
An Optimizing Compiler for Out-of-Order Parallel
ESL Simulation Exploiting Instance Isolation

Weiwei Chen, Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine, USA
weiwei.chen@uci.edu, doemer@uci.edu

Abstract—Electronic system-level (ESL) design relies on fast
discrete event (DE) simulation for the validation of design
models written in system-level description languages (SLDLs).
An advanced technique to speedup ESL validation is out-of-
order parallel DE simulation which allows multiple threads to
run early and in parallel on multi-core hosts. To avoid data
hazards and ensure timing accuracy, this technique requires the
compiler to statically analyze the design model for potential data
access conflicts. In this paper, we propose a compiler optimization
that improves the data conflict analysis by exploiting instance
isolation. The reduction in the number of conflicts increases
the available parallelism and results in significantly reduced
simulation time. Our experimental results show up to 90% gain
in simulation speed for less than 6% increase in compilation time.

I. INTRODUCTION

Modern System-Level Description Languages (SLDLs),
such as SystemC [1] and SpecC [2], support the abstract
modeling of systems with both hardware and software for true
ESL design. The validation of system models described in
SLDLs is typically based on discrete event (DE) simulation.
Traditional DE simulation expresses the parallelism in the
design model as concurrent user-level threads within a single
process. The multi-threading model used is cooperative (i.e.
non-preemptive) [3], which simplifies the communication be-
tween the threads, but is an impediment against the utilization
of parallel computation resources available in todays’ multi-
core PCs. Recent works [4], [5], [6] propose to use OS
kernel threads with additional synchronization in order to issue
multiple threads in parallel at each scheduling step so that the
available resources in a multi-core host CPU can be utilized.
However, the number of parallel threads that can actually
run at each scheduling step is often very limited. The inner
loops for delta-cycles and time update in the DE simulation
algorithm severely restrict the usable parallelism in the model.

Out-of-order (OoO) parallel DE simulation [7] is an ad-
vanced approach that improves the parallel simulation by
agressively attacking the temporal barriers in the traditional
DE simulation algorithm. Here, the compiler performs static
code and data analysis in the design model and generates
”look-ahead” information, i.e. potential data conflicts among
threads and future occurrences of scheduling, and passes
this information to the simulator. The simulator, in turn, can
then easily decide at runtime whether or not it is safe to
issue a set of threads in parallel. Moreover, by using thread-
local simulation times, the simulator can even run threads

with different timestamps in parallel while ensuring SLDL-
compliant behavior with full timing accuracy.

In this work, we observe that it is critical to take the
instance path for certain shared variables into consideration
in order to decide whether or not multiple threads can be
allowed to run in parallel. The access conflict information
generated at compile time is sometimes overly conservative
and may lead to false conflicts when, for example, modules
that are instantiated multiple times in the design model, share
segments of the same source code. This, in turn, prevents
the simulator from utilizing higher parallelism as it needs
to guarantee the correctness of the simulation results. We
also discover that certain modifications in the design’s SLDL
description can help the compiler to reduce the amount of
detected conflicts. Following these observations, we propose a
novel compiler optimization that automatically performs such
beneficial model modifications at compile time with very little
cost in space and time. While the compile time increases
minimally, we gain a significant reduction in detected data
access conflicts. The more precise ”look-ahead” information
passed to the simulator then results in a much more efficient
out-of-order parallel simulation.

After a brief review of out-of-order parallel DE simulation
in Section I-B, we explore the effect of instance isolation, a
new model improvement technique, on reducing the detected
conflicts by the compiler in Section II. Our optimized compiler
is then presented in Section III, followed by experimental
results in Section IV.

A. Related Work

Parallel Discrete Event Simulation (PDES) has been well
explored in [8], [9], [10]. There are two major synchronization
paradigms for PDES, namely conservative and optimistic [9].
Conservative PDES ensures in-order event execution. In con-
trast, the optimistic paradigm assumes that every event is safe
when executed and rolls back when this assumption proves
wrong. The temporal barriers in the SLDL model often prevent
conservative PDES from achieving real parallel simulation,
while rollbacks in the optimistic PDES are expensive in
implementation and execution.

DE simulation for SLDLs is driven by events and simulation
time advances. In order to interpret the “zero-delay” semantics
of SLDLs, the notion of delta-cycles is introduced to impose a
partial order on the events that happen at the same simulation
time [1].

