTLS sign in ¢
out
55 /
&l speechfiles
File name: |HTL_aIIDC.sir Il Open
I =
Models [[mports || Fie type: SIR files (i) =y Cancel | DsP_ | Hw |

Z
X Compile | SimulaE | ATEyEE | FemE [M@ |
‘| [Femapping component pors 1 design ..

Cleaning up variable channels from the design ..

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

Select design to import..

|
y

Once inside the "RTL" directory, select the file "RTL_alloc.sir" and Left click on Open.

122

Chapter 5. Implementation Synthesis

5.2. RTL refinement

=|vocoder.sce - 50C Enviranment - [Main - YacoderComm - YocoderCamm.sir’] |Q|E|E
[] Eile Edit View Project §ynthesis| Walidation Windows Help == x|
: Processing elements... _l|%) I .l
} Map Yariables I
@ Map 1] Mame Type |N IC
Design 0o Architecture Refinement & Main 1
®-{3vacoderspec. sir Busses... Ff - o db<_mode bool
]| i itor
ﬁ—unocndemrch.sw - [Map Channels e I @ new_frame event
o= od S - o = ¢ serial_hits unsigned hit[24:3:0]
g|g Communication Refinement | & serialbits_ready event
RTL Units... — ¢ speech_samples hit[12:0] [160]
% RTL Synthesis.. = ¢ tedt<_cirl unsigned hit[3:0]
= & coder Coder 1
Limiit DEESES... &> monitor Manitar 1
@ Stop L stimulus Stirmulus 1
. | =l B BN | -
Models | Imports | Sources | Hierarchy | Behaviors | C: | 1 Raw | DSF | H'¥
__E Compile | Simulate | Analyze | Refine | Shell |
*| [Femapping component pors n design .. &
Cleaning up variable channels from the design ..
Writing SIR file "fhomessabdiddema’y ocoderarch.comm.sir.. Dane.
Communication refinement successfully performed. JI
RTL unit allocation Y

We begin RTL refinement by first verifying that the imported file has correctly allocated
the RTL units. To do this, select Synthesis— RTL Units from the menu bar.

123

Chapter 5. Implementation Synthesis

5.2.1. RTL refinement (cont’d)

[=[Elf]

B Eile Edit Miew Project Synthesis Validation Windows

Help »|~| x|

NI IEIEREES B

SIEEIE)

RTL Component Allocation

Type

Cost

Description

add

40.0

Adder

alu
alu
hus3z
bus3z
bus3z
hus32
hus3z
code

30.0
30.0
10.0
10.0
10.0
10.0
10.0
100.0

extract |0 extract_| 60.0

inc
indices

700
1000
180.0
180.0
180.0
1200
50.0
g0.0
100.0
an.0
100.0

100.0
1000

ALU

ALU

32-hit hus

32-hit bus

32-hit bus

32-hit bus

32-hit hus

Code memary

Extractar

Incrementer

Indices memory

rAultiplier and Accumulator
rultiplier and Accumulator
Fultiplier and Accumulator
rultiplier

Shift right

Subtractar

rultiplier

Marmalizer

Register File

Register File
Fanictar Fila

Remove

Writing SIR file "/homessahdifdema’y ocoderdrch.comm.sir'... Done,
Communication refinement successfully performed.

[Ready

The RTL Component Allocation table pops up showing us all the allocated units. Note
the presence of units for Integer arithmetic as discussed earlier. We can also see internal
busses and register files in the allocation.Left click on OK to confirm the allocation.

124

5.2.2. RTL refinement (cont’d)

Chapter 5. Implementation Synthesis

§| vocodersce - S0C Environment - [Build_Code - VocoderComm - YocoderComm.sir] ||Q|E|E
£l File Edit ¥iew Project §ynthesis| Yalidation Windows Help == x|
| = Processing elements... _l|% o I .l
s Map Wariables [
(8 p Type -_J Mame _
f og i
Design | 2o Architecture Refinemeant Coreter & cod
E—Q\mcoderSpec.sir Busses.. Bafralioe DSF P codvec
oQ i
Iil—,:,nocodemrc.sw . @Map Channels Senbiaimes_HW 2+ h
.| YocoderComm.sir Subirames_i o incix
g|g Communication Refinement WA Codsbos 5
ELE sign
p——— h_Ci? _INITE Codeds e
=nis... Cogehook_CN ¥
s RTL Synthesis.. Moz
| 1 Decisi Cogehont
Import Decisions... Codebaok_Seq
@ sior Code TG 3
Cow fr %
Set_Sigre —
Cow v
Seqri THLG
iz e /
=l = - 1 | -
Models | Imparts | Sources Hierarchy | Behaviors | Channels J
__E Compile | Simulate | Analyze | Refine | Shell |
s
RTL synthesis 4

Launch the RTL

refinement tool on behavior

Synthesis—RTL Synthesis from the menu bar.

"Build Code"

by selecting

125

Chapter 5. Implementation Synthesis

5.2.3. RTL refinement (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code - YocoderComm - YocoderCormm.sir |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz B@ 8 ve % X[EEEE] B @ | 0]
!} Mama 2 IJ Mama IType
Design o Bl cogier + cad out short int [40]
=2V ocoderSpec. sir BFO5F c codvec in shart irt [10]
-85 vacoderarch.sir = RTL synthesis x|]| = n in short int [40]
.| YocoderComm.sir c# ind= out shart int [10]
Hardware PE hehavior. Build_Code — | d’sign in shart int [40]
7y aut short int [40]
Hardware clock period: |1D ns '}
Tasks
I Function binding
I Storage hinding
I Bus hinding B
' Generate Verilog output:
£
| L~] ! -
Models | Imparts | Sources Hierarc J
| Start | Cancel I =
__E Compile | Simulate | Analyze | Ref A
Freparing refinement...

)

In the newly popped up window, change the name of the generated verilog file to "Build-

Code.v" so that we can clearly identify that this refinement is for the "BuildCode" be-
havior.

