
Event Delivery using Prediction for Faster Parallel SystemC Simulation

Zhongqi Cheng Emad Arasteh Rainer Dömer
Lab for Embedded Computer Systems Lab for Embedded Computer Systems Lab for Embedded Computer Systems

University of California, Irvine University of California, Irvine University of California, Irvine

Irvine, California, USA, 92697 Irvine, California, USA, 92697 Irvine, California, USA, 92697

e-mail: zhongqc@uci.edu e-mail: emalekza@uci.edu e-mail: doemer@uci.edu

Abstract— Out-of-order Parallel Discrete Event Simulation
(OoO PDES) is an advanced simulation approach that efficiently
verifies and validates SystemC models. To preserve the simulation
semantics, OoO PDES performs a conservative event delivery
strategy which often postpones the execution of waiting threads
due to unknown future behaviors of the model. In this paper,
based on predicted behaviors of threads, we introduce a novel
event delivery strategy that allows waiting threads to resume
execution earlier, resulting in significantly increased simulation
speed. Experimental results show that the proposed approach in-
creases the OoO PDES simulation speed by up to 4.9x compared
to the original one on a 4-core machine.

I. INTRODUCTION

In recent years, the functional complexity of embedded

systems has grown dramatically. As a widely used system-

level design language, IEEE SystemC [1] has been established

as a de-facto and official standard for modeling and simulating

embedded systems. The proof-of-concept Accellera SystemC

simulator is based on Discrete Event Simulation (DES), which

is sequential and does not utilize the parallel computation

power of modern multi-core platforms.

Out-of-order Parallel Discrete Event Simulation (OoO PDES)

[2] is studied to increase the multi-core CPU utilization.

Compared to traditional Parallel Discrete Event Simulation

(PDES), OoO PDES has a higher parallelism level as it allows

threads to run in parallel even if they are in different cycles.

Two techniques, namely static analysis and dynamic checking,

are performed to preserve the simulation semantics and timing

accuracy of OoO PDES.

Static analysis is a compile-time approach that analyzes the

data conflicts, timing and events in a SystemC model. The

analysis results are instrumented as look-up tables back into

the model. Note that the event notification table with pre-

diction (ETP) used in our work is one of the tables. During

simulation, these look-up tables are dynamically checked by

OoO PDES scheduler to make aggressive but safe thread

dispatching decisions.

One bottleneck of current OoO PDES that limits the simu-

lation speed is its event delivery strategy. The OoO PDES

scheduler is conservative and only delivers the earliest event

notifications on every scheduling step. This limits the number

of threads to be waked up and and reduces the parallelism

level of simulation.

As a motivating example, Figure 1a shows a simplified high-

level SystemC model of a DVD player. The Stimulus has
three parallel threads and each sends data to a corresponding

channel. When the data is sent, an event is notified inside

the channel for synchronization purpose. Video, Left and

��������

	
�

���

����	��

	
	��

�
��

	
�

����	�

	
	��

����� ����

	
�

����	��

	
	��

���
�

������

��
 ���

(a) SystemC model of a DVD
player

���

����	��

���

����	�

����	��

���

�����

��� ��� ��� ��� ��
 ������

����	�� ����	�
 ����	��

���	
���
�������� ���	
���
�������

(b) Scheduling of Org and Prd

Fig. 1: SystemC model and OoO PDES scheduling

Right are three decoder modules and each has a single

worker thread that waits for the corresponding channel event.

When the event is delivered, the worker thread wakes up and

starts processing the received data.

Figure 1b shows the scheduling of threads under the original

event delivery strategy (Org) and the optimized event delivery

strategy using prediction (Prd) proposed in this paper. Under

Org, only one worker thread can wake up each scheduling step

due to the in-order event delivery strategy. While under Prd,

the scheduler is able to get more context information provided

by the predictions of future thread behaviors. More events are

delivered every scheduling step and more threads are allowed

to wake up in parallel. As a result, the simulation speed is

increased significantly.