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

5C-3

461

PDES with delta-cycle notion has been also been explored.
For example, [11], [4] apply PDES to SystemC targeting
symmetric multi-processing (SMP) architectures by using the
conservative synchronization paradigm. Still, the global sim-
ulation time is shared by every thread in the design model
which proves as an obstacle in obtaining efficient parallelism.

Compared to the existing approaches of SLDL PDES [6],
out-of-order PDES [7] is more aggressive and issues more
threads in parallel at each scheduling step by allowing ex-
ecution out-of-order. However, it is still conservative in the
sense that it preserves a partial order of events and maintains
accurate simulation time. While some events may be executed
out of the order, no rollback corrections are needed. We will
briefly review this approach, which can efficiently execute any
model written in SLDL on any SMP host, in the following
section.

B. Out-of-order Parallel DE Simulation

Regular PDES imposes a total order on event handling and
time advances which severely limits the potential for parallel
execution of threads. In contrast, out-of-order PDES imposes
only a partial order on time and events so that threads without
potential conflicts can run in parallel [7]. Table I lists the major
differences between regular and out-of-order PDES.

Static model analysis at compile time is the key to allowing
the scheduler at run time to make quick decisions without risks
about potential conflicts when issuing threads in parallel. The
risks here are data hazards, i.e. read-after-write (RAW), write-
after-read (WAR), and write-after-write (WAW) conflicts for
shared variables and events.

At run time, threads switch back and forth between the
states of RUNNING and WAITING. When RUNNING, they
execute specific segments of their code. The following defini-
tions are essential for the thread conflict analysis:
• Segment segi: portion of code executed by a thread

between two scheduling steps.
• Segment Boundary vi: SLDL statements which call the

scheduler, i.e. wait, waitfor, par, etc.
Note that segments segi and segment boundaries vi form
a directed graph where segi is the segment following the
boundary vi. Every node vi is connected by segments to other
nodes. We formally define:
• Segment Graph (SG): SG=(V, E), where V = {v | v is a

segment boundary}, E={eij | eij is the code portion between
vi and vj , where vj is reached after vi}.

• Segment Conflict Table CTable[N][N] where N is the
total number of segments: CTable[i][j] = true, iff there
is a data conflict between the segments segi and segj ;
otherwise, CTable[i][j] = false.
Fig. 1(a) shows a simple example written in SpecC SLDL.

The design has two parallel instances b1 and b2 of type
B. Both instances b1 and b2 compute the sum of a range
of elements stored in a global array array. The range is
provided at the input ports begin and end. The result is
passed back to the parent via the output port sum. The top
behavior Main prints the results sum1 of b1 and sum2 of
b2 to the screen.

1 # i n c l u d e <s t d i o . h>
2 i n t a r r a y [1 0] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9};
3 b e h a v i o r B(i n i n t beg in , / / p o r t v a r i a b l e
4 i n i n t end , / / p o r t v a r i a b l e
5 o u t i n t sum) / / p o r t v a r i a b l e
6 {
7 i n t i ; / / member v a r i a b l e
8 vo id main (){
9 i n t tmp ; / / s t a c k v a r i a b l e

10 tmp = 0 ; / / tmp (W)
11 i = b e g i n ; / / i (W) , b e g i n (R)
12 w a i t f o r 1 ; / / segment boundary (w a i t f o r)
13 w h i l e (i <= end){ / / i (R) , end (R)
14 w a i t f o r 2 ; / / segment boundary (w a i t f o r)
15 tmp += a r r a y [i] ; / / a r r a y (R) , tmp (RW)
16 i ++; / / i (W)
17 }
18 sum = tmp ; }
19 };
20
21 b e h a v i o r Main ()
22 {
23 i n t sum1 , sum2 ; / / member v a r i a b l e s
24 B b1 (0 , 4 , sum1) ; / / b e h a v i o r i n s t a n t i a t i o n
25 B b2 (5 , 9 , sum2) ; / / b e h a v i o r i n s t a n t i a t i o n
26 i n t main (){
27 p a r{ / / segment boundary (p a r)
28 b1 . main () ;
29 b2 . main () ; } / / segment boundary (pa r end)
30 p r i n t f (” summation 1 i s :%d \n ” , sum1) ; / / sum1 (R)
31 p r i n t f (” summation 2 i s :%d \n ” , sum2) ; / / sum2 (R) }
32 };

