
Automatic Communication Refinement for System Level Design

Samar Abdi and Daniel Gajski

Technical Report CECS-03-08
March 7, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

1

Automatic Communication Refinement for System Level Design

Samar Abdi and Daniel Gajski

Technical Report CECS-03-08
March 7, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fsabdi,gajskig@cecs.uci.edu

Abstract

This paper presents a methodology and algorithms for automatic communication refinement. The communication refine-
ment task in system-level synthesis transforms abstract data-transfer between components to its actual bus level implemen-
tation. The input model of the communication refinement is a set of concurrently executing components, communicating with
each other through abstract communication channels. The refined model reflects the actual communication architecture.
Choosing a good communication architecture in system level designs requires sufficient exploration through evaluation of
various architectures. However, this would not be possible with manually refining the system model for each communication
architecture. For one, manual refinement is tedious and error-prone. Secondly, it wastes substantial amount of precious
designer time. We solve this problem with automatic model refinement. We also present a set of experimental results to
demonstrate how the proposed approach works on a typical system level design.

2

Contents

1 Introduction 1

2 Related Work 1

3 Inputs to Communication Refinement 2
3.1 Input model. 2
3.2 Protocol Library . 3
3.3 Synthesis decisions . 3

4 Refinement of a Simple Design 3
4.1 Data slicing . 3

4.1.1 Type analysis . 3
4.1.2 Creating Bus Transactions . 4

4.2 Refining Synchronization . 4
4.2.1 Synchronization for Statically Scheduled Components 4
4.2.2 Synchronization for Dynamically Scheduled Components .. 5

5 Refinement of Complex Designs 5
5.1 Multiple Slaves . .. 5

5.1.1 Interrupt Controller . 5
5.1.2 Application layers . 6

5.2 Multiple Masters .. 6

6 Experimental Results 6

7 Conclusion and Future Work 7

i

List of Figures

1 Communication refinement engine . 2
2 Communication mechanisms in abstract channels . 2
3 Simple architecture . 3
4 Algorithm for generating code for data slicing . 4
5 Master and Slave communication mechanisms for statically scheduled behaviors 4
6 Master and Slave communication mechanisms for dynamically scheduled behaviors. 5
7 A complex bus architecture . 5
8 Round-robin interrupt controller and Slave communication mechanism 6
9 Top level of the input model 6
10 Top level of the generated communication model . 7

ii

Automatic Communication Refinement for System Level Design

Samar Abdi and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

This paper presents a methodology and algorithms for
automatic communication refinement. The communication
refinement task in system-level synthesis transforms ab-
stract data-transfer between components to its actual bus
level implementation. The input model of the communi-
cation refinement is a set of concurrently executing com-
ponents, communicating with each other through abstract
communication channels. The refined model reflects the ac-
tual communication architecture. Choosing a good commu-
nication architecture in system level designs requires suf-
ficient exploration through evaluation of various architec-
tures. However, this would not be possible with manually
refining the system model for each communication archi-
tecture. For one, manual refinement is tedious and error-
prone. Secondly, it wastes substantial amount of precious
designer time. We solve this problem with automatic model
refinement. We also present a set of experimental results to
demonstrate how the proposed approach works on a typical
system level design.

1 Introduction

With the increase in complexity of system level designs,
we are continuously faced with the challenge of implement-
ing the design specification while meeting the strict con-
straints it imposes. Communication synthesis requires ex-
tensive design space exploration. With a greater number
and variety of components being put together on a chip,
the task of communication synthesis becomes more com-
plicated. In order to choose the right communication ar-
chitecture for our designs, we need to generate models that
reflect the communication architecture. These models are
then evaluated through simulation to test their “goodness”.

Typically, these models are handwritten, which poses a
number of problems. First of all, a lot of time is spent in
writing these models which is a serious handicap to the
exploration process. The fewer architectures we test, the
lower is the probability of choosing the optimal one. Sec-
ondly, model rewriting is an error prone process. It is possi-

ble to introduce several errors while manually rewriting the
model. This makes the evaluation of our communication
architecture questionable.