126

Chapter 5. Implementation Synthesis

5.2.4. RTL refinement (cont’d)

§| vocodersce - S0C Environment - [Build_Code - VocoderComm - YocoderComm.sir]

[EEIE

D Eile Edit Miew Project Synthesis Validation Windows

Help »|~| x|

Dz 8g g »

IEEYEE
=

SIEEIE)

] Mame 2 IJ Mama IType
Design o Bl cogier + cad out short int [40]
B {2l vocoderspec sir o codvec in short int [10]
B39 vocoderarch sir Synthesis ' h in shart int [40]
.| YocoderComm.sir c# ind= out shart int [10]
Hardware PE hehavior. Build_Code — | d’sign in shart int [40]
7y aut short int [40]
(o I £
Hardware clock period: 10 ng ;
Tasks
I Function binding
I Storage hinding
I Bus hinding B
' Generate Verilog output:
|fh0mefsabdifdemofEluiIdCode.v /
| L~] ! -
Models | Imparts | Sources Hierarc J
|| Start Cancel | =
__E Compile | Simulate | Analyze | Ref A
Freparing refinement... 4

Left click on Start to begin RTL refinement. Notice that like in the earlier refinement
phases, we have options for partial refinement steps. The user might avoid some binding
steps if he wants to look at intermediate models. Also note that we have selected a clock
period of 10 ns, corresponding to the speed of our custom hardware unit. It may be re-
called that while selecting the hardware component, we specified a hardware component
with clock speed of 100 Mhz, which imposes a clock period of 10 ns.

127

Chapter 5. Implementation Synthesis

5.2.5. RTL refinement (cont’d)

§| vocodersce - S0C Environment - [Main - WocoderComm - YocoderComm.flsir [read-only]] ||Q|E|E
[] Eile Edit ¥iew PEroject Synthesis Validation Windows Help == x|
Dz g g vo xbB X EFEE]8s| o

] Mame [J Mame 5 IType |
Design I Descril @ dbs_made hoal
E—:QVocoderSpec.sir I coger @ new_frame event
=29 vacaderarch sir 'mpnitnr @ serial_hits unsigned bit[243:0]
a2 i A stimulus @ serialbits_ready event
[il @ speech_samples hit[1Z2:0] [160]
& ot _ctrl unsigned hit[3:0]
& coder Coder
S monitor Monitor
& stimulus Stimulus
- I =
Models | Imports | Sources | Hierarchy | Eehaviors | Channels | J

E Compile | Simulate | Analyze | Refine | Shell |

% sorl Build_Code -b fsb -p 10 - shomedsabdifdem o/ ocoderCaomm.lin.sir -0 thomessabdisdemo/YocoderComm. il sir - /homedsa
hdifdemo/BuildCode v
Scheduling: Behavior (Build_Code_RTL)

The number of states generated in behavior(Build_Code_RTL): 103

2| LRindinoF1N Behavinr (Build Code BTL £
[Ready A

Note that RTL synthesis generates 103 states as seen on the logging window as the
tool generated the RTL model for "BuildCode". Also note that a new model "Vocoder-
Comm.rtl.sir" is added in the Project manager window.

128

Chapter 5. Implementation Synthesis

5.2.6. RTL refinement (cont’d)

§| vocodersce - S0C Environment - [Main - WocoderComm - YocoderComm.flsir [read-only]] ||Q|E|E
D Eile Edit Miew Project Synthesis Validation Windows

Help =[] x|
Dz 8gd g ve X B aaEEEIE]
o | — _[J — T ITypE |
Design I Descril @ ut<_mode hool
E—:QVocoderSpec.sir @ new_frame event
=29 vacaderarch sir @ serial_bits unsigned hit[243:0]
FF2|2vocoderCamm sir

@ serialbits_ready event

Open @ speech_samples hit[1Z2:0] [160]

& ot _ctrl unsigned hit[3:0]
Delete Cel

& coder Coder
Open Input S monitor ronitor
Becreate & stimulus Stimulus
Bename...
Change Description...

M 1 =
Models | Imports | Sources | Hierarchy | Eehaviors | Channels | J

E Compile | Simulate | Analyze | Refine | Shell | I

% scrl Build_Code -b fsh -p 10 -i /homessabdifdemo/VocoderCamm Lin.sir -0 shomessahdisdemo/Y ocaderCommm il sir - /homedsa
bdifdemo/BuildCode v

Scheduling: Behavior (Build_Code_RTL)

The number of states generated in behavior(Build_Code_RTL): 103

2| LRindinoF1N Behavinr (Build Code BTL £
[Ready

)

Like before, we must give our new model a suitable name. We can do this by Right
clicking on "VocoderComm.rtl.sir" and selecting Rename from the pop up menu.

129

Chapter 5. Implementation Synthesis

5.2.7. RTL refinement (cont’d)

= | wocoder.sce - 50C Environment - [Main - VocoderRil - VocoderRtl sir] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
I
MName | Mama 5 IType |
Design I Descri| @ dt<_mode boal
E—QVUCUUEVSPEC-S" @new_frame event
-85 vacoderarch.sir @ serial_hits unsigned bit[243:0]
(-85 VacoderCamm.sir @ serialbits_ready event
@ speech_samples hit[1Z2:0] [160]
& ot _ctrl unsigned hit[3:0]
& coder Coder
S monitor Monitor
& stimulus Stimulus
] | =)
Models | Imports | Sources | Hierarchy | Eehaviors | Channels | J

E Compile | Simulate | Analyze | Refine | Shell |

% scrl Build_Code -b fsh -p 10 -i /homessabdifdemo/VocoderCamm Lin.sir -0 shomessahdisdemo/Y ocaderCommm il sir - /homedsa
bdifdemo/BuildCode v

Scheduling: Behavior (Build_Code_RTL)

The number of states generated in behavior(Build_Code_RTL): 103

2| LRindinoF1N Behavinr (Build Code BTL £
[Ready

Rename the model to "VocoderRTL.sir."

130

5

=T

:

.2.8. RTL refinement (cont’d)

Chapter 5. Implementation Synthesis

| BmMacs@marvinics.uci.edu

B BEH

File Edit Cptions Buffers Tools Help

Help »|~| x|

1C@®*x 08> ¥ AWRGH?

3 [J Mame 5

Mé H***

* Yerilog code generated by 'scrtl’
* Date: Sat Sep 21 02:29:04 2002

R e L s T

module Build_Code RIL {codwec, sign, cod, h, ¥, indx);

“include "lib. v
input [15:0] codwvec;
input [15:0] sign;
output [15:0] cod;
input [15:0] h;
output [15:0] v
output [15:0] 1ndx;
reg [15:0] cod;
reg [15:0] w;:

reg [15:0] indx;

function alul;
input [31:0] a;
input [31:0] h;
input [31:0] ctrl;
alul = alufa, b, ctcl);
endfunction

function alul;
input [31:0] =;
input [31:0] h;
input [31:0] ctrl;
alul = alufa, b, ctrl);
endfunction

function L_macl;
input [31:0] L_war3;
input warl;
input varl;

1|2=:== PuildCode.v (Fundanental} --L1--Top--=======-=---—-

P cod

c codvec
7' h

al o incx

o 5 sign
o Fy

MR
T

| T

»

)

Check out the verilog code generated in the file BuildCode.v. This code is generated by
the RTL refinemet tool. The designer may go the shell and launch his favorite editor
to browse through the generated verilog code. Note that the verilog code has a single
module named "Build_Code_RTL". This represents the sequential leaf behavior from
our original design. Also note the functions representing each of the allocated RTL units.

