Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski

Technical Report CECS-03-11
May 15, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{Icai, shireesh, gajski@cecs.uci.edu

Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski

Technical Report CECS-03-11
May 15, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{Icai, shireesh, gajski@cecs.uci.edu

Abstract

In course of system-level design, designers need an efficient system level design language (SLDL), which can serve as
the design vehicle. The complexity of the design process at this level is determined upto an extent, by the semantics and
syntax definition of the SLDL being used. This report first analyzes the system-level design flow in order to establish the
requirements on an SLDL. It then compares SpecC and SystemC, the two popular SLDLs, in terms of the extent they meet
these requirements. Finally, it provides the essential modeling guidelines for both the SpecC and SystemC users for the cases
where the constructs or the features of the respective languages give rise to an ambiguous design.

Contents

1. Introduction 1
2. System design methodology 2
2.1 Abstractionmodels e 2
2.2 Systemdesignflow L e 3
2.3 Requirements on SLDLS e 5
3. Specification model generation 5
3.1 Design Behavior e e 5
3.2 Specification capture and modeling 5
321 SPecCC . . . e e 6
3.2.2 SystemC . . L e e e 7
3.23 CompariSoNn e e 9
4. IP-assembly model generation 10
4.1 Architecture exploration L e e 10
4.1.1 SpecC e e 10
4.1.2 SystemC . . . e e 10
4.1.3 COMParison o ot e e e e e e e e 11
4.1.4 Example e e 11
4.2 Architecturerefinement L e e 11
421 SPeCC 11
422 SystemC . . . 12
423 COMPAriSON e 15
5. Bus-arbitration model generation 15
5.1 Transaction exploration e e e 15
5.1.1 SpecC . . . o e e e 16
5.1.2 SystemC e e 16
5.1.3 COomMPparison o v e e e e e e e 16
5.1.4 Example e e 16
5.2 Transactionrefinement e 16
5.2.1 SpecCand SystemC e 16
5,22 COomMParison e 16
523 Example . . .o 17
5.2.4 Guidelines e e 17
6. Bus-functional model generation 17
6.1 Protocolselection e 17
6.1.1 CompariSON e e e e e 17
6.1.2 Example e e 17
6.2 Communicationrefinement L 18
6.2.1 SpecCand SystemC e e e 18
6.2.2 COMPArSON v it e e e e e e 18
6.2.3 EXample e 19

6.2.4 Guidelines L
7. Implementation model generation 19
7.1 Implementation exploration e e e 19
7.1.1 SpecCand SystemC e e e 19
7.0.2 COMPANiSON . . . o o e e e 19
7.2 Implementationrefinement L 20
7.21 SPecCC 20
7.2.2 SystemC . . . e e e 21
7.23 COMPArSON . . . o o e e e e e e e e e 22
7.24 Example . .. 22
8. Overall Comparison 22
24

9. Conclusion

List of Figures

O©CoO~NOOOUTA,WNPEP

Systemmodeling graph e
Comparison of defined abstraction models with modelsin[5]and[7].
Systemdesignflow e e
The general flow of synthesistask
Requirements on system level design languages
Design example: system behavior
The execution sequence modeled in SpecC

Design example in SpecC: specificationmodel e
The SpecC code for the specification model of behaB@B3andDesign. 8
Design example in SystemC: specificationmodel oL
The SystemC code for the specification model of behaB@B&3andDesign 9

Design example: architecture explorationresult L L
Design example in SpecC: after PE allocation and behaviormapping
Design example in SpecC: after memory mapping e
Design example in SpecC: after static scheduling
Design example in SystemC: after PE allocation and behavior mapping
Design example in SystemC: after step 1 of memory mappingo
Design example in SystemC: after steps 2 and 3of memorymapping
Design example in SystemC: after step 4 of memorymapping e
Design example in SystemC: after step 5(a) of memory mapping oL
Design example in SystemC: after step 5(b) of memory mapping Lo,
Design example in SystemC: after static scheduling o L
Design example in SpecC: bus-arbitrationmodelo L
Design example in SystemC: bus-arbitrationmodel.
The interfaces dPE1landPE2when using the double-handshake protocol
The timing diagram for the double-handshake protocol
Design example in SpecC: after step 1 of communication refinement.,
Design example in SpecC: after step 2 of communication refinement.
Design example in SystemC: after step 1 of communication refinement.
Design example in SystemC: after step 2 of communication refinement.