(a) Example source code in SpecC.
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

s eg0
SEGNODE_INIT

seg1
SEGNODE_PAR
Main .main
ex1.sc::27

s eg2
SEGNODE_PAREND

Main .main
ex1.sc::27

s eg3
SEGNODE_WAITFOR

B.main
ex1.sc::12

s eg4
SEGNODE_WAITFOR

B.main
ex1.sc::14

B.i(W)

Main.sum1(W),
Main.sum2(W)

Main.sum1(W),
 Main.sum2(W)

Main.sum1(R), Main.sum2(R)

B.i(R)

B.i(RW), array(R)

�����

�����

�		�
�

���� ������� �������

CTable[5][5]

block diagram

�� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

v0

v1

v2

v3

v4

starts

starts

starts

starts

starts

(b) Example block diagram and segment graph (SG).

Fig. 1. A simple design example with segment graph and conflict table.

In the corresponding SG shown in Fig. 1(b), there are five
segment nodes connected by red arrows indicating the possible
control flow between the nodes. From the initial node, the
control flow reaches the par statement (line 27) which is
represented by the two nodes v1 and v2 connected by a blue
line. Here, the simulator will fork two parallel threads for
b1 and b2. Since both are of the same type, both will reach
waitfor 1 (line 12) via the same arrow v1→v3. From there,
the control flow reaches either waitfor 2 (line 14) via
v3→v4, or will skip the while loop (line 13) and complete
the thread execution at the end of the par statement via
v3→v2. From within the while loop, control either loops
around v4→v4, or ends the loop and the thread via v4→v2.
Finally, after v2 the result is printed. 1

For each segment, the variables accessed are analyzed. Lo-
cal variables (e.g. tmp) and port variables driven by constant

1An algorithm to construct the segment graph (SG) from the design’s
control flow graph (CFG) is given in [7].

5C-3

462

TABLE I
COMPARISON OF REGULAR VS. OUT-OF-ORDER PARALLEL DISCRETE EVENT SIMULATION(PDES) FOR SLDLS.

Regular PDES, e.g. [11], [4], [6] Out-of-Order PDES , e.g. [7]
Local time for each thread th as tuple (tth, δth).

Simulation One global time tuple (t, δ) A total order of time is defined with the following relations:
Time shared by every thread equal: (t1, δ1) = (t2, δ2), iff t1 = t2, δ1 = δ2.

before: (t1, δ1) < (t2, δ2), iff t1 < t2, or t1 = t2, δ1 < δ2.
after: (t1, δ1) > (t2, δ2), iff t1 > t2, or t1 = t2, δ1 > δ2.

Event Events are identified by their ids, A timestamp is added to identify every event,
Description i.e, event (id). i.e. event (id, t, δ).

Threads are organized as subsets with the same timestamp (tth, δth).
Simulation READY, RUN, Thread sets are the union of these subsets, i.e, READY = ∪READYt,δ ,

Thread WAIT, WAITFOR, RUN = ∪RUNt,δ , WAIT = ∪WAITt,δ , WAITFOR = ∪WAITFORt,δ (δ = 0),
Sets JOINING, COMPLETE JOINING = ∪JOININGt,δ , COMPLETE = ∪COMPLETEt,δ , where

the subsets are ordered in increasing order of time (t, δ).
Event delivery in-order in delta-cycle loop. Event delivery out-of-order if no conflicts exist.

Run Time Time advance in-order in outer loop. Time advance out-of-order if no conflicts exist.
Scheduling Threads at same time run in parallel. Threads at same time or with no conflicts run in parallel.

Limited parallelism, inefficient SMP utilization. More parallelism, efficient SMP utilization.
Compile Time Static conflict analysis derives Segment Graph (SG) from CFG,

Analysis No conflict analysis needed. analyzes variable and event accesses, passes conflict table to scheduler.
Compile time increases.

values (e.g. begin and end) cannot cause any hazards and
are therefore ignored. However, global variables (e.g. array),
member variables (e.g. B.i), and connector variables (e.g.
Main.sum1 and Main.sum1) can create conflicts. Fig. 1(b)
shows the conflicts for the example annotated at the arrows
and listed in the conflict table.

