

SpecC for Beginners:
The Example of a Sounding Dice

Dirk Jansen

Technical Report ICS-00-14
Department of Information and Computer Science

University of California, Irvine
Irvine, Ca 92697-3425, USA

MAY 2000

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice Page 2

SpecC for Beginners:
The Example of a Sounding Dice

Dirk Jansen

Technical Report ICS-00-xx

Department of Information and Computer Science
University of California, Irvine
Irvine, Ca 92697-3425, USA

001-949-824-8919

d.jansen@ics.uci.edu

Abstract:

In this document the SpecC-language is demonstrated in a low complexity example with main features of the laguage explained
and evaluated. Purpose of this document is to give beginners a first feeling for the language constructs and its usage in actual
modelling. Allthough the language was not developed for these small tasks in general, it is well suited to cover all kind of
modelling tasks with the existing semantic. The example consist of several finite state maschines connected and communicating
with each other. The sounding dice example is taken from an existing design out of the authors course, normal used for student
education in the VHDL-classes of the University of Applied Science, Offenburg, Germany.

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice Page 3

CONTENTS:

INTRODUCTION 4

METHODOLOGY 4

THE TASK 5

SETTING UP THE MODEL 5

THE TESTBENCH 7

THE DICE MODEL 9

THE MAIN_FSM: A PUPPET IN A PUPPET 11

COMPILATION AND EXECUTING 13

RESULTS 13

CONCLUSION 15

REFERENCES 15

APPENDIX 16

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice Page 4

Introduction
SpecC is a new modeling language developed at the
Center for Embedded Computing Systems CECS by
Prof. Gajski [Gaj] within the last few years. The
language uses most of the C-language semantics with
additional features to allow system specification and
modelling. The intention is to give the user, which may
be familiar with the usage of the C-programming
language, a fast and high performance capability to
specify and model complex systems, this systems may
they be realized as embedded systems or as systems on
silicon (SOC).

The C-language was selected because there is a large
amount of existing software with many different types
of applications as well as a lot of existing tools for high
efficient programming. SpecC Technology Open
Consortium [STOC], with more than 30 members, has
been founded to standardize the language and to
further develop application areas and tools. Everybody
who is interested can download the SpecC compiler
from http://www.ics.uci.edu/~specC/ with detailed
documentation and examples. The book on SpecC
written by Gajski et.alt., Kluwer Accademic Publisher
[Gaj2], is the best source to get a first glance of the
methodology.

Before getting started, some remarks:

• SpecC is not intended to do detailed, cycle based
simulation on register transfer level (RTL) or gate
level, allthough it is possible to do that.

• SpecC uses sequential semantics on many tasks
and has a partly imperative- style, and in other
parts a declarative- style. There are significant
differences to the VHDL-style modeling.

• SpecC is mainly a behavioral description
methodology and not yet usable for direct behavior
synthezis. It is topic of further work to bridge this
gap between behavioral semantics and
synthezisable code. The behaviors are aimed to be
synthesized in hardware and software, not every
construct of the C-language can be reflected in
some hardware-assemblies.

SpecC is intended to be used to specify systems which
contain hardware and software. It is also intended to do
hardware / software codesign with design space

exploration and conceptional definition of complex,
interacting units.

Methodology
SpecC is a language. The design has to be captured in
an ASCII-text (SpecC-source) in the language
semantics. In the next step the source is compiled with
the SpecC-compiler to an executable object-code and
executed.

Graphical representation allows to get some overview
over the system partioning. Taken from [Gaj1], there
are some easy to understand pictorial views of the main
construction „behavior“. This shows properties of a
system-block, as well as can be used as a container for
sequential code. There are definite ports for variables
entering and leaving the behavior-container. The
pictorial view of such a construct is chosen as a
rectangle with rounded corners [Gaj3]. See Figure 1.

The identifier, or the name of the behavior is printed in
the upper left corner. The behavior contains a code in a

general sequential way, which may be represented by
some pictorial or textual description in the body of the
symbol. The entering of the behavior is marked with a
filled triangle on the upper border of the behavior-
scheme. The leaving point or, the point of completion
of the behavior, is marked by a black square. These
marks can be placed anywhere in the symbol

The above behavior-symbol in figure1 is a so-called
leaf-behavior. There are no further hierachical levels
below.

B_1

Completion point

Start of
behavior
execution

description

Name of
behavior

Figure 1: Graphical representation of a behavior

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 5

In general, the behavior is a compound- behavior,
consisting of several hierarchical levels. From
graphical representation, these child-behaviors are
drawn with the same symbols inside the parent
compound behavior. Child behaviors are instances of
behavior-templates, which are placed inside the
parents. They may be connected in parallel (par{ }-
construct) or in serial manner and may be again
compound behaviors etc., until there are only leaf-
behavior-childs on the lowest level of hierarchy.

The highest behavior in the hierarchy is the „Main“-
behavior, similar to the main() –function in each C-
program. Normaly, this Main-behavior contains the
testbench and the Device under Test (DUT), the system
which has to be evaluated.

Each SpecC-Program starts with execution of the
„Main“-behavior. The entering mark is the starting
point for all behaviors inside the main.

The Task
 To demonstrate the features of a lanuage it is well
advised to use an easy to understand example. The
example should not be a simple task in which
everybody knows the solution in advance. But it should
also not be too complex, to keep the reader interested
and enjoing the way the ideas are modeled. The
example should motivate him to do his own exercises.
The „sounding dice“-example, which is a game, is well
proven in student VHDL-education [FHO]. This
example exists as a schematic design, a VHDL-design
as well as a working VLSI-circuit [FHO]. Since it is
not possible, to show all features and constructs of
SpecC in one example, this tutorial is mainly targeting
fsm-related digital designs.

For constructing an electronic dice we need:

• a display, formed by seven LED’s, showing the
points of the dice (see Figure 2),

• a counter with 6 states, giving the points of the
dice,

• a clock, driving the counter.

• A button, which is pressed for a certain time,
letting the counter run.

The result is unpredictable (random) because of the
uncertainty of the time which the button remains down,
together with the high clock-frequency (only by human

use, not in simulation). It is even distributed in
statistical sense.

Figure 2: Block-diagram of the sounding, rolling dice.

A dice, designed in this simple way, will only get
boring laughter from gambling people, because the
result is directly presented after releasing the button. In
order to make it more interesting, we add some
additional requirements:

• The dice shall not stop rolling, after release of the
button, it shall „roll out“, meaning the display shall
show a sequence of points with a frequency going
down for some seconds until it stops at last on a
number. This roll out should last some seconds.

• During roll out, each new number should be
anounced by a „click“-sound.

• After roll out, there shall be a melody sound,
depending on the result. For a „six“ a 3 tone (or
more) victory-melody, for a 2,3,4,5 only two tones
(sorry, you lost…) and for a „one“ some other 3
tone melody.