A. Related Work

Parallel Discrete Event Simulation (PDES) was first pro-

posed in [3]. In [2], OoO PDES was introduced to further

978-1-7281-4123-7/20/$31.00 ©2020 IEEE

5D-1

357

increase the simulation speed, and was well studied in [4],

[5] and [6]. [4] proposed a scheduling algorithm that pre-

dicted thread run time at segment level for better multi-core

scheduling. [5] exploited data-level parallelization on top of

OoO PDES for faster SystemC simulation. [6] introduced a

static approach to predict future behaviors of threads, and

used the information for advanced data conflict analysis of

threads. Although our work reuses ETP proposed in [6], it is

totally different from [6] because in our work the prediction

information is used for optimized event delivery strategy. Note

also that the approaches in [4], [5] and [6] are orthogonal

with ours and can be applied together for parallel SystemC

simulation.

SystemC simulation was also widely studied in many other

works. The SystemC-clang framework was proposed in [7].

It analyzed SystemC models at register-transfer level and

transaction-level. [8] introduced a parallel SystemC simulation

kernel. However, it required the user to manually translate

the sequential design into a safe parallel design. [9] provided

users with a set primitives to manually parallelize SystemC

tasks. Our work is different as it supports automatic and safe

simulation.

II. BACKGROUND

In this section, we briefly review the Segment Graph (SG)

data structure which is fundamental to OoO PDES , the

ETP that provides the prediction information about event

notifications and the original event delivery strategy.

A. Segment Graph

The SG is a directed graph that represents behavior of

functions in a SystemC model. Each node in the graph is a set

of code statements executed between two scheduling steps [2].

A scheduling step is an entry to the scheduler, which includes

wait statements, start of a thread and end of a thread. In SG,
a scheduling step is indicated by an edge between segments.

An example of SystemC source code is shown in Figure 2a.

The corresponding SG is shown in Figure 2b. Segment 3 and

4 are separated by the wait-for-event statement wait(e1) in
line 8, as indicated by e1 beside the edge. Segment 4 wakes
up when event e1 is notified by segment 2.

��������������	
��
����

		
������������

������������
���������������

�
�
�
�

�

��������������	
�������

		
�������

���!��������
���������������

�
�
	

��

�����������
��	
��"����

		
�����!�

��"���!

��
��
��
��
��

(a) SystemC Source code

�������	
����
������� ��

�

�

�

�

�
������� �
�������

�������	
����
�	

�

�
�������

�

���
�� ���

���

(b) SG of 2a

Fig. 2: Example of SG

B. Event Notification Table with Prediction

ETP was first introduced in [6] for optimized data conflict

analysis in OoO PDES, which is a table that stores the

prediction information about the time advance for a segment to

wake up another segment. ETP is formally defined in Equation

1. It is automatically built by the compiler with the algorithm

proposed in [6].

ETP [i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(tΔ, δΔ)

if a thread in segi
may wake up a thread
in segj with least
time advance of
(tΔ, δΔ)

(∞, 0)
if a thread in segi
will never wake up a
thread in segj

(1)

Take the SG in Figure 2b as an example. Segment 4 is directly

waked up by segment 2 via event e1, ETP[2, 4] is thus one
delta cycle, denoted as (0,1) in this paper1. Indirect event

notifications are also considered in ETP. Segment 1 does not

notify any event, however, it is followed by segment 2 with

time advance of 1 SC_NS and segment 2 directly wakes up
segment 4. Therefore, segment 1 indirectly wakes up segment

4 with a minimum time advance of (1,1). Segment 1 can also

indirectly wake up segment 6 by first indirectly wakes up

segment 4, then segment 4 directly wakes up segment 6. In this

case, EPT[1,6] = (1,2). The corresponding ETP is shown in

Figure 3. Note that there are several (∞,0) entries in the table.
For instance, ETP(2,3) is (∞,0). This is because segment 3
does not wait for any event and thus no other segment may

wake it up.

