
Channel Mapping in System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 03-03
Jan 7, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

1

Channel Mapping in System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 03-03
Feb 3, 2003

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

{lcai, gajski}@ics.uci.edu

Abstract

This report proposes a design flow and algorithms to implement the channel mapping, which generates interconnection
topology of the system architecture, selects bus protocols, maps the communication channels among PEs to the generated
buses, and configures bus parameters. Unlike previous work, the proposed design flow and algorithms are tailored for
complex systems which contain hundreds of PEs with incompatible communication protocols. We have applied the proposed
approach on the vocoder project and have approved the approach’s correctness.

2

Contents

1. Introduction 1

2. Related Work 2

3. System Level Design Flow 3

4. Channel Mapping Design Flow 3

5. Bus Topology Generation 6

6. Bus Protocol Selection 8

7. Transducer Insertion 10

8. Channel Mapping 10

9. Bus Configuration 11
9.1 Bus Library . 11
9.2 Delay Estimation . 11

9.2.1 Bus Transfer Delay . 11
9.2.2 PE Data Preparation Delay . 12
9.2.3 Transducer Delay . 12
9.2.4 Total Communication Delay . 12

9.3 Design Constraint . 13
9.4 Channel Rate . 13
9.5 Bus Selection Inequations . 13

9.5.1 Bus Rate Inequations . 13
9.5.2 Design Constraint Inequations . 13

9.6 Bus Type Selection Algorithm . 13

10. Slowly Exploring Algorithm 15

11. Experimental Result 15
11.1 10-PE Example . 15
11.2 Vocoder Project . 17

12. Conclusion 19

i

List of Figures

1 Y chart . 1
2 An example of channel mapping’s influence on the design cost and design performance 2
3 System modelling and design tasks of system level design . 4
4 Channel mapping design flow . 5
5 The example of topology tree and interconnection topology . 6
6 The algorithm of bus topology generation. 7
8 The example of bus protocol selection . 8
7 The example of bus topology generation . 9
9 The algorithm of bus protocol selection. 10
10 The example of transducer insertion and bus merging. 11
11 The example of inter-influence relations of clusters in the topology tree. 14
12 The algorithm of bus type selection(bus configuration). 14
13 The slowly exploring algorithm. 15
14 Behavior diagram of 10-PE example. 15
15 The generated interconnection topology for 10-PE example. 17
16 Block diagram of encoding part of vocoder . 17
17 Interconnection topology of vocoder project . 19

ii

List of Tables

1 The example of channel mapping. 10
2 The communication protocols of the selected PEs in 10-PE example . 16
3 The computation time of processes in 10-PE example . 16
4 The bus types in the bus library for 10-PE example . 16
5 The sets of time constraints of processes in 10-PE example . 16
6 The bus type selection for 10-PE example . 18
7 The communication time of processes after the bus type selection for 10-PE example. 18
8 The execution time of processes after the bus type selection for 10-PE example. 18
9 The behavior-PE mapping relations in vocoder project. 18
10 The attributes of selected PEs in vocoder project. 18
11 The time constraints of processes in vocoder project. 18
12 The bus types in the bus library for vocoder project . 19
13 The execution time of processes in vocoder project. 19

iii

Channel Mapping in System Level Design

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems

Information and Computer Science
University of California, Irvine

Abstract

This report proposes a design flow and algorithms to im-
plement the channel mapping, which generates interconnec-
tion topology of the system architecture, selects bus pro-
tocols, maps the communication channels among PEs to
the generated buses, and configures bus parameters. Unlike
previous work, the proposed design flow and algorithms are
tailored for the complex systems which contain hundreds of
PEs with incompatible communication protocols. We have
applied the proposed approach on the vocoder project and
have approved the approach’s correctness.

1. Introduction

In order to handle the ever increasing complexity
and time-to-market pressures in the design of system-on-
chips(SOCs) or embedded systems, the design has been
raised to the system level to increase productivity. Figure 1
illustrates extended Gajski and Kuhn’s Y chart representing
the entire design flow, which is composed of four differ-
ent levels: system level, RTL level, logic level, and transis-
tor level. The thick arc represents the system level design.
It starts from the behavior model representing the design
functionality (also called system behavior or application),
which is denoted by point S. The behavior model contains
a set of functional blocks (also called behavior or process).
It also contains a set of variables that reserve the data trans-
ferred between intra-block operations or inter-block opera-
tions. The system level design then synthesizes the behavior
model to the architecture model representing the system ar-
chitecture denoted by point A. An architecture model con-
sists of a number of PEs (processing elements) and a num-
ber of global memory connected by buses. Different PEs
can belong to different PE types. Each PE in the architec-
ture model implements a number of functional blocks in the
behavior model.

We divide the synthesis process of system level design to
three tasks: behavior-PE mapping, variable-memory map-
ping, and channel mapping.Behavior-PE mappingselects

Behavioral
 System

RTL

Logic

Transistor

S

A

Architectural

Physical

Figure 1. Y chart

PEs to assemble the system architecture and maps the be-
haviors (functional blocks) in the behavior model to PEs.
Variable-memory mapping selects sizes of local memo-
ries of PEs and the global memories in the system archi-
tecture and maps the variables of behaviors to the memo-
ries.Channel mappinggenerates interconnection topology
of the system architecture, selects bus protocols, maps the
communication among PEs to the generated buses, and con-
figures bus parameters. In this report, we focus onchannel
mapping.

Channel mappingbecomes essential because it greatly
influences the design cost and performance. Figure 2 shows
two alternatives of channel mapping results. The system
architecture contains four PEs.PE1 andPE2 use protocol
A as their communication protocol, whilePE3andPE4use
protocol B. Protocols A and B are incompatible. Triangle
represents transducer which makes the incompatible buses
communicate. As shown in Figure 2,Solution 1contains
one transducer whilesolution 2contains two transducers.
As a result, their design cost are different. Furthermore,
the data transferred betweenPE1andPE2must go through

1

PE1
 PE2
 PE3
 PE4

Bus2

Bus1

Trans1

PE1
 PE2
 PE3
 PE4

Bus1

(a) Channel mapping solution 1

(b) Channel mapping solution 2

Trans2
Trans1

Figure 2. An example of channel mapping’s
influence on the design cost and design per-
formance

two transducers insolution 2. On the other hand, it goes
through no transducers insolution 1. Obviously, different
alternatives have different communication time required to
transfer data betweenPE1andPE2.

Channel mappingexplores four design spaces which in-
fluence the design cost and performance. First, it deter-
mines the interconnection topology which connects PEs by
a number of generated system buses. Second, it selects the
bus protocols for the system buses. Third, it maps com-
munication channels in system behavior to system buses in
the interconnection topology. Finally, it configures the bus
parameters, such as bus width and bus speed. The goal of
channel mappingis to produce a design which meets the
design time constraint and has the lowest design cost.

Thechannel mappingbecomes more and more complex
with the increase of the complexity of system behavior and
targeted system architecture. One of the main challenges
is that the future system architecture will contain hundreds
of PEs with incompatible communication protocols. This
feature enforces us to correctly group PEs based not only
on generated communication traffic, but also on the proto-
col compatibility. Furthermore, we must insert a transducer
between any two incompatible PEs/buses, which increases
the design cost and communication time.

To satisfy the requirement of the complex system design,
in this report, we propose a methodology ofchannel map-
ping. This report is organized as followed. Section 2 de-
scribes the related work and our contribution. Section 3 de-
scribes the entire system level design flow and input/output
of channel mapping. The design flow of channel mapping is
given in section 4. Section 5 introduces the algorithm of in-

terconnection topology generation. Section 6 introduces the
algorithm of bus protocol selection. Section 7 describes the
algorithm of transducer insertion. Section 8 describes the
process of channel mapping. The algorithm of bus configu-
ration is given in Section 9. Section 10 extends the approach
mentioned above to enlarge the explored design space. Ex-
perimental result is described in section 11. Finally, sec-
tion 12 gives the conclusion.

