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Abstract— Describing Multi-Processor Systems-on-Chip (MP-
SoC) at the abstract Electronic System Level (ESL) is one task,
validating them efficiently is another. Here, fast and accurate
system-level simulation is critical. Recently, Parallel Discrete
Event Simulation (PDES) has gained significant attraction again
as it promises to utilize the existing parallelism in today’s multi-
core CPU hosts. This paper discusses the parallel simulation of
Transaction-Level Models (TLMs) described in System-Level De-
scription Languages (SLDLs), such as SystemC and SpecC. We re-
view how PDES exploits the explicit parallelism in the ESL design
models and uses the parallel processing units available on multi-
core host PCs to significantly reduce the simulation time. We show
experimental results for two highly parallel benchmarks as well as
for two actual embedded applications.

I. INTRODUCTION

Describing complex Multi-Processor Systems-on-Chip
(MPSoC) at the abstract Electronic System Level (ESL) is one
difficult task. However, getting the models to work correctly
is another. The large size and great complexity of modern
embedded systems with their heterogeneous components,
complex interconnects, and sophisticated functionality pose
enormous challenges to system validation and debugging.
Accurate yet fast ESL simulation is a key to enabling effective
and efficient design validation and implementation.

In this paper, we review recent approaches for simulating
MPSoC designs described at the system or transaction level.
We focus in particular on parallel simulation techniques. The
well-known approach of Parallel Discrete Event Simulation
(PDES) has recently gained a lot of attraction again due to the
inexpensive availability of parallel processing capabilities in
today’s multi-core CPU hosts. PDES holds the promise to map
the explicit parallelism described in Transaction-Level Models
(TLMs) efficiently onto the parallel cores available on the sim-
ulation host. As such, it can exploit the available parallelism
and significantly reduce the simulation time.

A. Parallel execution in SystemC and SpecC

In this paper, we discuss the parallel simulation of TLMs de-
scribed in the System-Level Description Languages (SLDLs)
SystemC [7] and SpecC [6]. We note that, in contrast to flat and
sequential C/C++ programming code, both languages explicitly
specify the key ESL concepts in the design model, including
behavioral and structural hierarchy, potential for parallelism
and pipelining, communication channels, and constraints on
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timing. Having these intrinsic features of the application ex-
plicit in the model enables efficient design space exploration
and automatic refinement by computer-aided design (CAD)
tools.

While both SystemC and SpecC model parallel execution
explicitly, there is a significant difference in the parallel execu-
tion semantics between the languages. Both SLDLs define their
execution semantics by use of DE-based scheduling of multi-
ple concurrent threads which are managed and coordinated by
a central simulation kernel. However, SystemC requires co-
operative multi-threading, whereas SpecC allows preemptive
multi-threading [4].

SystemC semantics guarantee the uninterrupted execution of
threads (including their accesses to any shared variables) which
makes it hard to implement a truly parallel simulator. In short,
complex inter-dependency analysis over all variables in the sys-
tem model is a prerequisite to parallel multi-core simulation in
SystemC.

In contrast to the cooperative scheduling mandated for Sys-
temC models, multi-threading in SpecC is explicitly defined
as preemptive. This makes a parallel simulation significantly
easier because only shared variables in channels (which act as
monitors) need to be protected for mutually exclusive access.
Such protection can easily be inserted automatically into the
model [2].

B. Related Work

Most ESL design frameworks today still rely on regular Dis-
crete Event (DE) simulators which issue only a single thread at
any time to avoid complex synchronization of the concurrent
threads. As such, the simulator kernel becomes an obstacle
in improving simulation performance on multi-core host ma-
chines [8].

A well-studied solution to this problem is Parallel Discrete
Event Simulation (PDES) [1, 5, 11]. [9, 10] discuss the PDES
on Hardware Description Languages, VHDL and Verilog. To
apply PDES solutions to today’s SLDLs and actually allow par-
allel execution on multi-core processors, the simulator kernel
needs to be modified to issue and properly synchronize multi-
ple OS kernel threads in each scheduling step. [3] and [12] have
extended the SystemC simulator kernel accordingly. Clusters
with single-core nodes are targeted in [3] which uses multiple
schedulers on different processing nodes and defines a mas-
ter node for time synchronization. A parallelized SystemC
kernel for fast simulation on SMP machines is presented in
[12] which issues multiple runable OS kernel threads in each
simulation cycle. The SpecC-based scheduling approach de-
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scribed in [2] is very similar. However, it features a detailed
synchronization protection mechanism which automatically in-
struments any user-defined and hierarchical channels. As such,
this approach does not need to work around the cooperative
SystemC execution semantics, neither does it require a spe-
cially prepared channel library.