II. MOTIVATION

To be safe, the static analysis sometimes is overly conser-
vative and generates false conflicts which prevent the out-of-
order scheduler from issuing threads in parallel that do not
pose any real hazard. For example, in Fig. 1 both seg3 and
seg4 contain write (W) accesses to variables Main.sum1
and Main.sum2. Consequently, the analysis reports a conflict
between seg3 and seg4. In turn, the thread thb2 cannot execute
seg4 in parallel with thread thb1 in seg3 (or vice versa). In
reality, however, the execution is safe when thb1 and thb2

are in seg3 and seg4 at the same time since instance b1 will
only access Main.sum1 and b2 only modifies Main.sum2.
Thus, the conflict does not really exist.

Looking closer at this false conflict, we observe that the
compiler cannot tell that the access of Main.sum1 in seg3
and seg4 will only happen in thread thb1 but not in thb2,
because both b1 and b2 share the same definition (and same
segments/code). Following this, we can resolve the false con-
flict if b1 and b2 have separate definitions, such as B_iso0
and B_iso1 in Fig. 2(a). Here, two different segments, seg3
and seg5, start from waitfor 1 in instances B_iso0 and
B_iso1, respectively. Now seg3 only writes Main.sum1
and seg5 only writes Main.sum2. Consequently, the sched-
uler detects that it is safe for thb1 to execute seg3 in parallel
to thb2 in seg5. The same argument holds for seg4 and seg6,
as indicated in the extended CTable in Fig. 2(b).

In general, the fewer conflicts are detected by the analysis,
the more threads can be issued in parallel by the out-of-order
scheduler, and the higher the simulation speed will be. On the
other hand, if the code analyzer reports conflict between all
the segments, the out-of-order simulator will downgrade to a
regular in-order simulator.

3 b e h a v i o r B iso0 (. . .) b e h a v i o r B iso1 ()
4 { {

. . . / / same d e f i n i t i o n as B
19 }; };
20
21 b e h a v i o r Main ()
22 {
23 i n t sum1 , sum2 ;
24 B iso0 b1 (0 , 4 , sum1) ;
25 B iso1 b2 (5 , 9 , sum2) ;
26 i n t main (){
27 p a r{
28 b1 . main () ;
29 b2 . main () ; }
30 . . .}
32 };

(a) Isolated instances in SpecC.
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

s eg0
SEGNODE_INIT

seg1
SEGNODE_PAR
Main .main
ex1.sc::27

s eg2
SEGNODE_PAREND

Main .main
ex1.sc::27

s eg3
SEGNODE_WAITFOR

B_iso0.main
ex1.sc::12

s eg5
SEGNODE_WAITFOR

B_iso1.main

s eg4
SEGNODE_WAITFOR

B_iso0.main
ex1.sc::14

s eg6
SEGNODE_WAITFOR

B_iso1.main

CTable[7][7]

B_iso1.i(W)

B_iso0.i(R)Main.sum1(W)

B_iso0.i(W)

Main.sum2(W)
B_iso1.i(RW),
array(R),

Main.sum1(R), Main.sum2(R)

B_iso1.i(R)

Main.sum1(W)
Main.sum2(W)

B_iso0.i(RW),
array(R),

�� �� �� �� �� �� ��

�� 	� 	� 	� 	� 	� 	� 	�

�� 	� 	� 	�
�
�
�
�

�� 	� 	� 	�
�
�
�
�

�� 	�
�
�
�
� 	� 	�

�� 	�
�
�
�
� 	� 	�

�� 	�
�
� 	� 	�
�
�

�� 	�
�
� 	� 	�
�
�

v0

v1

v2

v3

v4

v5

v6

starts

starts

starts

starts

starts

starts

starts

(b) Segment graph (SG) and conflict table with isolated instances.

Fig. 2. Simple design example with isolated instances.

Definition: We introduce the term Instance Isolation to
describe the source code modification demonstrated above.
Isolating an instance means to create a unique copy of the
instance definition (behavior or channel) so that the instance
has its own statements (and segments).

We will now show that instance isolation has a major impact
on out-of-order PDES. Using the example of a H.264 video
decoder2, Table II shows the impact of instance isolation in

2See the experimental section for details on our H.264 model.