In our approach, ETP is used to calculate the predicted wake-

up time of a waiting thread by another thread. Take Figure 2b

as an example. Suppose th3 is waiting and th1 is running at
timestamp (0,0) in segment 1. According to ETP, the scheduler

predicts that thread 3 will probably wake up at timestamp (0,0)

+ (1,2) = (1,2).

Fig. 3: ETP for 2b

C. Original Event Delivery Strategy

We now briefly introduce the original event delivery strategy

and discuss its limitations.

In OoO PDES, an event notification is not delivered immedi-

ately when notified. Instead, it is first stored into an event
notification set Σ that keeps all event notifications during

the simulation. Then, on every scheduling step, the scheduler

1the first element in the tuple is the time count and the second one is the
delta count

5D-1

358

checks every event notification in Σ to determine if the event

notification satisfies the following two requirments:

1) Earlier than all RUNNING or READY threads

2) Earliest among all the event notifications stored in Σ that

can wake up threads

If the two requirements are fulfilled, the scheduler delivers the

event notification and wakes up all the threads that are waiting

on this event.

The two requirements are demanded to avoid potential late
wake-up of threads due to unknown future behaviors of other
threads. Two possible scenarios are shown in Figure 4. The

rectangles represent the segments executed by threads. Note

that the clock axis represents the wall clock time.

The scenario in Figure 4a explains requirement 1. Segments

1 and 2 of threads th1 and th2 notify event e. Segment 4
of thread th3 waits for e. We assume that under out-of-order
execution, th1 and th3 are scheduled to run first. Segment
1 notifies e at timestamp (3,0). Next, th3 starts waiting for
e at (1,0). Although e has already been notified at (3,0), the
scheduler decides not to deliver it to wake up th3. This is
because th2 is still in READY at (2,0) and the scheduler

cannot predict if th2 notifies e before (3,0). In this example,
th2 does notify e at (2,0) and therefore th3 should wake up
at (2,1). Requirement 1 successfully prevents a late wake-up

of th3 at (3,1).

�

�

�����

�����

�

��� ���
��������

�

�
��	�

�

�

�

�

�

�

(a) Scenario 1

����� �����

�

��� ���
�����

���

�

��

����	

�

�

��

�����
�

�
���

�

���

��
 �

 ��� ��

��

(b) Scenario 2

Fig. 4: Scenarios explaining requirement 1 and 2

The scenario in Figure 4b explains requirement 2. Two

events e1 and e2 are notified by threads th1 and th2 at
timestamps (3,0) and (6,0). By requirement 1, the two event

notifications are not delivered because threads th3 and th4
are still in READY at earlier timestamps. Next, th3 and th4
are scheduled to run and then wait for e1 at (1,0) and e2 at
(2,0) respectively. Now, both event notifications: e1 at (3,0)

and e2 at (6,0) meet requirement 1 as there are no threads in

RUNNING or READY. However, as specified by requirement
2, only the earliest notification: e1 at (3,0) can be delivered.

Notification e2 at (6,0) is not delivered. This is because the

simulator is not able to predict whether the thread waked up

by e1 will notify e2 at an earlier timestamp before (6,0). In
this example, th3 notifies e2 at (4,0) in segment 5 after being
waked up by e1, and therefore th4 should wake up at (4,1).
Requirement 2 successfully prevents a late wake-up of th4
at (6, 1).

The original event delivery strategy is very conservative and

sometimes makes false decisions to not deliver an event

notification. In scenario 1, if segment 2 is modified to not

notify event e, then notification of e at (3,0) is actually safe
to deliver immediately after th3 starts waiting because no

earlier notification of e will happen in the future. However,
forced by requirement 1, the scheduler needs to wait until

segment 2 finished execution to make this delivery. Similar for

requirement 2. If the scheduler knows what will happen in the

future, an event notification may be delivered earlier instead of

being held until fulfilling requirements 1 and 2. Consequently,

the corresponding waiting threads resume execution earlier

and result in faster simulation. This motivates our idea of

optimizing the event delivery strategy in OoO PDES with

prediction information.

