
Hybrid Analysis of SystemC Models

for Fast and Accurate Parallel Simulation

Tim Schmidt, Guantao Liu, and Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine, USA

Abstract— Parallel SystemC approaches expect a

thread-safe and race-condition-free model from the

designer or use a compiler which identifies the race

conditions. However, they have strong limitations for

real world examples. Two major obstacles remain: a)

all the source code must be available and b) the entire

design must be statically analyzable. In this paper, we

propose a solution for a fast and fully accurate par-

allel SystemC simulation which overcomes these two

obstacles a) and b). We propose a hybrid approach

which includes both static and dynamic analysis of

the design model. We also handle library calls in the

compiler analysis where the source code of the library

functions is not available. Our experiments demon-

strate a 100% accurate execution and a speedup of

6.39x for a Network-on-Chip particle simulator.

I. Introduction

The increasing complexity of embedded systems slows
down the design process of new products. Designers use
simulation as a tool to validate prototypes. However, the
dramatically increasing simulation time has been identi-
fied as a bottleneck in the design process. Various ap-
proaches have been made to optimize the simulation per-
formance. For instance, the simulation reduced level has
been decreased and communication has become more ab-
stract. Although state-of-the-art PCs have multi-core
processors, most simulations are still executing sequen-
tially.
SystemC [1] is a widely-used tool for simulating and

modeling embedded systems. We advocate an advanced
approach to simulate SystemC models fully in parallel
without losing accuracy. This is in contrast to other lim-
ited techniques. For instance, techniques like time decou-
pling have been proposed to boost the simulation perfor-
mance. However, this method results in inaccurate simu-
lation results [2].
Our Recoding Infrastructure for SystemC (RISC) com-

piler infrastructure analyzes a given design, identifies po-
tential race conditions, and transforms the sequentially
written model into a parallel executable design. The
transformation happens automatically and the designer
has no burden of partitioning the model. We propose a

hybrid analysis to consider all possible aspects of the de-
sign including 3rd party libraries.

A. Problem Definition

SystemC is the de facto standard library for modeling
and simulating embedded systems. The official simulation
kernel performs the simulation in a sequential fashion. In
other words, only one simulation thread is active at any
time. If several threads could be simulated in parallel
rather than sequentially, then we would obtain a signifi-
cant decrease in the simulation time.
First attempts have been made to run the simulation in

a parallel fashion. A dedicated compiler is used in [3] to
analyze the design hierarchy and to identify the potential
race conditions among the individual threads. However,
in order to perform these advanced simulation techniques,
two criteria must be satisfied. First, the entire source code
must be available for the static analysis. It cannot be
partially provided in a library. Second, the design must
be statically explorable to identify the design hierarchy.

�������� �������	 �������

�����	�� �����	�	 �����	�

�������� �������	 �������

���

���

���

��� ���

���

���

����������
������

�������

����

Fig. 1. General structure of a Network-on-Chip design model

The Network-on-Chip (NoC) paradigm is a widely-used
design pattern. However, it violates these parallel simula-
tion requirements. Figure 1 shows a typical NoC which is
assembled through a hosting grid and tiles which are or-
ganized in rows and columns. A tile contains intellectual
property (IP) and communicates with other tiles located
to the north, west, south, and east of it. A tile can be a
user-defined or a 3rd party IP element which is encapsu-
lated in a library. During the design space exploration,

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

3A-3

226

architects test various combinations of these grid sizes and
tile components. The number of rows and columns is often
defined through command line parameters. Thus, the tiles
are allocated in two loops with the new operator which is
not statically analyzable. Evidently, these two limitations
prevent the analysis for an efficient parallel simulation.
In this paper, we propose a solution in order to simu-

late designs in an accurate parallel fashion. These models
can include 3rd party libraries and code which is not stat-
ically analyzable. In the new design flow, we perform a
dynamic analysis which is followed by a static analysis.
Additionally, we provide the designer with the opportu-
nity to annotate 3rd party libraries. Such annotations are
taken into account for the advanced design analysis and
allow the simulation of library code in a parallel fashion.