In this paper we look at how we speed up the commu-
nication synthesis process by enabling automatic model re-
finement. Figure 1 shows how communication synthesis is
performed in our system design methodology. We begin
with a model of our partitioned system design, which rep-
resents various system components executing concurrently.
These components communicate with each other via ab-
stract channels as shown. Each channel comprises of the
data itself andSend/Receivemethods that enable the data
transaction. The user provides a set of synthesis decisions
like bus allocation, connectivity, bus access priorities etc.
System buses may be inserted in the design by instantia-
tions from a bus protocol library. With these inputs, the
communication refinement tool produces an output model
that reflects the bus architecture of the system. In the output
model, the top level of the design consists of system com-
ponents and wires of the system bus(es). The components
themselves are refined to their bus functional models that
communicate using the system bus(es). The rest of the pa-
per is organized as follows. Section 2 is a brief review of the
related work in this area. Section 3 talks about the charac-
teristics of abstract communication in the input model. Sec-
tion 4 looks at the basic tasks of communication refinement
for a simplistic example with two components and one bus.
Section 5 builds up on the simple example by adding mul-
tiple components and multiple buses. Finally, we present
experimental results in section 7 and wind up with a sum-
mary and conclusion.

2 Related Work

In recent years a lot of attention has been given to model-
ing and synthesis of bus architectures. Most of the work has
been done in optimizing communication architectures for
specific designs. In [5], Gogniat et al. describe mechanism
for interfacing HW/SW interfaces for co-design of embed-
ded systems. Ortega et. al look at a retargettable modeling
scheme for maximum utilization of bus bandwidth in [6].

1

System
bus wires

DSP
Component

HW
Component

Output Communication Model

Communication
Refinement

PCI
AMBA

DoubleHandShake
Motorola DSP56600

Protocol
Library

A d d r e s s
Data

Ready

Abstract
channels

Var 1 : I n t Var 3 : B i tVar 2 : String

DSP Component HW Component

W

Partitioned/Scheduled Input
Model

Synthesis
Decisions

Bus Allocation
Connectivity

Component priority

A

Z

X

Y

W

CB

Z

X

Y

W

CB

A

Figure 1. Communication refinement engine

However, they focus mostly on reactive real time systems.
Vahid and Tauro [8] propose using a parameterized commu-
nication library. Rowson et. al propose the Interface based
design methodology [7] that also aims at successive refine-
ment of communication from abstract tokens to implemen-
tation.

SystemC methodology talks about transaction level
modeling in [2] that aims at communication modeling so as
to optimize simulation speed. However, it does not address
automatic generation of such models. CoWare [1] supports
heterogeneous processors but focuses on shared memory
communication. Jerraya et al. [3] [4] present interesting
schemes for putting together heterogeneous components on
a bus using wrappers.

3 Inputs to Communication Refinement

As discussed earlier and show in Figure 1, we have basi-
cally three inputs to the communication refinement engine.
The first input is the input model with abstract communi-
cation. The second input is a protocol library that supports
a variety of protocols including generic and processor spe-
cific protocols. The final input is a set of synthesis decisions
that guide the communication refinement engine on the re-
quired transformations that need to be applied to the input
model.

3.1 Input model

The input model to communication refinement should
follow certain pre-specified semantics. It should reflect the
intended architecture of the system with respect to the com-
ponents that are present in the design. Each component exe-
cutes a specific behavior in parallel with other components.
Communication inside a component takes place through lo-
cal memory of that component, and is thus not a concern
for communication refinement. Inter-component commu-
nication is point-to-point and takes place through abstract
channels that support Send and Receive methods.