5C-3

463

TABLE II
EXPERIMENTAL RESULTS FOR H.264 DECODER MODELS WITH DIFFERENT DEGREE OF ISOLATION.

formatted Regular PDES Out-of-Order PDES
Model #bhvr #chnl lines of cmpl sim cmpl [sec] sim [sec] #seg #conflicts #total #OoO

code [sec] [sec] (speedup) (speedup) issues issues
iso0 54 11 55258 11.86 99.42 18.76 (-36.8%) 96.97 (+2.5%) 38 322 (22.3%) 927583 152816 (16.5%)
iso1 54 13 55330 11.93 101.01 17.57 (-32.1%) 96.49 (+4.7%) 41 336 (20.0%) 933222 146711 (15.7%)
iso2 58 16 55558 12.07 99.25 17.74 (-32.0%) 83.20 (+19.3%) 48 388 (16.8%) 913225 147541 (16.2%)
iso3 62 19 55786 12.23 99.68 17.87 (-31.6%) 72.72 (+37.1%) 55 440 (14.6%) 920001 166065 (18.1%)
iso4 66 24 56160 12.46 100.95 18.13 (-31.3%) 60.33 (+67.3%) 67 512 (11.4%) 923017 179581 (19.5%)

terms of model and code size, as well as compilation and
simulation time. We have manually created 5 design models
with an increasing number of isolated instances. iso0 is the
initial model without instance isolation, iso1, iso2 and iso3
are partially isolated, and iso4 is a fully isolated model where
each instance has its own definition. As expected and shown
in Table II, the more instances we isolate, the more behaviors
(#bhvr) and channels (#chnl) exist in the model. The number
of lines of code increases as well, as does the compile time
for out-of-order PDES due to the larger segment graph.

On the other hand, the out-of-order simulation gains sig-
nificant speedup (up to 67.5%) due to the decreasing ratio of
detected conflicts (#conflicts) among the increasing number
of segments (#seg). This tendency is also clearly visible in
the number of threads issued in parallel by the out-of-order
PDES (#OoO issues). We conclude that instance isolation can
significantly improve the run-time efficiency of out-of-order
PDES. Next, we will automate this technique and address the
overhead of larger designs and longer compilation time at the
same time.

III. OPTIMIZED STATIC CODE ANALYSIS FOR

OUT-OF-ORDER PARALLEL DE SIMULATION

We propose an optimized algorithm for the static code
analysis needed by out-of-order PDES which automatically
isolates the instances in the design ”on-the-fly” without actu-
ally creating additional class definitions (no duplicated source
code) and with only minimal compile time increase.

Isolation essentially creates additional scheduling state-
ments (i.e. par, wait, waitfor) for specific instances. Different
segments are then generated for these statements and variable
access information is separated. Textually, isolation creates
an additional class with a different name (e.g. B iso1 in
Fig. 2(a)) but all statements remain the same as in the original
definition (e.g. B in Fig. 1(a)). Our compile-time optimization
uses the same scheduling statements (no duplication), but
still creates separate segments for different instances and
attaches the variable access information accordingly. Instances
are distinguished by unique identifiers (i.e. instID) which the
compiler maintains and passes to the simulator. At run time,
we then use the instance identifiers to distinguish the segments
(e.g. in Fig. 1, v3(seg3 starts) for waitfor 1 in line 12 of
b1, and v5(seg5 starts) for waitfor 1 in the same line 12
of b2).

Moreover, when processing a function call in a segment,
we analyze the function body to obtain its variable access
information since these variables also affect the same segment.
We also need to process the definition of a called function to

connect the segment graph correctly if additional segments
are generated due to segment boundary statements inside
the function (e.g. we process b1.main to find waitfor
1 and waitfor 2 in Fig. 1). This analysis could grow
exponentially with the size of the design if there are frequent
deep function calls. We avoid this by caching the information
obtained during the function analysis, so that we can reuse
this data the next time the same function is called. The time
complexity of our static analysis is therefore practically linear
to the size of the code.

In summary, we optimize the static analysis by using in-
stance identifiers (instead of separate source code statements)
and limiting the algorithm complexity by caching the data
analyzed for function calls.

Before we present our algorithm in detail, we need to
introduce a few definitions:

• cacheMultiInfo: a boolean flag for caching multiple sets of
information for different instances; true if segment boundary
nodes are created or interface functions3 are called in this
function; otherwise, false (default).