B. Related Work

Parallel simulation of discrete event simulation is a well-
studied subject. Initial work has been contributed by [4].
The concept of a Segment Graph for parallel simula-

tion was first introduced in [3] for synchronous and out-
of-order parallel simulation. Later, the Segment Graph
infrastructure was used for may-happen-in-parallel anal-
ysis for safe ESL models in [5]. Both contributions re-
quire a complete design model with a statically analyzable
module hierarchy. In contrast, our approach supports 3rd
party libraries and non-statically analyzable module hier-
archies in designs.
Time decoupling is a widely-used method that speeds

up the simulation of SystemC models. Parts of the model
execute in an unsynchronized manner for a user defined
time quantum. However, this strategy is associated with
inaccurate simulation results [2]. [6] and [7] propose
a technique to parallelize time-decoupled designs. This
technique requires the designer to manually partition and
instrument the model in parts of time-decoupled zones.
In contrast, our approach supports a 100% accurate sim-
ulation of designs. Also, our compiler automatically in-
struments the model.
A tool flow for parallel simulation of SystemC RTL

models was proposed in [8]. The model was partitioned
according to a modified version of the Chandy–Misra–
Bryant algorithm [9]. In contrast, our conflict analysis
considers the individual statements of threads. Also, our
solution is not restricted to only RTL models.
An approach of static analysis for simulation of Sys-

temC models on GPUs was provided in [10]. In contrast,
our approach combines static and dynamic analysis to
obtain information for the conflict analysis which is only
available at run time.

II. Hybrid Analysis

The transition from a sequential simulation towards
a parallel simulation is an extensive process. The de-
sign must be analyzed and prepared for potential race

conditions to avoid unpredictable data corruption. This
requires a full understanding of the module hierarchy.
One option is to statically extract the module hierarchy
and analyze the individual threads. However, in most
cases not all of the information can be explored stati-
cally. For instance, during the design space exploration,
designers test various prototypes to explore an optimal
design. Design parameters are passed via the command
line to define the number of modules, channels charac-
teristics, and other needed information. The instances of
modules, channels, and ports are created through loops
in a dynamic fashion. However, the essential parameters
are only available at run time, so they cannot be stati-
cally analyzed. The result would be an incorrect model
transformation which produces wrong simulation results.

Figure 2 shows our proposed design flow which supports
command-line parameters and the dynamic analysis for a
fully accurate parallel simulation. Essentially, the tool
flow is split up into two major stages. The first stage per-
forms a Dynamic Design Analysis and collects the design
hierarchy. The second stage allows the Static Conflict
Analysis to integrate the obtained data from the previ-
ous stage. As a result, the design is transformed into a
thread-safe design for fast parallel execution.

��������	
���	�

���

�������	

�����	������������
��������

������������������	

�������

��	
����	
�����
�������

�	������	���������	����

�������

�	������	���������	����
���������
	����	���
�
������

��	
���
	
���������

�������
������

���

������������������	

������
�
�
������������

�������

�
�
����������	����

��	
��
�����	
�	
�����

��
��
��	 ��
�	
�����

Fig. 2. Tool flow for the proposed hybrid analysis of design models

A. Dynamic Design Analysis

The purpose of the Dynamic Design Analysis is to pro-
vide data for the Static Conflict Analysis which can only
be obtained at run time. This data is structural design in-
formation which, for example, is dependent on command-
line parameters, or hidden deeply in nested loops. The
results of this step are provided in a dynamic internal
representation (DIR) file and then used as a lookup table
in the Static Conflict Analysis.

3A-3

227

In detail, the DIR file includes the module hierarchy,
the port mapping, and the mapped variables of references.
We represent this information as an abstract tree. Specif-
ically, we store the declaration name and the address for
all declarations. In addition, we store the address of the
bounded channel for ports and the typename of the chan-
nel for the channels. Listing 1 illustrates such a DIR file.
Undoubtedly, we can identify that the reference ref is
mapped to the variable var. Also, we can identify that
the port port is bound to the channel chnl1 of the type
MyChannelType. We can use the address as a lookup be-
cause references and ports are only bound once. During
the simulation, the specific address might be different.
However, the lookup will lead to the same variable.