The SystemC code for proces&dsandB13snd 21
Incorrect SystemC code after merging proceBdesndB13snd L oL 21
Correct SystemC code after merging prodgsandB13snd 22

Unmapped RTL model of SystemC and SpecC e e

List of Tables

1 Features of computational units of SystemC

2 Overall comparison in terms of exploration and refinement
3 Overall comparisoninterms of designmodeling

Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski
Center for Embedded Computer Systems
University of California, Irvine

Abstract system-level synthesis approach is that, in this case
the system behavior is mapped to a predefined system
In course of system-level design, designers need an effi- architecture, instead of generating the architecture

cient system level design language (SLDL), which can serve from the behavior as is the case in system level

as the design vehicle. The complexity of the design process synthesis approach.

at this level is determined upto an extent, by the semantics . . .

and syntax definition of the SLDL being used. This report Component-base_d _deS|grit is a bottom-up ﬂOW'. In this

first analyzes the system-level design flow in order to estab- case the existing heteragenous computation/commu-

lish the requirements on an SLDL. It then compares SpecC plcat|on components are assembled and wrappers are

and SystemC, the two popular SLDLs, in terms of the extent 'Pse”ed between them |r’1 order to produ_ce the prede-

they meet these requirements. Finally, it provides the essen- fined platform. TIMA Igbs methodology is based on

tial modeling guidelines for both the SpecC and SystemC component-based design[11] approach.

users for the cases where the constructs or the features ofAll of above three approaches require a system level de-

the respective languages give rise to an ambiguous design.sign language(SLDL) for modeling the design. In general,
a SLDL should have the following two essential attributes:

1. Introduction 1. It should support modeling at all the levels of abstrac-

tion, from purely functional un-timed model to the

According to Moore’s law, the number of transistors on cycle-accurate RTL/ISS model,

a chip will keep growing exponentially, propelling the tech-
nology towards the System-On-Chip (SoC) era. In order 2. It models should be simulatable, so that functionality
to bridge the gap between growing complexity of chip de- and timing constraints of a design can be validated .
signs and increased time-to-market pressures, it is unani-)
mous urge of the design community that the design process_ AMONg contemporary system level design languages,
be shifted to higher levels of abstraction and the reuse ofSyStemC[9][7], SpecC[S][10], and System-verilog[3] are
pre-designed, complex system components known as intelM0St prominent. SystemC is a C++ class library based lan-
lectual property (IP) be encouraged. guage, while SpecC is a s_uper—set extending ANSI-C. Both
So far several system level design approaches have beegyStemC and SpecC qualify for the purpose with respect to

proposed to meet the above criterion, which can be broadlythe above two attributes. System-Verilog is a high-level ab-
categorized into following three groups: straction extension of Verilog. Unlike SystemC and SpecC,

System-Verilog specifically targets RTL-level implementa-
System-level synthesisThis design flow starts from the tion and verification.

system behavior, the system architecture is then gen- However, satisfying the above two attributes is necessary
erated from the behavior, and finally the RTL (register pyt not sufficient condition for a SLDL to serve the purpose.
transfer level)/ISS (instruction set simulation) modelis The complete set of requirements can only be derived by
generated. The implementation details are added to thegpplying the system level design flow to an example and
design using a step by step process. analyzing the design process. These requirements form the
Once the components are synthesized they can alway$asis for judging the suitability of an SLDL and also for
be reused. SCE design methodology[5] is based onestablishing guidelines for the modeling style.

system level synthesis approach. This report has following three goals:
Platform-based designPlatform-based[8] design ap- 1. Establishing the requirements for a SLDL by analysis
proach is a medium path. The difference from the of the system-level design flow

Communication

A

Cycle
timed @7 - *@

1. Specification model
Approximate 2. IP-assembly model
timed 3 3. Bus-arbitration model
* 4. Bus-functional model
| 5. Implementation model
Un-
timed @‘)— — =2 .)
Un- Approximate Cycle Com putation
timed timed timed