• cachedInfo: set of information for different instances:

– instID: instance identifier, e.g. Main.b1;
– dummyInSeg: a dummy segment as the initial segment

of this set of cached information.
– carryThrough: a boolean flag; true when the input

segment carries through fct and is part of the out-
put segments; otherwise, false, e.g. for Main.b1,
B.main.carrythrough = false since v1(seg1) is con-
nected to v3(seg3) and will not carry through B.main.

– outputSegments: segments (except the input ones) that
will be the output after analyzing this function fct, e.g.
for Main.b1, B.main. outputSegments={seg3, seg4}.

– segAccessLists: a list of segment access lists; the seg-
ments here are a subset of the global segments of the
design.; this list only contains the segments that are
accessed by instID.fct.

Note that, if cacheMultiInfo is false, there is only one set
of information for all the instances that call this function.

During the analysis, when a statement is processed, there is
always an input segment list and an output segment list. For
example, for the while loop (line 13), the input segment list
is {seg3} and the output segment list is {seg3, seg4}. To start,
we create an initial segment (i.e. seg0) for the design as the
input segment of the first statement in the program entrance
function, i.e. Main.main().

We now present the optimized static analysis algorithm with

3Interface function definitions differ for different types of instances.

5C-3

464

four phases:

• Input: Design model (e.g. design.sc)
• Output: Segment Graph, Segment Conflict Table.
• Phase 1: Create the global segment graph.

As listed in detail in Algorithm 1, the complexity of this
phase is O(n) where n is the number of statements in the
design, when no function needs to be cached for multiple
instances.

• Phase 2: For each function, build a local segment graph
with segment access lists. Here, we only add variables
accessed in this function definition to the segment access
lists. We do not follow function calls in this phase.
As shown in detail in Algorithm 2, the complexity of this
phase is O(ns) where ns is the number of statements
in the function definition. As shown for our example in
Fig. 3(a), we do not follow function calls to B.main from
Main.main but connect a dummyInSeg node instead. We
also create two sets of main function cache information,
Fig. 3(b) and Fig. 3(c), for the different instances of B since
segment boundary nodes are created when calling B.main.
Note that we do not know the instance path of the member
variables in this phase. Therefore, we use port variable sum
instead of its real mapping Main.sum1 and Main.sum2
here in Fig. 3(b) and Fig. 3(c), respectively.

• Phase 3: Build the complete segment access lists for each
function.
That is, we propagate function calls and all accessed vari-
ables are added to the cached segment access lists cascaded
with proper instance paths. For our example, b1 is cascaded
to the instance paths of the member variables accessed
in segment B.main.dummyInSeg for instance b1 when
analyzing Main.main if necessary4. We also use the
function caching technique here to reduce the complexity of
the analysis. The complexity of this phase is O(ng) where
ng is the total size of the segment graphs for each function.

• Phase 4: Collect the access lists for each segment in
Main.main and add them to the global segment access
lists. Since Main.main is the program entry (or root
function), all the segments are in its local segments and the
member variables have complete cascaded instance paths
in the segment access lists. The real mapping of port
variables can be found according to their instance paths.
The complexity of this phase is O(nl) where nl is the size
of the local segment access list of Main.main.

As we intended, the proposed algorithm generates more
precise segment conflict information without any modification
of the design model. The complexity is, for practical purposes,
linear to the size of the analyzed design. At this time, we do
not support the analysis of recursive function calls.

IV. EXPERIMENTS AND RESULTS

To demonstrate the effects of our optimization, we have
implemented the regular and out-of-order PDES algorithms

4Regular member variables accessed in different instances will not cause
data hazards. Only port variables and interface member variables need the
instance path for tracing the real mapping later.

