Channel Mapping in System Level Design

Lukai Cai and Daniel Gajski

CECS Technical Report 03-03
Jan 7, 2003

Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{Icai, gajski} @ics.uci.edu

Channel Mapping in System Level Design
Lukai Cai and Daniel Gajski

CECS Technical Report 03-03
Feb 3, 2003

Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425,USA
(949) 824-8059

{Icai, gajski @ics.uci.edu

Abstract

This report proposes a design flow and algorithms to implement the channel mapping, which generates interconnection
topology of the system architecture, selects bus protocols, maps the communication channels among PEs to the generated
buses, and configures bus parameters. Unlike previous work, the proposed design flow and algorithms are tailored for
complex systems which contain hundreds of PEs with incompatible communication protocols. We have applied the proposed
approach on the vocoder project and have approved the approach’s correctness.

Contents

1. Introduction 1
2. Related Work 2
3. System Level Design Flow 3
4. Channel Mapping Design Flow 3
5. Bus Topology Generation 6
6. Bus Protocol Selection 8
7. Transducer Insertion 10
8. Channel Mapping 10
9. Bus Configuration 11
9.1 BuslLibrary e e e 11
9.2 Delay Estimation e e e 11
9.2.1 BusTransferDelay e e 11
9.2.2 PEDataPreparationDelay 12
9.2.3 TransducerDelay e 12
9.2.4 Total CommunicationDelay e 12
9.3 DesignConstraint e e e 13
9.4 ChannelRate 13
9.5 Bus Selection Inequations L e e 13
9.5.1 BusRatelnequations 13
9.5.2 Design Constraint Inequations L 13
9.6 Bus Type Selection Algorithm 13
10Slowly Exploring Algorithm 15
11Experimental Result 15
11.1 10-PEExample o o 15
11.2 Vocoder Project 17
12Conclusion 19

List of Figures

1 Ychart . . e 1

2 Anexample of channel mapping’s influence on the design cost and design performance

3 System modelling and design tasks of system leveldesign. 4
4 Channelmappingdesignflow 5
5 The example of topology tree and interconnectiontopology 6
6 The algorithm of bus topology generation. e 7
8 The example of bus protocol selection 8
7 The example of bus topology generation 9
9 The algorithm of bus protocol selection. 10
10 The example of transducer insertionand bus merging. o 11
11 The example of inter-influence relations of clusters in the topology tree. 14
12 The algorithm of bus type selection(bus configuration). 14
13 The slowly exploring algorithm. 15
14 Behavior diagram of 10-PE example. L 15
15 The generated interconnection topology for 10-PE example., 17
16 Block diagram of encoding partofvocoder 17
17 Interconnection topology of vocoder project e 19

List of Tables

©CoOo~NOoOUTh~, WNE

The example of channel mapping. e 10
The communication protocols of the selected PEs in 10-PEexample 16
The computation time of processes in 10-PEexample 16
The bus types in the bus library for 10-PE example 16
The sets of time constraints of processes in 10-PEexample 16
The bus type selection for 10-PE example 18
The communication time of processes after the bus type selection for 10-PE example. 18
The execution time of processes after the bus type selection for 10-PE example. 18
The behavior-PE mapping relations in vocoder project. e 18
The attributes of selected PEs invocoder project. 18
The time constraints of processes invocoder project. e e e 18
The bus types in the bus library for vocoder project 19

The execution time of processes in vocoder project. v 19

Channel Mapping in System Level Design

Lukai Cai and Daniel Gajski
Center for Embedded Computer Systems
Information and Computer Science
University of California, Irvine

Abstract
Behavi or al System Architectural
This report proposes a design flow and algorithms to im-
plement the channel mapping, which generates interconnec-
tion topology of the system architecture, selects bus pro-
tocols, maps the communication channels among PEs to
the generated buses, and configures bus parameters. Unlike
previous work, the proposed design flow and algorithms are
tailored for the complex systems which contain hundreds of
PEs with incompatible communication protocols. We have
applied the proposed approach on the vocoder project and
have approved the approach’s correctness.

Physi cal

1. Introduction

In order to handle the ever increasing complexity
and time-to-market pressures in the design of system-on-
chips(SOCs) or embedded systems, the design has been
raised to the system level to increase productivity. Figure 1

illustrates extended Gajski and Kuhn's Y chart representing PES 10 assemble the system architecture and maps the be-
the entire design flow, which is composed of four differ- haviors (functional blocks) in the behavior model to PEs.

ent levels: system level, RTL level, logic level, and transis- Variable-memory mapping selects sizes of local memo-

tor level. The thick arc represents the system level design.l€s of PEs and the global memories in the system archi-

It starts from the behavior model representing the designt€cture and maps the variables of behaviors to the memo-
functionality (also called system behavior or application), €S- Channel mappinggenerates interconnection topology

which is denoted by point S. The behavior model contains ©f the system architecture, selects bus protocols, maps the
a set of functional blocks (also called behavior or process). Communication among PEs to the generated buses, and con-
It also contains a set of variables that reserve the data transfigures bus parameters. In this report, we focugioannel
ferred between intra-block operations or inter-block opera- MaPPING
tions. The system level design then synthesizes the behavior Channel mappindecomes essential because it greatly
model to the architecture model representing the system arinfluences the design cost and performance. Figure 2 shows
chitecture denoted by point A. An architecture model con- two alternatives of channel mapping results. The system
sists of a number of PEs (processing elements) and a numarchitecture contains four PERE1 andPE2 use protocol
ber of global memory connected by buses. Different PEs A as their communication protocol, whiRE3andPE4use
can belong to different PE types. Each PE in the architec-protocol B. Protocols A and B are incompatible. Triangle
ture model implements a number of functional blocks in the represents transducer which makes the incompatible buses
behavior model. communicate. As shown in Figure 3plution 1lcontains

We divide the synthesis process of system level design toone transducer whilsolution 2contains two transducers.
three tasks: behavior-PE mapping, variable-memory map-As a result, their design cost are different. Furthermore,
ping, and channel mapping8ehavior-PE mappingselects the data transferred betweP&1andPE2must go through

Figure 1. Y chart

terconnection topology generation. Section 6 introduces the
algorithm of bus protocol selection. Section 7 describes the
algorithm of transducer insertion. Section 8 describes the
process of channel mapping. The algorithm of bus configu-
ration is given in Section 9. Section 10 extends the approach
mentioned above to enlarge the explored design space. Ex-
perimental result is described in section 11. Finally, sec-
tion 12 gives the conclusion.

Busl

Transl
Bus2

‘PEl‘ ‘PEZ‘ ‘PES‘ ‘PEA‘

(a) Channel mapping solution 1

T

PE1 \ PE2 \

Busl 2. Related Work

Transl

Much research has been done for communication syn-
thesis. In [3], Daveau deals with both bus protocol selec-
tion and interface generation and is based on binding/allo-
cation of communication units. In [11], Yen crate a new
processing element and a bus when it is not possible to as-
sign a process to an already existing processing elements or
a communication on a bus without violating real time con-
straints. In [7], Knudsen presents a communication estima-
tion model and shows the importance of integrating com-
munication protocol selection with hardware/software par-
titioning by the use of this model. In [8], Lahiri automat-
two transducers igolution 2 On the other hand, it goes ically maps the various communications between system
through no transducers solution 1 Obviously, different components onto a target communication architecture tem-
alternatives have different communication time required to plate and configure the communication protocols of each
transfer data betwedPElandPE2 channel in the architecture in order to optimize system per-

Channel mappingxplores four design spaces which in- formance by taking the bus conflict into account. In [10],
fluence the design cost and performance. First, it deter-Ortega maps high-level specifications to arbitrary architec-
mines the interconnection topology which connects PEs bytures by analyzing the global view of communication.

a number of generated system buses. Second, it selects the Compared to above classical communication synthesis
bus protocols for the system buses. Third, it maps com-approaches, our approach has the following three advan-
munication channels in system behavior to system buses irtages:

the interconnection topology. Finally, it configures the bus
parameters, such as bus width and bus speed. The goal of
channel mappingds to produce a design which meets the
design time constraint and has the lowest design cost.