Communication between components can be modeled
via three schemes as shown in Figure 2. In the case of
two way blocking communication as shown in Figure 2 (a)
, both the sender and receiver must be blocked until the
transaction has completed. This mechanism is modeled us-
ing events and blocking wait statements. As we can see,
the sender writes the data on a shared variable in the chan-
nel and follows up by notifying the receiver. The receiver
cannot read the data until it gets the sender’s notification.
This guarantees the safety of the transaction. The ack event
guarantees that the sender cannot rewrite on the channel un-
til the previous transaction has completed. Such a mech-
anism is deterministic. Non-deterministic communication

Write DATA

Read DATA

Write DATA

Read DATA

Write DATA Read DATA

DATA DATA DATA

(a) (b) (c)

two-way blocking one-way blocking non blocking

ready

wait

wait

ack

wait

ready

Send Send SendRecv Recv Recv

Figure 2. Communication mechanisms in abstract
channels

mechanisms can be seen in Figure 2(b) and Figure 2(c). In
Figure 2(b), the one way blocking mechanism is used that
ensures that the receiver cannot read the data until it is writ-
ten by the sender. However, there is no way to stop the
sender from re-writing that data in a subsequent iteration.
The mechanism shown in figure Figure 2 (c) is completely
non-deterministic. These mechanisms are typically used in
real time systems where a time out strategy is employed. In
the course of this paper, we will look only at refinement of

2

two way blocking communication. The other two mecha-
nisms can be implemented easily once we have support for
two way blocking communication.

3.2 Protocol Library

The protocol library is a set of channels that model the
protocols of system buses. These channels provide for
the standard read/write methods for the bus protocol. Ad-
ditional methods may be required for more complex de-
signs that support arbitration, multiple interrupt signals etc.
Each bus transaction also requires definition of a master
and slave. Therefore, the protocol library must provide for
unique channels for both master and slave sides. The ports
of the bus protocol channel represent the actual bus wires
which are later exposed in the communication model.

3.3 Synthesis decisions

The refinement engine works on directions given to it
by the communication synthesis decisions. The synthesis
process can either be automated or interactive as per the de-
signer’s methodology. However, the decisions must input to
the refinement engine using a specific format. Some typi-
cal features of the communication architecture include the
choice of system buses, the mapping of abstract communi-
cation to these buses, the connectivity between components
and buses etc. Based on these decisions, the refinement en-
gine imports the required protocols from the bus protocol
library and generates interfaces and drivers for components
so that they may talk over the system buses. For the purpose
of our implementation, we annotated the input model with
the set of synthesis decisions. The refinement tool then de-
tects and parses these annotations to perform the requisite
model transformations.

4 Refinement of a Simple Design

In this section we look at communication refinement of
a simplistic model. We will look at the basic tasks involved
in the refinement process before moving on to more com-
plex architectures. The design consists of two components
(a processor and a HW unit) communicating with two-way
blocking channels. All this communication needs to be
mapped to a single system bus in order to get a simple
bus architecture as shown in Figure 3. Four communica-
tion points are shown in the master and slave component.
Each communication point is labeled such that node A of
master talks to node A of slave, node B of master talks to
node B of slave and on. Implementation of data transactions
on the system bus is done by theApplication Layerfor that
variable. Each component in the design has a uniqueAp-
plication Layerfor every variable that it sends or receives.

The Application Layeressentially substitutes the original
abstract communication channel by implementing the data
transfer on the system bus. Additions made to the model
as a result of communication refinement are highlighted in
Figure 3.

(Master)

System Bus

Interrupt

Data - type analysis

Write words

bit-stream gen.

(Slave)

Data regeneration

Read words

bit-stream gen.

bus driver bus driver

Sender Receiver

A A

B

D

C B

D

C

Figure 3. Simple architecture

4.1 Data slicing

The abstract communication channels of the input model
perform transaction of complex variables with the help of
events. These complex variables could be structures, multi-
dimension arrays or integers. Eventually, they need to be
translated to a bit-stream to be sent over the system bus.
Figure 3 shows how abstract data is processed into data bus
words and sent to the receiver. On the receiver side, this
bit stream needs to be identified and translated back to the
original variable. The entire data slicing forms part of the
component’s application layer for that variable.