2. Related Work

Much research has been done for communication syn-
thesis. In [3], Daveau deals with both bus protocol selec-
tion and interface generation and is based on binding/allo-
cation of communication units. In [11], Yen crate a new
processing element and a bus when it is not possible to as-
sign a process to an already existing processing elements or
a communication on a bus without violating real time con-
straints. In [7], Knudsen presents a communication estima-
tion model and shows the importance of integrating com-
munication protocol selection with hardware/software par-
titioning by the use of this model. In [8], Lahiri automat-
ically maps the various communications between system
components onto a target communication architecture tem-
plate and configure the communication protocols of each
channel in the architecture in order to optimize system per-
formance by taking the bus conflict into account. In [10],
Ortega maps high-level specifications to arbitrary architec-
tures by analyzing the global view of communication.

Compared to above classical communication synthesis
approaches, our approach has the following three advan-
tages:

1. It outlines the entire flow of channel mapping, which
contains steps of topology generation, bus protocol se-
lection, channel mapping, and bus configuration. This
flow is suitable for the complex system architecture
which contains many PEs with incompatible commu-
nication protocols.

2. It takes the transducer into account during the design.
It not only describes the step of transducer insertion,
bus also also computes the transducer delay as part of
the communication delay.

3. It evaluates the validation of channel-mapping deci-
sion not only by checking the design constraint, bus
also by checking the bus load. As a result, it divides
the process of bus implementation selection into three
steps: bus protocol selection, bus configuration based
on bus load, and bus configuration based on commu-
nication delay. Each step reduces the bus exploration
space thus shorten the design time.

The limitations of our approach are as follows:

2

1. Our approach doesn’t take the bus confliction into ac-
count during communication delay estimation.

2. Our approach doesn’t take the synchronization into ac-
count during communication delay estimation.

3. System Level Design Flow

Before introducingchannel-mappingmethodology, in
this section, we first describe howchannel-mappingworks
under the entire system level design flow, and the input/out-
put ofchannel-mapping.

We model the design using system level design lan-
gauges(SLDL) such as SpecC [5] and SystemC [1]. The
SLDL allows modelling the design at different levels of ab-
straction, from the behavior model reflecting design func-
tionality, to the architecture model reflecting the detailed
system architecture. Modelling design using SLDL enables
designers to refine the design specification by gradually
adding implementation details.

The design starts from behavior model reflecting de-
sign’s functionality. For example, Figure 3(a) contains four
processes namedA,B,C, andD. ProcessB is executed af-
ter A, while processesC, D, and AB(hierarchical process
containingA andB) are executed concurrently. Processes
communicate through global variables. In Figure 3(a), pro-
cessA sends data toB by variablev1, processesA andC
exchange data through variablev2, and processesB, C, and
D exchange data through variablev3.

Task behavior-PE mappingthen selects PEs to assem-
ble the system architecture and map processes to the PEs.
The generated system model is illustrated by Figure 3(b).
It contains three computation components,PE1, PE2, and
PE3. ProcessesA, B, CandD are mapped to them respec-
tively. The generated models explicitly specifies the com-
putation components. The communication among compu-
tation components are still represented by global variable
accessing.

After behavior-PE mapping, taskvariable-memory map-
ping selects storage components of system architecture,
chooses variable-memory mapping schemes, and refines the
global variables to system channels. In Figure 3(c), each PE
has a local copy of the global variable that it accesses. The
communication is implemented by message-passing mech-
anism. In Figure 3(d), a global memory(GM) is added to
the system architecture, and the global variablev3 is stored
in the global memory. In both Figure 3(c) and (d), com-
putation/storage components communicates through chan-
nels, which replace the global variable accesses in the pre-
vious model in Figure 3(b). For example, channelc2 in Fig-
ure 3(c) and (d) replaces variablev2 access in Figure 3(b).
Channels are modelled at the abstract level, which are inde-
pendent of bus implementation. Each channel can be only

used by two PEs to perform point-to-point communication.
The task channel mapping is implemented after

variable-memory mapping. It reads the system model such
as Figure 3(c) and (d) as inputs, and determines the bus
topology, selects bus protocols, maps channels to buses, and
chooses bus configuration. The system models reflecting
the result ofchannel mappingare displayed in Figure 3(e)
and (f). The generated topology can be flat(e), or hierarchi-
cal(f). The transducers are inserted between incompatible
PEs, which are denoted by triangles. It should be noted that
channel mappingonly makes design decision without refin-
ing the system model. The system model should be refined
manually by designers or refined automatically by commu-
nication refinement tools.

4. Channel Mapping Design Flow

The design flow ofchannel mappingcontains five steps,
which is illustrated in Figure 4. Figure 4 usesModel 2 in
Figure 3 as the example.

The first step isbus topology generation. It generates
the interconnection topology and connects the PEs to buses.
Thebus topology generationdoesn’t determine the bus de-
tails. It is accomplished by analyzing the compatibility
of PE’s communication protocols and analyzing the traf-
fic among PEs. Models (a) and (b) in Figure 4 illustrate
the designs before and afterbus topology generation. Bus
topology generationis introduced in section 5.

The second step isbus protocol selection. It selects
the bus protocol for every bus in the interconnection topol-
ogy. It is accomplished by analyzing the traffic among PEs.
Model (c) in Figure 4 illustrates the design afterbus proto-
col selection. Bus protocol selectionis introduced in sec-
tion 6.

The third step istransducer insertion. It inserts a trans-
ducer between PE and its connecting bus or between buses
if they have incompatible protocols. Model (d) in Figure 4
illustrates the design aftertransducer insertion. Transducer
insertionis introduced in section 7.

The fourth step ischannel mapping. It statically maps
different channels to the buses . Some channels are mapped
to one bus, which others are mapped to multiple buses, ac-
cording to the interconnection topology. Model (e) in Fig-
ure 4 illustrates the design afterchannel mapping. Channel
mappingis introduced in section 8.

The final step isbus configuration, which determines the
bus speed. The bus speed is determined by the bus width
and the bus delay. We select bus speed to ensure that the de-
sign time constraint can be met and the maximum bus rates
are not exceed. Model (f) in Figure 4 illustrates the design
afterbus configuration. Bus configurationis introduced in
section 9.

3

A

D
C

B

PE2
PE1
 PE3

v1

v2

v3

D
C

v2

v3

A

B

v1

D
C

PE2

A

B

v1

PE1
 PE3

c2

c3

D
C

PE2

A

B

v1

PE1
 PE3

c2

GM
c31
 c33

c3
2

PE1
 PE2
 PE3

PE1
 PE2

PE3
 GM

(a) Initial design model
 (b) Model after behavior-PE mapping

(c) Model after variable mapping

(without global memory GM)

(d) Model after variable mapping

(with global memory GM)

(e) Model after channel mapping

(from (c))

(f) Model after channel mapping

(from (d))

ColdFire protocol
 ColdFire protocol

FIFO protocol

Channel
 Mapped buses

c2
 bus1

c3
 bus1

Channel
 Mapped buses

c2
 bus1

c31
 bus1, bus2

c32
 bus1, bus2

c33
 bus2

Bus1

Bus1

Bus2

Figure 3. System modelling and design tasks of system level design

4

PE1
 PE2
 PE3
 GM

PE1
 PE2

PE3
 GM

PE1
 PE2

PE3
 GM

ColdFire protocol

FIFO protocol

PE1
 PE2

PE3
 GM

ColdFire protocol

FIFO protocol
Bus1

Bus2

PE1
 PE2

PE3
 GM

ColdFire protocol

FIFO protocol

Bus1

Bus2

(c31, c32, c33)

(c1, c31, c32)

PE1
 PE2

PE3
 GM

ColdFire protocol

FIFO protocol
Bus1(12 MByte/s)

Bus2(25 MByte/s)

(c31, c32, c33)

(cc, c31, c32)

(a) Model a

(b) Model b

(c) Model c

(d) Model d

(e) Model e

(f) Model f

1. Bus Topology Generation

2. Bus Protocol Selection

3. Transducer Insertion

4. Channel Mapping

5. Bus Configuration

Figure 4. Channel mapping design flow

5

5. Bus Topology Generation

We generate the interconnection topology by taking two
issues into account: the protocol compatibility among PEs,
and the traffic among PEs.