The channel mappingpecomes more and more complex
with the increase of the complexity of system behavior and
targeted system architecture. One of the main challenges
is that the future system architecture will contain hundreds 2.

PE3 \ \ PE4 \

(b) Channel mapping solution 2

Figure 2. An example of channel mapping’s
influence on the design cost and design per-
formance

1. It outlines the entire flow of channel mapping, which
contains steps of topology generation, bus protocol se-
lection, channel mapping, and bus configuration. This
flow is suitable for the complex system architecture
which contains many PEs with incompatible commu-
nication protocols.

It takes the transducer into account during the design.

of PEs with incompatible communication protocols. This
feature enforces us to correctly group PEs based not only
on generated communication traffic, but also on the proto-
col compatibility. Furthermore, we must insert a transducer
between any two incompatible PEs/buses, which increases
the design cost and communication time.

To satisfy the requirement of the complex system design,
in this report, we propose a methodologyabiannel map-
ping. This report is organized as followed. Section 2 de-
scribes the related work and our contribution. Section 3 de-
scribes the entire system level design flow and input/output
of channel mappingThe design flow of channel mapping is
given in section 4. Section 5 introduces the algorithm of in-

It not only describes the step of transducer insertion,
bus also also computes the transducer delay as part of
the communication delay.

3. It evaluates the validation of channel-mapping deci-
sion not only by checking the design constraint, bus
also by checking the bus load. As a result, it divides
the process of bus implementation selection into three
steps: bus protocol selection, bus configuration based
on bus load, and bus configuration based on commu-
nication delay. Each step reduces the bus exploration
space thus shorten the design time.

The limitations of our approach are as follows:

1. Our approach doesn't take the bus confliction into ac- used by two PEs to perform point-to-point communication.
count during communication delay estimation. The task channel mappingis implemented after

, S variable-memory mappindt reads the system model such
2. Our approach doesn’t take the synchronization into ac- 54 Figure 3(c) and (d) as inputs, and determines the bus

count during communication delay estimation. topology, selects bus protocols, maps channels to buses, and
chooses bus configuration. The system models reflecting
3. System Level Design Flow the result ofchannel mappingre displayed in Figure 3(e)

and (f). The generated topology can be flat(e), or hierarchi-
cal(f). The transducers are inserted between incompatible
PEs, which are denoted by triangles. It should be noted that
channel mappingnly makes design decision without refin-
ing the system model. The system model should be refined
manually by designers or refined automatically by commu-
nication refinement tools.

Before introducingchannel-mappingnethodology, in
this section, we first describe hashhannel-mappingvorks
under the entire system level design flow, and the input/out-
put of channel-mapping

We model the design using system level design lan-
gauges(SLDL) such as SpecC [5] and SystemC [1]. The
SLDL allows modelling the design at different levels of ab-
straction, from the behavior model reflecting design func- 4, Channel Mapping Design Flow
tionality, to the architecture model reflecting the detailed
system architecture. Modelling design using SLDL enables
designers to refine the design specification by gradually "™ = e " :
adding implementation details. vv_h|ch is illustrated in Figure 4. Figure 4 usk®del 2in

The design starts from behavior model reflecting de- Figure 3 as the example.

sign’s functionality. For example, Figure 3(a) contains four '€ first step isous topology generationlt generates
processes namedl,B,G; andD. ProcessB is executed af- the interconnection topology and connects the PEs to buses.

ter A, while processe€, D, and AB(hierarchical process 1hebus topology generatiodoesn't determine the bus de-
containingA andB) are executed concurrently. Processes [@ilS- It is accomplished by analyzing the compatibility
communicate through global variables. In Figure 3(a), pro- ©f PE’S communication protocols and analyzing the traf-

cessA sends data t® by variablevl, processes andC ~ IC among PEs. Models (&) and (b) in Figure 4 illustrate
exchange data through varia® and processeB, C, and the designs before and afteus topology generatiorBus
D exchange data through variaife topology generatiois introduced in section 5.
Task behavior-PE mappinghen selects PEs to assem- The second step ibus protocol selectian It selects
ble the system architecture and map processes to the PE4N€ bus protocol for every bus in the interconnection topol-
The generated system model is illustrated by Figure 3(b).09Y- Itis accomplished by analyzing the traffic among PEs.
It contains three computation compone®EL PE2, and Model (c) in Figure 4 illustrates the design afters proto-
PE3 Processes, B, CandD are mapped to them respec- qol selection Bus protocol selectiofis introduced in sec-
tively. The generated models explicitly specifies the com- tion 6.
putation components. The communication among compu- The third step igransducer insertionlt inserts a trans-
tation components are still represented by global variableducer between PE and its connecting bus or between buses
accessing. if they have incompatible protocols. Model (d) in Figure 4
After behavior-PE mappingaskvariable-memory map- illustrates the design aftéransducer insertionTransducer
ping selects storage components of system architecturensertionis introduced in section 7.
chooses variable-memory mapping schemes, and refines the The fourth step ichannel mapping It statically maps
global variables to system channels. In Figure 3(c), each PEdifferent channels to the buses . Some channels are mapped
has a local copy of the global variable that it accesses. Theto one bus, which others are mapped to multiple buses, ac-
communication is implemented by message-passing mech<ording to the interconnection topology. Model (e) in Fig-
anism. In Figure 3(d), a global memory(GM) is added to ure 4 illustrates the design afteinannel mappingChannel
the system architecture, and the global variat3és stored mappingis introduced in section 8.
in the global memory. In both Figure 3(c) and (d), com- The final step idus configurationwhich determines the
putation/storage components communicates through chanbus speed. The bus speed is determined by the bus width
nels, which replace the global variable accesses in the preand the bus delay. We select bus speed to ensure that the de-
vious model in Figure 3(b). For example, chancin Fig- sign time constraint can be met and the maximum bus rates
ure 3(c) and (d) replaces variabl2 access in Figure 3(b). are not exceed. Model (f) in Figure 4 illustrates the design
Channels are modelled at the abstract level, which are inde-afterbus configuration Bus configurationis introduced in
pendent of bus implementation. Each channel can be onlysection 9.