131

Chapter 5. Implementation Synthesis

5.3. Browse RTL model

= | wocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRtl - YocoderRil.sir'] |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz 8g g va % B aaEEEIE]
H[I IType -\.[J Mame
Design | Coder P cod
=2V ocoderSpec. sir Betavicr DSF_weap 7 codvec
®-98 vocoderarch.sir Supifames_HW wrap 1
FHa|5Y ocoderC amm. sir Subfames_HW o incx
= VacoderRH.sir _CoaBLooN_ci? _Wr_Cogebook CN 4 sign
inits_comebook_cn IMIT Cogebook_CN o
brogdobook_cir Codebook_CH y
il op Mo
- 1 coaebook Coebook
1 segq7? Codebook_SeqT
1 code TOiET Ciode 7030 Fobits
Cow fr %
Set_Sige M
Cor #

Search THAG

-~ | P o = T [] T [
Models | Imparts | Sources | Hierarchy | Behaviors | Channels J

__E Compile | Simulate | Analyze | Refine | Shell |
: % scrtl Build_Cade -h fsh -p 10 -i /homessabdifdema’ocaderCamm. fLin.sir -0 fhomedsabdifdema’YocoderComm ilLsir -% fhomedsa j

hdifdemo/BuildCode v
Scheduling: Behavior (Build_Code_RTL)

The number of states generated in behavior(Build_Code_RTL): 103

2| LRindinoF1N Behavinr (Build Code BTL
[Ready A

We now browse through the newly created model in the Design hierarchy window. Note
that the type of the "Build_Code" behavior has now changed to "Build_Code_RTL" after

the synthesis.

132

5.3.1. Browse RTL model (cont’d)

Chapter 5. Implementation Synthesis

=|vocoder.sce - S0C Enviranment - [Euild_Code_RTL - YocoderRil - YacoderRil.sir] |Q|E|E
[] Eile Edit ¥iew | Project Synthesis Validation Windows Help == x|
| N g Source... b{ [@l"ﬂ% tS::|§§|@ 2 I .l
E Hierarchy... 1
c it IType [Mama
- onnectivity...
Diesign = y Coder cod
E:Q\mcoder Graphs = Befravioe DSF Wap P codvec
®-98vocc Trace.. SenbiFames_ HW wrap o
F-2ay . . Subirames_HW 5 indw
iy Quality MeIICS... | epook o WA Codebock_CN £ sign
|g—|; Show Testhench |45 codebook_cr _INITE Codebook_CN o
t_“ — : OUBOOR_Ci Coddebook_CH ¥
|: Show Children op fiop
Customize... 1 cogebook Codebook
1 segq7? Codebook_SeqT
1 code TOiET Ciode 7030 Fobits
Cow fr %
Sat_Sigr
Cor &
Gian
| = |] | =
Models | Imparts | Sources | Hierarchy | Behaviors | Channels J
__E Compile | Simulate | Analyze | Refine | Shell |
: % scrtl Build_Cade -h fsh -p 10 -i /homessabdifdema’ocaderCamm. fLin.sir -0 fhomedsabdifdema’YocoderComm ilLsir -% fhomedsa
hdifdemo/BuildCode v
Scheduling: Behavior (Build_Code_RTL)
The number of states generated in behaviorBuild_Code_RTL): 103
2| LRindinoF1N Behavinr (Build Code BTL £
Wiewy source 4

Select the behavior "Build_Code_RTL" by Left clicking on it. We now take a look at the
synthesized source code to see if the RTL refinement tool has correctly generated the
RTL model. Do this by selecting View—: Source from the menu bar.

133

Chapter 5. Implementation Synthesis

5.3.2. Browse RTL model (cont’d)

= [VocoderRilsi - SpecC Editar =[] =Bl
Eile Edit View Help =|=] x|
iF (g > 00)
i
codli] = 4096; -\.[J Mame
ilse @ cod
P codvec
codlil = -4096: ' h
F indx
) 3 5 sign
3r Y
i

behizvior Build_Code_RTLY
in short int codwec[10].
in short int sign(40].
out. zhort int cod[d0].
in short int h[40],
out short int y[40].
out short int indx[10]3

£
short int multQd{zhort int, short intih: -
short int roundd{int) £
short int subQdshort int, short ink)} - =] | -

int LomacQ{int L_war3, short int warl., short int warZl

{
return Lomac{L_war3, varl, wvar2l):
b derComm.rlsir -¥ /homedsa
imt. L_macliint L_var3, short int warl. short int war2)
{
return Lomac{l_war3. wvarl, varZl: /
R
] | =
| INS [Line: 4261 Cal:1_) ‘
B)

The source code editor pops up showing the RTL code for behavior "Build_Code RTL."

134

5.3.3. Browse RTL model (cont’d)

Chapter 5. Implementation Synthesis

= VocoderRtlsi - SpecC Editor M= [EEE
File Edit View Help == x|
iy
int L_shrOdint L_warl., short int war2) 1
£ 2 Mame 5
return L_shr{L_wvarl. wvar2i: o cog
3 c codvec
. . . ' h
int L_subOd{int L_warl, int L_war2)
£ o indx
return L_sub(L_warl. L_var2iz @Sign
3 oy
zhort int add0{zhort int warl. short int war2) |
return add{varl, war2i:
3
bit[31:0] aludibit[31:0] a. bit[31:0] b, int ctrl} =
i
return alufa, b, ctrli:
3 |
bit[31:0] alulibit[31:0] a. bit[31:0] b, int ctrl} = / = T =
£
return alufa, b, ctrli: J
b —
short int extract_10{int L_warl}
derCamm it sir =% /hamedsa
return extract_Ll{L_warli:z
b
bit[31:0] incOikit[31:0] ak /
] | =
| INS [Line: 4261 Cal:1_) ‘
B |

Scrolling down the editor window shows several function declarations in theis behavior.
It is to be noted that these declarations correspond to the functions implemented for the
allocated RTL units.