III. OPTIMIZED EVENT DELIVERY STRATEGY WITH

PREDICTION

In this section, we first propose the optimized event delivery

algorithm and then discuss about the optimization of Σ to

reduce the space and time complexity.

A. Optimized Event Delivery Algorithm

Due to the out-of-order execution, a waiting thread th may
be waked up by 1) event notifications that are already notified

and stored in Σ or 2) event notifications that will be notified

in the future by current running, ready or waiting threads.

Based on this observation, we first use ETP to predict the

earliest timestamp a waiting thread can wake up, and then use

this information to determine if an event notification can be

delivered to wake up a waiting thread. The details are shown

in Algorithm 1. Note that the earliest timestamp a waiting

thread th can wake up is denoted as th.τ in Algorithm 1.

The algorithm contains four steps. In the first three steps, it

calculates th.τ of each waiting thread th:

1) In lines 4-8, we initialize th.τ with the earliest timestamp
at which th is waked up by event notifications in Σ.
2) In lines 11-21, we update th.τ by predicting the earliest
timestamp at which a running or ready thread thr directly/indi-

rectly wakes up th. Specifically, EPT is looked up according
to the segment IDs of thr and th. As discussed in Section
II-B, the look-up result is the minimum timestamp advance

for thr to wake up th. By adding this result to the timestamp
of thr, we get the earliest predicted wake up timestamp of th
by thr.

3) In lines 24-38, we update th.τ by predicting the

earliest timestamp at which another waiting thread thk

directly/indirectly wakes up th. The prediction is done the
similar way as in step 2: we first look up ETP and then

add the result to the timestamp of thk. However, thk is still

waiting and does not have a valid timestamp assigned until

it has been waked up. Therefore, we instead use thk.τ as

the timestamp of thk because thk.τ is the earliest timestamp
at which thk can wake up. At first this seems like an

5D-1

359

Algorithm 1 Optimized Event Delivery Strategy using Pre-
diction
1: function ANALYZEANDDELIVEREVENTS
2: do
3: � Step 1: event notifications affect τ of waiting threads
4: for all notification ∈ Σ do
5: for all th ∈ GETWAITINGTHREADS(notification) do
6: th.τ ← MIN(th.τ, GETTIMESTAMP(notification))
7: end for
8: end for
9:
10: � Step 2: running and ready threads affect τ of waiting threads
11: for all th ∈ WAITING do
12: segID ← GETSEGMENTID(th)
13: for all thr ∈ RUNNING ∪ READY do
14: segIDr ← GETSEGMENTID(thr)
15: tr ← GETTIMESTAMP(thr)
16: tpred ← ETP [segIDr, segID]
17: if ISVALID(tpred) then
18: th.τ ← MIN(th.τ, tr + tpred)
19: end if
20: end for
21: end for
22:
23: � Step 3: waiting threads affect τ of other waiting threads
24: L← number of waiting threads
25: D← ∅ � Waiting threads with determined τ
26: for k ← 1 to L do
27: thk ← Waiting thread that has the kth smallest τ
28: insert thk to D

29: segIDk ← GETSEGMENTID(thk)
30: tk ← thk.τ
31: for all th ∈ WAITING do
32: segID ← GETSEGMENTID(th)
33: tpred ← ETP [segIDk, segID]
34: if ISVALID(tpred) then
35: th.τ ← MIN(th.τ, tk + tpred)
36: end if
37: end for
38: end for
39:
40: � Step 4: Deliver event notifications by checking τs
41: for all notification ∈ Σ do
42: for all th ∈ GETWAITINGTHREADS(notification) do
43: if GETTIMESTAMP(notification) = th.τ then
44: DELIVERNOTIFICATIONTOTHREAD(notification, th)
45: end if
46: end for
47: end for
48: while no waked up thread and event notification delivered
49: end function

endless loop: τs are used to update τs. In fact, there exists a
topological order among all the τs: τ of a waiting thread may
only be updated by τs of other waiting threads with smaller
values. According to this topological order, we design a loop

to update τs, as shown in lines 26-38. On the kth iteration,
we use thk.τ of the waiting thread thk that has the kth

smallest τ among all waiting threads to update other τs and
stores thk into the set D.

