
Co-design of Embedded Controllers
for Power Electronics and Electric Systems

Slim Ben Saoud

L.E.C.A.P.-E.P.T./ I.N.S.A.T.
B.P. 676, 1080 Tunis Cedex, TUNISIA

slimbensaoud@fulbrightweb.org

Daniel D. Gajski and Andreas Gerstlauer
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract-- Today, control algorithms are being more and more
sophisticated due to the customer and governments demands.
Then, their real-time implementation becomes a difficult
task and needs more and more specific hardware systems
with dedicated processors and usually systems-on-chip
(SOCs).
With the ever-increasing complexity and time-to-market
pressures in the design of these specific control systems, a
well-defined design methodology is more than even
necessary.
In this paper we present a seamless approach for the design of
control systems for power electronics and electric drives. We
discuss the case of a DC system Control and describe in
details different stages undergone. Generalization to others
systems can be done easily using the same steps and
transformations.

Index terms-- Co-design, Embedded Systems, Control, Electric
process.

I. INTRODUCTION

Today, variable speed motor control systems have a wide
range of applications from industrial robotics to domestic
washing machines, each with a specific set of requirements.
Therefore, Motor control is being a vast market (estimated
to be $5 billion annually for motors and motor controllers
[1]) and the motor control industry is being a strong
aggressive sector. Each industry to remain competitive has
to answer the customer and governments demands for lower
cost, greater reliability, environmental concerns regarding
power consumption, emitted radiation and requirements for
greater accuracy. This is achievable only by the use of
sophisticated control systems [2,3,4].
The shortest time-to-market is a pressing requirement,
consequently development time of new algorithms and new
control device and debugging them must be minimized. This
requirement can be satisfied only by using a well-defined
System-level design methodology and by reducing the
migration time between the algorithm development language
and the hardware specification language.

The goal of this work is to introduce a new seamless
approach for the development of complex control systems.
This approach will be discussed using an application of the
DC motor control. A generalization of this study to any
other control system can be done easily using the same
steps discussed in the following sections.
The control device will be described in four models, which
represent four different levels of abstraction in our design
approach [5,6]. All these models are executable and
validated by simulation.

The rest of the paper is organized as follows: We first begin
with a brief presentation of the used approach. Then we
describe an executable specification model of the control
system and we discuss the refinement of this model into
architecture model, which accurately reflects the system
architecture. Based on the retained architecture model,
communication protocols between the system components
are defined and communication model is developed.

II. DESIGN APPROACH

Managing the complexity at higher levels of abstraction is
not possible without having a very well-defined system-
level design flow. Therefore, in this project we propose a
new seamless approach, which is a set of models and
transformations on the models (Figure 1). The models
written in programming language (SpecC language) are
executables descriptions of the same system at different
levels of abstraction in the design process. The
transformations are a series of well-defined steps through
which the initial specification is gradually mapped onto a
detailed implementation description ready for
manufacturing.
This new approach is based on 4 well-defined models,
namely a specification model, an architecture model, a
communication model, and finally, an implementation model.
After each design step, the design model is statically
analyzed to estimate certain quality metrics such as
performance, cost, and power consumption. Analysis and
estimation results are reported to the user and back-
annotated into the model for simulation and further
synthesis.

In this paper we focus on the synthesis flow which contains
the steps of specification, architecture exploration and
communication synthesis. Implementation can then be done
easily using standard tools.

Figure 1: Design Approach

III. SPECIFICATION

The system design process starts with the specification
model written by the user to specify the desired system
functionality. This model is a purely functional, abstract
model that is free of any implementation details.

Figure 2 shows the specification model of the DC control
system in SpecC language. The used control algorithm
(CTL_Alg) is composed of two control loops: an outer
motion loop (M_Alg) and an inner current loop (C_Alg). Each
of them is specified in a separate sub-behavior and
associated to a clock-behavior that generated the
synchronization event to activate the corresponding control
loop at the predefined periodic step.
The I/O modules necessary for the control device
functioning are specified in two behaviors: the PWM
behavior represents the PWM1 module functioning while
the ACQ behavior represents the information acquisition
modules.
The PWM behavior generates two complementary signals C0
and C1 with the same frequency as the current control
module clock and according to the puls e width value α (for
C0) obtained by the current control behavior.
The current acquisition behavior (Acqi) captures the current
value (Nim obtained from the used ADC2 component) and

1 Pulse Width Modulation
2 Analog to Digital Converter

computes its average value over the current control period
(im). While the speed acquisition behavior (AcqΩ) computes
the speed value (Ωm) from the two signals S0 and S1
generated by the optical incremental encoder (sensor used
on the process under control).