II. SYSTEM-LEVEL DISCRETE EVENT SIMULATION

System design models with explicitly specified parallelism
carry the promise of increased simulation performance through
parallel execution of the threads on the available hardware re-
sources of a multi-core host.

In this section, we will first review the DE scheduling
scheme used in traditional SLDL simulators which issues only
a single thread at any time. We will then discuss the ex-
tended scheduling algorithm with true multi-threading capabil-
ity on symmetric multiprocessing (multi-core) machines. With
the exception of the different requirements for protection of
communication and synchronization between the concurrent
threads, as outlined in Section I.A above, the following sec-
tions apply equally to both SystemC and SpecC SLDLs.

A. Traditional Discrete Event Simulation

In traditional system-level simulation, a regular DE simu-
lator is used. Threads are created for the explicit parallelism
described in the models (e.g. par{} and pipe{} statements in
SpecC, and SC_.THREADS in SystemC). The threads are gen-
erally managed in the scheduler by use of queues, such as
READY, which contains all threads that ready to execute, and
WAIT, which contains all waiting threads. When running, the
threads communicate via events and shared variables or chan-
nels, and advance simulation time using wait-for-time con-
structs.

No

th = Pick(READY, RUN); Gol(th); |

1

VthEWAIT, if th’s event is notified;
Move(th, WAIT, READY); Clear notifed events;

delta-cycle
No
B oo
Yes
Update the simulation time;
move the earliest thEWAITFOR to READY; .
timed-cycle
No
5 oo
Yes
end

Fig. 1.: Traditional DE scheduler.

Traditional DE simulation is driven by events and simula-
tion time advances. Whenever events are delivered or time

increases, the scheduler is called to move the simulation for-
ward. As shown in Fig. 1, at any time the traditional scheduler
runs a single thread which is picked from the READY queue.
Within a delta-cycle, the choice of the next thread to run is non-
deterministic (by definition). If the READY queue is empty, the
scheduler will fill the queue again by waking threads who have
received events they were waiting for. These are taken out of
the WAIT queue and a new delta-cycle begins.

If the READY queue is still empty after event delivery,
the scheduler advances the simulation time, moves all threads
with the earliest timestamp from the WAITFOR queue into the
READY queue, and resumes execution (timed-cycle). Note that
at any time, there is only one thread actively executing in the
traditional simulation.

B. Parallel Discrete Event Simulation

A parallel DE scheduler basically works the same way as
the traditional scheduler, with one exception: in each cycle, it
picks multiple threads from the READY queue and runs them
in parallel on the available processor cores. For SLDL simula-
tors in particular, the parallel scheduler picks and runs as many
threads as CPU cores are available!. In other words, it keeps
all parallel processing resources as busy as possible.

wait(Cond_s, L);
sleep

RUN| <= #CPUs
o && READY != J ?

th = Pick(READY, RUN);
Go(th);

No
wait(Cond_s, L)|
No

YthEWAIT, if th’s event is notified;
Move(th, WAIT, READY), Clear notified events;

No

signal(Cond_th, L); Yes

Update the simulation time;
move the earliest thEWAITFOR to READY;

Fig. 2.: Parallel DE scheduler.

Fig. 2 shows the extended control flow of the parallel sched-
uler. Note the added loop at the left which issues running
threads as long as CPU cores are available and the READY
queue still has candidates.

Note that for the traditional sequential scheduler any thread-
ing model (including user-level or kernel-level threads) is ac-
ceptable since only one thread is running at any time. For the
parallel scheduler to be effective on a multi-core platform, in
contrast, OS kernel threads are necessary. Here, the underlying
operating system needs to be aware of the multiple simulator
threads so that it can utilize the available parallel CPU cores.

!'Scheduling more threads to run than cores are available would be possible,
but this would hurt the simulation performance due to unnecessary preemptive
scheduling by the underlying operating system.
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Fig. 3.: Simulation results for highly parallel benchmark designs.

III. PARALLEL SYSTEM-LEVEL BENCHMARKS

To demonstrate the potential of parallel simulation, we have
designed two highly parallel benchmark design models, a par-
allel floating-point multiplication example and a parallel recur-
sive Fibonacci calculator. Both benchmark designs are system-
level models specified in SpecC SLDL.

