Interactive System Design Flow

Technical Report CECS-02-15
April 15, 2002

Junyu Peng, Lukai Cai, Andreas Gerstlauer, Daniel D. Gajski

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA

{pengj, Icai, gerstl, gajski@cecs.uci.edu

Contents

1 Introduction 1
1.1 Displays o e
1.2 DesignFlow

2 Specification Tuning 3
2.1 DataDisplays
2.2 Parallelization Optimization

221 RUIES . . .
2.2.2 Example . ..o e
2.3 Hierarchy Optimization e e
2.3.1 RuUles . . .
2.3.2 EXamples . . .o

3 Behavior Mapping 5
3.1 DataDisplays
3.2 ComponentSelectionand Mapping« o o

3.21 RUIES . . . e
3.2.2 EXamples e
3.3 BehaviorOrdering
3.3 1 RUIES . e
3.3.2 Examples . . . o

4 Variable Mapping 7
4.1 DataDisplays e
4.2 RUIES . . . e
4.3 Examples . ..o

5 Channel Mapping 9
5.1 DataDisplays o
5.2 RUIES . .
5.3 EXamples e

6 Conclusions 10

7 Acknowledgments 10

List of Figures

1 System Design Displays. e
2 Interactive Design FIOW. L e e
3 Specification Tuning Displays.
4 Parallelization Optimization Example.
5 Hierarchy Optimization Example. e
6 Behavior Mapping Displays. e
7 Two Grouping SOIULIONS. e e e e e

8 ComponentSelection for Solution 1....

9 Comparison of 2 Solutions.
10 Default Order of Behaviors. e
11 Improved Order of Behaviors. e
12 Variable Mapping Displays. e
13 Variable Mapping Example. e
14 Channel Mapping Displays. o o o
15 Channel Mapping Example.
16 ChannelMapping Result. e e

Interactive System Design Flow

Junyu Peng, Lukai Cai, Andreas Gerstlauer, Daniel Gajski
Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA
{pengj, Icai, gerstl, gajski@cecs.uci.edu

Abstract the quality of design decisions made for each task. The
starting model is apecification mode] which describes
This report presents an interactive system design flow.the desired system functionality without any implementa-
The design tasks and scenarios are defined. Data displaydion detail. The model coming out at the end of system level
and the design rules to use displays are discussed. The in-design is amrchitecture modelwhich describes the system
teractive design flow enables fast and extensive design exarchitecture of the design. The system architecture consists
ploration with minimal effort from designer’s side. of a network of system components connected by system
busses. Between them, there are a spectrum of intermediate
models generated after one or more tasks are performed.
1 Introduction In order to make appropriate design decisions at each
task, designers need to look at all kinds of information, in-
In order to handle the ever increasing complexity and cluding characteri_stics profiled on _the specification model,
time-to-market pressures in the design of System_on_chipperformance metrics estimated on intermediate models (and

(SOCs) or embedded systems, design abstraction has beddf chitecture models) and design database. Without an effec-
raised to system level to increase productivity [1]. At the tive visualization of the data, it would be extremely difficult

system level, designers deal with system components whicHor designers to comprehend the needed information manu-

include microprocessors, special-purpose hardware unitsy- In general, the information has to be organized and vi-
memories and busses. sualized graphically to help designers make quick and good

In general, the process of system level design can be di-decisions. For instance, a bar chart can be used to display

vided into two major stepsarchitecture exploration and ~ the numbers of operations in all behaviors, which helps de-
communication exploration.([2]) During architecture ex- ~ SIGNers feel the co_mputatlt_)n complexity of the behaviors.
ploration, designers map the computation (behaviors) in thePifférent types of information may need to be presented
specification onto components of a system architecture pulleffith different kinds of looks. For instance, the hierarchy of
out of a component library. The design tasks in architecturetN€ SPecification can be better displayed in the form of tree
exploration include allocation of system components, map-9raPh than other alternatives. In the report, the graphical
ping of behaviors onto components, ordering of behaviorsform of visualizing a specific kind of information is called
on each component and mapping of variables into memo-2display.
ries. During communication exploration, designers imple- .
ment the abstract communication (channels) over the ac-1-1 Displays
tual wires of system busses based on bus protocols selected
out of a protocol library. The design tasks in communi- We define seven basic types of displays needed for sys-
cation synthesis include allocation of busses, mapping oftem design (1). Different sets of displays will be used at the
channels onto busses and insertion of transducers betweegifferent stages of the design process. At each step, specific
busses when communication goes across different busses.instances of the general displays shown here will be used
In order to be able to evaluate the quality of the design at Py applying them to different objects or different metrics.
any stage of the process, executable models describing th& the following we will briefly introduce each display and
design at different Stages should be generated_ These modJrOVide an overview of their CapabilitieS. SpeCifiC usage of
els can be analyzed, for example through simulation, esti-the displays will be shown later during the discussion of the
mation, or profiling, to obtain important metrics to check design flow.