The design flow othannel mappingontains five steps,

(@) Initial design model

’—>
Y
PE1 A > PE2 PE3
ﬁcg' c D
' A A
B
i
V3 =

(b) Model after behavior-PE mapping

Y
PE1 A L | PE2 PE3
Y C D
: I I
B
4
— (3D

(c) Model after variable mapping
(without global memory GM)

Busl ColdFire protocol
PE1 PE2 PE3
Channel | Mapped buses

c2 busl
c3 busl

(e) Model after channel mapping
(from (c))

\
PE1 A PE2 PE3
A C D
B
GM

(d) Model after variable mapping

(with global memory GM)

Bus2

ColdFire protocol

Busl é? FIFO protocol

GM

‘ ‘ PE3
PE1 PE2
Channel Mapped buses
c2 busl
c31 busl, bus2
c32 busl, bus2
c33 bus2

(f) Model after channel mapping

(from (d))

Figure 3. System modelling and design tasks of system level design

|
|
|
|
! < ‘PEl‘ ‘PEZ‘ ‘PES‘ ‘GM‘
|
|
|

v i (a) Model a
1. Bus Topology Gener ation \

PE3 GM
PE1 PE2 q
(b) Model b v
\ 2. Bus Protocol Selection \
ColdFire protocol
FIFO protocoal
<> —T PE3
PE1 PE2
v (c) Model ¢
\ 3. Transducer Insertion \
Bus2
ColdFire protocol
protocol ::>
(d) Model d \ 4. Channel Mapping \
Bus2
(c31, 32, c33) ColdFire protocol
: Q
Busl FIFO protocol PE3
(c1, c31, c32)
PE2
v (e) Model e

\ 5. Bus Configuration \

Bus2(25 M Byte/s)

(c31, 32, c33) ColdFire protocol @
Q
Busl(12 M Byte/s) FIFO
protocol
(cc, €31, ¢c32)

-

(f) Model

Figure 4. Channel mapping design flow

5. Bus Topology Generation

We generate the interconnection topology by taking two
issues into account: the protocol compatibility among PEs,
and the traffic among PEs.

There are two types of PEs: fixed-protocol PE and
unfixed-protocol PE. Fixed-protocol PEs, such as micro-
processors, DSPs, and global memories, have predefined
communication protocols. Unfixed-protocol PEs, such as
custom hardware, doesn'’t define any communication pro-
tocols. After designers select the protocol for custom hard-
ware, they will generate corresponding custom hardware in-
terface during interface synthesis. Therefore, the protocol
of the custom hardware can be treated as compatible to the
protocols of any other PEs.

Two PEs having incompatible communication protocols
cannot directly communicate. A transducer is required to
insert between the incompatible PEs to convert one commu-
nication protocol to another. Transducer insertion increases

7
1]

PE1 PE2 PE3 PE4
(a) Topology tree 1
Busl
| | | |
PE1 PE2 PE3 PE4

(b) Interconnectin topology of tree 1

PE1 PE2 PE3 PE4
(c) Topology tree 2

Busl

Bus2 | Bus3
the design cost and communication delay. As a result, dur-

ing the design, we attempt to keep the smallest number of PE1 PE2 PE3 PE4
inserted transducers. (d) Interconnection topology of tree 2
Beside the protocol compatibility, we also take the traffic
among PEs ?nto account. I'n order.to localize the traffic, we Figure 5. The example of topology tree and
put PEs having heavy traffic physically close to each pther. interconnection topology
We evaluate the physical closeness of PEs by computing the
smallest number of buses on communication paths between
them. Localizing the traffic not only reduces the commu-
nication delay between PEs having heavy traffic, but also protocol compatibility, we first define the type of clusters.
reduces the overall system bus load. If all the PEs in a cluster are compatible fixed-protocol PEs,
We use a topology tree to represent an interconnectionwe define the cluster as W cluster. If all the PEs in a
topology. The leaf nodes in the tree represent PEs. Thecluster are unfixed-protocol PEs, we define the cluster as a
hierarchical nodes represents buses. Figure 5 displays twdiW cluster. If a cluster contains both fixed-protocol PEs
examples of the hierarchical trees and their representing in-and unfixed-protocol PEs and all the fixed-protocol PEs are
terconnection topology. compatible, then we define it asssWWHWcluster. Other-
The simplest topology is illustrated by Figure 5(b). In Wwise, if a cluster contains incompatible fixed-protocol PEs,
this topology, all the PEs are connected to a single systemthen we define it as amcompatiblecluster. The protocol
bus. To keep the smallest number of inserted transducer®f a SWor SWHWCcluster is defined as the protocol of any
and localize the traffic, we adopt hierarchically clustering fixed-protocol PEs in the cluster.
algorithm [4] to improve the simplestinterconnection topol- We define three types of protocol compatibilistrictly
ogy. The hierarchical-clustering algorithm considers a setcompatible, generally compatibleand incompatible If
of objects and groups them according to some measure othe protocols of twdSW clusters are compatible, they are
closeness. The two closest objects are clustered first andstrictly compatible If the protocols of &SWSWHWHW
considered to be a single object for future clustering. The cluster and &SWHWHW cluster are compatible, they are
clustering process continues by grouping two individual ob- generally compatibleOtherwise, the clusters arecompat-
jects, or an object or cluster with another cluster on eachible. We use protocol compatibility as the first priority key
iteration. The algorithm stops when a single cluster is gen-to measure the closeness: the distance ofsarigtly com-
erated and a hierarchical cluster tree has been formed. Imatibleclusters are closer than the distance of gegerally
our algorithm, the topology tree is such a hierarchical clus- compatiblecluster; the distance of argenerally compati-
ter tree. Each PE is a leaf object/cluster. Each bus is ableclusters are closer than the distance of emepmpatible
hierarchical object/cluster. clusters.
We have two measures of closeness: protocol compati- The second measure of closeness is traffic between clus-
bility of clusters and traffic between clusters. To define the ters. If two pairs of clusters have the same type of protocol

compatibility, then the distance of the one with larger inter-
cluster traffic is closer than the distance of another pair.

At each iteration of grouping, we localize the traffic be-
tween a pair of clusters and generates an additional cluster
representing a bus. Therefore, the generated topology con-
tains a large number of buses. In order to reduce the number
of inserted clusters/buses, at each iteration of grouping, we
flatten the grouped clusters if the grouped cluster and the
new generated cluster either have compatible protocols, or
are allincompatibleclusters. We call this stegluster flat-
tening Cluster flattening reduces the number of buses and
the communication delay without introducing new trans-
ducers. In our algorithm, we perform cluster flattening after

each grouping step. On the other hand, cluster flatteningBus_Topo_Generation (]

will increase the traffic on the generated bus of merging,
which may cause bus-overload, or may increase PE’s bus
competition. For these cases, we take the tradeoff with clus-
ter flattening or without it into consideration in Section 10.

After each iteration of grouping, a new cluster tree is
generated, which represents a new interconnection topol-
ogy. If we perform further channel mapping tasks explained
in Figure 4 for each intermediately generated interconnec-
tion topology, then the design time will be very long. There-
fore, we only perform further channel mapping tasks for the
finally generated interconnection topology of clustering al-
gorithm. We will take each intermediately generated inter-
connection topology into account in Section 10.

The pseudo algorithm of bus topology generation is
shown in Figure 6. At the beginning, functidnitTree
generates an initial cluster tree representing the simplest
bus topology. All the leaf nodes in the tree represent PEs,
which are directly connected to a root node representing a
bus. FunctionnitCloseMeasurg¢hen computes the close-
ness among leaf nodes. Then at each iteration, the algorithm

cluster_.tree = InitTree ();
InitCloseMeasure ();
while (#(root—>child) > 1) do

pair = StrictPair ();
if (pair = NULL) do
pair = GeneralPair ();

endif
if (pair = NULL) do

pair = InCompatiablePair ();
endif

if (pair !'= NULL) do
nodel = pair>mNodel;
node2 = pair>mNode2;
new_.node = GroupTwoNodes (
nodel ,node2);
ClusterFlatten (newnode,
nodel, node2);
cluster.tree—Remove(nodel);
cluster.tree—Remove(node2);
cluster.tree—Add(new.node);
ReComputeCloseMeasure ();
endif

first selects a pair of nodes to be clustered. Funcliitt- endwhile

Pair finds the pair of strict-compatible nodes among which }
have the heaviest traffic. If no pair of strict-compatible
nodes exists in the tree, then it retutd&ILL. Similarly,
FunctionGeneralPairfinds the pair of general-compatible
nodes among which have the heaviest traffic &m@om-
patiablePair finds the pair of incompatible nodes among
which have the heaviest traffic. After node-pair selection,
algorithm then groups the two nodes in the pair repre-
sented bynodeland node2by function GroupTwoNodes
Function ClusterFlattenimplementscluster-flatteningfor

the generated nodeewnode The algorithm then restruc-
tures the cluster tree by removimgpdeland node2and
addingnewnodein. Finally, ReComputeCloseMeasue
computes the closeness of nodes in the cluster tree. Algo-
rithm continues until root nod®ot has only one child node
left.