There are two types of PEs: fixed-protocol PE and
unfixed-protocol PE. Fixed-protocol PEs, such as micro-
processors, DSPs, and global memories, have predefined
communication protocols. Unfixed-protocol PEs, such as
custom hardware, doesn’t define any communication pro-
tocols. After designers select the protocol for custom hard-
ware, they will generate corresponding custom hardware in-
terface during interface synthesis. Therefore, the protocol
of the custom hardware can be treated as compatible to the
protocols of any other PEs.

Two PEs having incompatible communication protocols
cannot directly communicate. A transducer is required to
insert between the incompatible PEs to convert one commu-
nication protocol to another. Transducer insertion increases
the design cost and communication delay. As a result, dur-
ing the design, we attempt to keep the smallest number of
inserted transducers.

Beside the protocol compatibility, we also take the traffic
among PEs into account. In order to localize the traffic, we
put PEs having heavy traffic physically close to each other.
We evaluate the physical closeness of PEs by computing the
smallest number of buses on communication paths between
them. Localizing the traffic not only reduces the commu-
nication delay between PEs having heavy traffic, but also
reduces the overall system bus load.

We use a topology tree to represent an interconnection
topology. The leaf nodes in the tree represent PEs. The
hierarchical nodes represents buses. Figure 5 displays two
examples of the hierarchical trees and their representing in-
terconnection topology.

The simplest topology is illustrated by Figure 5(b). In
this topology, all the PEs are connected to a single system
bus. To keep the smallest number of inserted transducers
and localize the traffic, we adopt hierarchically clustering
algorithm [4] to improve the simplest interconnection topol-
ogy. The hierarchical-clustering algorithm considers a set
of objects and groups them according to some measure of
closeness. The two closest objects are clustered first and
considered to be a single object for future clustering. The
clustering process continues by grouping two individual ob-
jects, or an object or cluster with another cluster on each
iteration. The algorithm stops when a single cluster is gen-
erated and a hierarchical cluster tree has been formed. In
our algorithm, the topology tree is such a hierarchical clus-
ter tree. Each PE is a leaf object/cluster. Each bus is a
hierarchical object/cluster.

We have two measures of closeness: protocol compati-
bility of clusters and traffic between clusters. To define the

PE1
 PE2
 PE3
 PE4

PE1
 PE2
 PE3
 PE4

Bus1

(a) Topology tree 1

(b) Interconnectin topology of tree 1

PE1
 PE2
 PE3
 PE4

PE1
 PE2
 PE3
 PE4

Bus1

Bus2
 Bus3

(c) Topology tree 2

(d) Interconnection topology of tree 2

Figure 5. The example of topology tree and
interconnection topology

protocol compatibility, we first define the type of clusters.
If all the PEs in a cluster are compatible fixed-protocol PEs,
we define the cluster as aSW cluster. If all the PEs in a
cluster are unfixed-protocol PEs, we define the cluster as a
HW cluster. If a cluster contains both fixed-protocol PEs
and unfixed-protocol PEs and all the fixed-protocol PEs are
compatible, then we define it as aSWHWcluster. Other-
wise, if a cluster contains incompatible fixed-protocol PEs,
then we define it as anincompatiblecluster. The protocol
of a SWor SWHWcluster is defined as the protocol of any
fixed-protocol PEs in the cluster.

We define three types of protocol compatibility:strictly
compatible, generally compatible, and incompatible. If
the protocols of twoSW clusters are compatible, they are
strictly compatible. If the protocols of aSW/SWHW/HW
cluster and aSWHW/HW cluster are compatible, they are
generally compatible. Otherwise, the clusters areincompat-
ible. We use protocol compatibility as the first priority key
to measure the closeness: the distance of anystrictly com-
patibleclusters are closer than the distance of anygenerally
compatiblecluster; the distance of anygenerally compati-
bleclusters are closer than the distance of anyincompatible
clusters.

The second measure of closeness is traffic between clus-
ters. If two pairs of clusters have the same type of protocol

6

compatibility, then the distance of the one with larger inter-
cluster traffic is closer than the distance of another pair.

At each iteration of grouping, we localize the traffic be-
tween a pair of clusters and generates an additional cluster
representing a bus. Therefore, the generated topology con-
tains a large number of buses. In order to reduce the number
of inserted clusters/buses, at each iteration of grouping, we
flatten the grouped clusters if the grouped cluster and the
new generated cluster either have compatible protocols, or
are all incompatibleclusters. We call this stepcluster flat-
tening. Cluster flattening reduces the number of buses and
the communication delay without introducing new trans-
ducers. In our algorithm, we perform cluster flattening after
each grouping step. On the other hand, cluster flattening
will increase the traffic on the generated bus of merging,
which may cause bus-overload, or may increase PE’s bus
competition. For these cases, we take the tradeoff with clus-
ter flattening or without it into consideration in Section 10.

After each iteration of grouping, a new cluster tree is
generated, which represents a new interconnection topol-
ogy. If we perform further channel mapping tasks explained
in Figure 4 for each intermediately generated interconnec-
tion topology, then the design time will be very long. There-
fore, we only perform further channel mapping tasks for the
finally generated interconnection topology of clustering al-
gorithm. We will take each intermediately generated inter-
connection topology into account in Section 10.

The pseudo algorithm of bus topology generation is
shown in Figure 6. At the beginning, functionInitTree
generates an initial cluster tree representing the simplest
bus topology. All the leaf nodes in the tree represent PEs,
which are directly connected to a root node representing a
bus. FunctionInitCloseMeasurethen computes the close-
ness among leaf nodes. Then at each iteration, the algorithm
first selects a pair of nodes to be clustered. FunctionStrict-
Pair finds the pair of strict-compatible nodes among which
have the heaviest traffic. If no pair of strict-compatible
nodes exists in the tree, then it returnsNULL. Similarly,
FunctionGeneralPairfinds the pair of general-compatible
nodes among which have the heaviest traffic andInCom-
patiablePair finds the pair of incompatible nodes among
which have the heaviest traffic. After node-pair selection,
algorithm then groups the two nodes in the pair repre-
sented bynode1andnode2by functionGroupTwoNodes.
Function ClusterFlattenimplementscluster-flatteningfor
the generated nodenewnode. The algorithm then restruc-
tures the cluster tree by removingnode1and node2and
addingnewnodein. Finally, ReComputeCloseMeasurere-
computes the closeness of nodes in the cluster tree. Algo-
rithm continues until root noderoot has only one child node
left.