TheHierarchy Tree (D1) displays a tree representation
of the hierarchy of design objects. As such, it gives and
overview of the design’s composition and allows for easy
navigation and selection. In addition, the Hierarchy Tree
provides columns for mapping design objects to physical

components.

D1: Hierarchy Tree D2: Schedule / Trace The Schedule or Trace (D2)display shows the compo-
Objects Mapping c1 c2 §iti9n of the design obj_ects over time. It provide.s immedigte
* Design o1 insight into the e>.<e<.:ut|on se_maqﬂcs of the design and gives

o1 1 feedback about_tl_mlng or utl_I|zat|on, fpr example.
E g The Connectivity or Traffic (D3) display is related to
023 cl = the communication between different objects in the design.
o o2 02 |03 It is arranged as a matrix of computational objects (behav-
& o3 c2 iors) over communication objects (variables or channels).
The matrix can be filled with either simple connectivity in-

formation or with traffic results from design profiling or es-
D3: Connectivity / Traffic

timation.
= "17(’//"5‘:) | v2 Erg"’) T;’}Z’ TheProfile Graphs (D4) chart analysis data in the form
02 18/ - /1 lig/1 of bar graphs. Given a set of design objects, the graphs
03 -114 -/ -/14 show the profile of the objects’ metrics on the set of pos-
Total | 25/19 -/4 sible (allocated) components. Hence, the graphs facilitate
comparison between objects and their implementation on
D4: Profile Graph different components.
o (= The Component Allocation (D5)andDatabase Selec-
40117 tion (D6) dialogs are forms through which the user enters
£ 30 Components decisions about the set of allocated components. The Database
S 20 ; g; Selection browser is the interface to the component databases.
10 It lets the user browse and filter the list of components and
ol their attributes. Out of this list, the user selects components
oL 02 03 to allocate. The Component Allocation dialog then shows
Design Objects all currently allocated components. The user can add or
delete components, and the display allows for modification
DS: Component Allocation of the allocated component’s names and other parameters.
g‘l’mp"”e”t | %Sg - [Parameters Finally, theQuality Metrics (D7) display provides feed-
c2 Type 2 06: D _ back about the effects of the user’s decisions on the design
: Database Selection
Tvoe [Atibute 1 | Auribute 2 | Atiibute 3 quallity. After design decisions have been made, the anllty
Type 1 Metrics display shows the top-level results from analysis of
Type 2 the refined design, both in total and split into the contribu-
Type 3 tions of each component.

1.2 Design Flow
D7: Design Quality Metrics

Component | Utilization | Time [Power | Cost Based on the displays, the corresponding design flow be-
C1 100% 24's 3w $15 ;) ; i
c2 42% 10s 15W $5 comes interactive. At each task, designers are given relevant
Total 71% 24s 18W $20 displays. Based on the displays, design decisions are made
and new models reflecting the decisions are generated. Af-
Figure 1. System Design Displays. ter analysis of the newly generated models, resulting met-

rics are shown to designers to evaluate the design quality.
If they are satisfactory, designers move on to the next task;
otherwise, design decisions are adjusted to start another it-
eration.

To describe this interactive design flow, we will divide it
into four scenarios (Figure 2gpecification tuningchanges

p N archy optimization, which reduces specification complex-
ity in terms of number of behaviors and the depth of the
behavior hierarchy.

e |

2.1 Data Displays

D1: Hierarchy D2: Parallelism

| Behavior B1

» Design

ta

H

s o

L : > fa =

j: B) o
——

- -

~~ -

‘ D4.1: Operation Profile D4.3: Traffic Profile

44444444444444—4 | 15
20 —/———"
. J 10
5,
[] ° T
0 T T) 0 T T)

B1 B2 B3 B1 B2 B3

MOP

Words

Figure 2. Interactive Design Flow.

the specification model to expose maximal behavior level Figure 3. Specification Tuning Displays.