Listing 1 Example of a DIR file

top:0x111(

chnl1:0x222:MyChannelType , var:0x333

mod1:0x444(var:0x555 ,ref:0x333 ,port:0x222))

We can partially analyze a design in three different
ways, but each has its own limitations: A) The C++ lan-
guage has limited support of introspection. It is possible
to identify the type name of a variable at run time. How-
ever, it is not possible to identify the declaration name of a
variable. B) The SystemC library has an interface for the
introspection of a design. It is possible to identify all top
modules at run time, and then traverse all the elements
which are derived from sc object in a hierarchical fash-
ion. However, it is not possible to identify plain old data
types (e.g. float and int) or their respective declaration
name. C) A static analysis of the source code allows to
identify modules and analyze all of their members. How-
ever, the module hierarchy can only be explored with a
severely limiting modeling guide lines.
In our approach, we perform a combined solution of A,

B, and, C to generate a DIR file where the designer has no
modeling limitations. First, the RISC instrumentor reads
the file design.cpp and analyzes all the design elements
statically. In other words, we have access to the declara-
tions and their names. For each module, we instrument
functions to print variables, ports, and other informa-
tion. For instance, in the function void print vars()

{fprintf("var:%p",&var); ...}, we use the typeid

support of C++ to obtain the type name at run time.
Through that process, we are able to generate the source
code for the instrumented design and build an executable.
Second, we modify the simulation kernel to allow it to

undergo the Dynamic Design Analysis. The simulation of
a SystemC model is split into two major phases. In the
first phase, the elaboration starts where the module hier-
archy and the port binding are established. In the second
phase, the simulation of the design is performed. The
SystemC API provides a hook between these two steps.
We simulate the design with all command line parameters
until the elaboration is completed. Finally, we traverse the
module hierarchy via the SystemC introspection API and
call the functions for the variable printing.

B. Static Conflict Analysis

The Static Conflict Analysis identifies potential race
conditions between the individual threads. In detail, we
partition each thread into so-called segments. A segment
considers all potentially executed statements between two
scheduling steps. A new scheduling step is triggered with
a wait() function call which gives control back to the
simulation kernel. Figure 4 shows a segment graph of the
source code in Figure 3.

���������������
��������
�����������
	���
����
�����������������
����������
�������������
����������
������ !" ��
��������#�$�
�����
����%�%�%�
����������
�	��$�%�����

Fig. 3. Example
Source Code [11]

���

������
�	
���	

���
������
������

��������	
���

���
������

��������	
��

������
��������	
����

Fig. 4. Segment Graph [11]

Algorithm 1 formally defines the central function
BuildSG [11]. Function BuildSG is recursive and builds
the graph of segments by traversing the AST of the design
model. Here, the first parameter CurrStmt is the current
statement which is processed next. The set CurrSegs con-
tains the current set of segments that leads to CurrStmt
and thus will incorporate the current statement. For in-
stance, while processing the assignment z=z*z in Figure 4,
CurrSegs is the set {wait(line2), wait(line6)}, so the ex-
pression will be added to both segments.

If CurrStmt is a boundary statement (e.g. wait), a
new segment is added to CurrSegs with the corresponding
transition edges (lines 2 to 7 in Algorithm 1). Compound
statements are processed by recursively iterating over the
enclosed statements (lines 8 to 12) while conditional state-
ments are processed recursively for each possible flow
of control (from line 13). For example, the break and
continue statements represent an unconditional jump in
the program. For handling these keywords, the segments
in CurrSegs move into the associated set BreakSegs or
ContSegs, respectively. After completing the correspond-
ing loop or switch statement, the segments in BreakSegs
or ContSegs move back to the CurrSegs set.

For brevity, we illustrate the processing of function calls
and loops in Figure 5 and Figure 6. The analysis of func-
tion calls is shown in Figure 5. In step 1, the dashed
circle represents the segment set CurrSegs. The RISC al-
gorithm detects the function call expression and checks
if the function is already analyzed. If the function is
encountered for the first time, the function is analyzed
separately, as shown in step 2. Otherwise, the algorithm
reuses the cached SG for the particular function. Then,

3A-3

228

Algorithm 1 Segment Graph Generation

1: function BuildSG(CurrStmt, CurrSegs, BreakSegs, ContSegs)
2: if isBoundary(CurrStmt) then
3: NewSeg ← new segment
4: for Seg ∈ CurrSegs do
5: AddEdge(Seg, NewSeg)
6: end for
7: return CurrSegs ∪ { NewSeg }
8: else if isCompoundStmt(CurrStmt) then
9: for Stmt ∈ CurrStmt do
10: CurrSegs ← BuildSG(Stmt, CurrSegs, BreakSegs,
ContSegs)

11: end for
12: return CurrSegs
13: else if isIfStmt(CurrStmt) then
14: AddExpression(IfCondition, CurrSegs);
15: NewSegSet1 ← BuildSG(IfBody, CurrSegs, BreakSegs,
ContSegs)