• The results should be shown for a certain time after
stopping, after that a time-out should shut off the
LEDs to spare battery.

There may be some more specific requirements like
primary clock frequency, timing and frequency of the
sounds and the click-sound, roll out perfomance, and
power down etc.

Setting up the model
The first thing which must be thought of is, how to
handle the inputs and outputs of the system and how to
organize that which is commonly called a testbench.

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 6

Figure 3:Modell-setup with testbench

Figure 3 shows a symbolic representation of the
model-setup. As mentioned before, the Main –
behavior is worked out as the testbench for the DUT,
which is the behavior Dice. The testbench consists of
the input device, which is a button, a clock-generator
giving the main time reference and a monitor, which
captures the signal of the testbench and responds from
the DUT. Later we will see more of them. From the
graphics you see that all 4 behaviors are working in
parallel (concurrently) because they are existing
independently from each other. This is a batch
process, so it is not intended to make a real time
simulation. The simulation starts with entering the
Main and it ends with finishing the Main.

Lets have a look on the code for that (Figure 4):

//
////////////////////
// SpecC-Program of a dice with slow run out
dice2.sc
// Version No V 1.0
// 20.4.2000 Dirk Jansen
// simple testbench included
//
////////////////////
#include <stdio.h>
#include <sim.h>

#include "dice_header.h"
#include "dice_body.sc"
#include "monitor.sc"

//
///////////////////
// MAIN BEHAVIOR
//
///////////////////

behavior Main(void) //testbench
{
bool roll_flg= false,

button_flg= false,
lights= false,
time_out_flg= false;

bool nco_flg= false;

char speaker= '_';
int Displ_State= 7;
int Points= 9;
int Nfreq= 20,

accum= 254;

bit[6:0] LEDs= 0000000B;

event eclock;

//instances

Button Butt1(button_flg);

ClockGen ClockGen1(eclock);

Monitor Monitor1(eclock,button_flg,roll_flg,
nco_flg,time_out_flg,lights,Points,speaker,
Nfreq,accum,LEDs);

Dice Dice1(eclock,button_flg,nco_flg, roll_flg,
lights,time_out_flg, Points,speaker,
LEDs,Nfreq,accum);

// main

void main(void)
{

printf("run simulation\n");
pTrace=fopen("scc_traces.dat","w");

par{
Butt1.main();
ClockGen1.main();
Monitor1.main();

Dice1.main();
}

printf("\n\nfile scc_traces.dat written to
disc!\n\n\n");

fclose(pTrace);
}

};

Figure 4:-Main-behavior with the testbench

The program starts with the #includes directives for
including all the stuff needed to get the system run. It
is good practice to separate your code into different
files, such as they are presented below:

dice_header.h

dice_body.sc

monitor.sc

dice2.sc

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 7

These are the 4 files for the sources. The #includes
<stdio.h> and <sim.h> are standard-includes when
using the language. The suffix .sc is a SpecC-specific
suffix invented to distinguish SpecC-code from
common C-code-sources.

The included header file dice_header.h contains all the
declarations of the later used behaviors as well as the
global event EndofSim.Some constants such as
MAXSIMTIME, CYCLETIME, STARTDELAY,
TIMEOUT and BUTTONDNTIME, are also used to
control the simulation. It is good practice to put all
numerical simulation relevant constants here, so they
can easily be changed (These numbers may also be
imported via the command line, making the simulation
again more flexible). The name of the above constants
describe what they mean and what they are used for.

The Main-behavior (Figure 3) starts with the
declaration of the used variables. Because we use a
monitor on this high level of hierarchy, all variables
which we want to have a look on have to be defined
here and must be rooted to the related child-behaviors.
Variables which we are not interested in monitoring
may be declared on lower level of hierarchy.

A part of the declaration section is the declaration of
the child-behaviors, which are now instances of the
templates with the variables connecting the ports. The
name for the instances are taken from the template by
adding some numbering. Here the first instance of the
template button is called button1. There may be
more than one instance from the same template
behavior.

This section has something of a netlist. It describes the
interconnection of the instances via the variables.
Variables are not signals, although there is some
similarity with that and with the boolean- or bit-
constructs it may behave somewhat like a behavior.
But the C-language allows more transfer in the ports
than only signals. In behavior modeling this can be
effectively used for abstract formulations. We will later
see that it is no problem to transfer char-types or even
complete structures through the ports.

It also has to be mentioned that events have to be
normaly routed through the ports. An exception of this
rule is only the use of global variables, which should
be reserved for certain things. So, in this case where
we have a central clock defining the heartbeat of the
dice, the clock-event named eclock is declarated in the
Main and routed to all corresponding child-behaviors.

It is again good practice to name variables, behaviors
and events related to their type, so events shall start
with an „e..“, behaviors shall start with capitals etc.

The declaration section follows the main program.
From point of view of the C-language the main-
program is a definition of a sequential function and it is
handled as such. The behavior starts executing at the
beginning of the main(void). There may be additional
local declarations at this point. The following code
starts with conventional C-code for printing a message
to the terminal (printf(…)) and opening a file for
capturing the monitor-data. This is written in the main-
behavior but may also be done in the monitor-behavior.

The concurrent execution of the child-behaviors is
done by the SpecC-construct par { }. The main-
functions of the instanced behaviors are executed. The
construct ends, when all called main()-functions are
finished. There is a final message to the terminal and
closing of the opened file.

The simulation lasts as long as these behaviors are
alive. If these behaviors are never-ending, there is a
deadlock-situation and you get a warning from the
runtime-system, making a program abbort.
Consequentially this forces you to implement some
superviser in your testbench, as we will soon see.

The Testbench
The testbench (see Figure 3 and 4) is setup in the
Main-behavior. There the Dice-behavior is intanced
together with the the button- and the ClockGen-
behavior, which are needed to get the Dice rolling:

• Dice: The main subject to test,

• button: simulates the pressed buton with timing,

• ClockGen: gnerates the clock-heartbeat of the
system,

• monitor: catches the status of all variable with
each clock –event.

All codes which belong to the Dice-environment or
the testbench are in the included monitor.sc – file. We
will pick up some parts of this file, showing what can
be done with the SpecC-language.

The code in Figure 5 describes the clock generator,
emitting the main clock to the dice-model and to the
monitor, catching up all data with each clock event.

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 8

Clocking and timing is something which is not existent
in a conventional C-program. It makes sense to
simulate timeless, which many C-programmers do
every day. In the simulation of real things, time is a
dominant parameter. Things are responding on events
with certain behavior after certain time.