parallelism and to reduce the specification complexBig-
havior mapping selects system components and maps be-
haviors onto component¥ariable mapping select mem-
ory components and maps variables into memoi@san-

The data displays needed for specification tuning are shown
in Figure 3. Hierarchy (D1) is a tree representation of
the specification models. The nodes are behaviors and the
nel mapping determines system busses and maps channel§d9es represent parent-child relationships betwegn b_e_hav-
iors. The types of nodes can be parallel, sequential, finite-

onto busses. g At
This report describes displays needed for each scenarioState-machine, pipeline, or leaf. The example here shows

Some design rules on how to use the displays are presenteH‘e top level behavior Design is a sequential decomposition
and illustrated with examples. of leaf behavior B1 and B23, which is a parallel decompo-

sition of leaf behaviors B2 and B3. The number of nodes
is 5 and the depth is Zlraffic Profile (D4.3) displays, for
each behavior, the amount of communication traffic (prod-
uct of size and access frequencies in and out of a behavior)
A specification model can be developed based on therequired for variable and channel access. The example fig-
original specification written in English or in high level pro- yre shows that the traffic generated by accessing variable
gramming languages. The specification model is a hierar-y1 are 5, 7, 17 Words for behaviors B1, B2 and B3, respec-
chical network describing the desired system functionality. tively. The traffic generated by accessing channel c2 are 2
Because the specification model is purely functional, it can and 1 Words for behavior B2 and B3, respectivépera-
be written in many different ways, all functionally equiv- tion Profile (D4.1) displays the total number of operations
alent. However, the quality of the specification model in of each behaviorParallelism (D2) displays the available
terms of parallelism and complexity has immediate influ- behavior level parallelism in a SpecC model. Each behavior
ence on design decision making, which is essential to thejs represented by a rectangle. The length of each rectangle
quality of the final design. is proportional to the number of operations of the behav-
In order to improve the quality of the specification model, jor it represents. The number of columns shows the max-
two kinds of optimizations can be performed. One is called imal amount of available parallelism. The example shows
parallelization optimization, which aims at exposing max- behavior B2 and B3 can be executed in parallel. Hierarchy
imal parallelism at behavior level. The other is calleer- display visualizes behavior hierarchy better than parallelism

2 Specification Tuning

display does. However, Parallelism display shows the size D1: Hierarchy D2: Parallelism D4.3c: Traffic Profile Table

for each behavior in terms of number of operations, which Behavior
is not seen in the Hierarchy display. A Words) B | C | D
2 Main A 1020 0
2.2 Parallelization Optimization g A B (B; 0 2
. . L | D
It is straightforward to transform a C description into -0 8 c
a system specification model. For example, the functions I, e
in the C description can be easily encapsulated into SpecC
behaviors by choosing the appropriate behavior granularity -3 D D

(size of leaf behaviors). Because C language lacks the con-
structs for specifying concurrent execution, the C descrip-
tion is purely sequential at both statement level and function
level. Most system level languages provide concurrent con-

a) Before Parallelization

D1: Hierarchy D2: Parallelism

structs to specify behavior level parallelism, which can be | Behavior
exploited to improve performance in the design process. In W
general, it is very difficult for designers to identify all avail- Main
able parallelism in the C description since a thorough data —* ABC
dependency analysis would be needed. In a interactive de-
sign flow, with the help of displays of profiled data, the task _F A
of finding all potential parallelism becomes much easier.

— BC
2.2.1 Rules i, 3
Rule 1. Parallelize two sequential behaviors if there is
no dependency between themSince Traffic Profile dis- -Ioc
plays data dependency information between behaviors, we | =& D
can find out whether two sequential behaviors have depen-
dency. If they are not dependent, they must be able to be b) After Parallelization

executed in parallel with each other.) o o
Figure 4. Parallelization Optimization Exam-

2.2.2 Example ple.
Figure 4 gives an example of parallelization optimization.
Part a) of Figure 4 shows the Hierarchy, Parallelism and
Traffic Profile of the specification model before paralleliza-
tion. Hierarchy and parallelism graph indicate that behav-
iors A, B, C and D are specified to be executed sequentially.
However, the Traffic Profile shows that there are no depen-
dency between behavior B and behavior C. Therefore, be-
havior B can be executed in parallel with behavior C. Simi-
larly, since there is no dependency between behaviors D and-3-1 Rules

all other behaviors A, B and C, they can also be parallelized.gyje 2. Combine parent and child behaviors with same
Part b) of Figure 4 shows the Hierarchy and Parallelism af- gxecution types.As we mentioned earlier, each node (be-
ter parallelization optimization. As we can see, the pure hayior) in the hierarchy tree has an associated execution
sequential specification was transformed into a three-waytyne. For each edge of the hierarchy tree, if the parent node

effort is proportional to the complexity at the specification
level. In order to reduce the complexity, hierarchy optimiza-
tion can be performed. Hierarchy optimization reduces the
depth of the behavior hierarchy as well as the number of
behaviors in the specification.