An example of bus topology generation is illustrated in
Figure 7. The left hand graphs in the Figure 7 represents

Bus Topo Genera t ion (){
c l u s t e r t r e e = I n i t T r e e () ;
I n i t C l o s e M e a s u r e () ;
whi le (# (roo t−>c h i l d) > 1) do

p a i r = S t r i c t P a i r () ;
i f (p a i r = NULL) do

p a i r = G e n e r a l P a i r () ;
e n d i f
i f (p a i r = NULL) do

p a i r = I n C o m p a t i a b l e P a i r () ;
e n d i f
i f (p a i r ! = NULL) do

node1 = p a i r−>mNode1 ;
node2 = p a i r−>mNode2 ;
new node = GroupTwoNodes (

node1 , node2) ;
C l u s t e r F l a t t e n (newnode ,

node1 , node2) ;
c l u s t e r t r e e−>Remove (node1) ;
c l u s t e r t r e e−>Remove (node2) ;
c l u s t e r t r e e−>Add (new node) ;
ReComputeCloseMeasure () ;

e n d i f
endwhi le

}

Figure 6. The algorithm of bus topology gen-
eration.

7

the PE/cluster communication graph: the node denotes the
PE/cluster and the edge denotes the traffic among PEs/clus-
ters. The number attached to the edge denotes the amount
of traffic. The right hand graphs in the Figure 7 represents
the cluster tree.

6. Bus Protocol Selection

After bus topology generation, we select bus protocols
for buses in the interconnection topology. During bus pro-
tocol selection, we use different approaches to select proto-
cols for buses represented by different types of clusters. The
algorithm of protocol selection is illustrated in Figure 9.

In SW/SWHWclusters, all the fixed-protocol PEs have
the same bus protocol, which is defined as the protocol of
the cluster. Therefore, FunctionPEProtocolselects the pro-
tocol of a SW/SWHW cluster as the protocol of the bus rep-
resented by the cluster.

On the other hand, in anyincompatibleclusters, there are
more than one protocols that are used by PEs in the clusters.
We first compute the traffic ofincompatibleclusters’ child
clusters. We classify the cluster traffic into two types: inter-
cluster traffic and intra-cluster traffic. Inter-cluster traffic of
clusterω equals the sum of traffic between any PE in clus-
ter ω and any PE beyond clusterω. Intra-cluster traffic of
clusterω equals the sum of traffic between any of twoω’s
child clusters. The example in Figure 8 illustrates cluster
traffic computation, which follows the design steps of the
example in Figure 7. The second and third columns of ta-
ble in Figure 8(d) represents the computed inter-traffic and
intra-traffic.

During protocol selection forincompatiblecluster , we
select the bus protocols of a child cluster before the bus
protocol of its parent cluster in the topology tree. For ex-
ample, in Figure 8, we select bus protocols forBus2and
Bus3before the protocol selection ofBus1. When we se-
lect protocol forincompatibleclusterω, we first compute
the ω’s traffic of each protocolρ, which is representedby
traffic[p] in the algorithm. We define theω’s traffic of pro-
tocol ρ as the sum of the inter-traffic ofω’s child clusters
whose selected protocols areρ. We choose the protocol
which has the largestω’s traffic asω’s protocol. For exam-
ple, in Figure 8, because the traffic of protocolA for Bus1is
the largest(=21), which is larger than the traffic of protocol
B(=19) and the traffic of protocolC(=20), we select proto-
col A as the protocol ofBus1. Selecting protocols in this
way avoid inserts transducer between the bus represented
by ω and the buses/PEs represented byω’s child clusters
which have the largest amount of traffic overω.

After protocol selection for buses represented byincom-
patible clusters andSW/SWHWclusters, we select proto-
cols for buses represented byHW clusters. DuringHW bus
protocol selection, we select the protocol of the parent clus-

PE1

PE2

PE3

PE4

PE5

10

3

9

11

PE1
 PE2

PE3

PE4
 PE5

14

Bus2

Bus1

Bus3

Bus1

Bus2

Bus3

Cluster

Inter-

traffic

Intra-

traffic

Total

traffic

30
0
 30

21
 3
 24

20
 14
 34

PE4
 29
 0
 29

Selected

protocol

PE1

PE2

PE3

PE4

PE5

PE
 Protocol

A

A

B

Any

C

A

A

C

C

(a) PE traffic and connection

(b)Bus topology

(c)PE protocols

(d)Bus traffic and selected protocols

PE3
 19
 0
 19
 -

Figure 8. The example of bus protocol selec-
tion

8

PE1

PE2

PE3

PE4

PE5

10

3

9

14

6

5

PE1

PE2

PE3

PE4

PE5

10

3

9

14

6

5

PE1

PE2

PE3

PE4

PE5

10

3

9

11

PE3

10
 9

11

PE1
 PE2
 PE3
 PE4
 PE5

PE1
 PE2

PE3
 PE4
 PE5

PE1
 PE2

PE3

PE4
 PE5

PE1
 PE2

PE3

PE4
 PE5

PE1
 PE2

PE3

PE4
 PE5

Final Topology

PE1

PE2

PE3

PE4

PE5

PE
 Protocol

A

A

B

Any

C

Strict-compatible pair clustering

General compatible pair clustering

Un-compatible pair clustering

Un-compatible pair

clustering;

Cluster flattening

14

PE1

PE2

3

PE4

PE5

14

PE3

10
 9

11

PE1

PE2

3

PE4

PE5

14

Figure 7. The example of bus topology generation

9

Channel between PEs Mapped buses

PE1-PE2 Bus1
PE1-PE3 Bus1, Bus4
PE1-PE5 Bus1, Bus3
PE2-PE4 Bus1, Bus3
PE3-PE4 Bus4, Bus1, Bus3
PE4-PE5 Bus3

Table 1. The example of channel mapping.

ter before the protocol of all its child clusters. If the root
cluster is aHW cluster, then we select the fastest protocol
for it. Otherwise, the protocol ofHW cluster equals the
protocol of its parent cluster, which is shown in function
BusProtocolSelectionAll.

The example of protocol selection is displayed in Fig-
ure 8. Figure 8(c) displays the protocols of PEs.Anyrefers
that the protocol of PE is un-fixed. Figure 8 (d) displays the
selected bus protocol forBus1, Bus2, Bus3andPE4.

7. Transducer Insertion

After bus protocol selection, the protocols of buses are
defined. The protocols of a child cluster and its parent clus-
ter are either incompatible or compatible.

If the protocols of child and parent clusters are incompat-
ible, both the buses represented by the clusters cannot trans-
fer data directly. In this case, we must insert a transducer
between them. In our approach, we attach a transducer to
the child cluster to represent the inserted transducer. After
transducer insertion, the topology tree and represented sys-
tem architecture of the example in Figure 8 are displayed in
Figure 10 (a) and (b). The tab(B-A) besidesPE3 in Fig-
ure 10(a) represents the transducer connecting buses with
protocolsA andB.

If the protocols of child and parent clusters are compati-
ble, in order to reduce the amount of buses in the intercon-
nection topology, we merge the two clusters. We call this
processbus merging. Bus mergingis similar to the stepclus-
ter flatteningin bus topology generation. After bus merg-
ing, the topology tree and represented system architecture
of the example are displayed in Figure 10(c) and (d).

8. Channel Mapping

After transducer insertion, we map the channels among
the PEs to the system buses.