Theorem 1. At the end of the kth iteration, ∀thD ∈ D,

thD.τ ≤ thk.τ .

Proof. Theorem 1 is proved by induction.

a) Base case: At the end of the first iteration, D contains only

th1. It is correct that ∀thD ∈ D, thD.τ ≤ th1.τ .
b) Inductive hypothesis: Let thlast be the last waiting thread

added to D. Let D′ = D ∪ thlast. Our I.H. is: ∀thD′ ∈ D
′,

thD′ .τ ≤ thlast.τ
c) Using the I.H.: Assume I.H. is correct on the (k − 1)th

iteration. Let thk−1 be the waiting thread added to D on the

(k − 1)th iteration, thk be the waiting thread added to D on

the kth iteration, Dk−1 be the D at the end of the (k − 1)th

iteration, Dk be the D at the end of the k
th iteration. By using

the I.H., ∀thDk−1
∈ Dk−1, thDk−1

.τ ≤ thk−1.τ . Also, since
D only grows in size, Dk = Dk−1 ∪ thk.

Because on the (k − 1)th iteration, we select thk−1 rather
than thk, this indicates that at the beginning of the (k − 1)th

iteration, thk−1.τ ≤ thk.τ . Also, on the (k − 1)th iteration
we can only update other τs to be values larger than thk−1.τ
because ETP contains only positive timestamps. Therefore,

thk−1.τ ≤ thk.τ still holds on the kth iteration. Since 1)

thk−1.τ ≤ thk.τ , 2) using the I.H., ∀thDk−1
∈ Dk−1,

thDk−1
.τ ≤ thk−1.τ , 3) Dk = Dk−1 ∪ thk, by combining

these inequalities we prove that ∀thDk
∈ Dk, thDk

.τ ≤ thk.τ .
Therefore, the I.H. is still correct on the kth iteration.

According to Theorem 1, once a waiting thread thk is

inserted to D, thk.τ will not change in following iterations.
Therefore, it is safe to use thk.τ to update other τs.
In lines 41-47, Algorithm 1 checks for each waiting thread th
if it can be waked up by an event notification notification in
Σ at th.τ . If true, notification is then safe to be delivered to
wake up th because th is impossible to wake up any earlier.

The do-while loop in line 48 handles the situation

where the only thread that can wake up is waiting for a

sc_event_and_list. If this is not correctly handled, the
simulation may stop early and violate the SystemC semantics.

Details are not described in this paper for brevity.

Now we demonstrate Algorithm 1 using the scenario in

Figure 4a. When thread th3 starts waiting, it cannot wake
up immediately though event e is already notified at (3,0) in
segment 1 by th1. This is because the scheduler predicts that
segment 2 will in the future notify e and therefore th3.τ is
(2,1). However, if the scenario is changed such that segment

2 does not notify e or notifies e after (3,0), notification of
e at (3,0) would be delivered immediately when th3 enters
segment 3 because th3.τ is now (3,1). Similar for the scenario
in Figure 4b. In conclusion, Algorithm 1 helps the scheduler to

deliver event notifications earlier. As a result, waiting threads

can resume execution earlier.