There is a general statement (int)now(), which picks up
the internal simulation time. The (int) is a cast
expression, allowing you to use this value as an
integer, starting with „0“. Sequential processing of
functions and statements, or whatsoever, do not need
(simulation) time. So, if there are no timing statements,
internal time will stay at zero forever. You know that
this is not very realistic. So SpecC contains some
constructs for representing time, first and most easy is:

Waitfor(DELAY);

which inserts a delay of so many internal simulation
unit timesteps as the constant DELAY says. With this
construct you may now be able to setup some
scheduling or asynchronous processing, which may be
realistic enough for representing some designs. More
detailed designs need a heartbeat, a central clock, or
maybe even more than only one clock.

The waitfor() construct only stops the behavior from
executing where the statement is placed. All others are
running on their own (if concurrent). So there is a
message mechanism via the event declaration, which
allows to notify a behavior that an event has taken
place:

notify e_abcd;

Please notice, events only make sense together with
timing and delay-statements. Events may be declared
as normal variables and routed in the same way.
Everybody who is on the line and has access to the
event, may react on it.

There is only one reaction type defined yet in SpecC:
wait e_abcd;

where e_abcd is the declared event. The actual
behavior where this statement is placed will be put on
wait until the event has taken place. This is done in a
simulation timescale, there is no waiting in reality.

If there is a behavior waiting on an event, but there is
no behavior active that may generate the event, there
will be a deadlock-warning and an abbort of the
program.

behavior ClockGen(out event clk)
{
void main(void)
{
do{

waitfor(CYCLETIME);//Cycletime defines time
notify (clk); // between clock-events

}while(SimActiv());
notify EndofSim;// main end of simulation,

return;
}
};

Figure 5 :Code of the ClockGen-Behavior

The clock generator in Figure 4 is now easily done
with these constructs. The behavior starts with a wait –
statement, blocking execution for a certain delay time.
After that, a notify message is generated. Because this
is conventional C-language, all this is done in a while-
loop which is executed as long as simulation lasts. For
this the function
SimActiv()

is used in which it is declared as bool and is defined as
(see Figure 6):
bool SimActiv()
{
return ((int)now()<MAXSIMTIME);
}

Figure 6: Function for comparing actual simulation
timewith a limit set by MAXSIMTIME

This is an easy comparison of the actual simulation
time with the constant MAXSIMTIME. The constant is
defined in the header.

This while loop loops in the ClockGen – code (Figure
5) until simulation time is finished. This behavior stays
active and generates after each delay, which is
CYCLETIME, an eclock-event. After finishing the
loop, or after simulation time ends, an EndofSim-event
is notified. This message can be effectively used to
finish all hanging behaviors and to leave the program
without error messages or deadlock-warnings.

This EndofSim- event is used in many places, it does
not do anything else than closing open behaviors. So it
makes sense, to put it off from the port-mappings and
declare this event as a global. You can do this also
with the eclock, if the system is similar and there are
many synchronous concurrently working blocks. Here
in the actual design, clocking has some functional
behavior, so it is not used in a global fashion.

The clock is, of course, scaled in a timescale which is
not predefined as nanoseconds, microseconds or

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 9

whatsoever. The linkage to your real timescale has to
be done by yourself. If you are using time constructs
and want to model some internal delays in the
behaviors, you are well advised to use a cycletime
which is larger than 1, i.e. 10 or more. Because this
will give you the timing resolution of your simulation.

The monitor (see Figure 7) is programmed in a straight
forward manner. It should be alive all the time. It also
contains this while loop with a wait-statement in the
beginning:
Do {

{ wait (Dckl,EndofSim);

…….

fprintf(pTrace,“ ……“, list of variable to print)

}while (SimActiv());

Figure 7: Code of the monitor-behavior

The fprintf(); statement writes all stuff which is
collected by the port to the disk-file. Here it is a text-
file for easy reading. Of course, it would be nice to
have a kind of trace-window, with cursors, zooming
etc, but this comfort will be there sometime in future.
Don’t try to send this information to the terminal, there
is a lot and it is gone! The monitor writes every clock-
event all the information which it finds at its ports to
the disk, so there will be some thousand lines of text.

We will make it a little more easier than it works in
reality. The existing dice runs with a clock-frequency
of 32 000Hz. Rollout lasts about 5 seconds, the melody
additional 4 seconds, timeout is programmed to 16
seconds. So there would be a minimum of 30 seconds
or about 1 million clock cycles to describe the detailed
behavior. A textfile of that length is handable, but
nobody would like it. Actualy you would have a
problem looking into that file with a standard editor.
So we have to simplify, which is done in such a way
that the clock frequency is radically put down to a 100
Hz level, and this allows you to see many effects. What
is not possible to simulate with that low frequency are
the sound outputs, which are symbolized here by
printing a character instead of emitting a sound.

The Dice Model
The Dice-model is a compound-behavior of four
behaviors:

• Main_fsm1

• Cntrl1

• Fsm_dice1

• Display1,

 These 4 behaviors consist again of sub-compound-
behaviors (see Figure 8 and 9). See the code:
behavior Dice(event clock_int,in bool button_flg,
out bool nco_flg, out bool roll_flg, out bool
lights,out bool time_out_flg, out int Points, out
char speaker,out bit[6:0] LEDs, out int Nfreq,out
int accum)
{
event DiceClock;

// Instances of used behaviors

Main_fsm Main_fsm1(clock_int,button_flg,nco_flg,
time_out_flg,Points, roll_flg,lights, speaker);

Cntrl Cntrl1(button_flg,DiceClock, clock_int,
roll_flg, nco_flg, Nfreq, accum, time_out_flg);

fsm_dice fsm_dice1(DiceClock, Points);

Display Display1(clock_int,Points,LEDs);

void main(void)
{

// concurrent operation

par {
Cntrl1.main();
fsm_dice1.main();
Display1.main();
Main_fsm1.main();

}

return;
}

};

Figure 8: Code of the “Dice”- compound - behavior

The behavior starts with the intanciasation of the child-
behaviors. The main() contains again a par{} statement
for concurrent execution of the child-behaviors. There
is no need for a while-loop, because this may be done
if needed in the child-behaviors. The dice finishes
when all the children have finished. An execution
finishes from child to parents.

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 10

Figure 9 :The “Dice”- compound behavior

Although there may be other partitioning possible of
the subject, the used one allows to demonstrate some
constructs and often uses modeling tasks.

behavior Cntrl(in bool En ,out event DiceClk,in
event clk, inout bool rollflg,out bool ncoflg, out
int Nfreq, out int accum,out bool time_out)

{ int t=0; //local time count

void main()
{

do{

wait clk,EndofSim ;// wait on clock-ev.

accum+=Nfreq; // basic NCO

if (accum > 255) {accum=0;
if (En) Nfreq+=2;
else Nfreq-=2 ;

// freq up or down

if (Nfreq > 31) Nfreq=31;
if (Nfreq <= 0)
{Nfreq=0; //limiting

ncoflg=true;

rollflg=false; // end of rolling out
}

notify(DiceClk); //generate NCO event
};

t++; if (t*CYCLETIME>=TIMEOUT)
time_out=true; //Timeout

}while(SimActiv());

return;
}
};

Figure 10 :The code for behavior “cntrl”, containing the
description of a numerical controlled oscillator (NCO) .