In general, if there are more than one communication
paths between PEs, then we should map channels to the
buses with the shortest delay or with the lowest bus load.
In our approach, the communication path between any two
PEs is unique. As a result, we directly map the channels

B u s P r o t o c o l S e l e c t i o n A l l (){
i f (r o o t c l u s t e r . t ype = = HWCluster) do

r o o t c l u s t e r . p r o t o c o l =
F a s t e s t P r o t o c o l () ;

en d i f
B u s P r o t o c o l S e l e c t i o n (r o o tc l u s t e r) ;

} ;

B u s P r o t o c o l S e l e c t i o n (c l u s t e r A){
f o r (each c = c h i l d o f A)do

B u s P r o t o c o l S e l e c t i o n (c) ;
endfor

sw i tch (A. t ype) do
case SW Cluster :
case SWHW Cluster :

A. p r o t o c o l = PEPro toco l (A) ;
break ;

case UNMATCH Cluster :
f o r (each p o s s i b l e p r o t o c o l p)do

t r a f f i c [p] = 0 ;
endfor
fo r (each c = c h i l d o f A) do

i f (c . t ype = = SW/SWHW/UNCOMPATIBLE) do
t r a f f i c [c . p r o t o c o l]+=

c . i n t e r t r a f f i c ;
en d i f

endfor

t e m p t r a f f i c = 0 ;
f o r (each p o s s i b l e p r o t o c o l p)do

i f (t r a f f i c [p] > t e m p t r a f f i c) do
s e l e c t e d p r o t o c o l = p ;
t e m p t r a f f i c = t r a f f i c [p] ;

en d i f
endfor

A. p r o t o c o l = s e l e c t e dp r o t o c o l ;
break ;

d e f a u l t :
break ;

endswi tch ;

f o r (each c = c h i l d o f A)do
i f (c . t ype = = HW Cluster) do

c . p r o t o c o l = A. p r o t o c o l ;
e n d i f

endfor
}

Figure 9. The algorithm of bus protocol selec-
tion.

10

PE

1

PE

2

PE

3

A
Bus2

Bus1

PE1
 PE2

PE3(B-A)

PE4
 PE5

Final Topology

Bus2

Bus1

Bus3(C-A)

PE

4

PE

5

C
Bus3

B

A

PE

1

PE

2

PE

3

Bus1

PE1
 PE2
 PE3(B-A)

PE4
 PE5

Final Topology
Bus1

Bus3(C-A)

PE

4

PE

5

C
Bus3

B

A

(a) Topology tree after transducer insertion

(b) System architecture after transducer insertion

(c) Topology tree after bus merging

(d) System architecture after bus merging

Bus4

Bus4

Figure 10. The example of transducer inser-
tion and bus merging.

between PEs to the buses on the unique communication
path. The table of channel mapping for the example in Fig-
ure 10(d) is displayed in Table 1.

9. Bus Configuration

Although the protocols of buses have been selected, we
needs to configure the bus parameters which determine the
bus speed. The bus configuration must ensure that design
constraints can be met.

9.1 Bus Library

All the bus types are stored in a bus library. For any busb
with a certain protocol, two parameters can be configured:
Width(b) and Delay(b). Width(b) refers to the number of
data lines in busb. Delay(b)refers to the total delay associ-
ated with the protocol used by a process transfer data over
the bus. In our approach, we first pre-configure buses by as-
signing possible values to the bus parameters. We call each
bus configuration as a bus type. In this way, we convert the
problem of bus configuration to the problem of the bus type
selection for the buses in the interconnection topology of
design.

For each bus typeb, two attributes are pre-computed ac-
cording to the bus parameters. The first attribute isBus-
Rate(b), which is defined as the maximum rate at which data
can be transferred across the bus. The bus rate is computed
by the formulation

BusRate(b) = Width(b)/Delay(b)
Another attribute is the bus delay associated with the pro-

tocol used by a process transfer data of typet over the bus,
which is denoted byDelay(b, t). Delay(b, t) is computed
by the formulation

Delay(b, t) = dBits(t)÷Width(b)e ×Delay(b)

We computeDelay(b, t) for all the possible data types in
the behavior model, such as integer, and float types. All of
theDelay(b, t) are stored in a weight table associated with
bus typeb in the bus library.

In the bus library, there are multiple bus types of the
same bus protocol. The bus types with the same bus pro-
tocol are stored in the same link, in the decreasing order
of the bus cost. In general, bus cost is determined by bus
width, bus delay, and bus protocol.

9.2 Delay Estimation

9.2.1 Bus Transfer Delay

There are two types of protocols: blocked protocol and un-
blocked protocol. Sanjiv [9] introduces the communication

11

delay estimation for unblocked protocol. According to this
method, when channelc is mapped to busb, we compute
the communication time of channelc over busb as

BusT ime(c, b) = Access(c)× dBits(c)
÷Width(b)e ×Delay(b)

whereAccess(c)represents the number of times of data
transferred over channelc during its lifetime.Bits(c) is the
type of data being accessed over channel c.

For the bus with the block protocol, the synchronization
time should be taken into account. Therefore, the commu-
nication delay of blocked protocol equals

BusT ime(c, b) = SynT ime(c, b) + Access(c)
× dBits(c)÷Width(b)e ×Delay(b)

whereSynTime(c,b)is the channelc’s synchronization
time over busb. In order to simplify the problem, we as-
sume that theSynTime(c,b)is zero.

In our approach, we use pre-computedDelay(b, t) to re-
place theWidth(b) andDelay(b) in the formulation. The
converted formulation is

BusT ime(c, b) = (Access(c)×Delay(b,DataType(c)))

whereDataType(c)is the type of data being accessed
over channel c. In our project,Access(c)is computed by
the profiler [2].

Furthermore, we compute the total bus delay of PEP
over busb, which is formulated as,

CommTime(P, b) =
∑

c∈Channel(P,b)

BusT ime(c, b)

whereChannel(P,b)is the set ofP’s channels that are
mapped to busb.

9.2.2 PE Data Preparation Delay

When a PE sends/receives data over buses, it consumes time
for the data preparation . The data preparation delay may
be caused by data packaging, or caused by internal buffer-
/memory accessing. We estimate the PE preparation delay
for channel c by

PETime(c, P) = Access(c)×Delay(P, DataType(c))

whereDelay(P,t) is the preparation delay of PEP per
preparation of the data with typet. Delay(P,t) is pre-
computed and stored in the PE library.

9.2.3 Transducer Delay

During communication, if data transfers through a trans-
ducer between two buses, an additional delay of transducer
is added to the total communication time. We estimate this
delay by

TransT ime(c, t) = Max(BusT ime(c, b1),
BusT ime(c, b2))× 3

where c represents the channel that goes through trans-
ducert. B1 andb2 are the two buses to which transducert
connect. We derive this formulation based on the our expe-
rience of transducer synthesis.

9.2.4 Total Communication Delay

For each channel c, the total communication time is
formulated as,

CommTime(c) =
∑

P∈PE(c)

PETime(c, P)

+
∑

b∈Bus(c)

BusT ime(c, b)

+
∑

t∈Transduers(c)

TransT ime(c, t)

wherePE(c)is the set of PEs to which channelc connect.
Bus(c)is the set of buses to which channelc are mapped.
Transducer(c)is the set of transducers over which channel
c transfer through.

In each PE, a number of processes are executed. The
total communication time of any processp is formulated as
:

CommTime(p) =
∑

c∈Channel(p)

CommTime(c)

whereChannel(p)is the set of channels through which
processp communicates.

Finally, the total communication time of any PEP is for-
mulated as:

CommTime(P) =
∑

c∈Channel(P)

CommTime(c)

where Channel(P) is the set of P’s channels through
which PEP communicates.

12

9.3 Design Constraint

During the design, we take two types of design con-
straints into account: the constraint of entire design denoted
by Cstr(Design), and the constraint for a certain processp
denoted byCstr(p).

Because that each process has been mapped to a cer-
tain PE, the execution time of processp denoted byComp-
Time(p)has been computed by the profiler [2]. Therefore,
the communication constraint of processp can be computed
by the formulation

CommCstr(p) = Cstr(p)− CompTime(p)

We also compute the computation time of PE. Since all
the processes are executed sequentially on a PE, we formu-
late the computation time of PE as

CompTime(P) =
∑

p∈Process(P)

CompTime(p)

whereProcess(P)is the set of processes executed on PE
P.

