
Specification and Validation of New Control Algorithms
for Electric Drives Using SpecC Language

Slim Ben Saoud
L.E.C.A.P.-E.P.T./ I.N.S.A.T.

B.P. 676, 1080 Tunis Cedex, TUNISIA
SlimBenSaoud@fulbrightweb.org

Daniel D. Gajski and Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract-- In the traditional way, developers of new
control algorithms validate their studies by simulation
using standard language (C, C++, MATLAB, …).
Therefore, designers of the control devices have to
translate this specification from the original language
(standard language) to the co-design methodology
language. This introduces a time/schedule delay.
In this work, we propose to use the SpecC language to
specify the whole motor drive system that includes
control algorithms, I/O modules and Process to control.
In contrast to other languages, the SpecC allows to
specify the system functionality in a clear and precise
manner and the obtained specification, used for
simulation, will serves, without the need for tedious
rewrites, as the input to the synthesis and exploration
stages in the SpecC design methodology.

Keywords-- Electric Drives, Control, Specification,
Validation

I. INTRODUCTION

Today, motor control is being a vast market (estimated to be
$5 billion annually for motors and motor controllers [1]) and
the motor control industry is being a strong aggressive sector.
Each industry to remain competitive has to answer the
customer and governments demands for lower cost, greater
reliability, environmental concerns regarding power
consumption, emitted radiation and requirements for greater
accuracy… These demands are achievable only by the use of
sophisticated control algorithms. Therefore, developments are
usually done according to two fields:

- Control algorithms research: Motor control
researchers are increasingly developing new
sophisticated control algorithms to increase
performances: i.e. Sensorless control, self-adaptive
control, Neural network control, Fuzzy logic control
[2,3,4]… These developments are always characterized
by a growth of complexity and needs more performance
devices.

- Control device development: Motor control circuit
designers are increasingly developing new hardware
systems with new dedicated processors in order to
obtain real-time implementation of these sophisticated
control algorithms [5,6]. Some ASM (Application
Specific Microprocessor) for motion control
applications are developed [7,8,9]. These processors
include both high performance core (usually DSP core
[10]) and almost all the required peripherals and memory
(analog input channels, encoder interface, PWM outputs,
serial communication channels, Timers, …). Today,
industries are working on developing fully integrated
solutions for motor control [1](ASSPs: Application
Specific Standard Products), which will allow inherent
benefits like lower cost, greater reliability, greater
flexibility, lower power consumption and greater
precision. These solutions are becoming a key market for
IC manufacturers like Analog Devices, Hitachi and Texas
Instruments.

The shortest time-to-market is a pressing requirement,
consequently development time of new algorithms and new
control device and debugging them must be minimized. This
requirement can be satisfied only by using a well-defined
System-level design methodology and by reducing the
migration time between the algorithm development language
and the hardware specification language.

In this paper, we use the SpecC language for the development
and validation of new control algorithms. This will allow
designers to implement easily this algorithm according to the
SpecC methodology [11]. Indeed, the same language (SpecC)
is used for validation of the algorithm and specification of the
device.
We first begin with a brief presentation of the electrical drives
and of the SpecC language. Then, we present the specification
model of the electric drive system in SpecC (control unit and
process under control). Finally, we present the main
advantages of the SpecC language in the development of new
control systems.

II. ELECTRICAL DRIVES

The electrical machine control is performed following the
diagram of figure 1. Such a system is composed of two main
parts:

- The process to control (CMS: Converter / Motor /
Sensors);

- The control unit.

The control unit receives process state information from the
sensors and generates control signals to the converter
switches.

Figure 1: Electrical drive structure

As shown in figure 1, electrical drives have the following basic
I/O requirements:

- currents/voltages measurements;
- position/speed measurements;
- pulse width modulation for power converter

switching.

Today, modern applications mostly employ A.C. motors. So
in most of systems, two phase currents (generally measured
by Hall sensors) are sufficient since the third one can be
easily computed. Position signals, needed by speed/position
control and field-oriented control are measured either by using
optical encoders (generally incremental encoders) or resolvers.
Pulse width modulation (PWM) is achieved in several ways
either hardware or software, using either the single
microprocessor or ext ernal ASIC.

According to the previous description, all motor control
systems require, besides the powerful processor core, a
significant array of additional circuits for correct operation,
including such functions as:

- Analog to Digital conversion for current or voltage
feedback: requires both high accuracy and fast
conversion rate: usually 10-12 bit analog to digital
converters with a few µs conversion times are needed;

- Pulse width modulation (PWM) blocks for generation
of the inverter switching commands: PWM generation
represents one of the most interesting part in drive
design and the chosen modulation technique affect both
performance and system complexity. Simple
modulations do not require complex calculation, so they
can be easily implemented either by HW and SW
without any external component; more complex
algorithms often present high computational load, then
they require external ASIC or dedicated microprocessors;

- Position/speed sensor interfaces for higher-
performance applications: Encoder outputs are two
quadrature square wave signals which frequency is up to
some MHz;

- Serial ports for host communications: Because modern
drives cannot neglect communications, high speed serial
channels and or specific interfaces (e.g. CAN bus) are
often highly desired;

- General-purpose digital input/output ports.