Main_fsm is a finite state machine behavior (Figure
7), using the SpecC-construct. This behavior controls
the other behaviors and interacts mainly with Cntrl.
Later, it will be discussed in more depth.

Cntrl is the behavior, which generates the secondary
roll-out dice-clock, using some NCO – ideas. It also
generates the timeout and some other flags for
controlling the Main_fsm (see Figure 10).

The behavior generates the ncoflg, which is a flag used
in the Main_fsm to go to the next state which is playing
the melody. This flag is set when the numerical
controlled oscillator (NCO) goes to 0, or better, after
roll out. This is the moment when the melody has to
start. This may also be signaled by an event, but the
finite state maschine construct in Main_fsm is only
level-sensitive and needs flags for decision making.

In general, a flag in this case is a better selection than
an event, which must be handled much more carefully.
A flag may again be easier to show in the monitor-file,
an event which can only be represented indirectly. The
event, generated here, is the dice_clock, which is
notified when the accum -variable reaches the
predefined limit of 256 and is reset to 0 (this is a very
simple form of NCO). The value Nfreq, which is added
with each eclock-event, defines the frequency of this
NCO. If the number is large, 256 is reached in few
accumulations, if Nfreq is small, it needs a larger
number of accumulations to reach 256. So if Nfrequ is
1, which is the lowest frequency, it needs 256
accumulations maximum or 2.5 seconds in our
simulation timescale to emit the dice-clock event
(which drives the dice-fsm).

Time-out-flag is also generated in this routine, although
it may be generated everywhere where there is a while-
loop waiting on eclock. From the system side, this is
again a finite state machine (a counter), flagging some
status-signal for controlling something. Here the signal
is used to shut off the lights in the related behavior.
behavior fsm_dice(in event Dclk, inout int state)
{ // main dice behavior,non synchr

void main(void)
{ do

{
wait(Dclk,EndofSim);
state++; if (state > 6) state=1;

}while(SimActiv());
return;
}

};

 Figure 11 :Code of the” fsm_dice” - behavior, describing a
state machine with 6 states

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 11

fsm_dice is another state machine, but it uses a
different approach for description (see Figure 11) . It
contains the counter only and works very straight
forward.

The behavior is blocked at the beginning by the wait-
statement, which waits on the Dclk-event (which is not
the eclock). As before described, it contains the while
loop, executing this behavior every time there is a
Dclk-event. The code contains a simple accumulation
of the variable state and resetting it to 1 if the value
amounts more than 6. This is a ring counter with 6
states, synchronized by Dclk and showing its states at
the ports. This construction can be easily adopted to
describe any kind of finite-state maschine, moore- or
mealy-type.

Display is the easiest type of behavior (see Figure
12). This behavior only describes a mapping of the
(int) –states to a binary representation. It shall
demonstrate the handling of bit-vectors in SpecC and
does not contain any timing. Also the behavior
contains the while-loop for continous existence and
executes with each eclock-event:
behavior Display(in event Dclk, in int Pts,
out bit[6:0] LDs)
{

void main(void)
{
do{
wait Dclk,EndofSim;

switch (Pts)
{

case 1: LDs=0001000B;break;
case 2: LDs=1000001B;break;
case 3: LDs=1001001B;break;
case 4: LDs=1010101B;break;
case 5: LDs=1011101B;break;
case 6: LDs=1110111B;break;

default: LDs=0000000B;break;
};

}while (SimActiv());
return;
}
};

Figure 12 :Code of the “Display” - behavior

The mapping is done in a classical way using the C-
switch construct, giving a table-like concentrated code.
The bit-declarated variables are directly loaded with
the bit-constants written in a C-conformal style.

The Main_fsm: A Puppet in a Puppet
The most complicated behavior is the Main_fsm,
which will now be discussed in more detail. It is again
a compound-behavior, hosting the fsm{} construct of
the SpecC-language. Figure 13 shows the code and
Figure 14 gives some graphical representation of the
Main_fsm-behavior.
behavior Main_fsm(in event clock_int,in bool
button,in bool nco_null,in bool time_out,in int
pts, out bool roll_dice_flg,out bool lights_on,
out char speaker)
{
Stop Stop1(clock_int,button,lights_on);
RollDice RollDice1(clock_int,roll_dice_flg);
Melody Melody1(pts,speaker);
WaitOnTime WaitOnTime1(clock_int);
LightsOff LightsOff1(lights_on);

void main(void)
{
fsm{

Stop1 : {if (button) goto RollDice1;goto Stop1;}
RollDice1:{if (nco_null) goto Melody1;
goto RollDice1;}
Melody1 : {goto WaitOnTime1;}
WaitOnTime1 : {if (time_out) goto LightsOff1;

goto WaitOnTime1;}
LightsOff1 : {break;}

};
return;
}
}; //end behavior main_fsm

Figure 13:Code of the „Main-fsm“- behavior. This behavior
is a compound - behavior consisting of 4 subbehaviors.

After instanciation of the behaviors Stop1,RollDice1,
Melody1, WaitOnTime1 and LightsOff1, which
represent the main successive state-behaviors of the
„Dice“-system, the SpecC-construct fsm{} is used to
schedule the performance.

• Stop1 is the state at the beginning, before any
button is pressed.

• RollDice1 is the state, when the dice is rolling:
rolling-up as well as rolling-down, until it stops.

• Melody1 is a compound behavior containing the
behaviors for generating the sound sequences.

• WaitOnTime1 describes the situation when the
dice has stopped and displays the point-results.

• LightsOff1 is the situation when the display is shut
off after all.

The controlling flags are button, which originates from
the testbench. nco_null, originates from the Cntrl-
behavior and signals the rollout of the dice and

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 12

time_out, again from Cntrl. These flags are used to
transfer from one (state-) behavior to the next. It stays
in the behavior, if the flag is false. It is important to
understand that there is no event causing this change in
behavior flow but the flags coming in from the ports.
All synchronization which may be needed has to be
done in the child behaviors.

Let us look on the code of the first child behavior
Stop1. See Figure 15:
behavior Stop (in event clk,in bool but, out bool
lights)
{
void main(void)
{wait clk,EndofSim;
if (but) lights=true; else lights=false;
printf("s");
return;
}
};

Figure 15 :Code for “Stop”- behavior

In the beginning this behavior contains the
synchronization mechanism of a wait-statement. It
waits for the eclock-event, which is the main clock.
This behavior is processed synchronous to the main
clock. But there is no while-loop and there should not
be a while-loop.. After sensing the eclock-event, the
behavior-statements are processed sequentially which
is switching the lights on. For information for the user
only, it prints an „s“ (like stop-state) to the terminal.
You can conclude from the terminal-output shown
later, that this behavior is processed again and again as
long as the button is pressed (counted in simulation
cycles), giving a long „ssss…“ in the terminal output.
The „goto“- statement in the fsm{} construct points to
the same behavior building a loop if the condition is
not fullfilled. This is equivalent to a loop on itself in a
state-bubble-diagram.