Figure 2: Specification model of the control device

As shown on figure 2, the SpecC specification describes the
control device functionality in a clear and precise manner.

IV. ARCHITECTURE EXPLORATION

Architecture exploration is the first part of the system
synthesis process that develops system architecture from
the specification model. The purpose of architecture
exploration is to map the computational parts of the
specification onto the components of system architecture.
The steps involved in this process are allocation,
partitioning and scheduling. Through this process, the
specification model is gradually refined into the architecture
model.

A. Allocation

The first task of the architectural exploration process is the
allocation of a system target architecture consisting of a set
of components and their connectivity. Allocation selects the
number and types of processing elements (PEs), memories
and busses in the architecture, and it defines the way PEs
and memories are connected over the system busses.

Specification

Specification
model

Architecture
exploration

Architecture
model

Communication
synthesis

Communication
model

Implementation

Implementation
model

Manufacturing

CTL_Alg PWM ACQ

Ωref

Ωm

DC_CTL im

α

C0 C1 S0 S1 N im

ACQ

Acq

Ωm

ClksΩ

ClksΩ

Acqi

im

Clksi

Clksi N im S0 S1

PWM

PWM1

α

Clkc1

clkc1

C0 C1

CTL_Alg

C_Alg M_Alg ClkΩ Clk i

clki

Iref

clkΩ

Ωref α im Ωm

Components and protocols are taken out of a library and can
range from full-custom designs to fixed IPs3.
After an architecture has been allocated, the first step in
implementing the specification on the given architecture is
to map the specification model behaviors onto the
architecture’s processing elements.
For the control device application, usually the I/O modules
are done by hardware modules (ADC, Timers, …) while the
control algorithm is implemented in a standard processor.
The retained model is composed of a processor core
(DSP56600 core) running control algorithm and a hardware
component (ASIC) for the I/O functions (Figure3).

Figure 3: Architecture models after behavior partitioning

Formerly local variables used for communication between
behaviors mapped to different components now become
global, system-level variables (α, im, Ωm).

B. Variable Partitioning

After behavior partitioning, communication between
behaviors mapped to different PEs is performed via global,
shared variables. Global variables have to be assigned to
local memory in the PEs or to a dedicated shared memory
component. In the refined model after variable partitioning,
global variables are replaced with abstract channels and
code is inserted into the behaviors to communicate variable
values over those channels.

In our application, we use local copies of these variables in
each PEs (Figure 4). Updated data values are communicated
between ASIC and DSP through 3 abstract channels (Cα, Cim
and CΩm).

Figure 4: Architecture model after variable partitioning

3 Intellectual Property

C. Scheduling

Scheduling determines the execution order of behaviors that
execute on inherently sequential PEs. Scheduling may be
done statically or dynamically [7].

Figure 5 shows the scheduling of the parallel control
algorithm running on the DSP core. Due to the dynamic
timing relation between motion loop and current loop tasks,
a dynamic scheduling scheme is implemented. The motion
control represents the main program, which executes in
periodic manner (Ts=20ms). Whenever a new current period
arrives (Tc=284µs), the main task is interrupted in order to
execute the current control.

Figure 5: Architecture model after scheduling

According to this scheduled model and in order to simplify
synchronization for communication, all exchanges are done
at the beginning of each current control loop which means
at each period Tc (Figure 6). The Ωm value will be then a
local variable of the DSP as well as Iref.

Exchanges synchronization can be done by an external clock
(Figure 5) or by an event generated by the ASIC and
precisely by the PWM module since it will integrate a
temporization function at the period of Tc.