135

Chapter 5. Implementation Synthesis

5.3.4. Browse RTL model (cont’d)

= Wocoder si - SpecC Editor ==l [=Ex<]
File Edit View Help =|=] x|

HA5=57 , &
HAE=98, [
Hd7=99, S Mame &
H48=100,
H49=101, @ cod
WEO=102 P codvec

1 ' h

bit[31:0] RFO[16]: o incx

bit[31:0] RFLL1E]: 5 sign

bit[31:0] RF2[16]: Py

bit[31:0] RF3[16]:
bit[31:0] RF4[16]:
bit[15:0] _sign0[1024]¢ -
bit[31:0] bus320:
bit[31:0] bus321:
bit[3110] bus322:
bit[31:0] bus323:
bit[31:0] bus324;
bit[15:0] codeo[1024];
bit[15:0] indices0[1024]:

enun state state; -

£
state = S0¢ = [~ I =
while(l} J
£ |
waitfor (103; :
zwitchistate}
£ derCommm flsir =¥ fhomessa
caze 03
ztate = S1;
bresk
. In=1=) /
] T B
| INS [Line: 4261 Cal:1_) ‘
B A

Scrolling down further shows the assignments for the state variables. Recall that the
RTL synthesis produced 103 states. These states are enumerated here from 0 through
102. Note the final assignment (X50 = 102). Also, we can observe a while loop with a
waitfor (10) statement in it. The waitfor statement signifies the clock delay indicating
that state transitions are made at clock edges.

136

5.3.5. Browse RTL model (cont’d)

Chapter 5. Implementation Synthesis

= VocoderRtlsi - SpecC Editor M= [EEE
File Edit View Help == x|
£ A
=tate = 5d;
1 3! Mvame 5
break o cog
2 c codvec
?ase * o
bus321 = RFO[0]: o incix
code0lbus321] = 02 5 sign
bus321 = RFOLO]: 7y
bus320 = incO{bus2213:
RFO[O] = bus320; |
state = 52:
break
K
caze di
RFO[O] = 0f
state = 55;
break: -
case 53 /
= . I =
£
bus320 = RFO[O]: |
if (aludibus320. 5, 233 —]
£
state = S6;
derCommm flsir =¥ fhomessa
else
£
state = 572
b /
] T B
| INS [Line: 4261 Cal:1_) ‘
B A

Further observations of the generated code show read/write operations on the register
files. For instance RFO is the register file written in the statement bus321 = RFO[0]; as

shown in the code.

137

Chapter 5. Implementation Synthesis

5.3.6. Browse RTL model (cont’d)

= VocoderRtlsi - SpecC Editor M= [EEE
File | Edit Wiew Help == x|
1=
[Mew Crl+M &
= Open... Cirl+0O state = 5d;
= Op ¢ -\.[J Mame
& Save CHl+5 | oop s 7 cod
Save As. . c codvec
Recent files ~| gh
=321 = RFOLO]: inds=
© Close S ¥ b0l us321] = o: @ sign
bus321 = RFOLO]: 7y
bus320 = incO{bus2213:
RFO[O] = bus320; |
state = 52;
break
3
caze di
RFO[O] = 0f
state = 55;
break: -
case 53 = /] T B
bus320 = RFO[O]: |
if (aludibus320. 5, 233 —]
i
state = S6;
darCamm mlsit -¥ /homedsa
else
£
state = 572
b /
] T B
| INS [Line: 4261 Cal:1_) ‘
B A

We conclude the browsing session by closing the editor using File— Close from the

menu bar.

138

Chapter 5. Implementation Synthesis

5.4. Validate RTL model

=|vocoder.sce - S0C Enviranment - [Euild_Code_RTL - YocoderRil - YacoderRil.sir] |Q|E|E
[] Eile Edit View Project Synthesis Walidation | Windows Help == x|
| N Erq'I (= I é“b e I 3 E r Instrumentation |f@ e I .l
— Compile 1
- IType Mame
Design Simulate Coder © cad
=2V ocoderSpec. sir Open Terminal - Behavior DSP_ Wwap c codvec
=29 vacaderarch sir Eill simulation SenbiFames_ HW wrap o
FHE|2 YV ocoderComm.sir View Log Subfames_HW A ine
= VacoderRH.sir " CoaE = _Wr_Cogebook CN 4 sign
_ini#s Profile TS Codebook_Ch o
bogets 4 Codietook_CH ¥
Analyze -
- Mo
- 1 c; Evaluate Cogebaok
I Metrics.. Coaebook_Seql
H Estimat Coge R0 Iabits
stimates Cor #r_x
Estimate Ser_ Sigrr
Cor &
@ Stop Search 16148
Mg r
| = | =] | =
Models | Imparts | Sources | Hierarchy | Behaviors | Channels J
__E Compile | Simulate | Analyze | Refine | Shell |
: % scrtl Build_Cade -h fsh -p 10 -i /homessabdifdema’ocaderCamm. fLin.sir -0 fhomedsabdifdema’YocoderComm ilLsir -% fhomedsa
bdifdemo/BuildCode v
Scheduling: Behavior (Build_Code_RTL)
The number of states generated in behaviorBuild_Code_RTL): 103
2| LRindinoF1N Behavinr (Build Code BTL £
Compile 4

For demo purposes, we shall not perform RTL refinement on remaining behaviors
assigned to HW. Proceed instead to validate the generated RTL model by selecting

Validation— Compile from the menu bar.

139

Chapter 5. Implementation Synthesis

5.4.1. Validate RTL model (cont’d)

= | wocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRil - YocoderRil.sit] |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
|D#Inﬁié ')@IX[:' Instrumentation |f@@ I.l
— Compile
- ! IType -\.[J Mame
Diesign o ZOVEE | Coder cod
=2V ocoderSpec. sir Open Terminal - Behavior DSP_ Wwap c codvec
ﬁ—gg\mcndemrch.sir Eill simulation SenbiFames_ HW wrap o
FHE|2 YV ocoderComm.sir View Lo Subfames_HW A ine
VocoderRil sir coge LR W Loaebaoh_th 5 sign
_inits| Profile _INITs Codebook_CMN o
ot poo Coehook_CN y
| & e Analyze o
- 1 c; Evaluate Cogebaok
H hdetrics.. Codebock_Seg?
H Estimat Coge R0 Iabits
stimates Cor #r_x
Estimate Ser_ Sigrr —
. Stap
£
| = | =] | =
Models | Imparts | Sources | Hierarchy | Behaviors | Channels J
__E Compile | Sitmulate | Analyze | Refine | Shell |
i TRUL "voCoderRl.co ™
Output: "VocoderRt.o"
Linking...
Input. "YocoderRil.o"
Qutput: "VocaderRE"
Done. JI
Simulate A

Note that the RTL model compiles correctly generating the executable VocoderRtl
as seen in the logging window. We now proceed to simulate the model by selecting
Validation— Simulate from the menu bar.