If one tries to take the wait statement from the loop, he

Figure 14: The „Main_fsm“- compound behavior

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 13

or she will get an infinite loop here, blocking out the
overall program (only ^C helps). The same happens, if
one tries to put into the behavior a fscan() function,
getting something from the keyboard. This would be
nice for interactivity, but keyboard is old fashion, so
there will be a solution for that with a framework. It
should be marked up as a rule, never to introduce a
stop-loop into the behavior of a fsm – construct, which
points on itself.

The child-behaviors of the fsm{} must not be
synchronized. As an example the Melody – behavior
Figure 16 may be taken. This behavior is only
processed once so it doesn’t need synchronization:
behavior Melody(in int pts)

{

void main(void)
{
waitfor(1); //setup time
printf("\nmelody out\n");

switch(pts) {
case 1: Sound_A.main(); Sound_B.main();
Sound_C.main(); break;
case 2: Sound_D.main();Sound_E.main();break;
case 3 : Sound_D.main();Sound_E.main();break;
case 4 : Sound_D.main();Sound_E.main();break;
case 5 : Sound_D.main();Sound_E.main();break;
case 6 :Sound_F.main();Sound_G.main();
sound_H.main(); break;

default : break;
};

return;
}

};

Figure 16 :Code of behavior “Melody” as an example for
behavior sequencing

 This behavior is a good example for serial processing
of child-behaviors, such as the behavior Sound. Sound
should create a sound, but in lack of interactivity only a
character is output here. Melody is called with a
parameter, which is used in the switch-statement to
control the flow to the child-behaviors. So with pts =
„6“ there is a 3 - tone sound sequence. With 2,3,4,5
another sequence consists only of 2 tones. Each child
Sound_A, Sound_B …- behavior is an instance of the
template Sound, which is parameterized by a value
passed through the port. Of course, the same may be
done more easily using a C-function construct, but it is
done here for demonstation of serial activation.

Compilation and Executing
After setting up the code, the source files are compiled
with

 > scc dice2

where scc is the call for the compiler and dice2 is the
main program source with suffix .sc. The header and
all other files must be in the same directory. They are
included in the compilation via the #include directives
in the code. There are a lot of options together with the
compiler call. Look into the man-pages or the help.
After solving all error- and warning problems, (there
may be a lot of them in the beginning), the compiler
generates the following files:

dice2.si intermediate representation

dice2.cc C++ output file

dice2.o linkable objectfile

dice2 executable file.

The file with the suffix .si is an intermediate file for
experts only. The main output of the scc – compiler is
the C++ -file with the suffix .cc. All SpecC-code is
translated to C++-code. This code is than further
processed using a standard C++ compiler,(i.e. the
gnu++), which is done here in the makefile, getting out
an executable which may be processed in the usual
manner.

Results
The execution of the dice2 – Simulation generates the
following terminal screen Figure 17:

run simulation
sssss…………………………………………………………………………………………………….
………………………………………………………………………………………..
melody out
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,

file scc_traces.dat written to disc!

Figure 17 : Terminal screen, executing the dice-simulation

After simulation-start the program prints out the first
message „run simulation“, which we programmed in
the beginning. The following five „s“ are generated by
the Stop1-behavior, as discussed before. This is,
because we programmed a STARTDELAY = 10, with
CYCLETIME = 2, 5 times the Stop1-behavior is
processed. The following dots „.“ are a similar output
from the RollOut1-behavior, printing each time a dot

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 14

when RollOut1 is active. After that there is a short
message when the melody is produced. This behavior
is processed only once. Now the WaitOnTime1-state is
entered, each time printing a comma „ ‚ „ . After time-
out, all behaviors are closed and the message „file
scc_traces.dat written to disc! “ is send to the
terminal.

So look on the results:
2	0 0 0 0 0	9 _	18 0	0000000b
4	0 0 0 0 0	1 _	18 0	0000000b
6	0 0 0 0 0	1 _	18 36	0001000b
8	0 0 0 0 0	1 _	18 36	0001000b
10	1 1 0 0 1	1 _	18 72	0001000b
12	1 1 0 0 1	1 _	18 72	0001000b
14	1 1 0 0 1	1 _	18 108	0001000b
16	1 1 0 0 1	1 _	18 108	0001000b
18	1 1 0 0 1	1 _	18 144	0001000b
20	1 1 0 0 1	1 _	18 144	0001000b
22	1 1 0 0 1	1 _	18 180	0001000b
24	1 1 0 0 1	1 _	18 180	0001000b
26	1 1 0 0 1	1 _	18 216	0001000b
28	1 1 0 0 1	1 _	18 216	0001000b
30	1 1 0 0 1	1 _	18 252	0001000b
32	1 1 0 0 1	1 _	18 252	0001000b
34	1 1 0 0 1	2 _	20 20	1000001b
36	1 1 0 0 1	2 _	20 20	1000001b
38	1 1 0 0 1	2 _	20 60	1000001b
40	1 1 0 0 1	2 _	20 60	1000001b
42	1 1 0 0 1	2 _	20 100	1000001b
44	1 1 0 0 1	2 _	20 100	1000001b
46	1 1 0 0 1	2 _	20 140	1000001b
48	1 1 0 0 1	2 _	20 140	1000001b
50	1 1 0 0 1	2 _	20 180	1000001b
52	1 1 0 0 1	2 _	20 180	1000001b
54	1 1 0 0 1	2 _	20 220	1000001b
56	1 1 0 0 1	2 _	20 220	1000001b
58	1 1 0 0 1	2 _	22 0	1000001b
60	1 1 0 0 1	3 _	22 0	1000001b
62	1 1 0 0 1	3 _	22 44	1001001b
64	1 1 0 0 1	3 _	22 44	1001001b
66	1 1 0 0 1	3 _	22 88	1001001b
68	1 1 0 0 1	3 _	22 88	1001001b
70	1 1 0 0 1	3 _	22 132	1001001b
72	1 1 0 0 1	3 _	22 132	1001001b
74	1 1 0 0 1	3 _	22 176	1001001b
76	1 1 0 0 1	3 _	22 176	1001001b
78	1 1 0 0 1	3 _	22 220	1001001b
80	1 1 0 0 1	3 _	22 220	1001001b
82	1 1 0 0 1	3 _	24 0	1001001b
84	1 1 0 0 1	4 _	24 0	1001001b
86	1 1 0 0 1	4 _	24 48	1010101b
88	1 1 0 0 1	4 _	24 48	1010101b
90	1 1 0 0 1	4 _	24 96	1010101b
92	1 1 0 0 1	4 _	24 96	1010101b
94	1 1 0 0 1	4 _	24 144	1010101b
96	1 1 0 0 1	4 _	24 144	1010101b
98	1 1 0 0 1	4 _	24 192	1010101b
100	1 1 0 0 1	4 _	24 192	1010101b
102	1 1 0 0 1	4 _	24 240	1010101b
104	1 1 0 0 1	4 _	24 240	1010101b

Figure 18: Results of simulation (from timestep 1 to timestep
104), showing simulation start, taken from file scc_trace.dat.