III. SPECC LANGUAGE

A. Design Consideration for System Level Design
Language

According to the Co-Design methodologies [12,13,14], it is
desirable that the specification language be used for all models
at all stages of the design process (homogeneous
methodology). Therefore, this methodology does not suffer
from simulator interfacing problems or cumbersome
translations between languages with different semantics.
Instead, one set of tools can be used for all models and
synthesis tasks are merely transformations from one program
into a more detailed one using the same language. This is also
important for reuse, because design models in the library can
be used in the system without modification (“plug-and-
play”), and a new design can be used directly as a library
component.

Such specification and modeling language must be executable,
modular and complete. Furthermore, these concepts should be
organized orthogonally (independent from each other) so that
the language can be minimal. In addition to these
requirements, the language should be easy to understand and
easy to learn.

B. SpecC Language

Most of traditional languages lack one or more of the System-
Level design language requirements and therefore cannot be
used for system modeling without problems arising. Figure 2
lists examples of current languages and shows which
requirements they support and which are missing [15].

Power Converter Motor Load

DIGITAL CONTROL
UNIT

CMS PROCESS
Converter/ Machine /

Sensors

Sensors

Behavioral
hierarchy
Structural

hierarchy

Concurrency

Synchronization

Exception

handling

Timing

State
transitions
Composite
data types

SpecCharts

Statecharts

HardwareC

Verilog

VHDL
Java

C++C
SpecC

not supported partially supported supported

Figure 2: Language Comparison

The SpecC language is built on top of the ANSI-C
programming language, the defacto standard for software
development. It is a true superset, such that every C program
is also a SpecC program. C was selected because of its high
use in software development and its large library of already
existing code.

The SpecC language is based upon the program state machine
(PSM) model of computation. The SpecC model clearly
separates communication from computation. It consists of a
hierarchical network of behaviors and channels and supports
“plug-and-play” for easy IP reuse.

Semantically, the functionality of a system is captured as a
hierarchical network of behaviors interconnected by
hierarchical channels. Syntactically, a SpecC program consists
of a set of behavior, channel and interface declarations:

- A behavior is a class consisting of a set of ports, a set
of component instantiations, a set of private variables
and functions, and a public main function. In order to
communicate, a behavior can be connected to other
behaviors or channels through its ports. The
functionality of a behavior is specified by its functions
starting with the main function.

- A channel is a class that encapsulates
communication. It consists of a set of variables and
functions, called methods, which define a communication
protocol.

- An interface represents a flexible link between
behaviors and channels. It consists of declarations of
communication methods, which will be defined, in a
channel.

For example, the SpecC description in figure 3-b specifies the
system shown in figure 3-a. The example system specifies a
behavior B consisting of two sub-behaviors b1 and b2, which
execute in parallel and communicate via integer v1 and channel
c1. Thus structural hierarchy is specified by the tree of child
behavior instantiations and the interconnection of their ports

through variables and channels. Behaviors define functionality
and the time of communication, whereas channels define how
the communication is performed.

Figure 3: Basic structure of SpecC program

In addition, the SpecC language has extensions for hardware
design. It supports all the concepts that have been identified
as requirements for embedded systems design, such as
structural and behavioral hierarchy, concurrency, explicit state
transitions, communication, synchronization, exception
handling, and timing (figure 2).

IV. ELECTRICAL DRIVES SPECIFICATION USING SPECC

In this section we present the specification model of electrical
drives. This approach can be generalized to all of other
industrial systems.
Figure 4 shows the top level of the electric drive specification
in SpecC, consisting of process and control device sub-
behaviors running in parallel. The highest behavior in the
hierarchy (Process_CTL) is the “Main” behavior similar to
the main()-function in each C program. This main-behavior
contains the testbench including the process specification
(Process) and the control system under Test (CTL).

In the following sections we describe these modules in more
details.

INTERFACE I1
{
 bit[63:0] Read(void);
 void Write(bit[63:0]);
};

channel C1 implements I1;

behavior B1(in int, I1, out int);

behavior B(in int p1, out int p2)
{
 int v1;
 C1 c1;
 B1 b1(p1, c1, v1),
 b2(v1, c1, p2);

 void main(void)
 { par { b1.main();
 b2.main();
 }
 }
};

(B)

(A)

B

P1 P2

V1

C1

B1 B2

Figure 4: Top-level specification model of electrical drive
system

A. Process Specification

The electric drive is composed of three module categories:
Converter, Motor/Load, and Sensors. On the physical
process these modules operate in parallel. Then in our
specification we reproduce this structure by using three
parallel behaviors (Figure 5). Each of these behaviors will be
decomposed on child-behaviors according to the following
considerations:

- In the motor/load model, we usually distinguish two
modes: electric mode and mechanical mode. So, when
digitized, the model is composed of two equation
systems: one for the electric mode and one for the
mechanical mode. Then the motor behavior is
decomposed of two child-behaviors (Electric behavior
and Mechanic behavior).