Algorithm 1 Code analysis for out-of-order PDES, Phase 1
1: Traverse the control flow graph (CFG) of the design.
2: Create a segment boundary node for each scheduling statement

and connect them accordingly.
3: for all function fct do
4: if fct is first called then process the definition of fct.
5: if new segment nodes are created in fct then
6: set fct.cacheMultiInfo = true;
7: cache function information with current instID;
8: else
9: cache function information without instID; endif

10: else
11: if fct.cacheMultiInfo = false then
12: use the cached information of fct;
13: else
14: if current instID is cached then
15: use the cached information of fct.cacheinfo[instID];
16: else
17: process the definition of fct;
18: cache function information with current instID; endif
19: endif
20: endif
21: end for

Algorithm 2 Code analysis for out-of-order PDES, Phase 2
1: for all function fct do
2: Traverse the control flow of fct.
3: Create and maintain a local segment list localSegments.
4: Use fct.dummyInSeg as the initial input segment.
5: For each statement, add variables with their access type into

proper segments.
6: for all function calls inst.fct or fct do
7: Do not follow the function calls. Just register

inst.fct.dummyInSeg or fct.dummyInSeg as the input
segments of the current statement and indicate that inst.fct
or fct is called in the input segments.

8: Add the output segments of the function call to localSeg-
ments and use the output segments as the input of the next
statement in the current function.

9: end for
10: end for

for the SpecC SLDL5. We have run two sets of experiments
and have measured the results on the same host PC with a
4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

The first experiment uses a JPEG image encoder design
(Fig. 4(a)) which encodes the three color components (Y, Cb,
Cr) of the image in parallel since they are data independent. It
performs the DCT, Quantization and Zigzag modules for each
color component concurrently, and uses a sequential Huffman
encoder at the end. The size of our input BMP image is
3216x2136 pixels.

The second experiment uses a parallelized video decoder
model (Fig. 4(b)) based on the H.264/AVC standard [12]. An
H.264 video frame can be split into multiple independent slices
during encoding. Our model uses four parallel slice decoders
to decode the separate slices in a frame simultaneously. The
H.264 stimulus module reads the slices from the input stream
and dispatches them to the four slice decoders for parallel
processing. A synchronizer block at the end completes the
decoding of each frame and triggers the stimulus to send the

5Our results should be equally applicable to SystemC SLDL.

5C-3

465

TABLE III
EXPERIMENTAL RESULTS FOR A SET OF JPEG IMAGE ENCODER AND H.264 VIDEO DECODER MODELS.
Regular PDES Unoptimized Out-of-Order PDES Optimized

Model Original Design Isolated Design Out-of-Order PDES
cmpl sim cmpl [sec] sim [sec] cmpl [sec] sim [sec] cmpl [sec] sim [sec]
[sec] [sec] (speedup) (speedup) (speedup) (speedup) (speedup) (speedup)

spec 0.95 1.84 0.96 (-1.0%) 1.84 (+0.0%) 1.13(-15.9%) 0.92 (+100.0%) 1.01 (-5.9%) 0.96 (+91.7%)
JPEG arch 1.24 1.82 1.25 (-0.8%) 1.70 (+7.1%) 1.37 (-9.5%) 0.95 (+91.6%) 1.28 (-3.1%) 0.92 (+97.8%)

Encoder sched 1.30 1.80 1.31 (-0.8%) 1.72 (+4.7%) 1.43 (-9.1%) 0.94 (+91.5%) 1.34 (-3.0%) 0.96 (+87.5%)
net 1.50 2.33 1.52 (-1.3%) 2.01 (+16.0%) 1.63 (-8.0%) 1.25 (+86.4%) 1.55 (-3.2%) 1.24 (+87.9%)

spec 13.12 96.91 18.76(-30.1%) 96.97 (-0.1%) 18.13 (-27.6%) 60.33 (+60.6%) 12.25 (+7.1%) 60.25 (+60.8%)
H.264 arch 12.20 99.86 17.89 (-31.8%) 100.30 (-0.4%) 18.46 (-33.9%) 60.77 (+64.3%) 12.77 (-4.5%) 59.78 (+67.1%)

Decoder sched 18.34 99.80 24.23 (-24.3%) 99.44 (+0.4%) 24.80 (-26.1%) 60.96 (+63.7%) 18.85 (-2.7%) 60.29 (+65.5%)
net 19.07 104.77 25.71 (-25.4%) 104.56(+0.2%) 26.06 (-26.8%) 66.25 (+58.1%) 19.54 (-2.4%) 66.00 (+58.7%)

v1(seg1 starts)

v0 (seg0 starts)

instID: b1
B.main.

dummyInSeg

instID:b2
B.main.

dummyInSeg

v2 (seg2
starts)

Main.sum1(R),
Main.sum2(R)

…

…

(a) Main.main

b1.main.
dummyInSeg

v3(seg3 starts)

v4(seg4
starts)