parallel-execution through this optimization. and the child node have the same type of execution, then the
] o child node is removed and all its children become new chil-
2.3 Hierarchy Optimization dren of the parent node. A top-down or bottom-up traversal

of the tree can be performed to check for each edge.
In the specification model of a normal size design, there
could be very large number of behaviors and the behavior
hierarchy could be very deep. It is obvious that the design

D1: Hierarchy D1: Hierarchy Déb: Processor Database

Behavior Behavior Processor | Clock | MIPS |Mem0ry| Power| Cost
Main Jmain DSP56600 60MHz 20 16kB 2W $5
AB TA® ARM 100MHz 30-50 32kB 1W $5
o Custom HW 100MHz 50 any 0.5W $10
—J{Jc
- — % DEF D5b: Component Allocation D4.1b: Execution Profile
T
g PE Type Clock 2305
T PEL Intel 8051 4MHz 5209
PE2 Custom HW 100 MHz 510 S
Wwoosd
Bl B2 B3
Before After D1b: Behavior Mapping D2b: Mapped Schedule
Behavior PE 0s
Figure 5. Hierarchy Optimization Example. * Design
E B1 PE1
B23 PE1
2.3.2 Examples
& B2
In the example shown in Figure 5, both parent behavior & B3 PE2 245
DEF and child behavioEF are of SEQ type. Therefore, PE1 PE2
EF is removed and its childrek, F are promoted to be
the children oDEF. Similarly, because both behavigiain D7b: PE Quality Metrics
andCDEF are of PAR typeCDEF is removed anC, DEF — -
become the children dflain. Compared to 11 behaviors PE | utiization | Cycles | Time [Power] Cost
and a hierarchy of depth 5 in the old specification, the new PEL 100% 96M 245 0.5W $5
. . . PE2 42% 1000M 10s 0.3W $15
specification has only 9 behaviors and a hierarchy of depth
3 Total 1% 138M 245 0.8W $20
3 Behavior Mapping Figure 6. Behavior Mapping Displays.

After the aforementioned optimizations on the specifi- (D7b) gives feedback on the quality of behavior mapping
cation model, system components will be selected and theby displaying utilization, execution time information.
behaviors will be mapped onto the selected components.

Parallel behaviors on each component will also be serial-3.2 Component Selection and Mapping
ized because of single thread execution inside each compo-

nent. We will describe component selection and mapping The goal of component selection and behavior mapping

together because they are closely coupled. is to ensure the design meet the given constraints in terms
of time, cost, or power. The basic idea is to group behav-
3.1 Data Displays iors into a number of groups and select appropriate compo-

nent for each behavior group. There are a number of ways
The data displays needed for behavior mapping are shownf grouping behaviors by considering parallelism, hierarchy

in figure 6. Processor Database (D6blists all available and computation complexity. In this report, we will focus
processors with clock, memory, power and cost attributes.on the exploitation of the behavior level parallelism.
Component Allocation (D5b)is used by designers to input
component allocation decisioriSxecution Profile (D4.1b) 3.2.1 Rules
gives the running time of each behavior on different PEs. N) o
Behavior Mapping (D1b), which resembles the Hierarchy Rule 3. If no PE can ext.acgte.the critical path inthe origi-
display, is used by designers to input behavior mapping de_pal pargllehsm.graph W|th|n't|me constramt, no solutlon_
cisions, i.e., which behavior is mapped to which Rapped IS possible.At first, Fhe feasibility to '|m_plement the design
Schedule (D2b)displays a default execution order on each 1S checked. Assuming there are unlimited resource (compo-