Figure 1. System modeling graph

2. Comparison of SpecC and SystemC in terms of their communication. On each axis, three degrees of accuracy
fulfilment of the requirements derived above are designated: un-timed, approximate timed, and cycle
o _ o timed. Un-timed computation/communication represents
3. Provision of modeling guidelines for both SpecC and he pure functionality of the design without any implemen-
SystemC for the cases where the constructs or the feaation details. Approximate-timed computation/communi-
tures of the respective languages give rise to an am-cation contains system-level implementation details, such
biguous design as the selected system architecture, the mapping relations
i) _ between processes of the system behavior and the process-
The report is organized as follows. Section 2 presents a4 alements of the system architecture. The execution time
general system-level design flow adopted for the purpose Offor approximate-timed computation/communication is esti-
this work and establishes the primary requirements Which 404 ot the system level without cycle accurate RTL/ISS
need to be satisfied by a SLDL. In Sections 3 through 7 g, 0| evaluation. Cycle timed computation/communication
we apply consecutive steps (from specification capture 10, haing implementation details at both system level and the

implementation refinement) of the chosen design flow on RTL/ISS level, such that cycle accurate estimation can be
the design example using both SpecC and SystemC. In SeCzptained.

tion 8 we perform an overall comparison between SpecC Inspired by [5] [7], we define five abstraction models in

and System_C on the basis of re_sults optained in Sections 3he system modeling graph. The broken arrows denote a
through 7. Finally, we conclude in Section 9. proposed design flow based on the refinement of these mod-
els. The five models are:

2. System design methodology o _
1. Specification model. It represents system behavior/-

functionality. It is free of any implementation details.
It is an un-timed model in terms of both computation
and communicationSpecification modetorresponds
to specification modeih [5] and un-timed functional
modelin [7].

2.1 Abstraction models

The objective of design at the system level is to generate
the system implementation from design functionality. In
order to reduce the complexity of system design, designers
generally define a number of intermediate models. The in- 2. IP-assembly model. It defines the component struc-
termediate models slice the entire design into several small ture of the system architecture. The system function-
design tasks, each of which has a specific design objective. ality is partitioned and partitions are assigned to dif-
Since the models can be simulated and estimated, the re- ferent components. The execution delays of the pro-

sult of each of these design tasks can be independently val- cesses assigned to components are annotated into the
idated. model by means ofvait statements. So, the model is
We introduce the system modeling graph shown in Fig- approximate-timed in terms of computation. The com-

ure 1, which represents the system design domain. X-axis munication is modeled at an abstract level and com-
in the graph represents computation and y-axis represents ponents communicate via message-passing channels.

il

i

Hence, this model is un-timed in terms of communica-
tion. IP-assembly modeatorresponds tarchitecture
modelin [5] and is subsumed inttimed functional —— — med fonoatona
modelin [7].
3. Bus-arbitration model. In this report, we define bus-

K K A . IP-assembl — . imed funcational
arbitration model as the one which models communi- GD = A’“““@ @D
cation in terms of the function calls of channels rep-
resenting buses. The protocols of communication are ___—t—]
selected from the categories, i.e. blocking and non- GD G@
blocking. Hence, the channels hide unnecessary im-
plementation details including pin-accurate interface ——— o - >
and timing-accurate transaction. Each processing eI—GJde - @@ = (Genaviortevel model
ement is assigned a bus priority. An arbiter assigns bus
grant to processing elements on the basis of their pri- @ @ @
orities. The time required for each data transaction is model = model = model
inserted into the channel by meansuit statements. Our Definition Definition
So, the communication is approximate-timed. The Definition in [5] in[7]
computational behavior is also approximate-timed as
is inherited from the previous moddBus-arbitration Figure 2. Comparison of defined abstraction

gnodells subsumed inttransaction-level modéh [7]. models with models in [5] and [7]

4. Bus-functional model. It defines the bus-functional
representation of components. It models the cycle-
accurate implementation of bus transactions over the
wires and protocols of the system bus. This model has
protocols inlined into processing elements. So, it also
includes pin-accurate interfaces. This model is cycle-
accurate in terms of communication. The computa-
tional behavior is same (approximate-timed) as that in-
herited from the IP-assembly modeBus-functional
modelcorresponds taommunication modéh [5] and
behavior-level modeh [7].

and cycle timed levels respectively. Other two models,

namelyIP-assembly modednd bus-functional modelare

intermediate ones defined to complete the our design flow
described in Section 2.2. The refinement flow contain-
ing only the golden models is denoted by think gray solid
arrows in Figure 1. 1t fits well into all the design ap-
proaches, including system-synthesis, platform-based de-
sign, and component-based design approaches.