140

5.4.2. Validate RTL model (cont’d)

Chapter 5. Implementation Synthesis

= vocoder.sce - 30C Enviranment - [Build_Code_RTL - YocaderRil - VacoderRilsif |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
Dz EH@ g(va xen [EFEE 63| 0]
o] = | WocoderRil EI=1ES] I
R - I Mame Y
Desi frane=147 encoding delay = 0,18 ms
r frane=148 encoding delay = 0,18 ms o cod
E frame=149 encoding delay = 0.19 me PSP st c codvec
i frame=150 encoding delay = 0,18 ms HW wrap We
frame=151 encoding delay = 0,19 ms i h
frane=152 encoding delay = 0,18 ms F indx
frame=153 encoding delay = 0,13 ms GoR_ S cﬂjsign
frame=154 encoding delay = 0,19 ms abook_CM
frame=155 encoding delay = 0,18 ms o (539
frame=156 encoding delay = 0,19 ms
frame=157 encoding delay = 0,19 ms
frame=158 encoding delay = 0,18 ms
frame=159 encoding delay = 0,19 ms Sagl
frame=160 encoding delay = 0,18 ms b7 Famits
frame=161 encoding delay = 0,18 ms -
frame=162 encoding delay = 0,19 ms
frame=163 encoding delay = 0,20 mz
done, 163 frames encoded
Filez speechfiles/nodtx_good,bit and nodtx,bit are identical
— imulation exited with status O
] ress return Lo continue ... | -
ta [(0
__E Compile | Simulate | Analyze | Refine | Shell |
: % wterm -title VocaderRil -e /binfsh -¢ SYocoderB speechfiles/spoch_unsing nodt<hit nodt< && diff -5 speechfiles/nodt<_good.bit nodt
».bit; echo "Simulation exited with status $%" ;echo "Press return to continue .." ;read confirm
[Ready A

The simulation window pops up showing the progress and successful completion of
simulation. We are thus ensure that the RTL refinement has taken place correctly. Also
note that we can perform the refinement on any behavior of our choice. This indicates
that the user has complete freedom of delving into one behavior at a time and testing it
thoroughly. Since the other behaviors are at higher level of abstraction, the simulation
speed is much faster than the situation when the entire model is synthesized. This is a
big advantage with our methodology and it enables partial simulation of the design. The
designer does not have to refine the entire design to simulate just one behavior in RTL.

141

Chapter 5. Implementation Synthesis

5.5. SW code generation

= vocoder.sce - 30C Enviranment - [Build_Code_RTL - YocaderRil - VacoderRilsif |Q|E|E
[O] Eile | Edit Wiew Project Synthesis WValidation Windows Help == x|
crien @ | X EFE] B @ | 0]
Cirl+D |
= _H[l ITWJE 3| Mame
De €3 Close Ctrl+'W | Coreter & cod
‘B Reload R Betatior DSP wrap P codvec
Subiraines AW wreae ' h
Reload All Sutiames HW 2 indx
& Save CiH+3 . r sogelook o _WAE Coasbosi_CN & sign
inits codebook o _INITE Codebosf_ON
Save As.. %
- brogdobook_cir Codebook_CH y
& save Al & o fiop
ltport... - 1 coaebook Dol
= 1 segq7? Codebook_SeqT
Export... 8 code 704G Codge 1080 _35bits
& Print Ctrl+P Cor_fi_x
: Set Sigre —
Froperties... Cor b
Recent Files -
Exit Cirl+Q /
-~ | P o = T [] T [
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | J
__E Compile | Simulate | Analyze | Refine | Shell |
| % »term -tite ocaderRtl -e /in/sh -c /VocoderRt speechfilesispoh_unxing nodt<bit nodt< && diff -5 speechfilesmodt<_good bit nodt
».bit; echo "Simulation exited with status $%" ;echo "Press return to continue .." ;read confirm
Simulation exited, exit status: 0
Import design 4

So far we have only generated the RTL model for the hardware part of our design.
The behaviors that are mapped to the processor must be compiled for the DSP. We
must now import the instruction set simulator (ISS) for the DSP Motorola 56600. Select
File—Import from the menu bar.

142

5.5.1. SW code generation (cont’d)

Chapter 5. Implementation Synthesis

= | vocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRil - VocoderRil si] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
N B8 &8 |oa| X B EEEEEIE
H[IType A Mame &
Design Coger P cod
:QVocoderSpec.sir Befraiior DSF \weap c# codvec
EEVDcnderArch.sir Subiames_HW_wrap & h
F-E{2vocad §|Open E 7 ind
Laok in: [y /home/sabdi/demo/RTL/ ﬂ ﬁll_
& speechfiles
[RTL_alloc.sir
File name: | I open |
R — U =
Madels | Imparts || File type: SIR files (%.sif) | | Cancel | |
: A
ﬂ Compile | Smu'arrrpmm;; B[RETmE [Shel |
‘| | % xterm title VocoderRtl -e shindsh -c fvocaoderRt speechfiles/spch_unxing nodt< bit nodts && diff -5 speechfiles/modt<_good bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm
Simulation exited, exit status: 0
Select design to import... A

Go one level up in the directory tree by double Left click on ™.."

143

Chapter 5. Implementation Synthesis

5.5.2. SW code generation (cont’d)

= | vocoder.sce - 50C Environment - [Build_Code_RTL - YocoderRil - YocoderRil sit] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
1
IType | Mame %
Design Coger P cod
-2V ocoderSpec sir Betavior DSP_wap P codvec
EEVDcnderArch.sir Subitaines_HW_wrsp i & h
R 2vocod[= 57 inclx
Look in: | —/homessabdifdemos
. Clp_analysis [wocoderarch.ins.sic [] VocoderRtl sir
_Jopen_loop D Yocoderarch siv D YocoderSpec.sir
CARTL I processing [wocoderComm.in.sir] lib sir
_Acloged_loop [_)speechfiles D YocoderComm.sir D testhench.ins.sir
_Jcodebook _Jupdate D vocoderRilin.sir D testhench profiled.sir
CJcomman [7 wocoderarchinsiv] vocoderRtling.sir
1 I -
File natie: | || Open
R — U =
Madels | Imparts || File type: SIR files (%.sif) | | Cancel | |
A=

X compile | Simu

[TANEyZE [T RETme [Snel |

Simulation exited

, Bt status: 0

% xterm -title VocoderRtl -e /hinfsh -c SYocoderBl speechfiles/spch_unxing nodt<bit nodts && diff -3 speechfiles/nodt<_good.bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm

Select design to import...