PE after behaviors are mapped to PEE.Quality Metrics nents) available, the time to execute the critical path (height
of parallelism graph) is the lower bound of the execution

time of the design. If running the critical path on the fastest The example specification shown in Figure 7 has 5-way
available component can not meet the time constraint, thergparallelism in the specification. The time constraint for the
is no solution to the design. A new specification needs to bedesign is 10 ms. The component database has three com-
developed or faster components must be introduced to theponentsPE1, PE2andPE3 For the feasibility check, let's

component library. assume the critical path (A-F-K-O) can be execute®&3
Rule 4. Determine the number of PEs by examining within 10 ms time constraint. Now we need to find out the
the critical path and the total amount of computation. number of groups for grouping behaviors. The total number

The number of PEs can be determined by designers basedf operations can be found to be 640 MOPS, while it is 300
on their experience. For example, if a specification has aMOPS on the critical path. Therefore, we conclude we need
critical path that is close to the total amount of operations, 640/300 (= 3) groups. However, using only 2 groups will
two PEs including a software processor and a custom hard-not have noticeable increase of critical path length. There-
ware component may be needed. The number of PEs carfore, we can try two different candidates. Using Rule 5,
also be estimated by simply dividing the total number of we can come up with 2 grouping solutions with numbers of
operations with the critical path length. For example, if the groups being 2 and 3, respectively (Figure 7).

critical path length is 50 MOPS and the total number of

operations is 120 MOPS, 3 PEs are needed. By slightly in- D6b: Processor Database
creasing the critical path length, 2 PEs may also be enough. Proc. [Clock | Power [Cost
: iotri H . PE1 60 MHz| 0.5W $2

Rule 5. _Group behay|ors by evenly dlstrlbut!ng par = 100 Mis | 0wl s
allel behaviors among different groups and making group PE3 133 MHz| Low]| $10
1 as full as possible.After the number of groups is deter-
_mlned, behawor; are aSS|gned _to groups. Parallel behav- D4.1b: Execution Profile
iors are evenly distributed into different groups to take ad- 1 Component
vantage of parallelism. This load-balancing heuristic can § o — Selection:
achieve high PE utilization and minimal critical path. The E mPE2 - Groupl -> PE3
way to fill up groups will guarantee the critical path always 3 ° LIPES Group2 -> PE2
lies in the first group. B 0T o oo cows Crowpe > PR

Rule 6. Select the lowest cost PE for each group while Solution 1 (3-Group)

timing constraints are satisfied.After behaviors are grouped,

designers select components out of component database for Figure 8. Component Selection for Solution 1.

each group. There can be a variety of different algorithms

for component selection under different design constraints.

A useful rule here is to select the lowest cost PE that can For each solution, a componentis selected for each group.
satisfy the time constraint for all groups. Solution 1 is used here for illustration. Behavior Profile dis-
plays the execution time of each group on all components
for solution 3. As we can see, group 1 must be executed on
the fastest componeRE3to meet 10 ms constraint. There-
fore PE3is selected for groupl. Since bd#tE2andPE3

can finish group 2 on time, we seld@E2 because of it is

3.2.2 Examples

D2: Parallelism 5e9) e . .
e | A0 less expensive. SimilarlfgE1lis selected for group 3 (Fig-
. Moao | ure 8). Then we can calculate the execution time, power
P consumption and cost for both solutions and choose a better
R Lo foon| e) one (Figure 9).
Group F(70) Man |
5 (363]
g - ::: o (Time constraint = 10ms)
K(60) Keo) — # of PEs | Execution Total Total
= time power cost
Rey PED Solutionl 3 8ms 2.2w $17
Q) | owo Solution2 2 9ms 2.0w $20
0(90) Q26)
R(21)
sS(18)
300 340 Figure 9. Comparison of 2 Solutions.
Specification Solution 1 Solution 2
5-Way Parallelism 3-Group 2-Group

Figure 7. Two Grouping Solutions.

3.3 Behavior Ordering Behavior Profile. After behavior ordering, Ordered Sched-
ule is displayed in the right-bottom corner. The execution
After component selection and behavior mapping, de- time saved in the improved schedule is 5.5ms (25%).
signers need to order the behaviors on each PE. A default
execution order derived from the original specification can ~ D4.3: Output Traffic Profile D4.1b: Execution Profile
be used as a starting point by designer for further ordering 1 T4
in order to improve performance.