The comparison between models defined in this report
and models in [5] and [7] is presented in Figure 2! ihdi-

5. Implementation model. It defines the components in cates equivalence of two models. It should be noted that the
terms of their register-transfers or instruction-set archi- models defined in this report and those in [5] are taxono-
tecture. The granularity of time and hence of the event mized on the basis of their abstraction levels, while in cases
order in the system is refined down to individual clock of [7], timed-functional modes defined in terms of model's
cycles in each component. The communication as well timing aspectfransaction level mode$ defined on the ba-
as computational behavior both are cycle-accurate insis of their communication modeling style, and rest of three

this model.Implementation modelorresponds t@m- models are defined in terms of model’s abstraction levels.
plementation modeh [5] andregister transfer model ~ Therefore, théimed-functional modedndtransaction level
in [7]. modelin [7] are not really comparable with other models,

which is indicated by cloud and question marks.
Among above five modelsspecification modelbus-

arbitration mode] and implementation modedre golden

models since they are at pure un-timed, approximate timed,z'2 System design flow

1in [7], timed functional modek defined in terms of model’s timing
aspect, rather than its abstraction level. Ttimsed functional modetan . . .
be a model representing a pure specification, a component structure of the ~ Figure 3 demonstrates the system design flow as dis-
system architecture, or even a complete system architecture. cussed in this report, which consists of the five abstraction
2In [7], transaction level modeb defined in terms of model's com- models as discussed earlier.
munication modeling style, rather than its abstraction leletassembly . . .
modelandBus-arbitration modetiefined in this report belongs tansac- The left-hand side of Figure 3 shows the refinement en-

tion level modein [7]. gine of the design flow. The right-hand side of Figure 3

Refinement Exploration @
Analysis |
I Capture | i

| Refinement |<—| Exploration |

Specification model -I Validation, Analysis |
l @ Validation |
Arch. refinment | Arch. explor |

L

IP assembly model -I Validation, Analysis | Figure 4. The general flow of Synthesis task
:
[Tran refnement | — Tran. explor | parts of a protocol are distributed among the process-
i ing elements.
Bus-arbitration .l Validation, Analysis | i . i .
q% | Implementation exploration At this stage, the allocation,
I binding and scheduling decisions are made for the be-
[Comm. refinment | | Protocol selection__ | haviors mapped to the custom hardware. The exe-
T | — : _cutable_ C code and RTOS are generated for th(_a be_hav-
model | Validation, Analysis | iors which are mapped to microprocessors. Unlike first
l three tasks which correspond to those in system level
| Impl refinement | [Impl. explor | design, this main process of this task is on component

design, which refines processes in PEs to the RTL/ISS
Impleinnz)zrétlation _I V- | levels.

The design flow consists of several steps, each of which
generates the succeeding abstraction model from the pre-
ceding one. As shown in Figure 4, each design step consists
of four tasks. In the Figurévlodel 1is the initial model at

shows the four exploration stages of the design flow as fol- Start of the step whilélodel 2is the outcome model of the
lows: refinement step.

Figure 3. System design flow

Analysis It involves analysis/estimation dflodel 1to es-

Architecture exploration At this stage, the selection of tablish its characteristics.

processing and storage components is performed. The

processes of the system behavior are mapped to pro€xploration This task focuses on design decision which
cessing components. The variables of the system be- shape the succeediipdel 2 It determines the imple-
havior are mapped to either local memories of PEs or mentation details which need to be added to transform
global memories(storage components). the design to the succeediMpdel 2 on the basis of

. the characteristics established in the previous task.
Transaction exploration This step involves defining the P

connectivity of processing and storage components viaRefinement It focuses on model refinement. At this stage
the system bus, i.e. defining the system topology. The the design decisions made in the previous task are
channels are mapped onto the system buses (modeled implemented by adding the implementation details to
as bus-arbitration model). At this stage the commu- Model 1 This produces the succeedintpdel 2

nication protocols are categorized into blocking and S)))
non-blocking protocolg. In this step, a bus arbitra- Validation Finally, the newly generateModel 2is vali-

tion mechanism is also selected if required. dated.