4.1.1 Type analysis

As shown in the Figure 3, data type analysis is the first step
on the sender’s side. For simplicity, we consider only in-
tegral data. The approach can be extended to floating point
data or user defined data as well. We begin by doing adepth
first searchon the complex data structure. The key idea is
to reduce the data structure to a string of items of primitive
types. The primitive integral type data can then be directly
converted to bit vectors to be sent on the system bus. Fig-
ure 4 shows a recursive algorithm to generate code for the
sender side for doing this data processing. D

¯
, the input to

the algorithm, is a definition of the complex variable. The
type of D

¯
is checked to see if it is a complex type. For

complex types, the algorithm is called recursively with the
subtype element of D

¯
. For conversion of primitive integral

types to bit streams, the modeling language must have con-
structs or supporting libraries. This is true for most system

3

design languages and hence our algorithm can be used to
generate code in those system modeling languages. Note
that in the algorithm, the use ofcodegenrefers to generat-
ing statements in the model description.

protocol Bus
procedure GenerateSendCode (definition D)
 if TypeOf (D) = STRUCT
 do

foreach elem in D
do

call GenerateSendCode(elem)
end for

 end if
 if TypeOf(D) = ARRAY
 do

codegen : loop i = 0 to D.length -1
call GenerateSendCode (D[i])
codegen : end loop

 end if
 if TypeOf(D) = INTEGRAL_TYPE
 do

codegen : bit[D.size-1 : 0] temp = D
call GenerateSendCode (temp)

 end if
 if TypeOf(D) = BIT_VECTOR
 do

codegen : slices = ceil (D.size / Bus.datawidth)
codegen : loop j = 0 to slices - 1
if (D.direction = DOWNTO)
do

codegen : bus.Write (SlaveAddr,
 D [D.LeftBound : D.LeftBound - Bus.datawidth + 1])
codegen : ShiftLeft (D, Bus.datawidth)

else
codegen : bus.Write (SlaveAddr,
 D [D.LeftBound : D.LeftBound + Bus.datawidth - 1])
codegen : ShiftLeft (D, Bus.datawidth)

end if
codegen : end loop

 end if
end procedure

Figure 4. Algorithm for generating code for data slic-
ing

4.1.2 Creating Bus Transactions

Once the complex variable has been converted to a series of
bit vectors, the methods of the protocol channel can be used
for completing the data transfers. As shown in the second
half of the GenerateSendCodealgorithm in Figure 4, we
determine the number of bus transactions required to send
the entire variable. To perform these transactions, we need
slices of the variable of the size of data bus width. The
slices are made from left to right in the bit vector. Each
of these slices are then sent using the bus protocol’s write
method.Receiveprocedure on the other side is an exact dual
of theSendmethod shown here. The incoming bit stream is
read using the protocol channel’sReadmethod. Since we
already know the variable type, it is thus easy to regenerate
it at theReceiverend. Thereby we retain the functionality of
the originalReceiveandSendmethods in the input model.

4.2 Refining Synchronization

Besides converting abstract data to bus words, we also
need to preserve the communication semantics of the input

model. In the case of abstract channels, each data transac-
tion is independent and does not interfere with other trans-
actions. However, once all those independent data transac-
tions are mapped on the same bus, they have to share the
same communication medium and synchronization events.
Therefore, it is necessary to generate additional synchro-
nization code so as to avoid conflicts on the bus. This syn-
chronization is inserted around the data splitting and trans-
fer code in the application layer.

4.2.1 Synchronization for Statically Scheduled Com-
ponents

This is the simplest case for handling synchronization. If
the two communicating components have statically sched-
uled behaviors, there would be no possibility of temporal
overlap of communication. In the two component design
scenario, this amounts to communication between two con-
current processes. The communication takes place as fol-
lows.

When the slave process reaches the communication
point, it notifies the master that it is ready to start the data
transfer. This notification is typically done by means of an
interrupt. Upon receiving the interrupt event, the slave sus-
pends its execution and sets theSlaveReadyflag as shown
in Figure 5. The interrupt mechanism requires the simulator
support and also programming language construct to model
it. The master side process waits till the flag is set to initiate
the bus transfer. The slave component waits for the mas-
ter to initiate the bus transfer by checking the address bus.
This mechanism retains the two-way blocking property of
the original abstract communication. Once the data trans-
fer is complete, the application layer resets theSlaveReady
flag to prepare for the next slave request. In Figure 5 the
actions performed in each state are shown inbold as com-
pared to the state transition inputs. The slave component
waits for the master to initiate the bus transfer by checking
the address bus.