Select directory "IP" from the file selection menu by double Left click.

144

Chapter 5. Implementation Synthesis

5.5.3. SW code generation (cont’d)

= [vocoder.sce - S0C Enviranment - [Build_Code_RTL - VocaderRil - VacoderRilsif [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
N B0 & |ve [XbB K| EEE| S 3| o
A IType | Mame %
Design Coger P cod
:DVocoderSpec.sir Befraiior DSF \weap o codvec
EEVDcnderArch.sir Subitaines_HW_wrsp i & h
g5 vocoof= || incx
Look in: |3 shomersabdifdemos|Ps
3.
& speechfiles
File natie: |Dsp|ss.sir || Open
R — U =
Madels | Imparts || File type: SIR files (%.sif) | | Cancel | |
: A
__ﬂ Compile | Smu'arrrpmm;; B[RETmE [Shel |
| [% xterm -titie vocoderRtl -e sbinfsh - /vacoderRt speechfiles/spch_unxing nodt< bit nodts && diff -5 speechfiles/modt<_good bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm
Simulation exited, exit status: 0
Select design to import... A

Inside deirectory IP, select "Dsplss.sir" and Left click on Open.

The SIR file contains the instruction set simulator for our chosen DSP. The behavior
loads the compiled object code for the tasks that were mapped to DSP and executes it

on the instruction set simulator.

145

Chapter 5. Implementation Synthesis

5.5.4. SW code generation (cont’d)

= | vocoder.sce - 50C Environment - [Dspl55 - VocoderRtl - VocoderRil sir] [EEE
[Eile Edit ¥iew Project Synthesis Validation Windows Help == x|
N B8 &8 |oa| X B EEEEEIE
]
H[I Mame |Ty; A Mame &
i m-Ecodescok_cn Co o 8
| o Mo 7 D
B8vocodersrch.sir M- B cocebook Coa o dts_made
B2V ocoderComm. sir i segl Lo o5 int
.)
L vocoderRl.sir u coge THAD Cog o mCs
M cor i x Cor o .
& et s e new_frame
Feor b cor o nRD
MW seari 10Gi80 Ses P nwR
M it _code = cF serial
g Ll & P serialbits_reac
i segl Coa cF speech_samp
N 4 ’W”"”—Cg—f&f 3;‘; o bect_ctr
1 _synes codebook_cn _ S
4 monitor Mot g?rqu?n
L& stimulus Sty @lraapin
B JspIS S | | @ irgepin /
-~ e —————— T = =
Models | Imports | Sources | Hierarchy | Behaviars | Channals | J

ﬂ Caompile | Simulate | Analyze | Refine | Shell |

% xterm -title VocoderRtl -e /hinfsh -c SYocoderBl speechfiles/spch_unxing nodt<bit nodts && diff -3 speechfiles/nodt<_good.bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm
Simulation exited, exit status: 0

[Ready 4

Once "Dsplss.sir' is imported, we can notice DsplISS as a new root behavior in the design
hierarchy tree. This is because the DsplSS behavior has not been instantiated yet.

146

Chapter 5. Implementation Synthesis

5.5.5. SW code generation (cont’d)

§| vocodersce - 50C Environment - [Behavior_DEP_wrap - YocoderRil - VocoderRisir] ||Q|E|Z
[Eile Edit ¥iew Project Synthesis Validation Windows Help == x|
n= D6 XbE X
. H[I | Name |Ty; 3 Mame &
Design A | - tain - Busn_a
o W coser Coa 7 Buso_D
B8vocodersrch.sir o Busl_MCS
oo) HIW Saurce...
B2V ocoderComm. sir gy P & Bus0_nRD
LsgnvocoderRil sir Hierarchy..
- 1 _wWr _codebook_ci - W cF? Bush_nwR
B8 inite coapop, SomECit. i " dbs_madle
W codetook o | Isolate o o Intr_BusO_HW
& nap - i P new_frame
m- B cogebook | T Coa o serial
f seqr Elatien Lo P serialbits_reac
- § coge T4 Delste Del o f= 7 spesch_samp
cora | Car -
:6‘6'2‘_: Rename .5'6'3‘- cﬁtxdix_ctrl
-'50":* Change Type (_70; & flag_intrpt_Bu:
A sean Ses TrBush
.'f}w?am Buii| g || | T INDERHWBUS T,
7] | - = Graphs = = S]
Models | Imports | Sources | Hierarchy | Behaviars | Channals | J

ﬂ Caompile | Simulate | Analyze | Refine | Shell |

% xterm -title VocoderRtl -e /hinfsh -c SYocoderBl speechfiles/spch_unxing nodt<bit nodts && diff -3 speechfiles/nodt<_good.bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm
Simulation exited, exit status: 0

[Ready A

In the design hierarchy tree, select behavior DSP. Right click and select Change Type.

147

Chapter 5. Implementation Synthesis

5.5.6. SW code generation (cont’d)

Models | Imports | Sources |

= vocoder.sce - S0C Enviranment - [Behavior_DSP_wrap - YocoderRil - VacoderRt.sir'] [EEE
[] File Edit View Project Synthesis ‘Validation Windows Help =|=| %]
N B8 &8 |oa| X B EEEEEIE
i
H[I |Type |F'E IElus |-\ | Mame %
i ' Bus0_a
Coder P Busd_D
ader#irch.sir - i =P ran D5 o Busl_MCS
2|2y ocoderComm sir Behaviar_DSP_wirap H o Bus0_nRD
L vocoderRl.sir HW 7 BusD_n'WR
i o IMNITs Codebook CM " dbs_madle
Codepoak_CH o7 Intr_Bus0_HW
Mo cF new_frame
Codetook c serial
_ Codebook_Seqi P serialbits_reac
[g&‘eﬁ TOHAG 3obirs = | speech_samp
il il o ecibe_ctr
fsige Sat Sigr -
Cor & flag_intrpt_Bu:
c THAR Search_ 16148 TrBusl
¢ code Build_Code_ATE /|| | EinDERHYBUS T,
-~ | == | -

Hierarchy [Behaviors | Channels |

_

ﬂ Caompile | Simulate | Analyze | Refine | Shell |

Simulation exited, exit status: 0

% xterm -title VocoderRtl -e /hinfsh -c SYocoderBl speechfiles/spch_unxing nodt<bit nodts && diff -3 speechfiles/nodt<_good.bit nodt
w.hit, echo "Simulation exited with status 7" ;echo "Press return to continue " ;read canfirm

[Ready

The type of "DSP" behavior may now be changed by selecting DsplSS.