For all our experiments, we use a symmetric multi-
processing (SMP) capable server running 64-bit Fedora 12
Linux. The SMP hardware specifically consists of 2 Intel/
Xeon") X5650 processors running at 2.67 GHz2. Each CPU
contains 6 parallel cores, each of which supports 2 hyper-
threads per core. Thus, in total the server hardware supports
up to 24 threads running in parallel.

A. Parallel floating-point multiplications

Our first parallel benchmark fmul is a simple stress-test
example for parallel floating-point calculations. Specifically,
fmul creates 256 parallel instances which perform 10 million
double-precision floating-point multiplications each. As an ex-
treme example, the parallel threads are completely indepen-
dent, i. e. do not communicate or share any variables.

The chart in Fig. 3 shows the experimental results for our
parallel simulator when executing this benchmark. To demon-
strate the scalability of parallel execution on our server, we vary
the number of parallel threads admitted by the parallel sched-
uler (the value #CPUs in Fig. 2) between 1 and 30.

The elapsed simulator run times are shown in the red line
with circle points. Clearly, with more and more CPU cores
used, the elapsed simulation time decreases in near logarithmic

2To ensure consistent timing measurements, we have disabled the dynamic
frequency scaling and turbo mode of the processors.

fashion and flattens when no more CPU cores become available
(> 24).

When plotting the relative speedup, as shown in the green
line with triangle points, one can see that, as expected, the sim-
ulation speed increases in nearly linear manner the more paral-
lel cores are used. The maximal speedup is about 17x for this
example on our 24-core server.

B. Parallel Fibonacci calculation

Our second parallel benchmark fibo calculates the Fibonacci
series in parallel and recursive fashion. Recall that a Fibonacci
number is defined as the sum of the previous two Fibonacci
numbers, fib(n) = fib(n — 1) + fib(n — 2), and the first two
numbers are fib(0) = 0 and fib(1) = 1. Our fibo design par-
allelizes the Fibonacci calculation by letting two parallel units
compute the two previous numbers in the series. This paral-
lel decomposition continues up to a user-specified depth limit
(in our case 8), from where on the classic recursive calculation
method is used.

In contrast to the fmul example above, the fibo benchmark
uses shared variables to communicate the input and calculated
output values between the units, as well as a few counters to
keep track of the actual number of parallel threads (for statis-
tical purposes). Thus, the threads are not fully independent
from each other. Also, the computational load is not evenly
distributed among the instances due to the fact that the number
of calculations increases by a factor of approximately 1.618
(the golden ratio) for every next number.

The fibo simulation results are also plotted in Fig. 3. The
elapsed simulator run times, shown in the dark red line with
square points, show the same decreasing curve as the fmul ex-
ample. Accordingly, the relative simulation speedup, shown
in the blue line with diamond points, also shows the same ex-
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pected behavior. Speed increases in nearly linear fashion until
it reaches saturation at about a factor of 14x.

When comparing the fmul and fibo benchmark results, we
notice a more regular behavior of the fmul example due to its
even load and zero inter-thread communication.

IV. EXPERIMENTAL RESULTS FOR EMBEDDED
APPLICATIONS

To demonstrate the improved simulation speed of the parallel
multi-core simulator for actual embedded applications, we use
a H.264 video decoder and a JPEG encoder application [2].

A. H.264 AVC Decoder with Parallel Slice Decoding

The H.264 Advanced Video Coding (AVC) standard [13] is
widely used in video applications, such as internet streaming,
disc storage, and television services. It provides high-quality
video at less than half the bit rate compared to its predecessors
H.263 and H.262. At the same time, it requires more comput-
ing resources for both video encoding and decoding.

The H.264 decoder takes as input a stream of encoded video
frames. A frame can be further split into one or more slices, as
illustrated in the upper right part of Fig. 4. Notably, slices are
independent of each other in the sense that decoding one slice
will not require any data from the other slices. For this reason,
parallelism exists at the slice-level and parallel slice decoders
can be used to decode multiple slices in a frame simultaneously.

A frame divided into four slices

—
Slice reader Slice 0
L—\lﬂ/ EIJ L E; A —l Slice 1
I I ol " -
| | i Slice 2
N
I I ! N |stice3
Stice | | | Stice | | | Stice ||| Stice U"l N
decodert | | | decoderl | | | decoderz | | | decoders | ) \Detailed structure inside a slice decoder
| | | g 5
| | | _, Entropy| | Inv. Quant &,
: Decode| " Transformation
| | | < g ; Hl
[ Teel TN | ==l
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Synchronizer | \ | decoder Tpsiiciion
Pioceed o next frme .