An example of bus topology generation is illustrated in
Figure 7. The left hand graphs in the Figure 7 represents

Figure 6. The algorithm of bus topology gen-
eration.

the PE/cluster communication graph: the node denotes the
PE/cluster and the edge denotes the traffic among PEs/clus-
ters. The number attached to the edge denotes the amount
of traffic. The right hand graphs in the Figure 7 represents
the cluster tree.

6. Bus Protocol Selection

After bus topology generation, we select bus protocols
for buses in the interconnection topology. During bus pro-
tocol selection, we use different approaches to select proto-
cols for buses represented by different types of clusters. The
algorithm of protocol selection is illustrated in Figure 9.

In SWSWHWCclusters, all the fixed-protocol PEs have
the same bus protocol, which is defined as the protocol of
the cluster. Therefore, Functi®EProtocolselects the pro-
tocol of a SW/SWHW cluster as the protocol of the bus rep-
resented by the cluster. ‘

On the other hand, in angcompatibleclusters, there are |
more than one protocols that are used by PEs in the clusters. : !
We first compute the traffic dhcompatibleclusters’ child Bus2 % PE3 Buss

clusters. We classify the cluster traffic into two types: inter-

cluster traffic and intra-cluster traffic. Inter-cluster traffic of PEL PE2 PE4 PES
clusterw equals the sum of traffic between any PE inclus-
terw and any PE beyond cluster. Intra-cluster traffic of (b)Bus topology
clusterw equals the sum of traffic between any of twis PE Protocol
child clusters. The example in Figure 8 illustrates cluster PE1 A
traffic computation, which follows the design steps of the PE2 A
example in Figure 7. The second and third columns of ta- PE3 B
ble in Figure 8(d) represents the computed inter-traffic and PE4 Any
intra-traffic. s c

During protocol selection foincompatiblecluster , we (C)PE protocols
select the bus protocols of a child cluster before the bus
protocol of its parent cluster in the topology tree. For ex- e Inter- Intra- Totd Sdlected
ample, in Figure 8, we select bus protocols Bus2and treffic traffic traffic protocol
Bus3before the protocol selection &usl When we se- Busl 0 0 30 A
lect protocol forincompatibleclusterw, we first compute Bus2 2 ° 24 A

. . . Bus3 20 14 34 C

the w’s traffic of each protocop, which is representely
traffic[p] in the algorithm. We define the’s traffic of pro- zz iz 8 iz ¢

tocol p as the sum of the inter-traffic af’s child clusters
whose selected protocols ape We choose the protocol (d)Bus traffic and selected protocols
which has the largest’s traffic asw’s protocol. For exam-
ple, in Figure 8, because the traffic of protoédbr Buslis
the largest(=21), which is larger than the traffic of protocol
B(=19) and the traffic of protocdl(=20), we select proto-
col A as the protocol oBusl Selecting protocols in this
way avoid inserts transducer between the bus represented
by w and the buses/PEs represented.utyy child clusters
which have the largest amount of traffic over

After protocol selection for buses representedrimpm-
patible clusters andSWSWHWclusters, we select proto-
cols for buses represented ByV clusters. DuringHW bus
protocol selection, we select the protocol of the parent clus-

Figure 8. The example of bus protocol selec-
tion

10

PEl) 5

PE Protocol
PE1 A
PE2 A
PE3 B
PE4 Any
PES]
PE3
9
PE4
| | | | |
14 PE1 PE2 PE3 PE4 PE5
PES

Strict-compatible pair clustering

PE3 PE4 PES

PE1 PE2

General compatible pair clustering

PE3

PE1 PE2 PE4 PES

Un-compatible pair clustering

PE3
PE1 PE2 PE4 PE5
Un-compatible pair
clustering;

@ Cluster flattening
9 s |
! Final Topology |

I

(P | |
| |
14 i PE3 |
I
I I
I I
@ | PEL PE2 PE4 PE5 3
I I

Figure 7. The example of bus topology generation

Channel between PE§ Mapped buses |

PE1-PE2 Busl

PE1-PE3 Bus1, Bus4
PE1-PE5 Busl, Bus3
PE2-PE4 Bus1, Bus3
PE3-PE4 Bus4, Busl, Bus3
PE4-PE5 Bus3

Table 1. The example of channel mapping.

H

BusProtocolSelectionAll (}

if (root_cluster .type == HWCluster) do
root_cluster.protocol =
FastestProtocol ();

endif
BusProtocolSelection(roatluster);

BusProtocolSelection(cluster A)

ter before the protocol of all its child clusters. If the root
cluster is aHW cluster, then we select the fastest protocol
for it. Otherwise, the protocol offW cluster equals the
protocol of its parent cluster, which is shown in function
BusProtocolSelectionAll

The example of protocol selection is displayed in Fig-
ure 8. Figure 8(c) displays the protocols of PEsyrefers
that the protocol of PE is un-fixed. Figure 8 (d) displays the
selected bus protocol f@usl, Bus2 Bus3andPE4

7. Transducer Insertion

After bus protocol selection, the protocols of buses are
defined. The protocols of a child cluster and its parent clus-
ter are either incompatible or compatible.

If the protocols of child and parent clusters are incompat-
ible, both the buses represented by the clusters cannot trans-
fer data directly. In this case, we must insert a transducer
between them. In our approach, we attach a transducer to
the child cluster to represent the inserted transducer. After
transducer insertion, the topology tree and represented sys-
tem architecture of the example in Figure 8 are displayed in
Figure 10 (a) and (b). The talB-A) besidesPE3in Fig-
ure 10(a) represents the transducer connecting buses with
protocolsA andB.

If the protocols of child and parent clusters are compati-
ble, in order to reduce the amount of buses in the intercon-
nection topology, we merge the two clusters. We call this
procesdus mergingBus mergings similar to the steplus-
ter flatteningin bus topology generationAfter bus merg-
ing, the topology tree and represented system architecture
of the example are displayed in Figure 10(c) and (d).

8. Channel Mapping

After transducer insertion, we map the channels among}
the PEs to the system buses.