Words
oB8888
Execution time
o - N w

D1: Hierarchy D2o0: Ordered Schedule

B D
Behavior
: (ms)
Ma”;uacn A3 | P@
. D2o: Ordered Schedule D2o: Ordered Schedule
=~ ABC B(3)
@
AB (ms) s)
—a A cC4| @ D)
_5 8 A(3) ‘B’(’3) A@) | BB
ae F@as)| E@) ”)
e c@ | @ B)
—ere GR) | @
ii F4.5)| E® q F(4.5)| E@
¥l H(4.5)] (4.5 /(: G(L5)
I 4 (L5
TEE H 25 @5 s G@EY HaS) ((3))
= 2 PE1 PE2 vasl ws
9 (¢) 170 PE1 PE2
Default Order 225 L5 |15
PE1 PE2
Before After

Figure 10. Default Order of Behaviors.

Figure 11. Improved Order of Behaviors.
3.3.1 Rules

We suggest three important rules for behavior ordering. 4 Variable Mapping
Rule 7. Among all parallel behaviors, the one with

most amount of output traffic executes first. Parallel be- After behaviors are mapped to PESs, variables in the spec-
haviors can be executed in any order. However it may in- ification need to be assigned to memories. Usually PEs have
fluence the starting times of other behaviors as well as thetheir own local memories and variables can be mapped to
overall execution time of the design. By executing behav- these local memories if space allows. If local memory space
iors with heavy output traffic first, we can reduce the pres- is not sufficient, a dedicated memory component needs to be
sure from their depending behaviors thus produce a betterallocated to store variables. In general, the introduction of

schedule. Output Traffic Display (D4.3) shows the output memory component will increase cost and area. In addition,

traffic for each behavior. accessing variables in the shared memory tends to be slower
Rule 8. Move independent parallel behaviorsintoun- than in PE’s local memory. Therefore, it is wise to use the
utilized time slots in the same PE. local memories of allocated PEs as much as possible and

Rule 9. Move independent parallel behaviorsintoun- only to allocate memory component if needed.
utilized time slots in other PE.
4.1 Data Displays
3.3.2 Examples
])] The displays needed for variable mapping are shown in
We give an example to illustrate above three rules. In Fig- figure 12.Memory Database (D6v)ists all available mem-
ure 10, the default order is shown in Ordered Schedule andOry components with their size, latency, power and cost
the original hier_archy is shown in H_ierarchy. By_comparing information. Component Allocation (D5v) displays the
the output traffic of parallel behaviofs andB displayed |ocal memory sizes of allocated PEs. It is also used by
in Traffic Profile, we conclude tha should be executed gesigners to input memory allocation decisioMariable
beforeD becausd ha_s greater output traffic, accordlng_to Size (D4.2v)gives the storage requirement for each vari-
Rule 7. Then, according to Rule 8, we can move behavior 4pje The sizes of the same variable can be different when
to an un-utilized time slot iIPE2 Finally, we use Rule 910 giored on different PEsVariable Traffic (D4.3v) displays
move the behavio® from PE1to PE2based onthe display the potential traffic (product of variable size and access fre-
guencies in and out of PESs) generated by each variable, if

D5v: Component Allocation D4.2v: Variable Size to PE’s local memories due to memory space limit. In this

T i, Y 6 BPEL case, a global memory componentis needed for storing these
4 . .
PEL Intel 8051 4KkB g BPEZ unmapped variables. Usually, the lowest cost memory is se-
PE2 Custom HW 16 kB g
Meml SDRAMI6 16 kB o lected while size requirement is satisfied.
vl v2
D6v: Memory Database D4.3v: Variable Traffic 43 Examples
Memory [Size [Latency | Power | Cost 80 WPE1
SDRAM64 64kB 15ns 35W $5| ¢ 60 mPE2
SDRAM16 16kB 15ns 1O0wW $2| = ‘2‘8
DRAM128 128 kB 60ns 70W 10 0 D4.3v: Variable Traffic D4.2v: Variable size
vioowv2 OPE1 6
D1v: Variable Mapping D7v: Memory Quality Metrics 100 WPE2 5
(%] [}
Variable | Type | Memory Memory | Utilization | Usage e 80 g4
vl it PE1, PE2 PE1 125% 1kB D 60 Q 3
B2.v2 Int PE1 PE2 100% 512B 0 2 L
B3.v2 Int PE2 Total 61% 15kB
20 1
vli v2 v3 v4 V5 vl v2 v3 v4 v5