I1

I2

Interrupt == 0

Interrupt == 1

SlaveReady
= TRUE

A1

A2

SlaveReady ==
FALSE

SlaveReady ==
TRUE

SlaveReady =
FALSE

Bus transfer

Application
Layer

Interrupt
Handler

S1

S2

notify Interrupt

S3

BusAddress ! =
SLAVE_ADDRESS

BusAddress ==
SLAVE_ADDRESS

Bus Transfer

Application
Layer

Master Component Slave Component

Figure 5. Master and Slave communication mecha-
nisms for statically scheduled behaviors

4

4.2.2 Synchronization for Dynamically Scheduled
Components

With dynamically scheduled components, we are faced with
a scenario where we might have temporal overlap of com-
munication. For instance, in Figure 3, transactionsB andC
might overlap in time. In such a case, we have two issues to
look into.

Firstly, we have to determine the source of the data trans-
fer request. If the master gets an interrupt from the slave,
there is no way to tell if the slave is ready for transactionB
or C. In a normal addressing scheme, a query by the mas-
ter will only result in the slave component’s address. To
distinguish between the two transaction requests, each vari-
able should be assigned a different address. Moreover, the
behavior of the interrupt handler on the master side would
also change as shown in Figure 6. On the master side, we
will also need separateSlaveReadyflags for each transac-
tion address. The interrupt handler on receiving an interrupt
event reads the variable’s address from the bus. A special
address labeled asGLOBALADDRESSis used by the inter-
rupt handler to notify the slave application layer to write its
variable’s address on the data bus. Depending on the slave
address it sets the correspondingSlaveReadyflag.

Secondly, with temporal overlap of communication, we
need to control access to the IO port of the component.
Therefore each data transfer has to be treated like a critical
section. To ensure this we can use semaphores or hardware
flags in components. Note in Figure 6 that each access to
the IO port is protected. The code generated in application
layer for each component must ensure that the IO port is
reserved before it is used.

I1

I3

Interrupt == 0

Interrupt == 1

read addr

Interrupt Handler

Master Component

I4 I5

SlaveReady[0]
= TRUE

SlaveReady[1]
= TRUE

addr ==
SLAVE_ADDR[0]

addr ==
SLAVE_ADDR[1]

I2IO_Port == BUSY

IO_Port == FREE

Reserve (IO_Port),

A1

A3

SlaveReady[i] ==
FALSE

SlaveReady[i] ==
TRUE

SlaveReady[i] =
FALSE

Bus transfer,

Application Layer (for
variable Vi)

A2

IO_Port == FREE

IO_Port == BUSY

Reserve (IO_Port),

Release (IO_Port)

Application Layer (for
variable Vi)

S2

S3

notify Interrupt

BusAddress ! =
GLOBAL_ADDRESS

BusAddress ==
GLOBAL_ADDRESS

write ADDR[i]

Slave Component

S1 IO_Port == BUSY

IO_Port == FREE

Reserve IO_Port

S4

S5

BusAddress ! =
SLAVE_ADDRESS[i]

BusAddress ==
SLAVE_ADDRESS[i]

Bus Transfer,
Release IO_Port

Figure 6. Master and Slave communication mecha-
nisms for dynamically scheduled behaviors

5 Refinement of Complex Designs

For more complex designs the refinement engine needs
to do more work to ensure that synchronization is main-
tained. The basic tasks of data transfer remain essentially
the same. For designs with more than one slave, we need
to generate an interrupt controller. For multiple masters on
a bus, we have to generate bus arbitration mechanism to
make sure that the communication model is correct. In the
case of multiple bus designs, components might interface to
more than one bus, which requires generation of multiple
bus drivers.