In general, if there are more than one communication
paths between PEs, then we should map channels to the
buses with the shortest delay or with the lowest bus load.
In our approach, the communication path between any two
PEs is unique. As a result, we directly map the channels

10

for (each ¢ = child of A Yo
BusProtocolSelection(c);
endfor

switch(A.type) do
case SW_Cluster:
case SWHW_Cluster:
A.protocol = PEProtocol (A);
break;
case UNMATCH Cluster:
for (each possible protocol pjo
traffic[p] = 0;

endfor
for (each ¢ = child of A)do
if (c.type == SW/SWHW/UNCOMPATIBLE)do

traffic[c.protocol]+=
c.inter_traffic;
endif
endfor

temp_traffic = 0;
for (each possible protocol pJo
if (traffic[p] > temp_traffic) do

selectedprotocol = p;
temp_traffic = traffic[p];
endif
endfor

A.protocol =
break;
default:
break;
endswitch;

selectedprotocol;

for (each ¢ = child of A do

if (c.type == HW.Cluster) do
c.protocol = A.protocol;
endif
endfor

Figure 9. The algorithm of bus protocol selec-
tion.

| |
i Busl Final Topology |
| |
! |
| Bus2 PE3(B-A) Bus3(C-A) |

I
| |
| |
| PE1 PE2 PE4 PES5 3
| |

,,,

(a) Topology tree after transducer insertion

Busl A

Bus2 A Bus3 c
Bus4 | B
PE PE PE
1 3

PE PE
4 5

(b) System architecture after transducer insertion

i Busl Final Topology |
| |
b \ ! 1
| PEL PE2 PE3(B-A) Bus3(C-A) |
! |
3 1
3 PE4 PE5 3
|

(c) Topology tree after bus merging

Busl A
PE PE Bus3
1 "LF
Bus4 | B

PE PE PE
3 4 5

(d) System architecture after bus merging

Figure 10. The example of transducer inser-
tion and bus merging.

11

between PEs to the buses on the unique communication
path. The table of channel mapping for the example in Fig-
ure 10(d) is displayed in Table 1.

9. Bus Configuration

Although the protocols of buses have been selected, we
needs to configure the bus parameters which determine the
bus speed. The bus configuration must ensure that design
constraints can be met.

9.1 Bus Library

All the bus types are stored in a bus library. For anylbus
with a certain protocol, two parameters can be configured:
Width(b) and Delay(b) Width(b) refers to the number of
data lines in bub. Delay(b)refers to the total delay associ-
ated with the protocol used by a process transfer data over
the bus. In our approach, we first pre-configure buses by as-
signing possible values to the bus parameters. We call each
bus configuration as a bus type. In this way, we convert the
problem of bus configuration to the problem of the bus type
selection for the buses in the interconnection topology of
design.

For each bus typb, two attributes are pre-computed ac-
cording to the bus parameters. The first attribut®is-
Rate(b) which is defined as the maximum rate at which data
can be transferred across the bus. The bus rate is computed
by the formulation

BusRate(b) = Width(b)/Delay(b)

Another attribute is the bus delay associated with the pro-
tocol used by a process transfer data of typeer the bus,
which is denoted byDelay(b,t). Delay(b,t) is computed
by the formulation

Delay(b,t) = [Bits(t) + Width(b)] x Delay(b)

We computeDelay(b, t) for all the possible data types in
the behavior model, such as integer, and float types. All of
the Delay(b, t) are stored in a weight table associated with
bus typeb in the bus library.

In the bus library, there are multiple bus types of the
same bus protocol. The bus types with the same bus pro-
tocol are stored in the same link, in the decreasing order
of the bus cost. In general, bus cost is determined by bus
width, bus delay, and bus protocol.

9.2 Delay Estimation

9.2.1 Bus Transfer Delay

There are two types of protocols: blocked protocol and un-
blocked protocol. Sanijiv [9] introduces the communication

delay estimation for unblocked protocol. According to this 9.2.3 Transducer Delay
method, when channelis mapped to bub, we compute

the communication time of channebver busb as During communication, if data transfers through a trans-

ducer between two buses, an additional delay of transducer
is added to the total communication time. We estimate this
BusTime(c,b) = Access(c) x [Bits(c) delay by
=+ Width(b)] x Delay(b)

whereAccess(cyepresents the number of times of data TransTime(c,t) = Max(BusTime(c,bl),
transferred over channelduring its lifetime. Bits(c) is the BusTime(c,b2)) x 3
type of data being accessed over channel c.

For the bus with the block protocol, the synchronization where c represents the channel that goes through trans-
time should be taken into account. Therefore, the commu-ducert. B1 andb2 are the two buses to which transduter
nication delay of blocked protocol equals connect. We derive this formulation based on the our expe-

rience of transducer synthesis.

BusTime(c, b) = SynTime(c, b) + Access(c) o
x [Bits(c) + Width(b)] x Delay(b) 9.2.4 Total Communication Delay
For each channel c, the total communication time is

where SynTime(c,b)s the channet’s synchronization formulated as,

time over bush. In order to simplify the problem, we as-
sume that th&ynTime(c,bis zero.

In our approach, we use pre-compufediay(b, t) to re-
place theWidth(b) and Delay(b) in the formulation. The

converted formulation is CommTime(c) = Z PETime(c, P)

PEPE(c)
+ Z BusTime(c,b)
BusTime(c,b) = (Access(c) x Delay(b, DataType(c))) be Bus(c)
where DataType(c)is the type of data being accessed + Z TransTime(c,t)
over channel c. In our projecAccess(cjs computed by teTransduers(c)
the profiler [2]. _ '
Furthermore, we compute the total bus delay of PE wherePE(c)is the set of PEs to which chanregonnect.
over bush, which is formulated as, Bus(c)is the set of buses to which chanmedre mapped.
Transducer(cjs the set of transducers over which channel
c transfer through.
CommTime(P,b) = > BusTime(c, b) In each PE, a number of processes are executed. The
c€Channel(P,b) total communication time of any procegss formulated as
where Channel(P,b)is the set ofP’s channels that are :
mapped to bub.
CommTime(p) = Z CommTime(c)

9.2.2 PE Data Preparation Delay ceChannel(p)

When a PE sends/receives data over buses, it consumes time
for the data preparation . The data preparation delay may

be caused by data packaging, or caused by internal buffer?
/memory accessing. We estimate the PE preparation delay

whereChannel(p)is the set of channels through which
roces communicates.
Finally, the total communication time of any FHs for-

for channel ¢ by mulated as:
PETime(c, P) = Access(c) x Delay(P, DataType(c)) CommTime(P) = Z CommTime(c)
ceChannel(P)
where Delay(Pt)is the preparation delay of PE per
preparation of the data with type Delay(Pt)is pre- where Channel(P)is the set of P’s channels through
computed and stored in the PE library. which PEP communicates.

12

9.3 Design Constraint whereProcess(Designis the set of processes in design,
Channel(p)is the set of channels through which procpss
During the design, we take two types of design con- communicates, an@hannel(b)is the set of channels that
straints into account: the constraint of entire design denotedare mapped tb.
by Cstr(Design) and the constraint for a certain procgss

denoted byCstr(p). 9.5 Bus Selection Inequations
Because that each process has been mapped to a cer-
tain PE, the execution time of procgssglenoted byComp- 9.5.1 Bus Rate Inequations

Time(p)has been computed by the profiler [2]. Therefore,
the communication constraint of procgssan be computed
by the formulation

We divide the bus type selection process to two steps. In this
first step, we select bus types according to the maximum bus
rate and the channel rate. According to [9]

CommC'str(p) = Cstr(p) — CompTime(p) BusRate(b) > AvgChanRate(b)

We also compute the computation time of PE. Since all
the processes are executed sequentially on a PE, we formu-
late the computation time of PE as As shown in formulations described before, in this step,

the process of bus type selection for different buses in the
interconnection topology are independent to each other.