By doing this, we have now refined the software part of our design to be implemented
with the DSP56600 processor’s instruction set. Recall that the software part mapped to
DSP has already been compiled for the DSP56600 processor and the object file is ready.
As mentioned earlier, the new behavior will load this object file and execute it on the
DSP’s instruction set simulator. Thus the model becomes clock cycle accurate.

148

Chapter 5. Implementation Synthesis

5.6. Validate implementation model

=|vocoder.sce - 30C Enviranment - [Dspl33 - YacoderRtl - YocoderRil sir ||Q|E|E
[5] Eile Edit ¥iew Emject Synthesis ‘alidation | Windows Help == x|
10 E'fs-I [=F=] I é“b G I $¢E - Instumentation | ¢ I .l
Compile [
Mame I Mame Y
e Simulate)
i3 Open Terminal - 5 D
g5 YocoderArch.sir Kill simulation - o7 dbs_mode
FHE|2 YV ocoderComm.sir View Log 2 intc
L i | Yiewlege |
fn Y ocoderRtlsir Brofie ook_cn W P rCS
| codeback_crm ity & new_frame
EEyEE oot Coa & nRD
Evaluate » Mg o R
Metrics... eboOK Coq 5 serial
T seql Cog 7 serialbits_read
= code TGEE G [= o speech_samp
Estimate _-'50"._"#?_% Cor Cﬁjtxdt-ﬁ ctrl
— | et g Sef T
@ stop | & cor & Cor @ Irgapin
| searmt T4 Sez ol b pin
| buviied_codde Buif ||| @Irgepin /
I = = 1 = -] =
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | J

E Compile | Simulate | Analyze | Refine | Shell |

bdifdemo/BuildCode v

% sorl Build_Code -b fsb -p 10 - shomedsabdifdem o/ ocoderCaomm.lin.sir -0 thomessabdisdemo/YocoderComm. il sir - /homedsa
Scheduling: Behavior (Build_Code_RTL)

The number of states generated in behavior(Build_Code_RTL): 103

2| LRindinoF1N Behavinr (Build Code BTL £
Compile

)

We now have the clock cycle accurate model ready for validation. We begin as usual
with compiling the model by selecting Validation— Compile from the menu bar.

149

Chapter 5. Implementation Synthesis

5.6.1. Validate implementation model (cont’d)

= | wocoder.sce - 50C Environment - [Dspl 55 - VocoderRil - VocoderRil.sin |Q|E|E
[] Eile Edit View Project Synthesis Vglidationlﬂindows Help == x|
|D#Inﬁié ')@IX[:' Instrumentation |f@@ I.l
Compile
H[I Marme - : i [ame 5
e Simulate)
i3 Open Terminal - 5 D
®-58 Vocoderarch.sir Kill simulation - 67 dte_mode
Ii|—§||§_\foc\?dercdon;rtnl.s!r view Log.. - inte
man Y ocoderRtlLsir e book_cn W P rCS
anal | codetook_ci fiy ' new_frame
fnalyze ook o Coa cF nRD
Evaluate » Mg o R
Ietrics... ook Coq 5 serial
. seql Cog 7 serialbits_read
5 coge_ THAR Coat = o speach_samp
Estimate _-'50"._"#?_% Cor Cﬁjtxdt-ﬁ cirl
et s Set| T
@ stop - cor & Cor @ Irqapin
| searmt T4 Sea ol b pin
| buviied_codde Buif ||| @Irgepin /
I == T - -] =
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | J
__E Compile | Sitmulate | Analyze | Refine | Shell |
i TRUL "voCoderRl.co ™
Output: "VocoderRt.o"
Linking...
Input. "YocoderRil.o"
Qutput: "VocaderRE"
Done. JI
Simulate A

The model compiles correctly as shown in the logging window. We now proceed to
simulate the model by selecting Validation— Simulate from the menu bar.

150

Chapter 5. Implementation Synthesis

5.6.2. Validate implementation model (cont’d)

=|vocoder.sce - 30C Enviranment - [Dspl33 - YacoderRtl - YocoderRil sir |Q|E|E
[] Eile Edit Wiew Project Synthesis Validation Windows Help == x|
IR IE YRS K EEE] 8o 0
VocoderRil == >]
[EE] e
Des ey
= B - #D
European digital cellular telecommunications system 0 e d
12200 bitsds speech codec for _mode
enhanced full rate speech traffic channels 2 intC
Bit-Exact SpeclC Simulation Code - encoder 7 MCS
Yersion 1,0 cF new_frame
Harch 13, 1939 7 nRD
o nWR
5 serial
ITH: disabled ialbi
Input speech filer speechfilessspch_unx,inp @serlalblts_reac
Output bitgtream file: nodtx,bit o speech_samp
SPBEE: Loading file 'dsp.cld’ .. 7 teclt_ctrl
SPHEE: Running, .. ; ;
SPEEE Cycle 1fB1d0 @ lrHapin
@ irghpin
@ irgcpin /
~— - -] =
ko

]

__E Compile | Simulate | Analyze | Refine | Shell |

% wterm -title WocoderRil -e /indsh -¢ SYocoderBil speechfiles/spoch_unxing nodi<bit nodt< && diff -3 speechfiles/nodb<_good.bit nodt
».bit; echo "Simulation exited with status $%" ;echo "Press return to continue .." ;read confirm

[Ready

)

Like in the earlier cases, a simulation window pops up. The DSP Instruction set simu-
lator can be seen to slow down the simulation speed considerably. This is because the
simulation is being done one instruction at a time in contrast to the high level simulation

we had earlier.