System Bus

Master0 Slave0 SlaveNInterrupt
Controller

req0

gnt1

req1

gnt0

Interrupt

Master1 MasterM
Bus

Arbiter

Figure 7. A complex bus architecture

5.1 Multiple Slaves

This is a typical system design where several slave com-
ponents talk to a single master. In some ways, this case
is similar to multi-threaded dynamically scheduled compo-
nents that we discussed in the previous section. However,
there are several independent interrupt lines and the master,
which is typically a processor, has only one incoming inter-
rupt line in its bus functional model. Some processors may
have more than one interrupt, with an interrupt controller
built in. The way we handle this is by parameterizing the
processor components.

5.1.1 Interrupt Controller

If the number of slaves is more than the number of interrupt
ports on the processor’s interface, we generate an interrupt
controller. A generic interrupt controller for a master com-
ponent consists ofInterrupt Requestports,Interrupt Grant
ports labeledreqandgnt respectively, as shown in Figure 7.
Depending on the synthesis decision, we generate a prior-
ity based or round-robin interrupt controller.Figure 8 shows
how a round-robin interrupt controller works. Upon choos-
ing a slave request, the controller sends an interrupt event

5

to the master component and a grant signal to the chosen
slave.

Application Layer (for
variable Vi)

S2

S3

request Interrupt

BusAddress ! =
GLOBAL_ADDRESS

BusAddress ==
GLOBAL_ADDRESS

write ADDR[i]

Slave Component

S1 IO_Port == BUSY

IO_Port == FREE

Reserve IO_Port

S4

S5

BusAddress ! =
SLAVE_ADDRESS[i]

BusAddress ==
SLAVE_ADDRESS[i]

Bus Transfer,
Release IO_Port

S3

Gnt == FALSE

Gnt == TRUE

C1

C12

C11

C22

C21

C2
req1 == 0

req1 == 1

req2 == 0

req2 == 1

gnt1 = 1

interrupt = 1

gnt1 = 0

gnt2 = 1

interrupt = 1

gnt2 = 0

Interrupt Controller

Round-Robin scheme

Figure 8. Round-robin interrupt controller and Slave
communication mechanism

5.1.2 Application layers

For the master component, there is no change in the appli-
cation layer. Since each variable carries its own address,
the master does not make any distinction based on the slave
component. However, the operation of the slave component
has to be changed in the presence of other competing slaves.
As shown in Figure 8, the slave sends an interrupt request
to the interrupt controller and waits for the grant. If the con-
troller gives grant to another slave, the request signal must
be kept high to compete for the next grant cycle. On get-
ting a grant signal, the slave monitors the address bus for
the GLOBALADDRESSto put its variable address on the
data bus and continue as before.

5.2 Multiple Masters

For buses that support arbitration, the designer may des-
ignate more than one master as shown in Figure 7. The arbi-
tration mechanism could either be distributed or centralized.
For distributed arbitration, we rely on the protocol channel
to provide for an appropriate method to request bus arbi-
tration. Essentially, the master side protocol should have a
special method which is annotated to be identified as the bus
arbitration method. If such a channel method is not found,
we have to generate a centralized bus arbiter as per the re-
quirements. Based on synthesis decisions, we generate a
priority-based or round-robin arbitration unit. The arbiter
behavior is exactly like that of an interrupt controller, ex-
cept that it resolves conflicts between masters.

Figure 9. Top level of the input model

6 Experimental Results

Based on the described methodology and algorithms, we
developed a communication refinement tool in C++. The
example was chosen as the GSM Vocoder which is em-
ployed worldwide for cellular phone networks. The model
was based on the bit-exact reference implementation of the
ETSI standard in ANSI C. It encodes 5 ms of speech data
consisting of 163 frames. Different architectures using the
Motorola DSP56600 processor and custom hardware units
were generated and various bus architectures were tested.
Table 1 shows the data from tests conducted on 5 differ-
ent architectures of the GSM Vocoder. The total traffic per
speech sample refers to the amount of data exchanged be-
tween components during course of one simulation with a
sample speech of 163 frames. Note that this data increases
with greater partition, which increases communication time.
To compare against the manual effort of model refinement,
we used the Lines of Code (LOC) metric. Even with a
very optimistic estimate of 10 LOC per person hour, man-
ual communication refinement takes several hundred hours
for reasonably complex designs. Automatic refinement on
the other hand completes in the order of a few seconds. The
productivity gain is enormous as a result of automatic re-
finement.