BusRate(b) > PeakChanRate(b)

CompTime(P) = Z CompTime(p)
pEProcess(P) 9.5.2 Design Constraint Inequations

whereProcess(P)s the set of processes executed on PE |y the second step, we select bus types which enable the
P. design to meet the design/process constraint by making the

Therefore, the communication constraint of PIS com- following inequations true,
puted by

CommC'str(P) > CommTime(P)
CommC'str(P) = Cstr(Design) — CompTime(P) CommCstr(p) > CommTime(p)
for any procesp and PEP in the design. Because each

9.4 Channel Rate channel may be mapped to multiple buses, the communi-

cation time of each channel is influenced by the bus type
Furthermore, we compute average channel rate and peake|ection of all the buses to which it is mapped. As a result,
channel rate for each bibs in this step, the process of bus type selection for different
We compute the average channel rate of anytbusich pyses in the interconnection topology are inter-dependent.

is formulated as:

9.6 Bus Type Selection Algorithm

AvgChan Rate(b) = , C}Z - (Access(c) x Bits(c)) In this section, we introduce the bus type selection algo-
ce L(mn,e:() rithm.
/Cstr(Design) First, for each bus in the interconnection topology, we

select all of the bus type candidates which both have the
same communication protocol withand make the two in-
equations described in Figure 9.5.1 true.

Second, we select bus types according to the inequations
in section 9.5.2. Because the bus type selections of different
buses in this step are inter-dependent, we need to determine

whereChannel(b)s the set of channels that are mapped
tob.

We also compute the peak channel rate on gbugich
is formulated as:

PeakChanRate(b) = max the bus type selection sequence. We attempt to first select
p€Process(Design) bus type for the bus which is less inter-influenced with other
: buses. Figure 11 represents part of a simple topology tree.
Acce Bit . ; X
((Z (Access(c) x Bits(c))) C1l. Cncontains a set of different PEs respectively. For

(c€Channel(p))N(cEChanncl (b)) any clustelCi, it inter-influences wittCj if and only if there

/(CommCstr(p))) exists a PE irCi that communicates with a PE {@j. On

13

Figure 11. The example of inter-influence re-
lations of clusters in the topology tree.
BusTypeSelectiof
BusRateSelection ();
main_bus_.cur = First(Link(
main_bus . protocol));

the other hand, cluster A is inter-influenced wahif there while (MeetConstraint ())do

exists PE inCi communicate with a PE in any other child InitBusSelection ();

of A. Furthermore, if a PE i€i that communicates with PE while NotFinishAllTheBuses ()do

that is beyond the subtree led Bythe communication path bus.in_topo = NextSelectedBus ();
must cross the clustek. As a result, we conclude that a type_cur = First(Link(

child cluster is less inter-influenced with other clusters than bus.in_topo. protocol));

type_selected = NULL;
while (type_cur) do
if MeetConstraint()do

its parent cluster. Therefore,we select bus type for a child
cluster before its parent cluster in the topology tree.

Furthermore, we found that the main system bus, which type_selected = typecur;
is represented by the top-level cluster, suciBaslin Fig- endif .
ure 10(a), greatly effects the total communication time. type-cur = Next(Link(

Therefore, at each outer iteration, we assign one bus type bus.in_topo. protocol));

candidate to the main system bus before the bus selection
for any other buses in the interconnection topology.

endwhile

if (type_.selected != NULL) do
Figure 12 shows the algorithm of bus type selection. bus.in_topo.type = typeselected;

First, functionBusRateSelectiaselects the bus type candi- enddo

dates for each buses according to bus rate inequations de- ~ endwhile _

scribed in section 9.5.1 and bus protocol's compatibility. SelectLowestCostSolution ();

The selected bus type candidates are storddrik in the mainbus.cur = Next(Link(.

decreasing order of the cost. At each outer iteration, one bus main.bus . protocol));

type candidate is assigned to timain_busfrom the head of

Link of mainbus FunctionInitBusSelectiorthen selects

the fastest bus type candidates for all the other buses. At

each middle iteration, algorithm reselects the bus type can- Figure 12. The algorithm of bus type selec-

didate for one bus. FunctioNextSelectedBuselects bus tion(bus configuration).

busin_topofor bus type reselection by traversing the topol-

ogy tree using post-order scan algorithm, which selects a

child cluster before its parent cluster. At each iteration of

inner loop, algorithm selects a bus typgecur for bus

busin_topofrom the head oLink of busin_topo. Function

MeetConstrainthen tests whether inequations described in

section 9.5.2 are true. If spypecur is selected as the type

of busin_topo The process continues until the types of

all the buses are reselected. Finally, funct®electLow-

estCostSolutioselects the lowest cost solution among the

different solutions in whiclmain.buschooses different bus

type candidates.

endwhile

14

SlowExploring B1(CF1) B2(DSP11) B4(HW2)

SelectedTopo = NULL; 27

CurCost = MAX; (float)

Topo = InitClusterTree ();

while (#(Topo.root.child)> 1) do
BusProtocolSelection (Topo); 75
Transducerlinsertion (Topo); (float)
ChannelMapping (Topo);
BusTypeSelection(Topo);

80 55 8
(int) (float) (bit)

B3(HW1)

B5(DSP21) B6(CF2) B8(DSP12) B7(HW3)

36 142
if ((((MeetConstraint(Topo) && 110 @in9 (bit)
((Topo.cost< CurCost) || (i
(SelectedTopo = NULL))do B10(DSP22) B9(DSP13)
SelectedTopo = Topo;
CurCost = Topo.cost;
endif

Figure 14. Behavior diagram of 10-PE exam-
ple.

Topo = ClusterGrouping (Topo);
endwhile

11. Experimental Result
return SelectedTopo;

}

We produce a tool calledhannel-mappeto implement
our channel mapping algorithm by writing around 3000
lines of C++ code. In this section, we describe our design
experience for two examples, 10-PE example and vocoder
example.

Figure 13. The slowly exploring algorithm.

10. Slowly Exploring Algorithm
11.1 10-PE Example

As described in section 5, our bus topology generation
algorithm produces only one single final interconnection processes displayed in Figure 14. DuriBghavior-PE

topology. If no bus type can be selected for a certain bus in . . .
the topology to meet the design constraints, then the entiremapplng we map different processes to different PEs. For

design process fails. We call this algoritHast explorin example, procesB1 is mapped to PECFL, which is illus-
algo?ithir)n ' g P 9 trated byB1(CF1)in the Figure. The edge in the figure

represents the traffic between processes. For example, the
An alternative solution is to produce a new interconnec- edge betweeB1(CF1)andB3(HW1)represents the traffic

tion topology after each iteration of cluster grouping or clus- petween proces81 andB3. The tab27(float)of the edge

ter flattening during bus topology generation. We call this genotes the data dibat type is transferred 27 times.

algorithmslowly exploring algorithmwhich is explained in Different PEs have different types and different compat-

Figure 13. At each iteratiorClusterGroupingelusters two jple communication protocols, which are displayed in Ta-

nodes as described in the loop body of the algorithm in Fig- pje 2. Because of behavior-PE mapping is determined, we

We first apply our algorithm on a design containing 10

ure 6. We then perform tasksis protocol selectioby func- 150 compute the computation time of each process on the
tion BusProtocolSelectigtransducer insertioty function mapped PEs , which is shown in Table 3.
Transducerlnsertionchannel mappindy function Chan- In the bus library, there are 9 predefined buse types as

nelMapping andbus type selectioby functionBusTypeS- shown in Table 4. Columirotocol displays the commu-
election for each new generated topology. The algorithm nication protocols of bus types. Colunfineq(M) displays
continues until the root node of the tree has only one child e frequency of the bus masters. Colukidth displays
node. Until then, we have produced one channel-mappingihe pus widths. ColumBelay(clock)displays the required
solution for_ each generated topology._ Finally, we select _the clock cycles per bus transfer. Colunelay(clock/word)
topology with the lowest cost as our final channel-mapping gisplays the required clock cycles per word(32bit) transfer.