Figure 12. Variable Mapping Displays.
D5v: Component Allocation D1v: Variable Mapping

not mapped locallyVariable Mapping (D1v) is used for P e | memn VZ”ETTJ ;yr’;e | vemory
designers to input variable mapping decisions, i.e., which . cliil,zo:;/ 1‘(‘3‘;2 PEZv2 amay PE?
variable goes to which memoryMemory Quality Met- eml SDRAMS _ 8kB Ve oy Unmapped
rics (D7v) gives feedback on variable mapping in terms of v6_ amay PE2

memory utilization.
D6v: Memory Database

4.2 Rules Memory | Size |Latency| Power| Cost
SDRAM8 8kB 15ns 05W $1

As we mentioned above, PES’ local memories are used SDRAM16 16kB 15ns 1OW $2

as much as possible when variables are mapped. There are

two kinds of variables, local variables and global variables, D7v: Memory Quality Metrics

accessed by each PE. Local variables are accessed internally —

by a single PE while global variables are accessed by multi- wemory [uiizaion] sage

ple PEs. Each variable will potentially generate some traffic e ';:

(defined as product of number of accesses and variable size) Memi 75% 6kB

if the variable is not mapped to the PE that accesses it. In or- Toal 83% 24kB

der to minimize the traffic among PEs, we will give higher
priority to variables with more traffic when assign them to
PE’s local memories.

Rule 11. PEs’ local memories are utilized before mem-
ory components are. We want to utilize PEs’ local memory
as much as possible. Variables are assigned to the allocate
global memory component only if the available local mem-
ory space is not sufficient.

Rule 12. Local variables are assigned before global
variables. Local variables should be assigned to their ac-
cessing PE as much as possible to reduce access time.

Rule 13. Variables are assigned in the descending or-
der of potential traffics. The variables that potentially gen-
erate most traffic are assigned to local memories to reduc
access time and traffic over busses.

Rule 14. Allocate the lowest cost memory from mem-
ory component database to hold all unmapped variables.
At stated in Rule 11, some variables may not be mapped

Figure 13. Variable Mapping Example.

An example is shown in Figure 13. First, according to
gule 11 and Rule 12, we map PE1 and PE2’s local vari-
ables (1, vato their local memories respectively. After the
mapping,PE1 has 1kB local memory space left a2
has 10kB local memory space left. Three global variables,
v3, v4 and V5, are accessed by both compon®ftl and
PE2 We start to assign them in the order of their potential
traffics shown in Variable Traffic display3 is assigned to
PE2only, becaus®E1has only 1kB free space left, which
is not big enough fow3. v4 can not be assigned to either
“PE1or PE2because of its size. Howeve® can be barely
assigned te’E2

Now, v4 with size 6kB is not mapped to any local mem-
ory. According to Rule 14, a SDRAM8 memory component
Memlis selected to hol@4. Finally, the Memory Quality

Metrics shows the utilization information of all three mem- D4.2c: Channel Profile D4.3c: Channel Traffic

ories. ©bS ———— 6
é“s 2! [CBusl
5 Channel Mapping g2s ﬂ» @ 2 WBus
Tos Cvl C2 0 Cvl C2
At this stage, the communication between PEs is through
variable channels. Since in the architecture model, the con- D6c: Protocol Database
nection among PEs are busses, we need to select busses Bus |Width| Clock | Rate |Cost
to connect PEs and map variable channels to the selected AMBA 32-hit 66 MHz 8 MB/s $5
busses. For a design consisted of a number of PEs, usually PCl 32-bit 33 MHz 10 MB/s $15
more than one bus is needed. Transducers are then needec ColdFire ~ 16-bit 30MHz 2MB/s $10
to interface between different bus protocols. Our goal here Handshake 8bt asyne - %
is to minimize the use of transducers and the communica- D5c: Bus Allocation D2¢: Bus Schedule
tion over transducers. The basic approach to bus allocation — 0s
problem is to cluster PEs and select bus for each PE cluster. Bus Type
Then the mapping of variable channels to busses becomes Busl Handshake
automatic. ||
Cvl
5.1 Data Displays ||
D1c: Channel Mapping c2
The displays needed for channel mapping are shown in —
figure 14.Channel Profile (D4.2c)gives the transfer time Channel| size | Bus
needed for the selected busses to send a channel message vl 4B Busl
c2 2B Busl a2

Channel Traffic (D4.3) presents traffic (product of size and Ersl
number of messages in and out PES) generated by each

channel. Protocol Database (D6c)ists all available bus D7c: Bus Quality Metrics
protocols with bus width, clock, and cost attributéBus
Schedule (D2c)shows the starting time and duration of
each channel message on each Bus Allocation (D5c¢)is
used by designers to input bus allocation decisi@tsan-
nel Mapping (D1c) is used by designers to input channel
mapping decision, i.e., which channel is mapped to which Figure 14. Channel Mapping Displays.
bus(ses).Bus Quality Metrics (D7c) shows feedback on

channel mapping in terms of utilization, traffic, and so on.