Therefore, the communication constraint of PEP is com-
puted by

CommCstr(P) = Cstr(Design)− CompTime(P)

9.4 Channel Rate

Furthermore, we compute average channel rate and peak
channel rate for each busb.

We compute the average channel rate of any busb, which
is formulated as:

AvgChanRate(b) =
∑

c∈Channel(b)

(Access(c)×Bits(c))

/Cstr(Design)

whereChannel(b)is the set of channels that are mapped
to b.

We also compute the peak channel rate on a busb, which
is formulated as:

PeakChanRate(b) = max
p∈Process(Design)

((
∑

(c∈Channel(p))∩(c∈Channel(b))

(Access(c)×Bits(c)))

/(CommCstr(p)))

whereProcess(Design)is the set of processes in design,
Channel(p)is the set of channels through which processp
communicates, andChannel(b)is the set of channels that
are mapped tob.

9.5 Bus Selection Inequations

9.5.1 Bus Rate Inequations

We divide the bus type selection process to two steps. In this
first step, we select bus types according to the maximum bus
rate and the channel rate. According to [9]

BusRate(b) ≥ AvgChanRate(b)

BusRate(b) ≥ PeakChanRate(b)

As shown in formulations described before, in this step,
the process of bus type selection for different buses in the
interconnection topology are independent to each other.

9.5.2 Design Constraint Inequations

In the second step, we select bus types which enable the
design to meet the design/process constraint by making the
following inequations true,

CommCstr(P) ≥ CommTime(P)

CommCstr(p) ≥ CommTime(p)

for any processp and PEP in the design. Because each
channel may be mapped to multiple buses, the communi-
cation time of each channel is influenced by the bus type
selection of all the buses to which it is mapped. As a result,
in this step, the process of bus type selection for different
buses in the interconnection topology are inter-dependent.

9.6 Bus Type Selection Algorithm

In this section, we introduce the bus type selection algo-
rithm.

First, for each busb in the interconnection topology, we
select all of the bus type candidates which both have the
same communication protocol withb and make the two in-
equations described in Figure 9.5.1 true.

Second, we select bus types according to the inequations
in section 9.5.2. Because the bus type selections of different
buses in this step are inter-dependent, we need to determine
the bus type selection sequence. We attempt to first select
bus type for the bus which is less inter-influenced with other
buses. Figure 11 represents part of a simple topology tree.
C1.. Cn contains a set of different PEs respectively. For
any clusterCi, it inter-influences withCj if and only if there
exists a PE inCi that communicates with a PE inCj. On

13

C1
 C2
 ...
 Cn

A

...

...
 ...
 ...
 ...

Figure 11. The example of inter-influence re-
lations of clusters in the topology tree.

the other hand, cluster A is inter-influenced withCi if there
exists PE inCi communicate with a PE in any other child
of A. Furthermore, if a PE inCi that communicates with PE
that is beyond the subtree led byA, the communication path
must cross the clusterA. As a result, we conclude that a
child cluster is less inter-influenced with other clusters than
its parent cluster. Therefore,we select bus type for a child
cluster before its parent cluster in the topology tree.

Furthermore, we found that the main system bus, which
is represented by the top-level cluster, such asBus1in Fig-
ure 10(a), greatly effects the total communication time.
Therefore, at each outer iteration, we assign one bus type
candidate to the main system bus before the bus selection
for any other buses in the interconnection topology.

Figure 12 shows the algorithm of bus type selection.
First, functionBusRateSelectionselects the bus type candi-
dates for each buses according to bus rate inequations de-
scribed in section 9.5.1 and bus protocol’s compatibility.
The selected bus type candidates are stored inLink in the
decreasing order of the cost. At each outer iteration, one bus
type candidate is assigned to themain busfrom the head of
Link of main bus. FunctionInitBusSelectionthen selects
the fastest bus type candidates for all the other buses. At
each middle iteration, algorithm reselects the bus type can-
didate for one bus. FunctionNextSelectedBusselects bus
bus in topofor bus type reselection by traversing the topol-
ogy tree using post-order scan algorithm, which selects a
child cluster before its parent cluster. At each iteration of
inner loop, algorithm selects a bus typetypecur for bus
bus in topo from the head ofLink of bus in topo. Function
MeetConstraintthen tests whether inequations described in
section 9.5.2 are true. If so,typecur is selected as the type
of bus in topo. The process continues until the types of
all the buses are reselected. Finally, functionSelectLow-
estCostSolutionselects the lowest cost solution among the
different solutions in whichmain buschooses different bus
type candidates.

BusTypeSe lec t i on{
B u s R a t e S e l e c t i o n () ;
m a i n b u s c u r = F i r s t (L ink (

main bus . p r o t o c o l)) ;
whi le (M e e t C o n s t r a i n t ()) do

I n i t B u s S e l e c t i o n () ;
whi le NotF in i shA l lTheBuses ()do

b u s i n t o p o = Nex tSe lec tedBus () ;
t y p e c u r = F i r s t (L ink (

b u s i n t o p o . p r o t o c o l)) ;
t y p e s e l e c t e d = NULL;
whi le (t y p e c u r) do

i f M e e t C o n s t r a i n t () do
t y p e s e l e c t e d = t y p ec u r ;

en d i f
t y p e c u r = Next (Link (

b u s i n t o p o . p r o t o c o l)) ;
endwhi le

i f (t y p e s e l e c t e d ! = NULL) do
b u s i n t o p o . t ype = t y p e s e l e c t e d ;

enddo
endwhi le
S e l e c t L o w e s t C o s t S o l u t i o n () ;
m a i n b u s c u r = Next (Link (

main bus . p r o t o c o l)) ;
endwhi le

}

Figure 12. The algorithm of bus type selec-
tion(bus configuration).

14

SlowExp lo r ing{
Se lec tedTopo = NULL;
CurCost = MAX;
Topo = I n i t C l u s t e r T r e e () ;
whi le (# (Topo . r o o t . c h i l d) > 1) do

B u s P r o t o c o l S e l e c t i o n (Topo) ;
T r a n s d u c e r I n s e r t i o n (Topo) ;
ChannelMapping (Topo) ;
BusTypeSe lec t i on (Topo) ;

i f ((((M e e t C o n s t r a i n t (Topo) &&
((Topo . c o s t < CurCost) | |
(Se lec tedTopo = NULL)) do

Se lec tedTopo = Topo ;
CurCost = Topo . c o s t ;

en d i f

Topo = C l u s t e r G r o u p i n g (Topo) ;
endwhi le

re turn Se lec tedTopo ;
}

Figure 13. The slowly exploring algorithm.

10. Slowly Exploring Algorithm

As described in section 5, our bus topology generation
algorithm produces only one single final interconnection
topology. If no bus type can be selected for a certain bus in
the topology to meet the design constraints, then the entire
design process fails. We call this algorithmfast exploring
algorithm.

An alternative solution is to produce a new interconnec-
tion topology after each iteration of cluster grouping or clus-
ter flattening during bus topology generation. We call this
algorithmslowly exploring algorithm, which is explained in
Figure 13. At each iteration,ClusterGroupingclusters two
nodes as described in the loop body of the algorithm in Fig-
ure 6. We then perform tasksbus protocol selectionby func-
tion BusProtocolSelection, transducer insertionby function
TransducerInsertion, channel mappingby functionChan-
nelMapping, andbus type selectionby functionBusTypeS-
election, for each new generated topology. The algorithm
continues until the root node of the tree has only one child
node. Until then, we have produced one channel-mapping
solution for each generated topology. Finally, we select the
topology with the lowest cost as our final channel-mapping
solution by functionClusterGrouping.