solution by functiorClusterGrouping ColumnSpeeddisplays the required data transfer time per
Because of the complexity dflowly exploring algo- word(32bit). Finally, ColumrCostdisplays the cost of the

rithm, we only apply it after the fail ofast exploring al- buses. Above attributes of bus types are stored in the bus

gorithm library. We also computedelay(b, t) described in sec-

15

[PEname[CF1 [CF2 [HW1 [HW2 [HW3 [DSP11] DSP12] DSP13[DSP21] DSP22]
Type ColdFire | ColdFire | Custom | Custom | Custom | IP IP P IP P
hardware| hardware| hardware
Protocol || ColdFire | ColdFire | Any Any Any Hand- | Hand- | Hand- | FIFO | FIFO
Protocol | Protocol shake | shake | shake
Table 2. The communication protocols of the selected PEs in 10-PE example
| Processname [B1 [B2 |B3 [B4 [B5 |B6 [B7 [BS8 | B9 | BI0 |
Mapped PE CF1 | DSP11| HS1 | HS2 | DSP21| CF2 | HW3 | DSP12| DSP13| DSP22
Comp. Time(ms)|| 1.19 | 3.46 0.75]| 0.75| 10.36 | 21.35| 3.34 | 0.8 13.37 | 13.52
Table 3. The computation time of processes in 10-PE example
| Bus Name|| Protocol [Freq(M) | Width(bit) | Delay(clock) | Delay(clock/word)| Speed(MWord/S) Cost(unit)|
CF1 Coldfire 256 32 2 2 128 128
BusHS1 Handshake 128 32 2 2 64 64
BusHS2 Handshake 128 16 2 4 32 32
BusHS3 Handshake 128 32 4 4 32 32
BusHS4 Handshake 128 16 4 8 16 16
BusFF1 FIFO 128 32 2 2 64 64
BusFF2 FIFO 128 16 2 4 32 32
BusFF3 FIFO 128 32 4 4 32 32
BusFF4 FIFO 128 16 4 8 16 16
Table 4. The bus types in the bus library for 10-PE example
| Constraint(ms)| B1 [B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | Design |
Setl 2 10 | 2 3 1533 |8 |4 18 | 25 | 120
Set2 2 10 | 2 3 2035 (8 |4 18 | 25 | 127
Set3 2 10 | 2 3 20140 |8 |4 18 | 30 | 137
Set4 2 15| 2 3 20 (40 {10 |4 |20 | 30 | 146
Set5 2 20 | 2 3 20145110 |4 |25 |30 | 161
Set6 2 25 |2 3 20 (55 (10 |4 |30 |35 | 186

Table 5. The sets of time constraints of processes in 10-PE example

16

‘DSPZl‘ ‘DSPZZ‘ ‘ CF1 ‘ ‘ CF2 ‘ ‘ HW?2 ‘ Coder Subframe

Bus? ‘ LP_analysis }—»‘ Open_loop P
Transl X
Busl
2x per frame
<> Trans2]
- | | |
‘ DSP11 ‘ ‘ DSP12 ‘ ‘ DSP13 ‘ ‘ HW3 ‘ ‘ HW1 ‘ Figure 16. Block diagram of encoding part of

vocoder

Figure 15. The generated interconnection

topology for 10-PE example.
of behavior-PE mappingndvariable-memory mappinal-
ternatives.

tion 9.1 for all the data type .
There are six sets of design’s time constraints, which arell'2 Vocoder Project
shown in Table 5. The sets are sorted in the increasing order
of time constraint. For each set of time constraint, we gen- The Vocoder [6] project implements the voice encoding
erate an interconnection topology. We use the fast explor-part of the GSM standard for mobile telephony encoding
ing algorithm. Therefore, the generated bus topologies forstandard. The block diagram of encoding part of vocoder is
all the sets of constraints are the same, which is displayeddisplayed in Figure 16. The project contains 13,000 lines of
in Figure 15. The interconnection topology contains three code. Vocoder encodes voice frame by frame. One frame
buses:bus] bus2 andbus3 BuslusesColdfire communi- contains two sub-frames. As shown in [6], the execution
cation protocol.Bus2usesFIFO communication protocol. time of encoding one sub-frame must be less than 5ms. Pro-
Bus3useHandshakecommunication protocol. The inter- cessesClosedloop, Codebook and Update are executed
connection topology also contains two transducénansl once per sub-frame encoding. Proc&ysen-loopis exe-
andtrans2 We assume that the cost of each transducer iscuted once when two sub-frames are encoded.
200 units. During behavior-PE mapping, we map processes
Finally, we select bus types from bus library for each bus LP-analysis Openloop, ClosedLoop, CodebookandUp-
in the interconnection topology. Table 6 displays the se- dateto different PEs as shown in Table 9. The attributes of
lected bus types and the added design costs for different setthe PEs are shown in Table 10. Since processes are executed
of the time constraints. The added design cost contains noon different PEs, we execute proces€ssedloop, Code-
only the bus cost bus also the transducer cost. The percentbook andUpdatein a pipeline fashion. We assign the de-
age in the table denotes the bus utility of bushich equals sign constraint to processes as shown in Table 11. The time
the AvgChanRate(bjlivided byBusRate(h)We found that ~ constraint ofClosedloop, Codebookor Updateis 2.5ms,
the added design cost for the set with longer time constraintwhich ensures that total execution time fGtosedloop,
is smaller than the design cost for the set with shorter time CodebookandUpdateper sub-frame is less than 3ms when
constraint. The total communication time of each processwe execute them in a pipeline fashion. We set the time con-
for different sets of design constraints is displayed in Ta- straint ofOpenloop as 4ms, which ensuré&3penloop can
ble 7. The total execution time containing both computation complete each sub-frame in 2ms. We also derive time con-
time and communication time of each process is displayedstraint for LP_analysisas 7ms according to [6]. The to-
in Table 8. tal encoding constraint per frame is 20ms(Besides process
Besides implementing channel mapping automatically Coder, processeBre_processandPostprocessre also part
by usingchannel-mapperwe also implement the channel of encoding, which are not displayed in Figure 16).
mapping manually with setl as the time constraint. The re- Figure 17 displays the generated interconnection topol-
sults of automatic and manual implementation are the sameogy. PESDSP1 DSP2 ASIC], andASIC2are directly con-
The design time of manual implementation is 2.5 hours. On nected to one buB{s? because of their heavy inter-PE
the other hand, the design time of automatic implementa-traffic. A transduceffranslis inserted betweeBusland
tion usingchannel-mappeis around 3 minutes, which is Bus2 Bus2has theHandshakeprotocol, whileBuslhas
mainly spent on inputting the specification and linking the the ColdFire protocol.
bus library. The simulation time athannel-mappepnly The bus types in the bus library are shown in Table 12.
takes less than 1 second. The speed up from 2.5 hours to ®ur algorithm select€F1 for Bus2andBusHS4for Busl
minutes allows designers to explore a much larger amountThe bus utility forBus¥Bus2is 9.44%/0.13% respectively.

17

[Set |

Busl \

Bus2 \

Bus3

| Added design cost(unit)

Setl

CF1(1.82%)

BusHS1(1.18%)

BusFF1(0.55%)

652

Set2

CF1(1.72%)

BusHS1(L.12%)

BusFF2(1.04%)

620

Set3

CF1(1.59%)

BusHS1(1.03%)

BusFF4(1.93%)

604

Set4

CF1(1.49%)

BusHS3(1.94%)

BusFF2(0.91%)

592

Setb

CF1(1.40%)

BusHS3(1.82%)

BusFF4(1.70%)

576

Set6

CF1(1.17%)

BusHS4(3.05%)

BusFF4(1.42%)

560

Table 6.