B. Complexity Analysis and Optimization

In this section we first analyze the complexity of Algorithm

1. Let:

1) N be the number of event notifications in Σ
2) W be the number of threads in WAITING
3) R be the number of threads in RUNNING ∪ READY
The time complexity of step 1 is N × W because the two

functions MIN() and GETWAITINGTHREADS() are both of

constant time complexity. The time complexity of step 2 is

W ×R because ISVALID() and table look-up of ETP are both

of constant time complexity. The time complexity of step 3

is W ×W based on the implementation. GETSEGMENTID()

is implemented as a table look-up function and has constant

time complexity. The time complexity of step 4 is N × W .

Therefore, the overall time complexity of Algorithm 1 is

W × (W + R + 2 ×N).
Note that W and R are fixed and specified by the SystemC

model, so we can only optimize N . Because Σ stores all

the event notifications since the start of simulation, its size

N keeps growing dramatically and decreases the simulation

speed over time. To solve the problem, we remove event

5D-1

360

notifications from Σ which are earlier than all running or

ready threads after ANALYZEANDDELIVEREVENTS() is

called 2. The optimization is safe and valid because the

removed event notifications will not in the future wake up

any threads. The proof is omitted here for brevity. With this

optimization, N is no longer the number of event notifications

since the start of simulation but the number of active event

notifications. This practically speeds up Algorithm 1 and

reduces space cost.

IV. EXPERIMENTS AND RESULTS

We have implemented Algorithm 1 as an extension of the

RISC OoO PDES simulator download from [10]. The RISC

infrastructure also provides a SystemC compiler that statically

analyzes an input SystemC model. ETP is automatically

generated by the compiler and provided to the simulator in

the instrumented SystemC model. We have evaluated our

approach with synthetic examples generated by the TGFF

tool and also real-world DVD decoder and GoogLeNet [11]

examples. For evaluation, we have measured the execution

times under the sequential Accellera simulator (Seq), the

original RISC OoO PDES simulator (Org) and the RISC

OoO PDES simulator with optimized event delivery strategy

using prediction proposed in this work (Prd). Experiments

were performed on an Intel Xeon E3-1240 multi-core

processor with 4 cores, 2-way hyperthreaded. The CPU

frequency-scaling was turned off so as to provide accurate

and repeatable results.

A. TGFF Examples

In this experiment, we evaluate the performance of the

proposed approach with synthetic examples which are auto-

matically generated by the TGFF tool with SystemC extension

[4]. Figure 5 shows the generic structure of the generated

SystemC models. The model contains multiple lanes of nodes

between Stimulus and Monitor. All nodes are connected
by user-defined fifo channels. Each channel contains two

events. Each node is a SystemC module with a single thread

that first reads the data from the input port, performs some

intensive computation and finally sends the result to the output

port. The model is parameterized and we are able to control:

1) the number of lanes m.
2) the number of nodes per lane n.
3) the computation workload of each node w.

In this experiment, each node has random workload and each

lane has the same amount of nodes. The workload of each

node is determined by the iterations of a for loop, which

varies from then thousand to one million. We generated 20

benchmarks with m varying from 1 to 16 and n varying from
2 to 16. Table I shows the run-times of the examples with

Seq, Org and Prd. It also shows the speedups of Org vs. Seq

and Prd vs. Seq. The speedups are shown in bold font. Table

I allows the following observations:

2sc_event_and_list causes an exception here. If a thread th is
waiting for a sc_event_and_list, the timestamp that th started waiting
is also considered in the comparison

�������� 	
	
	�

	
	
	�

�
��	�	�

�
��	�	�

	
	�	�

	
	�	�

�
��	�	�
���

���

���
���

�
���
�

�
��	�	�

Fig. 5: SystemC model of synthetic examples

1) PRD is faster than SEQ. A maximum speed-up of 6.3x is

achieved by PRD over SEQ with m=4 and n=16, which

is impressive on a 4-core machine with 8 hyperthreads.

Note that a naive theoretical speed-up of 8x cannot be

achieved. This is because there are only four FPUs on

the host processor. Due to the intensive computations in

each node, the eight hyperthreads are not allowed to run

fully in parallel. We also notice that the speedup slightly

drops when m = 16 and n = 16. This is due to the
largely increased context switching and contentions of

FPUs between threads.