16: NewSegSet2 ← BuildSg(ElseBody, CurrSegs, Break-
Segs, ContSegs)

17: return NewSegSet1 ∪ NewSegSet2
18: else if isBreakStmt(CurrStmt) then
19: BreakSegs ← BreakSegs ∪ CurrSegs
20: CurrSegs ← ∅
21: return CurrSegs
22: else if isContinueStmt(CurrStmt) then
23: ContSegs ← ContSegs ∪ CurrSegs
24: CurrSegs ← ∅
25: return CurrSegs
26: else if isExpression(CurrStmt) then
27: if isFunctionCall(CurrStmt) then
28: return AddFunctionCall(CurrStmt, CurrSegs) �
See Figure 5

29: else
30: AddExpression(CurrStmt, CurrSegs)
31: return CurrSegs
32: end if
33: else if isLoop(CurrStmt) then
34: return AddLoop(CurrStmt, CurrSegs) � See Figure 6
35: end if
36: end function

in step 3, each expression in segment 1 of the function is
joined with each individual segment in CurrSegs (set 0).
Finally, segments 4 and 5 represent the new set CurrSegs.

�

� �

� �

�

��	
��

�����������	
��

� �

� �

��� ��� ���

���

Fig. 5. Function call processing
[11]

� �

� �

� �

�����������
�����	
�
�

���

� �

� �

����������������	

�� �� ��

Fig. 6. Loop processing [11]

Correspondingly, Figure 6 illustrates the SG analysis
for a while loop. Again, the dashed circle in step 1 repre-
sents the incoming set CurrSegs. The algorithm detects
the while statement and analyzes the loop body sepa-
rately. The graph for the body of the loop is shown in
step 2. Then each expression in segment 1 is joined into
the segment set 0 and the new set CurrSegs becomes the
joined set of 0+1, 4, and 5. Note that we have to consider
set 0+1 for the case that the loop is not taken.

Next, we build a conflict table which identifies the po-
tential race conditions between all individual segments in
the design. For each segment, we identify which shared
variables are read and written. If we access a reference,
we perform a lookup through the Dynamic Design Analy-
sis. If a channel call happens, we use the Dynamic Design
Analysis lookup to get the channel and the corresponding
called function.

III. Library Handling

The simulator requires the following two bits of infor-
mation in order to run in a parallel manner. First, it needs
to know the race conditions of each individual thread be-
fore the simulation starts. Second, the simulator needs
to know the current segment ID of each thread. Before
the simulator triggers the next segment of a thread, it is
essential to check for race conditions with all other active
segments. These are two main obstacles for real world
SystemC designs which include standard and 3rd party
libraries.

The first issue is that the Static Conflict Analysis needs
access to the function bodies to identify the race con-
ditions for the individual threads. However, 3rd party
intellectual property (IP) is often shipped through li-
braries. The designer has access to the function signa-
tures, but the implementation is hidden in the library file.
In other words, our static analysis cannot identify poten-
tial wait() calls and race conditions. Consequently, a seg-
ment which calls a library function is set in conflict with
all other segments. For example, inherent function calls
like printf() and sqrt() would sequentialize the parallel
simulation. Therefore, we provide a function annotation
scheme to include information about these library func-
tions for the static analysis.

The second issue is that the parallel simulator needs
to know which segments are ready to execute. One previ-
ously employed strategy was to statically instrument each
individual wait() call with the associated segment ID,
e.g., wait(event,42);. The simulator obtains the up-
coming segment ID through the wait() call. However,
this strategy cannot be used for designs with 3rd party li-
braries. The RISC Parallelizer cannot instrument library
files. Instead, we provide a modified RISC simulation ker-
nel to pass the segment ID through the 3rd party library
to the simulation kernel.

A. Function Annotation

We present an annotation scheme for function decla-
rations to provide information for the conflict analysis.
Thus, the user can annotate via pragma statements two
different pieces of information, namely, the conflict sta-
tus and the type of wait() function calls in a function
body. We consider a function as conflict-free if the corre-
sponding function body has no read/write access conflicts

3A-3

229

on any shared state with the other threads in the simu-
lation model. A segment which calls a function with the
annotation of non-conflict-free results in a conflict with
all other segments. The simulator executes this segment
sequentially and safeguards a fully accurate simulation.