The bus type selection for 10-PE example

] CommTime(ms)H Bl \ B2 \ B3 \ B4 \ B5 \ B6 \ B7 \ B8 \ B9 \ B10 \
Setl 0321 6.25 | 1.19| 16| 4.3 108 [444 | 0.75| 4.44| 7.1
Set2 0.32(6.25 | 1.19| 16|43 | 13.05|4.44| 0.75| 4.44| 6.25
Set3 0321625 | 119| 16| 6.01|17.55| 4.44| 0.75| 4.44 | 15.58
Set4 0.32|11.25|1.2 | 21|43 |18.05|6.66| 1.25| 6.66| 9.35
Set5 0.32| 1125/ 1.2 |2.1|6.02| 2255| 6.66| 1.25| 6.66 | 15.58
Set6 0.3221.25|1.2 | 21]6.02|3255|6.66| 1.25| 6.66| 15.58
Table 7. The communication time of processes after the bus type selection for 10-PE example.

| ExecTime(ms)| B1 |[B2 [B3 [B4 [B5 [B6 [B7 [B8 [B9 [B10 |
Setl 1.51| 9.71 194| 235| 14.66| 32.15| 7.78 | 1.55| 17.81 | 20.62
Set2 151|971 | 194 | 235| 14.66| 344 | 7.78| 1.55| 17.81| 19.77
Set3 151|9.71 | 194 | 235| 16.37| 389 | 7.78| 1.55| 17.81| 29.1
Set4 151|14.71| 1.95| 2.85| 14.66| 39.4 | 10 2.05| 20.03 | 22.87
Setb 151| 14.71| 195| 2.85| 16.38| 43.9 | 10 2.05| 20.03| 29.1
Setb 151 24.71] 1.95| 2.85| 16.38| 53.9 | 10 2.05| 20.03| 29.1

Table 8. The execution time of processes after the bus type selection for 10-PE example.

| Processeg| LP_analysis| OpenLoop | Update| Codebook| ClosedLoop |

| PEs

[CF1

[ASICL

[DSPL [ASI

C2 | DSP2

|

Table 9. The behavior-PE mapping relations in vocoder project.

] PEs H Coldfire\ ASIC1 \ DSP1 \ ASIC2 \ DSP2 \
Type Coldfire | Custom hardware IP Custom hardware IP
Comm. Protocol|| Coldfire | Any Handshake Any Handshake
Frequency 60M 60M 60M 100M 60M

Table 10. The attributes of selected PEs in vocoder project.

| Processeg| LP_analysis| OpenLoop | Update| Codebook| ClosedLoop [Total |

| PEs

[7ms

| 4ms

| 25ms | 2.5ms

| 2.5ms

| 20ms |

Table 11. The time constraints of processes in vocoder project.

18

[Name [Protocol | Freq(M) | Width(bit) [Delay(clock) | Delay/Word | Speed(MWord/S) Cost(unit) |
CF1 Coldfire 60 32 2 2 128 128
BusHS1 || Handshake 60 32 2 2 64 64
BusHS2 || Handshakel 60 16 2 4 32 32
BusHS3| Handshake 60 32 4 4 32 32
BusHS4 || Handshakel 60 16 4 8 16 16
Table 12. The bus types in the bus library for vocoder project
| Processes | LP_analysis| OpenLoop | Update| Codebook| ClosedLoop |
Computation time 5.35ms 2.66ms 0.17ms| 0.83 2.00
Communication timeg/| 0.06ms 0.01ms 0.05 0.03 0.20
Exec. time 5.41ms 2.67ms 0.22 0.86 2.20
Constraint 7ms 4ms 2.5ms | 2.5ms 2.5ms
Table 13. The execution time of processes in vocoder project.
Busl mapperto implement our algorithm automatically.
<> Transl We first use a randomly generated 10-PE example to
Bus2 ‘ ‘ ‘ ‘ test our approach. This example proves that under differ-
ent given design constraints, the generated channel map-
‘ DSP1 ‘ ‘ ASIC1 ‘ ‘ psP2 ‘ ‘ ASIC2 ‘ ‘ ColdFire ‘ ping solutions are different. The costs of the generated
solutions are reduced while the constraints of design are
Figure 17. Interconnection topology of extended. It also shows thahannel-mappereduces the

design time from hours to several minutes, thus allowing
designers to explore a much larger amouniefiavior-PE
mappingand variable-memory mappinglternatives than
without channel-mapper We also apply our approach on

The _com_putation time, the com_municatic_m time, and the ex- the vocoder project, which proves the approach’s correct-
ecution time per process are displayed in Table 13. The re-negss on the real design project.

sulting bus topology generation and bus type selection meet

the design constraint. The total cost of transducer and buse?__{

is 344 units, under the assumption that the cost of a trans- eferences
ducer is 200 units.

vocoder project

[1] SystemC, OSCl[online]. Available:

. http://www.systemc.org/.
12. Conclusion P Y 9

[2] L. Caiand D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-

This report introduces a novel design flow for the chan- . : <. ! '
TR-00-47, University of California, Irvine, June 2001.

nel mapping problem. The design flow is tailored for the
complex system architecture which contains hundreds of
PEs with uncomputable communication protocols. The de-
sign flow covers the areas from the interconnection topol-
ogy generation to the bus speed configuration. Especially, it
takes the transducer insertion into account. The design flow
has been integrated to our entire system level design flow.
We also introduce algorithms to implement channel
mapping steps. Especially, during the stepuas type selec-
tion, our algorithm not only ensures that the maximum bus
traffic rate is greater than the channel traffic rate over the
bus, but also ensures that the constraint of each process can5]

Jean-Marc Daveau, Gilberto Fernandes Marchioro,
Tarek Ben-Ismail, and Ahmed Amine Jerraya. Proto-
col selection and interface generation for hw-sw code-
sign. InlEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systempages 136-144, March 1997.

3]

[4] D. Gajski, N. Dutt, S. Lin, and A. Wu.High Level
Synthesis: Introduction to Chip and System Design

Kluwer Academic Publishers, 1992.

D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and

be met. During communication time computation, we take
the delay of transducer into account. We proddicannel-

19

S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

(6]

(7]

(8]

(9]

[10]

[11]

A. Gerstlauer, S. Zhao, and D. Gajski. Design of
a GSM Vocoder using SpeccC Methodology. Tech-
nical Report ICS-TR-99-11, University of California,
Irvine, Feb 1999.

Peter Voigt Knudsen and Jan Madsen. Integrating
communication protocol selection with hardware/soft-
ware codesign. IHEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems
pages 1077-1095, August 1999.

Kanishka Lahiri, Anand Raghunathan, and Suijit Dey.
Efficient exploration of the soc communication archi-
tecture design space. RProceedings of the Interna-
tional Conference on Computer-Aided Desigf00.

Sanjiv Narayan and Daniel D. Gajski. Interfacing in-
compatible protocols using interface process genera-
tion. In Proceedings of the Design Automation Con-
ference pages 468—-473, June 1995.

Ross B. Ortega and Gaetano Borriello. Communi-
cation synthesis for distributed embedded systems.
In Proceedings of the International Conference on
Computer-Aided Desigri998.

Ti-Yen Yen and Wayne Wolf. Communication synthe-
sis for distributed embedded systems Phoceedings
of the International Conference on Computer-Aided
Design 1995.

20