151

Chapter 5. Implementation Synthesis

5.6.3. Validate implementation model (cont’d)

= | wocoder.sce - 50C Environment - [Dspl 55 - VocoderRil - VocoderRil.sin ||Q|E|E
[5] Eile Edit ¥iew Emject Synthesis Walidation | Windows Help == x|
0 i«[EQ I é“b G I ¢ B ~ Instrumentation B @ I .l
o Compile
H[I Name_p— |T5.'[;J Il Mame 5
I Simulate)
a8 Open Terminal - Coa D
@55 Yocaderarch.sir Eill simulation ™| yocoderrt P dt<_mode
FHE|2 YV ocoderComm.sir View Log = Sg:’ﬁ 7 intC
L i | Yiewlege |
fn Y ocoderRtlsir Brofie ook_cn W P rCS
| codetook_ci i ' new_frame
rEyEE ook o Coa cF nRD
Evaluate » Mg o R
Metrics... eboOK Coq 7 sarial
T seql Cog 7 serialbits_read
= code TGEE G [= o speech_samp
Estimate _-'50"._"#?_% Cor Cﬁjtxdt-ﬁ ctrl
— | et g Sef T
@ stop A cor & Cor, @ lrHapin
| searmt T4 Sez ol b pin
| buviied_codde Buif ||| @Irgepin /
| = = 1 = -] =
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | J

E Compile | Simulate | Analyze | Refine | Shell |

% wterm -title WocoderRil -e /indsh -¢ SYocoderBil speechfiles/spoch_unxing nodi<bit nodt< && diff -3 speechfiles/nodb<_good.bit nodt
».bit; echo "Simulation exited with status $%" ;echo "Press return to continue .." ;read confirm

Simulate 4

It may take hours for the simulation to complete. The simulation may be killed by se-
lecting Validation—Kill simulation from the menu bar.

152

Chapter 5. Implementation Synthesis

5.6.4. Validate implementation model (cont’d)

=|vocoder.sce - 30C Enviranment - [Dspl33 - YacoderRtl - YocoderRil sir |Q|E|E
[O] Eile | Edit Wiew Project Synthesis WValidation Windows Help == x|
cren @ KBy B X Be] 0]
Cirl+D |
— _H[I Mame |T5.'F 3 Name 5
De €3 Close Ctrl+'W A1 - v1ain 5 n
‘B Reload oy | - I coger coa| |l e o
' dbs_mode
Reload &ll Hl o int(;
[Save Citl+5 LE T sl S acs
Save As W 1 _wr_codebook_cr W
= B B _inits_codebook_ci i ' new_frame
& save &l - ¥cogetoot_crn Coal ||| | nRD
Import - nap i cF nwR
7 - B conebook Con 7 serial
Export... o E seql Cog 7 serialbits_read
& Print Cirl+P i code 104G Coat = o speach_samp
A cor_h_x Coni e teat_ctr
Properies... AW st sign Set irqap_in
]
Recent Files - M cor i Cor Iraap
. M searct 10740 Sea @ !rqbp!n
Exit Ctrl+Q M buitd_code Buitf gl || @IrAcpin /
I == T - -] =
Models | Imports | Sources | Hierarchy | Eehaviars | Channels | J
__E Compile | Simulate | Analyze | Refine | Shell |
: % wterm -title VocaderRil -e /binfsh -¢ SYocoderB speechfiles/spoch_unsing nodt<hit nodt< && diff -5 speechfiles/nodt<_good.bit nodt
».bit; echo "Simulation exited with status $%" ;echo "Press return to continue .." ;read confirm
Simulation exited, exit status: 13
Quit (Crl+ Q) A

The demo has now concluded. To exit the SoC environement, select Project— Exit
from the menu bar.

153

Chapter 5. Implementation Synthesis

154

Chapter 6. Conclusion

In this tutorial we presented the System on Chip design methodology. The SoC method-
ology defines the 4 models and 3 transformations that bring an initial system specifica-
tion down to an RTL-implementation. In addition to validation through simulation, the
well-defined nature of the models enables automatic model refinement, and application
of formal methods, for example in verification.

The complete design flow was demostrated on an industrial strength example of the
\Vocoder Speech encoder.We have shown how SCE can take a specification model and
allow the user to interactively provide synthesis decisions. In going from specification
to RTL/Instruction-set model for the GSM Vocoder, we noted that compared to tradi-
tional manual refinement, the automatic refinement process gives us more than a 1000X
productivity gain in modeling, since designers do not need to rewrite models.

Table 6-1. VVocoder Refinement Effort

Refinement Step |Modified Lines |Manual Automated
Refinement Refinement

Spec -> Arch 3,275 3~4 months ~1 min.

Arch -> Comm 914 1~2 months ~0.5 min.

Comm ->RTL/IS |6,146 5~6 months ~2 min.

Total. 10,355. 9~12 months. ~4 mins.

To draw the conclusion, SCE enables the designer to use the following powerful advan-
tages that have never been available before.

1. Automatic model generation.

New models are generated by Automatic Refinement of abstract models. This means
that the designer may start with a specification and simply use design decisions to
automatically generate models reflecting those decisions.

2. Eliminates SLDL learning.

SCE eliminates the need for system-level design languages to be learnt by the
designer. Only the knowledge of C for creating specification is required.

155

Chapter 6. Conclusion

3.

156

Eliminates SLDL learning.

This also enables non-experts to design systems. There is no need for the designer
to worry about design details like protocol timing diagrams, low level interfaces etc.
Consequently, software developers can design hardware and hardware designers
can develop software.

. Supports platforms.

SCE is great for platform based design . By limiting the choice of components and
busses, designers may select their favorite architecture and then play around with
different partitioning schema.

. Customized methodology.

SCE can also be customized to any methodology as per the designer’s choice of
components, system architecture, models and levels of abstraction.

. Enables IP trading.

SCE simplifies IP trading to a great extent by allowing interoperability at system
level. With well defined wrappers, the designer can plug and play with suitable IPs
in the design process. If an IP meets the design requirements, the designer may
choose to plug that IP component in the design and not worry about synthesizing or
validating that part of the design.

References

A. Gerstlauer, R. Doemer, J. Peng, and D. Gajski System Design: A Practical Guide with
SpecC. Kluwer Academic Publishers Inc. June, 2001

D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao SpecC: Specification Language
and Methodology. Kluwer Academic Publishers Inc. March, 2000

D. Gajski, F. Vahid, S. Narayan, and J. Gong Specification and Design of Embedded
Systems. Prentice Hall June, 1994

D. Gajski, F. Vahid, S. Narayan, and J. Gong “SpecSyn: An Environment Supporting the
Specify-Explore-Refine Paradigm for Hardware/Software System Design”. IEEE
Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100 1998, Awarded the IEEE
VLSI Transactions Best Paper Award, June 2000

D. Gajski, L. Ramachandran, F. Vahid, S. Narayan, and P. Fung “100 hour design cycle
- A test case”. Proc. Europ. Design Automation Conf. EURO-DAC 1994

157

References

158