Figure 7 shows four different options of annotating a
function declaration with wait information. We designed
the scheme to have full support of the SystemC built-in
library channels. In the first case, the function has no wait
statement. This is the option for non-blocking function
calls. The next two cases cover the situation that the
function has a conditional or a non-conditional wait, for
instance an sc buffer. The last case portrays a more
complicated channel type, an sc fifo, where the wait()
call is in a loop.

������� �����������
����

��	��
�������
����

����	

����

Fig. 7. Wait annotation for function declarations

The user also has the option not to provide any an-
notation for library functions. In this case, we assume
that the function is conflict-free and there are no wait
statements in the function. This behavior is expected for
the Standard C Library and Standard Template Library.
We decided to make this the default mechanism to avoid
annotating all standard library functions.

B. Segment ID Passing

The parallel simulator needs the active segment ID of
each individual thread during the simulation. The ap-
proach of instrumenting wait() calls with an additional
segment ID parameter is only possible if the source code
is available for all parts of the design. In other words, we
cannot instrument wait() calls which occur in the library.

Figure 8 illustrates our generalized solution for support
of libraries. The thread carries the upcoming segment
ID from the user domain to the parallel RISC SystemC
library. We instrument the function call setID(42) be-
fore the function call in the library domain happens. In
the RISC SystemC kernel, we get the segment id via
getID(). This solution provides the benefit that any 3rd
party channel can be used without any modification.

IV. Experiments

A. Producer Consumer Example

We implemented the consumer producer example which
is illustrated in Figure 8. Both the sender and receiver
crunch numbers and exchange them. The number of
sender and receiver pairs is scalable via the command line.

��������
�	
������

�	������
�	�	��	����������

���������� ����������
���������
	��
������

�������
��
������

���
���

����� ��������

�	����
���������������

������

����������
���������	�����������

Fig. 8. Different domains of a design

The regular RISC Parallelizer — without the Dynamic
Design Analysis capabilities — cannot process this de-
sign and returns an error message. The Dynamic Design
Analysis creates the correct module hierarchy and identi-
fies the number of modules which is double the number of
communication pairs. The obtained speedup depends on
the number of modules and the ratio of communication
and number crunching.

B. Network-on-Chip Particle Simulator

We selected as a comprehensive example a Network-on-
Chip (NoC) particle simulator to demonstrate the parallel
simulation capabilities of our hybrid analysis. The ab-
stract architecture of the particle simulator is illustrated
in Figure 1. The grid is assembled of tiles where each
tile communicates bidirectionally with a tile to its north,
south, east, or west. For a 8x8 example, we have 64 tiles
and one grid module. Each tile has one thread which
computes the motion of the individual particles in a cer-
tain area of the model. These particles move continu-
ously in 2D space. The moment when a particle crosses
the boundary, the responsibility of computing and updat-
ing the position of the particles shifts from one tile to its
neighbor tile. The entire design can be scaled up to any
quadratic size. The user can define via the command line
the number of tiles as well as the number of particles, the
gravity, and other options. The individual tiles including
ports and channels are dynamically created.

At the beginning of the simulation, the grid sends the
initial particles to each individual tile. This happens in a
purely sequential fashion. Next, all tiles simulate the par-
ticles and synchronize with their neighbors. A tile can be
blocked due to its communication with one of its neigh-
bors. At the end of the simulation, all the tiles send the
particles back to the grid.

B.1 Static Design Analysis

The static analysis of the particle simulator causes an er-
ror message: ”Error: Array of modules in line 231”. The
RISC Parallelizer detects an array of pointers for tile mod-
ules. However, it cannot identify how many instances are

3A-3

230

created. The same applies to the array of ports and chan-
nels. The module hierarchy cannot correctly be extracted
and the RISC Parallelizer does not create an executable.

B.2 Dynamic Design Analysis

The dynamic analysis is performed for different grid sizes.
For the 8x8 particle simulator, 65 modules and 176 chan-
nels are correctly identified. The parallel simulation cre-
ates the same results as the traditional sequential discrete
event simulation. In other words, the parallel simulation
has the same accuracy as the sequential simulation.