Figure 6: Modification of variable partitioning

D. Channel Partitioning

Channel partitioning is the process of mapping and
grouping the abstract, global communication channels
between components onto the busses of the target
architecture. In the refined model, additional top-level
channels are used to represent system busses. Then
channel partitioning is reflected by hierarchically grouping
and encapsulating the abstract, global channels under the
top-level bus channels (Figure 7).

C_Alg M_Alg Iref AcqΩ

S0 S1

ASIC
(PE1)

Acqi

N im C0 C1

PWMc1

im

Ωm

α

Ωref

DC_CTL

DSP
(PE2)

C_Alg M_Alg Iref AcqΩ

S0 S1

PE1

Acqi

N im C0 C1

PWMc1

Ωref

DC_CTL

PE2
CΩm

Cim

Cα

C_CTL
M_CTL

PE2

clki

Clki

AcqΩ

S0
S1

PE1

Acqi
N im

C0

C1

PWMc1

Ωref

C_CTL
M_CTL

Iref

AcqΩ

S0 S1

PE1

Acqi

N im C0 C1

PWMc

1

Ωref DC_CTL
PE2 CΩm

Cim

Cα

Ωm

Figure 7: Architecture model after channel partitioning

V. COMMUNICATION SYNTHESIS

The purpose of communication synthesis is to refine the
abstract communication in the architecture model into an
actual implementation over the wires of the system busses.
This requires insertion of communication protocols for the
busses, synthesis of protocol transducers to translate
between incompatible protocols, and inlining of protocols
into hardware and software.

A. Protocol Insertion

During the protocol insertion, a description of the protocol
is taken out of the protocol library in the form of a protocol
channel and inserted into the corresponding virtual system
bus channel (Figure 8).

The abstract communication primitives provided of the bus
channel are rewritten into an implementation using the
primitives provided by the protocol layer. The outer
application layer of the bus channel implements the required
semantics over the actual bus protocol. This includes tasks
like synchronization, arbitration, bus addressing, data
slicing, and so on.

All the abstract bus channels in the model are replaced with
their equivalent hierarchical combinations of protocol and
application layers that implements the abstract
communication of each bus over the actual protocol for that
bus.

Figure 8: Protocol insertion principle

In this example, after protocol insertion, the processor is the
central component and the master of the system bus. The
software on the processor initiates all data transfers on the
processor bus from and to the hardware component.
However, these exchanges are initiated either by an external

clock or by the hardware component that send an event (IT)
at each Tc period to the processor by triggering its interrupt
in order to execute the exchanges process (Figure 9).

Figure 9: HW/SW Synchronization diagrams

The protocol channel in the system bus and the wrapped
processor model describe and implement the DSP56600 bus
protocol according to its timing diagram [8], shown in figure
10.

B. Protocol Inlining

Protocol inlining is the process of inlining the channel
functionality into the connected components and exposing
the actual wires of the busses. The communication code is
moved into the components where it is implemented in
software or hardware. On the hardware side, FSMDs that
implement the communication and bus protocol
functionality are synthesized. On the software side, bus
drivers and interrupt handlers that perform the
communication using the processor’s I/O instructions are
generated or customized.

Figure 10: Protocols of the DSP56600 external bus

The communication model obtained after protocol inlining is
shown in Figure 11. For the ASIC, communication primitives
are inlined into the exchanges sub-behavior. Therefore,
exchanges SFSMD model is created and inserted into the
ASIC SFSMD model [Figure 12].

A0-A15

/MCS

/AT

/RD

/WR

D0-D23 Data Out

(28.9,-)

(0.5,-) (19.3,-)

(0.4,-)

(8.8,-) (0.4,-)

DSP56600 - SRAM Write Access

A0-A15

/MCS

/AT

/RD

/WR

D0-D23 Data In

(28.9,-)

(4.3,-)

(-,16.5) (0.0,-)

(17.0,-)

(1.2,-)

DSP56600 - SRAM Read Access

M_CTL

PE2

AcqΩ PE1

Acqi

Iref

Ωm

Ωm

Im

CΩm

Cim

Cα

Exch
Exch

PWM C_CT

C_CTL procedure (period Te)