2) PRD is faster than ORG. The speedup is most obvious

when there is only one lane in the model. ORG has

no speedup against SEQ while PRD has an increasing

speedup with the number of nodes. Under ORG, re-

quirement 1 and 2 in Section II-II-C become a global

barrier and forbid threads that have different timestamps

to execute out-of-order. On the other hand, PRD makes

correct predictions and identifies that only neighboring

nodes have dependency while others are able to run out-

of-order. Therefore, more events are delivered and more

threads wake up in the same scheduling step, which as

a result increases the execution speed of the model. Due

to the hardware limitations (number of hyperthreads and

FPUs), the speedup decreases with the increasing of m.
However, PRD is still significantly faster than ORG.

The observations confirm the effectiveness of the proposed

event delivery strategy using predictions. We achieve

a maximum speedup of 6.3x over Accellera sequential

simulation and 4.9x over the original OoO PDES, which are

impressive on a 4-core machine.

B. DVD Player

In this experiment we evaluate our approach using the

DVD player example that is similar to the one in Figure 1a.

After decoding, the results are sent to a Monitor module.
The communication in this model is via user-defined double-

handshake channels. The results of run-times and speedups

compared to the Accellera sequential simulation are shown in

Table II.

In this example, the three decoding lanes are independent

and are able to execute in parallel. However the original OoO

PDES (Org) imposes a false global barrier such that one lane

can only continue execution until the other two lanes have

finished execution. The barrier reduces the parallelism level

of the model and decreases the execution speed, resulting

in a speedup of 2.3x over Seq. On the other hand, our

proposed approach successfully predicts that the three lanes

are independent and therefore decoder threads wake up out-of-

order. As a result, the execution speed increases and achieves

a speedup of 2.8x over Seq and 1.2x over Org. Note that

5D-1

361

TABLE I: Results of Synthetic Examples: run-time(secs) and speedup(%)

m
n

2 4 8 16

Seq Org Prd Seq Org Prd Seq Org Prd Seq Org Prd

1 76.71 76.77 100 52.34 147 119.77 119.86 100 53.08 225 176.71 176.81 100 54.94 322 355.52 355.81 100 72.36 491
2 119.80 100.16 120 53.11 225 176.69 128.62 137 54.77 323 355.50 241.22 147 71.51 497 672.03 436.20 154 112.16 599
4 176.83 101.22 175 55.61 318 355.55 161.40 220 72.56 490 672.33 276.70 243 113.86 590 1365.01 530.30 257 215.25 634
8 355.88 115.23 309 84.73 420 672.14 190.62 353 117.95 570 1364.99 353.10 387 216.28 631 2712.08 664.17 408 430.36 630
16 672.12 161.94 415 129.86 518 1364.71 290.58 470 219.88 621 2712.02 549.42 494 431.16 629 5491.15 1140.51 481 895.85 613

TABLE II: Results of DVD Player: run-time(secs) and

speedup(%)

Seq Org Prd
209.51 88.49 236 73.35 284

a naive maximum speedup of 3x is not achieved because

the workload of VideoDecoder and AudioDecoders
are different. Specifically, VideoDecoder takes longer to

process its frames and becomes a sequential bottleneck. Ac-

cording to Amdahl’s law, a speedup of 2.8x is reasonable. This

experiment confirms the correctness and effectiveness of our

proposed event delivery strategy.

C. GoogLeNet

GoogLeNet [11] is a deep convolutional neural network

for image classification and detection. In this experiment, we

implement a SystemC model of GoogLeNet and the details of

the model can be found in [12]. Each layer is implemented in

a separate module. The communications are via channels. The

architecture is shown in Figure 6. Including Stimulus and
Monitor, there are a total of 146 module instances in this
SystemC model and each module instance has a single thread.

In this experiment, 500 images are fed into the GoogLeNet

SystemC model for classification. The results are verified

and are correct. The experimental results of run-times and

speedups compared to the Seq are shown in Table III.