- On the physical process, we usually use several
different sensors. Each of them is specified in a child-
behavior (sensor1, sensor2, …).

According to the fact that these modules don’t have the same
temporal constraints and rates, we propose to add to each
behavior a clock (represented by another sub-behavior Clkx)
that generates its corresponding computing step for the
simulation. These clocks must be defined according to the
user specification.
Usually, we use the same clock for the simulation of electrical
device, and different clocks for different sensors.
The final specification model of the process under control is
then represented by figure 5.

B. Control Device Specification

Besides the algorithm implementation, all motor control
systems require a significant array of additional circuits for
correct operation, including such functions as:

- Analog to digital conversion for capture of electric
magnitudes (current and voltage);

- Position sensor interfaces for capture of mechanical
magnitudes (position and speed);

- Pulse width modulation (PWM) blocks for the
generation of the converter switching commands;

- Serial ports for host communication;
- General-purpose digital input/output ports;
- Watchdog timer and event timers, … required for real

time embedded control systems.

Figure 5: Detailed specification model of electric drives
systems

According to the user application some or all of these blocks
are integrated in the control device. So in our specification we
reserve for each of them a sub-behavior that can be
decomposed of some child-behavior. These sub-behaviors will
be specified inside two principle behaviors, which are the
ACQ behavior for the information capture and the PWM
behavior for the generation of control signals.

On the other hand, in the electric drive, we usually distinguish
two control loops: an outer motion loop and an inner current
loop. The motion loop handles the mechanical load and

Ci: Control Signals / Di: State process information

Process
(Process

under
Control)

CTL
(Control
Device)

Ci Di

Ci

Di

Process_CTL

Motor/Load

Electric Mechanic
Clkm Clke

clke

En

clkm

V1 V2 V3 Ep E1 En

Ep

E1

Motor/Load Converter Sensors

E1

Process

E2

En

V1

V2

V3

O1 O2 On C1 C2 Cm

Sensors

sensorn

En

Clksn

clksn

sensor2

E2

Clks2

clks2

sensor1

E1

Clks

clks1 O1 O2 On

Converter

Cv_Model Clkcv

ckcv

V1 V2 V3

C1 C2 Cm

maintains rotary position and velocity. It has typically
bandwidths of the order of 20 to 30 Hz with sample rates of
500Hz to 3 kHz. The current loop handles the dynamics of
the motor electrical system and controls torque production. It
has typically bandwidths of the order of 1 to 2 kHz with
sample rates of up to 20 kHz.
Then, a behavior CTL_Alg including two sub-behaviors one
for the motion control (M_Alg) and one for the current control
(C_Alg) can specify the control algorithm.

Each of these behaviors is associated to a clock generator
behavior (Clkx).

The Figure 6 represents the specification model of the control
device.

Figure 6: Specification model of the control device

To illustrate this new approach of digital control
development, two applications have been developed:

- The first one concerning the speed control of a dc1
machine. The dc system is composed of a dc motor, a
four-quadrant chopper, a Hall sensor for the current
capture and an Optical incremental encoder for the
speed. The used control system is based on a cascade
regulation algorithm, in which the speed control strategy
includes an inner current loop.

- The second one concerning the speed control of an
induction machine. The process is composed of an
induction motor fed by an inverter and the used control
system is based on an indirect field oriented control
algorithm.

For each of these applications, the obtained specification
model was validated by simulation. The obtained results are
similar to those obtained by C language description.
Otherwise, the number of code lines and the simulation
duration are equivalent to those of C language programs.
However the SpecC language presents several advantages that
are developed in the following section.

V. SPECC LANGUAGE ADVANTAGES

During this project, we use the SpecC language for the
specification and validation of new control systems.
According to this work we note several main advantages of
this language that can be described as follows:

- The obtained specification model is executable and
validation by simulation is done easily. Indeed, results
storage, restitution and manipulation for verification can
be performed clearly in the testbench module.

- The SpecC language offers modularity in form of
structural and behavioral hierarchy, allowing the
hierarchical decomposition of the specified system. The
electric drives systems are then described in a clear,
modular and precise manner. Available parallelism,
behaviors dependencies and temporal constraints are
explicitly shown. This greatly eases the understanding
and the modification of the specification model.
Furthermore, the SpecC language supports the inclusion
of precompiled design libraries into the specification
description. This simplifies the handling of component
libraries and also allows a speedy compilation.