Because of the complexity ofslowly exploring algo-
rithm, we only apply it after the fail offast exploring al-
gorithm.

B1(CF1)
 B2(DSP11)

B3(HW1)

B4(HW2)

B5(DSP21)
 B6(CF2)
 B7(HW3)
B8(DSP12)

B9(DSP13)
B10(DSP22)

27

(float)

75

(float)

80

(int)

55

(float)

8

(bit)

110

(bit)

36

(int)

142

(bit)

Figure 14. Behavior diagram of 10-PE exam-
ple.

11. Experimental Result

We produce a tool calledchannel-mapperto implement
our channel mapping algorithm by writing around 3000
lines of C++ code. In this section, we describe our design
experience for two examples, 10-PE example and vocoder
example.

11.1 10-PE Example

We first apply our algorithm on a design containing 10
processes displayed in Figure 14. DuringBehavior-PE
mapping, we map different processes to different PEs. For
example, processB1 is mapped to PECF1, which is illus-
trated byB1(CF1) in the Figure. The edge in the figure
represents the traffic between processes. For example, the
edge betweenB1(CF1)andB3(HW1)represents the traffic
between processB1 andB3. The tab27(float)of the edge
denotes the data offloat type is transferred 27 times.

Different PEs have different types and different compat-
ible communication protocols, which are displayed in Ta-
ble 2. Because of behavior-PE mapping is determined, we
also compute the computation time of each process on the
mapped PEs , which is shown in Table 3.

In the bus library, there are 9 predefined buse types as
shown in Table 4. ColumnProtocol displays the commu-
nication protocols of bus types. ColumnFreq(M) displays
the frequency of the bus masters. ColumnWidth displays
the bus widths. ColumnDelay(clock)displays the required
clock cycles per bus transfer. ColumnDelay(clock/word)
displays the required clock cycles per word(32bit) transfer.
ColumnSpeeddisplays the required data transfer time per
word(32bit). Finally, ColumnCostdisplays the cost of the
buses. Above attributes of bus types are stored in the bus
library. We also computedDelay(b, t) described in sec-

15

PE name CF1 CF2 HW1 HW2 HW3 DSP11 DSP12 DSP13 DSP21 DSP22

Type ColdFire ColdFire Custom Custom Custom IP IP IP IP IP
hardware hardware hardware

Protocol ColdFire ColdFire Any Any Any Hand- Hand- Hand- FIFO FIFO
Protocol Protocol shake shake shake

Table 2. The communication protocols of the selected PEs in 10-PE example

Process name B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Mapped PE CF1 DSP11 HS1 HS2 DSP21 CF2 HW3 DSP12 DSP13 DSP22
Comp. Time(ms) 1.19 3.46 0.75 0.75 10.36 21.35 3.34 0.8 13.37 13.52

Table 3. The computation time of processes in 10-PE example

Bus Name Protocol Freq(M) Width(bit) Delay(clock) Delay(clock/word) Speed(MWord/S) Cost(unit)

CF1 Coldfire 256 32 2 2 128 128
BusHS1 Handshake 128 32 2 2 64 64
BusHS2 Handshake 128 16 2 4 32 32
BusHS3 Handshake 128 32 4 4 32 32
BusHS4 Handshake 128 16 4 8 16 16
BusFF1 FIFO 128 32 2 2 64 64
BusFF2 FIFO 128 16 2 4 32 32
BusFF3 FIFO 128 32 4 4 32 32
BusFF4 FIFO 128 16 4 8 16 16

Table 4. The bus types in the bus library for 10-PE example

Constraint(ms) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Design

Set1 2 10 2 3 15 33 8 4 18 25 120
Set2 2 10 2 3 20 35 8 4 18 25 127
Set3 2 10 2 3 20 40 8 4 18 30 137
Set4 2 15 2 3 20 40 10 4 20 30 146
Set5 2 20 2 3 20 45 10 4 25 30 161
Set6 2 25 2 3 20 55 10 4 30 35 186

Table 5. The sets of time constraints of processes in 10-PE example

16

DSP12
 DSP13
DSP11
 HW1

HW2

HW3

DSP21
 DSP22
 CF1
 CF2

Bus2

Bus1

Bus3

Trans1

Trans2

Figure 15. The generated interconnection
topology for 10-PE example.

tion 9.1 for all the data typet.
There are six sets of design’s time constraints, which are

shown in Table 5. The sets are sorted in the increasing order
of time constraint. For each set of time constraint, we gen-
erate an interconnection topology. We use the fast explor-
ing algorithm. Therefore, the generated bus topologies for
all the sets of constraints are the same, which is displayed
in Figure 15. The interconnection topology contains three
buses:bus1, bus2, andbus3. Bus1usesColdfirecommuni-
cation protocol.Bus2usesFIFO communication protocol.
Bus3useHandshakecommunication protocol. The inter-
connection topology also contains two transducers:trans1
and trans2. We assume that the cost of each transducer is
200 units.

Finally, we select bus types from bus library for each bus
in the interconnection topology. Table 6 displays the se-
lected bus types and the added design costs for different sets
of the time constraints. The added design cost contains not
only the bus cost bus also the transducer cost. The percent-
age in the table denotes the bus utility of busb, which equals
theAvgChanRate(b)divided byBusRate(b). We found that
the added design cost for the set with longer time constraint
is smaller than the design cost for the set with shorter time
constraint. The total communication time of each process
for different sets of design constraints is displayed in Ta-
ble 7. The total execution time containing both computation
time and communication time of each process is displayed
in Table 8.

Besides implementing channel mapping automatically
by usingchannel-mapper, we also implement the channel
mapping manually with set1 as the time constraint. The re-
sults of automatic and manual implementation are the same.
The design time of manual implementation is 2.5 hours. On
the other hand, the design time of automatic implementa-
tion usingchannel-mapperis around 3 minutes, which is
mainly spent on inputting the specification and linking the
bus library. The simulation time ofchannel-mapperonly
takes less than 1 second. The speed up from 2.5 hours to 3
minutes allows designers to explore a much larger amount

LP_analysis
 Open_loop

Closed_loop

Codebook
 Update

2 subframes

2x per frame

Coder
 Subframe

Figure 16. Block diagram of encoding part of
vocoder

of behavior-PE mappingandvariable-memory mappingal-
ternatives.

11.2 Vocoder Project

The Vocoder [6] project implements the voice encoding
part of the GSM standard for mobile telephony encoding
standard. The block diagram of encoding part of vocoder is
displayed in Figure 16. The project contains 13,000 lines of
code. Vocoder encodes voice frame by frame. One frame
contains two sub-frames. As shown in [6], the execution
time of encoding one sub-frame must be less than 5ms. Pro-
cessesClosedloop, Codebook, and Update are executed
once per sub-frame encoding. ProcessOpen-loopis exe-
cuted once when two sub-frames are encoded.

During behavior-PE mapping, we map processes
LP analysis, Openloop, ClosedLoop, Codebook, andUp-
dateto different PEs as shown in Table 9. The attributes of
the PEs are shown in Table 10. Since processes are executed
on different PEs, we execute processesClosedloop, Code-
book, andUpdatein a pipeline fashion. We assign the de-
sign constraint to processes as shown in Table 11. The time
constraint ofClosedloop, Codebook, or Updateis 2.5ms,
which ensures that total execution time forClosedloop,
Codebook, andUpdateper sub-frame is less than 3ms when
we execute them in a pipeline fashion. We set the time con-
straint ofOpenloop as 4ms, which ensuresOpenloop can
complete each sub-frame in 2ms. We also derive time con-
straint for LP analysisas 7ms according to [6]. The to-
tal encoding constraint per frame is 20ms(Besides process
Coder, processesPre processandPostprocessare also part
of encoding, which are not displayed in Figure 16).