Fig. 4.: Parallelized H.264 decoder model.

Fig. 4 shows the block diagram of our H.264 decoder model.
The decoding of a frame begins with reading new slices from
the input stream. These are then dispatched into four paral-
lel slice decoders. Finally, a synchronizer block completes
the decoding by applying a deblocking filter to the decoded
frame. All the blocks communicate via FIFO channels. Inter-
nally, each slice decoder consists of the regular H.264 decoder
functions, such as entropy decoding, inverse quantization and
transformation, motion compensation, and intra-prediction.

For our experiment, we use the stream “Harbour” with 299
video frames, each with 4 slices of equal size. As discussed in
[2], 68.4% of the total computation time is spent in the parallel
slice decoding. Thus, while the maximum parallelism is 4 in
this model, the effective maximum speedup we can gain is only
2.05 (due to the sequential parts).

Table 5 lists the simulator run times for TLMs at different
abstraction levels. We compare the elapsed simulation time

against the sequential reference simulator (the table also in-
cludes the CPU load reported by the Linux OS). We can clearly
see that the 24 available cores on the server are under-utilized.
The reason is obviouly the maximum available parallelism in
the model (2.05). The measured speedups are also somewhat
lower than the maximum due to the overhead introduced in par-
allelizing and synchronizing the slice decoders.

Simulator Reference Multi-Core
Par. issued threads: n/a 24
sim. time sim. time speedup

spec 37.71s (90%) | 21.01s (173%) 1.79
arch 38.26s (90%) | 21.26s (171%) 1.80
models sched 38.10s (91%) | 22.31s (166%) 1.71
net 38.18s (91%) | 22.45s (166%) 1.70
tlm 39.17s (90%) | 22.32s (167%) 1.75
comm 49.92s (90%) | 33.55s (156%) 1.49

Fig. 5.: Simulation results for H.264 Decoder example.

Simulator Reference Multi-Core
Par. issued threads: n/a 24
sim. time sim. time speedup
spec 3.46s (93%) 2.82s (146%) 1.23
arch 3.92s (94%) 2.83s (147%) 1.39
models sched 4.64s (93%) 3.61s (137%) 1.29
net 13.87s (97%) | 45.96s (130%) 0.30

Fig. 6.: Simulation results for JPEG Encoder example.

B. JPEG Image Encoder

As a second embedded application, Table 6 shows the sim-
ulation speedup for a JPEG Encoder example which performs
its DCT, Quantization and Zigzag modules for the 3 color
components in parallel, followed by a sequential Hu f fman
encoder at the end. Again, the available parallelism in the
model is low (maximal 3 parallel threads, followed by a sig-
nificant sequential part). Some speedup is gained by the multi-
core parallel simulator for the higher level models (spec, arch,
sched). However, the simulator performance decreases for the
model at the lowest abstraction level (net) due to the high num-
ber of bus transactions and arbitrations which are not paral-
lelized.

V. CONCLUDING REMARKS

Parallel Discrete Event Simulation (PDES) has recently
come into fashion again. PDES is highly desirable for ESL
design due to the constantly rising complexity of embedded
systems which makes accurate and fast simulation challenging.

After a brief review of the essential differences between
traditional discrete event simulation and PDES, we have ex-
amined two highly parallel benchmark applications, fmul and
fibo, and two actual embedded design examples, a H.264 de-
coder and a JPEG encoder. While the measured simulation
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times of the parallel fmul and fibo benchmarks promise a lin-
ear increase in simulation speed due to their excellent scalabil-
ity, the speedup achieved for the two embedded applications is
quite limited. Nevertheless, the measured speedup is signifi-
cant (nearly 2x!) and can make a real difference in shortening
the validation time of such systems.

Given the need for higher simulation speeds and the demon-
strated potential of parallel simulation, it becomes clear that
PDES is and will be an area of active research. Notably, the ba-
sic PDES algorithm discussed in Section B is very straightfor-
ward and advanced techniques, including conservative and op-
timistic approaches, can further improve the simulation speed
by optimizing the scheduling around synchronization barriers.
However, all efforts are limited by the amount of exposed par-
allelism in the application.

We can conclude that the parallelism available in the appli-
cation, which in TLMs is explicitly specified by SLDL con-
structs, can be exploited by parallel simulators and then re-
sults in effective reduction of simulator run time. However,
the Grand Challenge remains, the problem of how to efficiently
parallelize applications.
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