The first column shows the simulation time. Defined as
10 msec each, only every second mark is printed
because of CYCLETIME = 2. Each row is an eclock-
event. The next five collumns are the flags:

button rollflg ncoflg tioutflg light
With simulation time 10, which is after the
BUTTONDELAY = 10, the button-flag goes to 1 and
also the rollflag which controls the „click-sound“goes
to 1. The usage of the rollflag is no loger discussed
here. Also light goes to 1 meaning the LEDs are
switched on.
1716	0 1 0 0 1	6 _	1 245	1110111b
1718	0 1 0 0 1	6 _	1 247	1110111b
1720	0 1 0 0 1	6 _	1 247	1110111b
1722	0 1 0 0 1	6 _	1 249	1110111b
1724	0 1 0 0 1	6 _	1 249	1110111b
1726	0 1 0 0 1	6 _	1 251	1110111b
1728	0 1 0 0 1	6 _	1 251	1110111b
1730	0 1 0 0 1	6 _	1 253	1110111b
1732	0 1 0 0 1	6 _	1 253	1110111b
1734	0 1 0 0 1	6 _	1 255	1110111b
1736	0 1 0 0 1	6 _	1 255	1110111b
1738	0 0 1 0 1	1 a	0 0	0001000b
1740	0 0 1 0 1	1 a	0 0	0001000b
1742	0 0 1 0 1	1 a	0 0	0001000b
1744	0 0 1 0 1	1 a	0 0	0001000b
1746	0 0 1 0 1	1 a	0 0	0001000b
1748	0 0 1 0 1	1 a	0 0	0001000b
1750	0 0 1 0 1	1 a	0 0	0001000b
1752	0 0 1 0 1	1 a	0 0	0001000b
1754	0 0 1 0 1	1 a	0 0	0001000b
1756	0 0 1 0 1	1 a	0 0	0001000b
1758	0 0 1 0 1	1 a	0 0	0001000b
1760	0 0 1 0 1	1 a	0 0	0001000b
1762	0 0 1 0 1	1 a	0 0	0001000b
1764	0 0 1 0 1	1 a	0 0	0001000b
1766	0 0 1 0 1	1 a	0 0	0001000b
1768	0 0 1 0 1	1 a	0 0	0001000b
1770	0 0 1 0 1	1 a	0 0	0001000b
1772	0 0 1 0 1	1 a	0 0	0001000b
1774	0 0 1 0 1	1 a	0 0	0001000b
1776	0 0 1 0 1	1 a	0 0	0001000b
1778	0 0 1 0 1	1 a	0 0	0001000b
1780	0 0 1 0 1	1 a	0 0	0001000b
1782	0 0 1 0 1	1 a	0 0	0001000b
1784	0 0 1 0 1	1 a	0 0	0001000b
1786	0 0 1 0 1	1 a	0 0	0001000b
1788	0 0 1 0 1	1 b	0 0	0001000b
1790	0 0 1 0 1	1 b	0 0	0001000b
1792	0 0 1 0 1	1 b	0 0	0001000b
1794	0 0 1 0 1	1 b	0 0	0001000b
1796	0 0 1 0 1	1 b	0 0	0001000b

Figure19: Results of simulation (from timestep 1716 to
1796), showing melody output, selection from scc_trace.dat.

Next column shows the points from the dice-counter,
starting to run up. NCO- preformance is shown in the 2
next columns, with the initial start frequency Nfreq set
to 18 in the beginning. The accum-value of the NCO
starting with 0 and incrementing by the value of Nfreq,
is 18 in the beginning. At timestamp 34 the NCO is

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 15

reset and a dice_clk-event is generated, causing the
dice counter to count to points = 2 etc.The last two
columns show the bits of the LEDs, converted to
bitvector from points. The overall scc_traces.dat – file
is 1250 lines long, there shall be only a one second
slice shown

This slice taken from the output file shows the
situation, when rollout is finished, ncoflg is set (2nd
column) and the melody, which is shown here by the
character „a“, later „b“ etc. is put to the output.

Figure 20: Standard-cell ASIC of the "Sounding Dice",
taken from the authors laboratory [FHO]

The trace-file allows us to study or optimize the
behavior of the whole system, which is the main task
of system simulation. On the other side, it is clear from
this example that there have to be more easy to use
tools for monitoring and stimulating the simulation.
There have to be some interactivity, because it is
difficult to decide, if the melody „a,b,c“ sounds better
than „f,g,h“. You really have to hear it! The same is
with the timing of roll-out, time-out etc.. Everywhere a
human interface is involved.

Figure 21: Chip-card size printed circuit board with the
"Sounding Dice"-ASIC (in the middle), a speaker (right) and
a battery (left), taken from the authors laboratory [FHO].

The dice-circuit may be further refined and synthezised
to VHDL and placed in a standard-cell design ASIC

(see Figure 20). The ASIC may then be placed on a
printed circuit board with a battery, a ceramic speaker
and a button (see Fig 21). Both pictures are taken from
the existing design [FHO] and [Jan]. The „Sounding
Dice“-design was awarded as the second best
student design on the EUROCHIP-conference 1994 in
Dresden, Germany.

Conclusion
 This report demonstrates the easy to understand
example of a sounding and rolling dice main
programming constructs of the SpecC – language. The
behaviors of the example are discussed and detailed.
Advice to organize and setup the program are given.
The performance of the main features of the „sounding
dice“ are demonstrated in a text-file, generated by the
program as a monitor. The system may be optimized
and refined in further design steps. This report is
intended as a tutorial to the language. It has shown how
to model a system, to describe it in the SpecC-language
and to simulate it. The complete files are given in the
appendix.

References

[Gaj1] Daniel D. Gajski, Gaurav Aggarwal, En-
Shou Chang, Rainer Domer et.alt.:
„Methodology for Co-Design of
Embedded Systems“. UC Irvine, Technical
Report ICS-TR-98-02, March 1998.

[Gaj2] Daniel D. Gajski, Jianwen Zhu,
et.alt.:“SpecC Specification language and
Methodology“, Kluwer Academic
Publishers, Boston 2000.