Bus Utilization | Traffic | Time |Rate

Busl 1% 24 B 8s 8B/s
Total 1% 24 B 32s 8B/s

a bus protocol from the protocol database by consideration
5.2 Rules the tradeoff between cost and performance.
Rule 16. Introduce transducers between different pro-
The following are the most important rules for channel tocols. With busses selected, variable channels are then
mapping. mapped to allocated busses. For channels that connect PEs
Rule 14. Cluster components by closeness and com- poth in thg same cluster, they are mapped to th_e corres_pond-
patibility. The closeness can be defined as either the num-ng bus directly. For channels connecting PEs in two differ-

ber of channels or the total amount of traffic between PEs. €Nt clusters, they are mapped to both busses of the two clus-
The compatibility indicates whether two PEs can communi- ters and a transducer is inserted between these two busses.

cate using a common bus protocol. While custom PEs can
be connected to any protocol (thus are compatible with all 5.3 Examples

other PEs), IP or microprocessors usually can only accept o
their own fixed bus protocols. In the example shown in Figure 15, 5 PEs are connected

Rule 15. Select bus protocol for each clusterAfter with 4 channels. The closeness, defined as the amount of

clustering, the PEs in each cluster are allocated a bus tdraffic, and compatibility (shown with asterisk) are tabu-
connect among them. If the cluster includes a PE with alated. We start to cluster PEs by looking at closeness and
fixed protocol, this protocol is then selected to connect all compatibility. For example?ElandPE2are clustered to-

PEs in the cluster. If all PEs are synthesizable, we can selecgether because they are closest and compatible. In the same
way, PE4andPE5form a cluster andPE3itself becomes a

better design results. As we can seen, the flow enables ex-

5 tensive architecture exploration with minimum design effort
QeI 100 D from designers.
PE1 100 PE2 PE3 | PE4 PES5
(CBroc) - LEW] LB LB L) 7 Acknowledgments
The authors would like to thank Semiconductor Research
D7c. Closeness and Compatibility Matrix Corporation for its Support on this project_
PE1]|PE2|PE3|PE4|PES5
PE1
> Ti0s References
PE3| 100 | ©O
PE4[5+ | o | o [1] D. Gajski, J. Zhu, R. Biner, A. Gerstlauer, S. Zhao,
PES| 0 J o | 0 |4~ SpecC: Specification Language and Methodojogy

Kluwer Academic Publishers, March, 2000.

Figure 15. Channel Mapping Example. [2] A. Gerstlauer, R. Diner, J. Peng, D. Gajsksystem De-

cluster. SincePE1 has its own bus protocol, that protocol
(Busl) is used betwedPElandPE2 PE4andPE5are all
custom component, thus a flexible decision can be made to
select the desired bus (Bus3). For IP compoids3 its

own bus protocol (Bus2) is used. Chan@dlis mapped to
Buslbecause its connect PEs in the same cluster. By the
same reason, channe#t is mapped tdBus3 On the other
hand,C2is mapped to botBuslandBus2with transducer

IF2 in between becaudeElandPE4are in different clus-
ters. Similarly,C3is mapped to botBuslandBus3with
transducetF1 in between. The final channel mapping re-
sult is shown in Figure 16.

Final Architecture

Clustering PE3
PE1, PE2 -> Busl (P)
PE3 -> Bus2
PE4, PE5 -> Bus3 ﬁiﬂ
IF1
Channel Mapping PE1 PE2

C1 -> Busl (Proc)|gus1| [(HW)
C2 -> Busl, Bus2

C3 -> Busl, Bus3 IF2

C4 -> Bus3 PE4 PE5

(HW)| Bus3 [(HW)

Figure 16. Channel Mapping Result.

6 Conclusions

In this report, we presented the tasks of system level de-
sign. An interactive design flow can help designers perform
these tasks. The displays and suggested rules to use the dis-
plays at each design step were described and illustrated with
examples. Designers are not limited to the aforementioned
rules. New rules can be added to utilize the displays for

10

sign: A Practical Guide with Spe¢®&luwer Academic
Publishers, May, 2001.