TABLE I
Simulation Speedup of the Particle Simulator

Speedup Time (in sec.)
Particles 10k 20k 40k 60k seq. 60k par. 60k
5x5 2.56x 3.58x 3.25x 2.97x 160.2 53.77
6x6 2.80x 4.88x 5.04x 4.34x 126.53 29.09
7x7 2.32x 3.91x 5.01x 4.87x 117.46 24.11
8x8 2.07x 4.12x 6.05x 6.39x 108.4 16.96

Table I shows the simulation speed of the individual
particle simulators. We performed all experiments on an
Intel Xeon E3-1240 with 4 cores with 2 threads per core.
Our test infrastructure provides a theoretical speedup of
maximum 8x. The speedup is dependent on the number
of particles and the grid size. For a 8x8 and 6x6 grid
size a speedup of 6.39x respectively 5.04x is measured.
The increasing speedup is dependent on the number of
particles in the simulation. More particles increase the
number crunching and consequently the execution time
of the parallel threads. The sequential communication
becomes a minor part of the simulation.

The design has several sequential parts, which cannot
be parallelized. One reason is due to the initialization
and final synchronization of the individual tiles. A second
reason is due to the communication which is performed in
a double handshake fashion. This means a tile is blocked
until the receiving tile completes the communication.

TABLE II
Exchanged Particles of the Particle Simulator

7x7 8x8
Particles 20k 60k 20k 60k
seq. 467,728 1,321,247 497,111 1,356,083
par. 467,728 1,321,247 497,111 1,356,083

Table II shows the simulation characteristics of the se-
quential and parallel simulation to demonstrate the ac-
curacy. All simulations are performed with 20,000 and
60,000 particles for a particle simulator of 6x6 and 8x8
tiles. Both, the sequential and the parallel simulation
have identical numbers of communicated particles.

V. Conclusion and Future Work

In this paper, we propose an efficient solution for accu-
rate and parallel simulation of SystemC models with 3rd
party libraries. Our approach does not trade off simula-
tion speed for simulation accuracy as do time decoupled
modeling techniques. In contrast to previous compiler re-
lated work, our RISC infrastructure allows to simulate
models which are not statically analyzable. Also, we are
now able to simulate models in parallel which include 3rd
party libraries for the first time. We demonstrated a simu-
lation speedup of 6.39x while maintaining 100% accuracy.
In future work, we plan to integrate our infrastructure

with virtual platforms. Furthermore, we plan to extend
advanced support of the pointer analysis to avoid unnec-
essary conflicts. Also, we plan to introduce techniques to
fold the complexity of conflict tables.

ACKNOWLEDGMENT

This work has been supported in part by substantial funding from
Intel Corporation for the project titled ”Out-of-Order Parallel Simu-
lation of SystemC Virtual Platforms on Many-Core Architectures”.
The authors thank Intel Corporation for the valuable support.

References

[1] “IEEE Standard SystemC Language Reference Manual, IEEE
Std 1666-2011,” 2011.

[2] G. Glaser, G. Nitschey, and E. Hennig, “Temporal Decoupling
with Error-Bounded Predictive Quantum Control,” in Forum
on Specification and Design Languages (FDL), 2015.

[3] W. Chen, X. Han, and R. Dömer, “Out-of-Order Parallel Simu-
lation for ESL Design,” in Proceedings of the Design, Automa-
tion and Test in Europe (DATE) Conference, 2012.

[4] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Com-
mun. ACM, vol. 33, no. 10, 1990.

[5] W. Chen, X. Han, and R. Dömer, “May-Happen-in-Parallel
Analysis based on Segment Graphs for Safe ESL Models,” in
Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, 2014.

[6] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and
A. Hoffmann, “SystemC-Link: Parallel SystemC Simulation
using Time-Decoupled Segments,” in Proceedings of the De-
sign, Automation and Test in Europe (DATE) Conference,
2016.

[7] J. H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and
L. Tosoratto, “Time-Decoupled Parallel SystemC Simulation,”
in Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, 2014.

[8] C. Roth, S. Reder, H. Bucher, O. Sander, and J. Becker,
“Adaptive algorithm and tool flow for accelerating systemc
on many-core architectures,” in Digital System Design (DSD),
17th Euromicro Conference, 2014.

[9] K. M. Chandy and J. Misra, “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,”
IEEE Transactions on Software Engineering, no. 5, pp. 440–
452, Sept 1979.

[10] R. Sinha, A. Prakash, and H. D. Patel, “Parallel Simulation of
Mixed-abstraction SystemC Models on GPUs and Multicore
CPUs,” in 17th Asia and South Pacific Design Automation
Conference (ASPDAC), 2012.

[11] T. Schmidt, G. Liu, and R. Dömer, “Automatic generation of
thread communication graphs from SystemC source code,” in
Proceedings of the 18th International Workshop on Software
and Compilers for Embedded Systems (SCOPES), 2016.

3A-3

231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