[Gaj3] Daniel D. Gajski,Frank Vahid, Sanjiv
Narayan, Jie Gong: „Specification and
Design of Embedded Systems“. Prentice
Hall, Inc., Englewood Cliffs, 1994

[STOC] http://www.specc.gr.jp/eng/index.htm

[FHO] http://www.asic.fh-offenburg.de

[Jan] Dirk Jansen et. alt.: „Handbuch der
Electronic-Design-Automation“, Hanser
Verlag, Leipzig, coming out 10/ 2000.

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 16

Appendix
#if !dice_header
#define dice_header dice_header.h

//Macros and Constants

#define MAXSIMTIME 2500
#define BUTTONDNTIME 500
#define STARTDELAY 10
#define CYCLETIME 2
#define TIMEOUT 2200

// utility function declarations

bool SimActiv();

// file declaration

FILE *pTrace;

// globals

event EndofSim;

//////////////// behavior
declarations//////////////////////////////////////
// testbench
behavior Button(out bool Bstate);
behavior ClockGen(out event clk);
behavior Monitor(in event Dclk, in bool enable,in
bool rollflg, in bool ncoflg,in bool toflg,

in bool lightflg, in int state,
in char spk,

in int freq, in int accum,in
bit[6:0] Ls);
// Dice DUT

behavior Dice(event clock_int,in bool
button_flg,out bool nco_flg,

out bool roll_flg, out bool
lights,out bool time_out_flg,

out int Points,out char speaker,out
bit[6:0] LEDs,

out int Nfreq,out int accum);

behavior Cntrl(in bool En,out event DiceClk,in
event clk,

inout bool rollflg,out bool ncoflg,
out int Nfreq, out int accum,out

bool time_out);

behavior fsm_dice(in event clk, inout int state);

behavior Main_fsm(in event clock_int,in bool
button,in bool nco_null,

in bool time_out,in int pts,
out bool roll_dice_flg,out bool

lights_on,
out char speaker);

behavior Stop (in event clk,in bool but,out bool
lights);
behavior RollDice(in event clk,out bool
roll_dice_flg);
behavior Melody(in int pts,out char speaker);
behavior Sound(in char ch,out char spk);
behavior WaitOnTime(in event clk);
behavior LightsOff(inout bool lght);

behavior Display(in event clk, in int Pts, out
bit[6:0] LDs);

#endif

////////////// utility functions, body
////////////////////////////////////

bool SimActiv()
{
return ((int)now()<MAXSIMTIME);
}
///////////////////// Button
///

behavior Button(out bool Bstate) // generates
timing-pattern
{ bool ButtonDn=true;

int Zeit = BUTTONDNTIME;

void main(void)
{
waitfor(STARTDELAY);
Bstate=ButtonDn;
waitfor(Zeit);
Bstate=!ButtonDn;

}
};

behavior ClockGen(out event clk)
{
void main(void)
{
do{

waitfor(CYCLETIME);
//Cycletime defines time
notify (clk); //

between clock-events
}while(SimActiv());

notify EndofSim; //
main end of simulation, global
return;
}
};
///////////////////// Monitor
//

behavior Monitor(in event Dclk, in bool enable,in
bool rollflg, in bool ncoflg,in bool toflg,

in bool lightflg, in int state,
in char spk,

in int freq, in int accum,in
bit[6:0] Ls)
{

// utility function to print bitvectors

const char *Bit2String(bit[6:0] b)
{
static char s[8];
int i;

for(i=0;i<7;i++)
s[i]= (b[6-i] ?'1':'0');
s[7]='\0';

return(s);
}

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 17

void main(void)
{
do
{
wait(Dclk,EndofSim); //

synchronization

fprintf(pTrace,"| %5d |%d %d %d %d %d | %d %c
|%3u %3u | %sb |\n",

(int)now(),(int)enable,(int)rollflg,(int)ncoflg,(i
nt)toflg,

(int)lightflg, state, spk,
freq,accum,Bit2String(Ls));

// write
portvariables to disc
} while (SimActiv());
return;
}

};

//
////////////////////
// SpecC-Program of a dice with slow run out
dice2.sc
// Version No V 1.0
// 20.4.2000 Dirk Jansen
// simple testbench included
//
////////////////////
#include <stdio.h>
#include <sim.h>

#include "dice_header.h"
#include "dice_body.sc"
#include "monitor.sc"

//
///////////////////
// MAIN BEHAVIOR
//
///////////////////

behavior Main(void) //testbench
{
bool roll_flg= false,

button_flg= false,
lights= false,
time_out_flg= false;

bool nco_flg= false;

char speaker= '_';
int Displ_State= 7;
int Points= 9;
int Nfreq= 20,

accum= 254;

bit[6:0] LEDs= 0000000B;

event eclock;

//instances

Button Butt1(button_flg);
ClockGen ClockGen1(eclock);
Monitor

Monitor1(eclock,button_flg,roll_flg,nco_flg
,time_out_flg,lights,

Points,speaker,
Nfreq,accum,LEDs);
Dice

Dice1(eclock,button_flg,nco_flg,roll_flg,li
ghts,time_out_flg,

Points,speaker,LEDs,Nfreq,accum);

// main

void main(void)
{

printf("run simulation\n");
pTrace=fopen("scc_traces.dat","w");

par{
Butt1.main();
ClockGen1.main();
Monitor1.main();

Dice1.main();
}

printf("\n\nfile scc_traces.dat written to
disc!\n\n\n");

fclose(pTrace);
}

};

// //////////////////////Sub-
Behaviors//////////////////////////////////

behavior Dice(event clock_int,in bool
button_flg,out bool nco_flg,

out bool roll_flg, out bool
lights,out bool time_out_flg,

out int Points, out char speaker,out
bit[6:0] LEDs,

out int Nfreq,out int accum)
{
event DiceClock;

// Instances of used behaviors

Main_fsm
Main_fsm1(clock_int,button_flg,nco_flg,time

_out_flg,Points,
roll_flg,lights,

speaker);

Cntrl
Cntrl1(button_flg,DiceClock,clock_int,

roll_flg,nco_flg, Nfreq, accum,
time_out_flg);

fsm_dice fsm_dice1(DiceClock, Points);

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 18

Display Display1(clock_int,Points,LEDs);

void main(void)
{

// concurrent operation

par {
Cntrl1.main();
fsm_dice1.main();
Display1.main();
Main_fsm1.main();

}

return;
}

};

behavior Cntrl(in bool En ,out event DiceClk,in
event clk,

inout bool rollflg,out bool ncoflg,
out int Nfreq, out int accum,out

bool time_out)

{ int t=0; //local
timecount

void main()
{

do{

wait clk,EndofSim ; //
wait on clock-event

accum+=Nfreq;
// basic NCO

if (accum > 255) {accum=0;
if (En) Nfreq+=2;
else Nfreq-=2 ;

// freq up or down

if (Nfreq > 31) Nfreq=31;
if (Nfreq <= 0) {Nfreq=0;