�������� ��������� ������	

Fig. 6: SystemC model of GoogLeNet [11]

TABLE III: Results of GoogLeNet: run-time(secs) and

speedup(%)

Seq Org Prd
947.30 361.31 262 210.97 450

In this experiment, Prd achieves a speedup of 4.5x against

Seq. A naive maximum speedup of 8x cannot be achieved.

This is because the workloads of module instances (layers

in GoogLeNet) are not perfectly balanced and heavy ones

become sequential bottlenecks in the data flow of the model.

Therefore, eight hyperthreads cannot execute totally in par-

allel. Also, there are only four FPUs which may introduce

contentions between threads. Nevertheless, the result is still

impressive on a 4-core machine. Compared to Org, Prd is 1.7x

faster. This experiment confirms again that the proposed event

delivery strategy using prediction is effective and correct.

V. CONCLUSION

In this paper, we propose an optimized event delivery strat-

egy using prediction information for OoO PDES. Our work al-

lows the scheduler to deliver more events each scheduling step,

resulting in more threads running in parallel and increased

simulation speed. We have demonstrated the effectiveness

of the proposed approach with synthetic and demonstration

examples. Significant and impressive speedups are achieved

against Accellera sequential simulation and the original OoO

PDES. In the future, we plan to further optimize the time

complexity of the proposed event delivery strategy.

ACKNOWLEDGMENTS

This work has been supported in part by substantial funding

from Intel Corporation for the project titled ”Scaling the

Recoding Infrastructure for Parallel SystemC Simulation”. The

authors thank Intel Corporation for the valuable support.

REFERENCES

[1] IEEE Standard 1666-2011 for Standard SystemC R© Language Reference
Manual, IEEE Computer Society, January 2012.

[2] W. Chen, X. Han, C. W. Chang, G. Liu, and R. Dömer, ”Out-of-
Order Parallel Discrete Event Simulation for Transaction Level Models”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 33(12):1859-1872, 2014.

[3] R. Fujimoto, ”Parallel discrete event simulation”, Communications of the
ACM, 33:3053, Oct. 1990.

[4] G. Liu, T. Schmidt, R. Dömer, ”A Segment-Aware Multi-Core Scheduler
for SystemC PDES”, IEEE International High-Level Design Validation
and Test Workshop, California, October 2016.

[5] T. Schmidt, G. Liu, R. Dömer, ”Exploiting Thread and Data Level Par-
allelism for Ultimate Parallel SystemC Simulation”, Design Automation
Conference, 2017, Austin, TX, June 2017.

[6] W. Chen, R. Dömer: ”Optimized Out-of-Order Parallel Discrete Event
Simulation Using Predictions”, Design, Automation and Test in Europe
Conference, Grenoble, France, March 2013.

[7] A. Kaushik, H.D. Patel, ”SystemC-clang: an open-source framework for
analyzing mixed-abstraction SystemC models”, Forum on specification
and Design Languages, Paris, 2013.

[8] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and A. Hoffmann,
”SystemC-Link: Parallel SystemC Simulation using Time-Decoupled
Segments”, Design, Automation and Test in Europe Conference, 2016.

[9] M. Moy, ”Parallel Programming with SystemC for Loosely Timed
Models: A Non-Intrusive Approach”, Design, Automation and Test in
Europe Conference, 2013.

[10] Lab for Embedded Computer Systems (LECS), Recoding Infrastructure
for SystemC [Online]. Available: http://www.cecs.uci.edu/∼doemer/risc.
html#RISC050.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, A. Rabinovich, ”Going deeper with convolutions,”
Conference on Computer Vision and Pattern Recognition, Boston, MA,
2015.

[12] E. Arasteh, R. Dömer: ”An Untimed SystemC Model of GoogLeNet”,
The 6th International Embedded Systems Symposium, 2019.

5D-1

362

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