Snapshots from the GUI are shown in Figure 9 and Fig-
ure 10. The design has three components DSP, HW1 and
HW2 communicating with abstract channels as seen in Fig-
ure 9. Two buses viz. the Motorola DSP56600 bus and a

6

Table 1. Experimental results for various vocoder architectures
Number of Number of Total Traffic/ Input Output Modified Automatic Manual

Components System Buses speech sample Size Size (LOC) refinement refinement
(bytes) (seconds) (estimated person-hr)

1 DSP 56600
+ 1(Motorola DSP bus) 60962 7992 8448 1299 0.291 130

1 standard HW
1 DSP 56600

+ 1(Motorola DSP bus) 66830 11292 12581 2392 0.480 240
2 standard HW
1 DSP 56600 1(Motorola DSP bus)

+ + 70092 21248 22418 13020 0.644 1300
2 standard HW 1(HandShake bus)
1 DSP 56600 1(Motorola DSP bus)

+ + 131378 25470 28950 19927 1.923 2000
4 standard HW 2(HandShake bus)
2 DSP 56600 2(Motorola DSP bus)

+ + 60692 31481 37629 21375 3.761 2140
7 standard HW 2(HandShake bus)

Figure 10. Top level of the generated communication
model

generic 32-bit double handshake bus are used. The gener-
ated communication model’s snapshot can be seen in Fig-
ure 10. Note that the top level consists of the components
connected with wires of the system buses.

7 Conclusion and Future Work

In this paper, we suggested a methodology and algo-
rithms to automatically generate communication models. A
tool was developed and experiments were performed to val-
idate this concept. Simulations were done on input models
and output communication models to ensure their seman-
tic equivalence. Our main contribution in this paper is the
automation of a time-consuming and error prone process to
achieve better designer productivity. It also enables design-
ers to evaluate several design points during exploration. Fu-
ture work in this direction would involve parameterizing of
protocols and developing libraries for interrupt controllers
and arbiters. We are also looking at automatic mapping of
abstract communication on buses to minimize communica-
tion delay.

References

[1] CoWare N2C. Available:
http://www.coware.com/cowareN2C.html.

[2] SystemC, OSCI[online]. Available:
http://www.systemc.org/.

[3] L. Gauthier, S. Yoo, and A. Jerraya. Automatic gener-
ation of application specific architectures for heteroge-

7

neous multiprocessor system-on-chip. InProceedings
of the Design Automation Conference, pages 518–523,
June 2001.

[4] F. Gharsalli, D. Lyonnard, S. Meftali, F. Rousseau, and
A. A. Jerraya. Unifying memory and processor wrapper
architecture in multiprocessor soc design. InProceed-
ings of the International Symposium on System Synthe-
sis, Oct 2002.

[5] G. Gogniat, M. Auguin, L. Bianco, and A. Pegato-
quet. Communication synthesis and hw/sw integration
for embedded system design. InProceedings of the
International Workshop on Hardware-Software Code-
sign, pages 35–98, March 1998.

[6] Passerone, J. A. Rowson, and A. Sangiovanni-
Vincentelli. Automatic synthesis of interfaces between
incompatible protocols. InProceedings of the Inter-
national Conference on Computer-Aided Design, pages
437–444, November 1998.

[7] J. A. Rowson and A. Sangiovanni-Vincentelli. Interface
based design. InProceedings of the Design Automation
Conference, pages 178–183, June 1997.

[8] F. Vahid and L. Tauro. An object-oriented communi-
cation library for hardware/software codesign. InPro-
ceedings of the International Workshop on Hardware-
Software Codesign, pages 81–86, March 1997.

8