B.i(W),

B.i(R)

B.i(WR),
array(R)

 B.sum(W)

 B.sum(W)

Output

(b) B.main (Main.b1)

b2.main.
dummyInSeg

v5(seg5 starts)

v6(seg6
starts)

B.i(W)

B.i(R)

B.i(WR),
array(R)

 B.sum(W)

 B.sum(W)

Output

(c) B.main (Main.b2)

Fig. 3. Function local SGs and segment access lists for the example in Fig. 1.
�������������
�������	���

���

������

�����

Y

���

������

�����

Cb

���

������

�����

Cr

�������

�������������

(a) JPEG image encoder.

��������	�����

Slice
decoder0

Slice
decoder1

Slice
decode2

Slice
decoder3

����	
����
�

������������
�

(b) H.264 video decoder.

Fig. 4. Design examples for experimental PDES algorithm comparison.

next one. Note that this design model is of industrial-size and
consists of about 40k lines of code. We use a test stream of
1079 video frames with 1280x720 pixels per frame.

Table III lists our experimental results for both design mod-
els at four different abstraction levels (spec, arch, sched, net).
We measure and compare the out-of-order PDES algorithms
in compile and simulation time against the regular PDES
implementation as reference.

The results shown in Table III clearly support the two main
contributions of this paper. First, instance isolation is very
effective in improving the simulation speed, as shown in the
columns for the unoptimized out-of-order PDES. Second (and
more important), our new analysis algorithm for optimized
out-of-order PDES not only shows high speedup in simulation
due to the automatic isolation ”on-the-fly”, it also shows only
an insignificant increase in compile time of less than 6%.

V. CONCLUSION

Out-of-order parallel DE simulation (PDES) is an advanced
technique for fast multi-core validation of ESL design models.
In this paper, we exploit the idea of instance isolation and

show that this technique significantly improves the efficiency
of the static code analysis required by out-of-order PDES. Our
optimized out-of-order PDES algorithm isolates instances in
the design model automatically without any model modifica-
tion and, for practical purposes, is linear in complexity due
to the careful caching of analysis results for functions. Our
experimental results show high gains in simulation speed for
an insignificant increase in compile time.

ACKNOWLEDGMENT

This work has been supported in part by funding from the National
Science Foundation (NSF) under research grant NSF Award #0747523. The
authors thank the NSF for the valuable support. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer, 2002.

[2] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Design Methodology. Kluwer, 2000.

[3] R. Dömer, W. Chen, X. Han, and A. Gerstlauer, “Multi-Core Parallel
Simulation of System-Level Description Languages,” in Proceedings of
the Asia and South Pacific Design Automation Conference (ASPDAC),
pp. 311–316, 2011.

[4] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann, “parSC:
Synchronous Parallel SystemC Simulation on Multi-Core Host Archi-
tectures,” in Proceedings of the International Conference on Hardware/-
Software Codesign and System Synthesis, pp. 241–246, 2010.

[5] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel Simulation
of SystemC TLM 2.0 Compliant MPSoC on SMP Workstations,” in
Proceedings of the Design, Automation and Test in Europe (DATE)
Conference, pp. 606–609, 2010.

[6] W. Chen, X. Han, and R. Dömer, “Multi-Core Simulation of Transaction
Level Models using the System-on-Chip Environment,” IEEE Design
and Test of Computers, vol. 28, pp. 20–31, May/June 2011.

[7] W. Chen, R. Dömer, and X. Han, “Out-of-Order Parallel Simulation for
ESL Design,” in Proceedings of the Design, Automation and Test in
Europe (DATE) Conference, 2012.

[8] K. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs,” IEEE Transactions
on Software Engineering, vol. SE-5, pp. 440–452, Sept 1979.

[9] R. Fujimoto, “Parallel Discrete Event Simulation,” Communications of
the ACM, vol. 33, pp. 30–53, Oct 1990.

[10] D. Nicol and P. Heidelberger, “Parallel Execution for Serial Simulators,”
ACM Transactions on Modeling and Computer Simulation, vol. 6,
pp. 210–242, July 1996.

[11] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines,” in
Proceedings of the ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation, pp. 80–87, 2009.

[12] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 13, pp. 560 –576, July 2003.

5C-3

466

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