Figure 17 displays the generated interconnection topol-
ogy. PEsDSP1, DSP2, ASIC1, andASIC2are directly con-
nected to one bus(Bus2) because of their heavy inter-PE
traffic. A transducerTrans1is inserted betweenBus1and
Bus2. Bus2has theHandshakeprotocol, whileBus1has
theColdFireprotocol.

The bus types in the bus library are shown in Table 12.
Our algorithm selectsCF1 for Bus2andBusHS4for Bus1.
The bus utility forBus1/Bus2is 9.44%/0.13% respectively.

17

Set Bus1 Bus2 Bus3 Added design cost(unit)

Set1 CF1(1.82%) BusHS1(1.18%) BusFF1(0.55%) 652
Set2 CF1(1.72%) BusHS1(1.12%) BusFF2(1.04%) 620
Set3 CF1(1.59%) BusHS1(1.03%) BusFF4(1.93%) 604
Set4 CF1(1.49%) BusHS3(1.94%) BusFF2(0.91%) 592
Set5 CF1(1.40%) BusHS3(1.82%) BusFF4(1.70%) 576
Set6 CF1(1.17%) BusHS4(3.05%) BusFF4(1.42%) 560

Table 6. The bus type selection for 10-PE example

CommTime(ms) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Set1 0.32 6.25 1.19 1.6 4.3 10.8 4.44 0.75 4.44 7.1
Set2 0.32 6.25 1.19 1.6 4.3 13.05 4.44 0.75 4.44 6.25
Set3 0.32 6.25 1.19 1.6 6.01 17.55 4.44 0.75 4.44 15.58
Set4 0.32 11.25 1.2 2.1 4.3 18.05 6.66 1.25 6.66 9.35
Set5 0.32 11.25 1.2 2.1 6.02 22.55 6.66 1.25 6.66 15.58
Set6 0.32 21.25 1.2 2.1 6.02 32.55 6.66 1.25 6.66 15.58

Table 7. The communication time of processes after the bus type selection for 10-PE example.

ExecTime(ms) B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Set1 1.51 9.71 1.94 2.35 14.66 32.15 7.78 1.55 17.81 20.62
Set2 1.51 9.71 1.94 2.35 14.66 34.4 7.78 1.55 17.81 19.77
Set3 1.51 9.71 1.94 2.35 16.37 38.9 7.78 1.55 17.81 29.1
Set4 1.51 14.71 1.95 2.85 14.66 39.4 10 2.05 20.03 22.87
Set5 1.51 14.71 1.95 2.85 16.38 43.9 10 2.05 20.03 29.1
Set6 1.51 24.71 1.95 2.85 16.38 53.9 10 2.05 20.03 29.1

Table 8. The execution time of processes after the bus type selection for 10-PE example.

Processes LP analysis OpenLoop Update Codebook ClosedLoop

PEs CF1 ASIC1 DSP1 ASIC2 DSP2

Table 9. The behavior-PE mapping relations in vocoder project.

PEs Coldfire ASIC1 DSP1 ASIC2 DSP2

Type Coldfire Custom hardware IP Custom hardware IP
Comm. Protocol Coldfire Any Handshake Any Handshake
Frequency 60M 60M 60M 100M 60M

Table 10. The attributes of selected PEs in vocoder project.

Processes LP analysis OpenLoop Update Codebook ClosedLoop Total

PEs 7ms 4ms 2.5ms 2.5ms 2.5ms 20ms

Table 11. The time constraints of processes in vocoder project.

18

Name Protocol Freq(M) Width(bit) Delay(clock) Delay/Word Speed(MWord/S) Cost(unit)

CF1 Coldfire 60 32 2 2 128 128
BusHS1 Handshake 60 32 2 2 64 64
BusHS2 Handshake 60 16 2 4 32 32
BusHS3 Handshake 60 32 4 4 32 32
BusHS4 Handshake 60 16 4 8 16 16

Table 12. The bus types in the bus library for vocoder project

Processes LP analysis OpenLoop Update Codebook ClosedLoop

Computation time 5.35ms 2.66ms 0.17ms 0.83 2.00
Communication time 0.06ms 0.01ms 0.05 0.03 0.20
Exec. time 5.41ms 2.67ms 0.22 0.86 2.20
Constraint 7ms 4ms 2.5ms 2.5ms 2.5ms

Table 13. The execution time of processes in vocoder project.

ASIC1
 DSP2
DSP1
 ColdFire
ASIC2

Bus1

Bus2

Trans1

Figure 17. Interconnection topology of
vocoder project

The computation time, the communication time, and the ex-
ecution time per process are displayed in Table 13. The re-
sulting bus topology generation and bus type selection meet
the design constraint. The total cost of transducer and buses
is 344 units, under the assumption that the cost of a trans-
ducer is 200 units.

12. Conclusion

This report introduces a novel design flow for the chan-
nel mapping problem. The design flow is tailored for the
complex system architecture which contains hundreds of
PEs with uncomputable communication protocols. The de-
sign flow covers the areas from the interconnection topol-
ogy generation to the bus speed configuration. Especially, it
takes the transducer insertion into account. The design flow
has been integrated to our entire system level design flow.

We also introduce algorithms to implement channel
mapping steps. Especially, during the step ofbus type selec-
tion, our algorithm not only ensures that the maximum bus
traffic rate is greater than the channel traffic rate over the
bus, but also ensures that the constraint of each process can
be met. During communication time computation, we take
the delay of transducer into account. We producechannel-

mapperto implement our algorithm automatically.
We first use a randomly generated 10-PE example to

test our approach. This example proves that under differ-
ent given design constraints, the generated channel map-
ping solutions are different. The costs of the generated
solutions are reduced while the constraints of design are
extended. It also shows thatchannel-mapperreduces the
design time from hours to several minutes, thus allowing
designers to explore a much larger amount ofbehavior-PE
mappingand variable-memory mappingalternatives than
without channel-mapper. We also apply our approach on
the vocoder project, which proves the approach’s correct-
ness on the real design project.

References

[1] SystemC, OSCI[online]. Available:
http://www.systemc.org/.

[2] L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

[3] Jean-Marc Daveau, Gilberto Fernandes Marchioro,
Tarek Ben-Ismail, and Ahmed Amine Jerraya. Proto-
col selection and interface generation for hw-sw code-
sign. InIEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, pages 136–144, March 1997.

[4] D. Gajski, N. Dutt, S. Lin, and A. Wu.High Level
Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, 1992.

[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

19

[6] A. Gerstlauer, S. Zhao, and D. Gajski. Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

[7] Peter Voigt Knudsen and Jan Madsen. Integrating
communication protocol selection with hardware/soft-
ware codesign. InIEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
pages 1077–1095, August 1999.

[8] Kanishka Lahiri, Anand Raghunathan, and Sujit Dey.
Efficient exploration of the soc communication archi-
tecture design space. InProceedings of the Interna-
tional Conference on Computer-Aided Design, 2000.

[9] Sanjiv Narayan and Daniel D. Gajski. Interfacing in-
compatible protocols using interface process genera-
tion. In Proceedings of the Design Automation Con-
ference, pages 468–473, June 1995.

[10] Ross B. Ortega and Gaetano Borriello. Communi-
cation synthesis for distributed embedded systems.
In Proceedings of the International Conference on
Computer-Aided Design, 1998.

[11] Ti-Yen Yen and Wayne Wolf. Communication synthe-
sis for distributed embedded systems. InProceedings
of the International Conference on Computer-Aided
Design, 1995.

20