//limiting
ncoflg=true;

rollflg=false; // end of rolling out
}

notify(DiceClk);
//generate NCO event

};

t++; if (t*CYCLETIME>=TIMEOUT)
time_out=true; //Timeout

}while(SimActiv());

return;
}
};

behavior Main_fsm(in event clock_int,in bool
button,in bool nco_null,

in bool time_out,in int pts,
out bool roll_dice_flg,out bool

lights_on,
out char speaker)

{
Stop Stop1(clock_int,button,lights_on);
RollDice RollDice1(clock_int,roll_dice_flg);
Melody Melody1(pts,speaker);
WaitOnTime WaitOnTime1(clock_int);
LightsOff LightsOff1(lights_on);

void main(void)
{

fsm{

Stop1 : {if (button) goto
RollDice1;goto Stop1;}

RollDice1 : {if (nco_null)
goto Melody1;goto RollDice1;}

Melody1 : {goto
WaitOnTime1;}

WaitOnTime1 : {if (time_out)
goto LightsOff1; goto WaitOnTime1;}

LightsOff1 : {break;}

};

return;
}
}; //end behavior main_fsm

behavior Stop (in event clk,in bool but, out bool
lights)
{
void main(void)
{wait clk,EndofSim;
if (but) lights=true; else lights=false;
printf("s");
return;
}
};

behavior RollDice(in event Dclk,out bool
roll_dice_flg)
{

void main(void)
{

roll_dice_flg=true;
printf(".");
wait Dclk;

return;}
};

behavior Melody(in int pts,out char speaker)
{

char
a='a',b='b',c='c',d='d',e='e',f='f',g='g',h='h';

Sound Sound_A(a,speaker),

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 19

Sound_B(b,speaker),
Sound_C(c,speaker),
Sound_D(d,speaker),
Sound_E(e,speaker),
Sound_F(f,speaker),
Sound_G(g,speaker),
Sound_H(h,speaker);

void main(void)
{
waitfor(1); //setup time
printf("\nmelody out\n");
switch(pts) {

case 1 :
Sound_A.main();Sound_B.main();Sound_C.main();break
;

case 2 :
Sound_D.main();Sound_E.main();break;

case 3 :
Sound_D.main();Sound_E.main();break;

case 4 :
Sound_D.main();Sound_E.main();break;

case 5 :
Sound_D.main();Sound_E.main();break;

case 6 :
Sound_F.main();Sound_G.main();Sound_H.main();break
;

default : break;
};

return;
}

};

behavior Sound(in char ch,out char spk)
{
void main(void)
{

spk=ch;
waitfor(50); // sound ch for 50 units
spk='_';

return;
}

};

behavior WaitOnTime(in event clk)
{
void main(void)
{
wait clk,EndofSim;
printf(",");
return;
}
};

behavior LightsOff(inout bool lght)
{
void main(void)
{
lght=false;

return;
}
};

behavior fsm_dice(in event Dclk, inout int state)

{ // main dice
behavior,non synchr

void main(void)
{ do

{
wait(Dclk,EndofSim);
state++; if (state > 6) state=1; // on

trigger

}while(SimActiv());
return;
}
};

behavior Display(in event Dclk, in int Pts, out
bit[6:0] LDs)
{

void main(void)
{
do{
wait Dclk,EndofSim;

switch (Pts)
{

case 1: LDs=0001000B;break;
case 2: LDs=1000001B;break;
case 3: LDs=1001001B;break;
case 4: LDs=1010101B;break;
case 5: LDs=1011101B;break;
case 6: LDs=1110111B;break;

default: LDs=0000000B;break;
};

}while (SimActiv());
return;
}
};

2	0 0 0 0 0	9 _	18 0	0000000b
4	0 0 0 0 0	1 _	18 0	0000000b
6	0 0 0 0 0	1 _	18 36	0001000b
8	0 0 0 0 0	1 _	18 36	0001000b
10	1 1 0 0 1	1 _	18 72	0001000b
12	1 1 0 0 1	1 _	18 72	0001000b
14	1 1 0 0 1	1 _	18 108	0001000b
16	1 1 0 0 1	1 _	18 108	0001000b
18	1 1 0 0 1	1 _	18 144	0001000b
20	1 1 0 0 1	1 _	18 144	0001000b
22	1 1 0 0 1	1 _	18 180	0001000b
24	1 1 0 0 1	1 _	18 180	0001000b
26	1 1 0 0 1	1 _	18 216	0001000b
28	1 1 0 0 1	1 _	18 216	0001000b
30	1 1 0 0 1	1 _	18 252	0001000b
32	1 1 0 0 1	1 _	18 252	0001000b
34	1 1 0 0 1	2 _	20 20	1000001b
36	1 1 0 0 1	2 _	20 20	1000001b
38	1 1 0 0 1	2 _	20 60	1000001b
40	1 1 0 0 1	2 _	20 60	1000001b
42	1 1 0 0 1	2 _	20 100	1000001b
44	1 1 0 0 1	2 _	20 100	1000001b
46	1 1 0 0 1	2 _	20 140	1000001b
48	1 1 0 0 1	2 _	20 140	1000001b
50	1 1 0 0 1	2 _	20 180	1000001b
52	1 1 0 0 1	2 _	20 180	1000001b
54	1 1 0 0 1	2 _	20 220	1000001b
56	1 1 0 0 1	2 _	20 220	1000001b
58	1 1 0 0 1	2 _	22 0	1000001b

Dirk Jansen SpecC for Beginners, the Example of a Sounding Dice page 20

60	1 1 0 0 1	3 _	22 0	1000001b
62	1 1 0 0 1	3 _	22 44	1001001b
64	1 1 0 0 1	3 _	22 44	1001001b
66	1 1 0 0 1	3 _	22 88	1001001b
68	1 1 0 0 1	3 _	22 88	1001001b
70	1 1 0 0 1	3 _	22 132	1001001b
72	1 1 0 0 1	3 _	22 132	1001001b
74	1 1 0 0 1	3 _	22 176	1001001b
76	1 1 0 0 1	3 _	22 176	1001001b
78	1 1 0 0 1	3 _	22 220	1001001b
80	1 1 0 0 1	3 _	22 220	1001001b
82	1 1 0 0 1	3 _	24 0	1001001b
84	1 1 0 0 1	4 _	24 0	1001001b
86	1 1 0 0 1	4 _	24 48	1010101b
88	1 1 0 0 1	4 _	24 48	1010101b
90	1 1 0 0 1	4 _	24 96	1010101b
92	1 1 0 0 1	4 _	24 96	1010101b
94	1 1 0 0 1	4 _	24 144	1010101b
96	1 1 0 0 1	4 _	24 144	1010101b
98	1 1 0 0 1	4 _	24 192	1010101b
100	1 1 0 0 1	4 _	24 192	1010101b
102	1 1 0 0 1	4 _	24 240	1010101b
104	1 1 0 0 1	4 _	24 240	1010101b

……