- The SpecC language has extensions for hardware
design. It supports all the required concepts for
embedded systems design, such as structural and
behavioral hierarchy, concurrency, explicit state
transitions, communication, synchronization, exception
handling and timing.
As shown in Figure 2, the SpecC language has been
specifically designed to support all the required

1 Direct-current

CTL_Alg

C_Alg M_Alg ClkΩ Clki

clk i

Iref

ckΩ

Xref T1 T2 Tm Sp S1 Sn

ACQ

Acqsn

Sn

Clks

clk sn

Acqs2

S2

Clks2

clk s2

Acqs

S1

Clks1

clk s1

PWM

PWMm

Sn

Clkm

clkm

PWM2

S2

Clk2

clk2

PWM1

S1

Clk1

clk1

CTL_Alg PWM ACQ

Xref

S1

CTL

S2

Sn

T1

T2

Tm

C1 C2 Cm O1 O2 On

concepts. Moreover, SpecC precisely covers these
requirements in an orthogonal manner.

So, the obtained specification model will serves, without
the need for tedious rewrites, as the input to the
synthesis and exploration stages in the SpecC design
methodology for the final control device design.

- On the other hand, the SpecC language is built on top
of the ANSI-C programming language, the de-facto
standard for software development. It is a true superset,
such that every C program is also a SpecC program.

VI. CONCLUSION

In this paper, we introduce a new specification language
(SpecC) to the development of new control systems for
power electronics and electric drives.

The SpecC specification of electrical drives is captured in a
natural, clear and precise manner showing explicitly available
parallelism and behavior hierarchy and dependencies. This
greatly eases the understanding and the use of this
specification model in order to validate control devices.

The main advantage of the use of SpecC language is that the
obtained specification model, used for simulation, will serves,
without the need for tedious rewrites, as the input to the
synthesis and exploration stages in the SpecC design
methodology for the final control device design. This will
reduce significantly the time-to-market by minimizing largely
communication among designers and customers.

In our future works, we intend to apply the SpecC
methodology to the development and design of new
sophisticated control systems.

ACKNOWLEDGMENTS

The authors would like to thank the Fulbright Scholar
Program for supporting this project. We would also like to
thank Andreas Gerstlauer for his interesting comments and
ideas.

REFERENCES

[1] Analog Devices, Products and Datasheets, Whitepapers,
“ASSPs for Motion Control Applications Use Embedded
Digital Signal Processing Technology”,
http://www.analog.com/publications/whitepapers/products/m
otion2.html , 2001

 [2] K. Ohnishi, N. Matsui and Y. Hori, “Estimation,
identification and sensorless control in motion control
system”, Proc. IEEE, vol. 82, August 1994

[3] M. El-sharkawi, A. El-samahy amd M. El-sayed, “ High
performance drive of dc brushless motors using neural
network”, IEEE Trans. On energy conversion, vol. 9, june
1994

[4] J. Jang and C. Sun, “ Neuro-fuzzy modeling and control”,
Proc.IEEE, vol. 83, March 1995

[5] D. Krakauer, “Single chip DSP Motor Control Systems
Catching on in Home Appliances”, Appliance magazine,
October 2000

[6] C. Cecati, “Microprocessors for Power Electronics and
Electrical Drives Applications”,
http://sant.bradley.edu/ienews/99_3/drCECATI/paper.htm,
IES Newsletter, vol. 46, no. 3, September 1999

[7] J.F. Moynihan, P. Kettle, A. Murray, “High Performance
Control of AC servomotors using an Integrated DSP”,
Intelligent Motion, May 1998 Proceedings

[8] A. Murray, P. Kettle, "Towards a single chip DSP based
motor control solution", Proceedings PCIM - Intelligent
Motion, May 1996, Nurnberg, Germany, pp. 315-326

[9] F. Moynihan, “High-Performance Motion Control”,
PCIM-Europe N1/2, 1999

[10] Texas Insruments, Digital Signal Processing Solution for
AC Induction Motor Application Note BPRA043, 1996

[11] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,
“SpecC: Specification Language and Methodology”, Kluwer
Academic Publishers, 2000

[12] D. D. Gajski, F. Vahid, S. Narayan, J. Gong,
“Specification and Design of Embedded Systems”, Prentice
Hall, 1994

[13] R.K. Gupta, “Co-Synthesis of Hardware and Software
for Digital Embedded Systems”, Kluwer Academic
Publishers, 1995

[14] R. Niemann, “Hardware/Software Co-Design for Data
Flow Dominated Embedded Systems”, Kluwer Academic
Publishers, 1998

[15] A. Gerstlauer, R. Dömer, Junyu Peng, D. Gajski,
“System Design: A Practical Guide with SpecC”, Kluwer
Academic Publishers, 2001