M_CTL procedure (period Tm)

IT

Exchanges
Procedure

α im Ωm IT α im Ωm
HW

Component

SW
Component

Cim

Cα

 Protocol
layer

layer

CΩm Application

Figure 11: Communication model after protocol inlining

The exchanges hardware module synchronizes with the DSP
by raising the processor’s interrupt line IRQC in its first
state S1 until a transfer with the address of the custom
hardware is recognized. Then the WR control signal is
sampled until a falling edge has been detected that signals
the beginning of a bus write cycle. Communication
continues at the same manner for two read cycles.
The obtained communication model is validated and is ready
for use directly to generate the implementation model. The
leaf behaviors of the design model will be fed into different
tools in order to obtain their implementation [9].

Figure 12: HW Communication SFSMDs

VI. CONCLUSIONS

In this paper we introduce a new seamless approach for the
design of control systems of Power Electronics and Electric
drives processes. We presented the study of a DC motor

drive, which can be easily generalized to any other process
control.
We have shown the various steps that gradually refines the
initial specification down to an actual communication model
ready for implementation and manufacturing.
 The well-defined nature of the presented approach models
and transformations helps focusing design efforts on central
issues, provides the basis for design automation tools, and
enables application of formal methods.
The use of the same language for the specification and for
the design process reduces significantly the time-to-market
by minimizing largely communication among designers and
customers.

REFERENCES

[1] Analog Devices, Products and Datasheets, Whitepapers,
“ASSPs for Motion Control Applications Use Embedded
Digital Signal Processing Technology”, 2001

[2] D. Krakauer, “Single chip DSP Motor Control Systems
Catching on in Home Appliances”, Appliance magazine,
October 2000

[3] C. Cecati, “Microprocessors for Power Electronics and
Electrical Drives Applications”, IES Newsletter, vol. 46, no.
3, September 1999

[4] A. Murray, P. Kettle, "Towards a single chip DSP based
motor control solution", Proceedings PCIM - Intelligent
Motion, May 1996, Nurnberg, Germany, pp. 315-326

[5] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,
“SpecC: Specification Language and Methodology”, Kluwer
Academic Publishers, 2000

[6] A. Gerstlauer, R. Dömer, Junyu Peng, D. Gajski, “System
Design: A Practical Guide with SpecC”, Kluwer Academic
Publishers, 2001

[7] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, “Design of a
GSM Vocoder using SpecC Methodology”, University of
California, Irvine, Technical Report ICS-TR-99-11, February
1999

[8] Motorola, Inc., Semiconductor Products Sector, DSP
Division, DSP 56600 16-bit Digital Signal Processor Family
Manual, DSP56600FM/AD, 1996

[9] R. Dömer, D. Gajski, J. Zhu, "Specification and Design of
Embedded Systems", it+ti magazine, Oldenbourg Verlag,
Munich, Germany, No. 3, June 1998.

MCS && (A=&x)

!(MCS && (A=&x)) S11

EEnd

MCS && (A=&x)

S7

 S10

!MCS
MCS

Start

MCS && (A=&x)

IRQC=1

S2

S1

Estart

 S6

!MCS
MCS

!(MCS &&
(A=&x))

!(MCS &&
(A=&x))

W R

! W
S3

! W
W R

α=D;

Load_I/Oreg=1;

Addr=&α;
rw=0; //write
Addr=Addr+1;

S4

S5

RD
!RD

D=i m;

 En_I/Oreg=1;

Addr=& i m;
rw=1; //read
load_I/Oreg=1;
Addr=Addr+1;

S9

S8

RD
!RD

D=Ωm;

 En_I/Oreg=1;

Addr=& Ωm;
rw=1; //read
load_I/Oreg=1;
Addr=Addr+1;

S13

S12

ASIC DSP BusMaster BusSlave

IB
us

S
la

ve

IP
ro

to
co

lS
la

ve

Sl
av

eP
ro

to
co

l n

IB
us

M
as

te
r

IP
ro

to
co

lM
as

te
r

M
as

te
rP

ro
to

co
l Address[15:0]

Data[23:0]
/MCS
/RW
/RD