Protocol selection This step involves explicit selection of Although, the key ideas of this design flow are based on
bus protocols. The inlining of protocols is performed SyStém-synthesis approach[S], it also subsumes platform-
at this stage and decisions are made as to how differenf@5€d and component-based approaches.

If we look at the design flow from point of view of the

3if two PEs communicate through an unblocking protocol, then the platform-based design approach, the processing element se-

transmitter starts executing other tasks right after sending the data to thelection at the architecture exploration stage and intercon-
channel, without waiting the receiver to finish receiving data. On the other

hand, if two PEs communicate through a blocking protocol, the transmitter N€Ction tOF?Ol_Ogy .generation at the transaction exploration
cannot start executing other tasks until the receiver receives the data. stage are limited in scope.

On the other hand, the component-based design ap- Anal yzabi | i ty‘ ‘ Expl orability
proach such as TIMA lab’s[11] starts at the protocol selec-
tion stage and finishes at implementation refinement stage

of the design flow. @

2.3 Requirements on SLDLs

Figure 5 shows the general requirements on SLDLs, Refinability ‘ ‘ Val i dability
which are derived from Figure 4. We evaluate an SLDL
in terms of fulfilment of these requirements. They are dis- Figyre 5. Requirements on system level de-
cussed as follows. sign languages

Analyzability In order to establish the characteristics of
models, designers should be able to analyze them. So,
an SLDL should be conducive to analysis of models at modeling guidelines are provided for both SpecC and Sys-
all the levels of abstraction. e.g SpecC features analy-temC users for the cases where the constructs or the fea-
sis by profiling/estimation. tures of the respective languages give rise to an ambiguous
design.

Validation is done by simulation in case of both SpecC
and SystemC, so they are not compared in term of validabil-
ity. We compare them in terms of analyzability, explorabil-
ity and refinability.

Explorability The syntax and semantics of a SLDL should
allow explicit specification of the characteristics of a
model at any level of abstraction. This gives the de-
signers an enhanced latitude in making implementa-
tion decisions. e.g. SpecC haar andpipe constructs

for modeling parallelism and pipelined execution re- L)
spectively. 3. Specification model generation

Refinability The exploration tools should allow specifica-
tion of design decisions taken, in an explicit format.
This allows unambiguous refinement of the model us-
ing refinement tools or through manual refinement.
Secondly, the modeling styles of the model to be re-
fined and the resulting model after refinement should
be consistent.

In this section, we discuss the method of generating the
specification moddrom the design behavior.

3.1 Design Behavior

The behavior of the design example is shown in Fig-
ure 6. It has two inputsa(andb) and an outputd). The
Validability Models written in SLDL should be able to be design consists of five functional blockB1, B2, B3, B4

validated at all the levels of abstraction. e.g. SpecC andB2B3 B1 computesyl. B2 andB3 computesy2 and
and SystemC both allow validation by simulation. Be- v3 with v1 as input. B4 computesc with v2 andv3 as in-
sides validation by simulation, SpecC also allows val- puts. B2B3is a hierarchical block, which encapsulai#&?
idation by refinement. Abdi [1] develops theorems andB3. The dotted line irB2B3represents the parallel ex-
and proofs to show that the refinement algorithms for ecution ofB2 andB3. The functionalities of the blocks are
SpecC produce the outcome models which are func-shown in Figure 6.

tionally equivalent to the initial models. Thus, the cor-

rectness of the outcome models can be ensured by val-3 2 Specification capture and modeling

idating the initial models and refinement algorithms.

The first step of design is modelirgpecification model
using SpecC and SystemC. An idspkcification modedl-
lows smooth refinement at the later design steps and at the
same time demands minimum modeling work. The general
guidelines for developing the specification model are:

In order to study the suitability of SpecC/SystemC for
system level design, we model a simple system. We start
with capturing the specification model, subsequently imple-
menting the intermediate models following the design flow
in Figure 3, and finally develop the implementation model.

At each design step, models are written in both SpecC 1 The functionality should be modeled hierarchically to

and SystemC languages. The design guidelines introduced gjjow easy manipulation of complex systems.
in [6] are followed throughout this process. The two lan-

guages are compared in terms of their fulfilment of the re- 2. The granularity of functional blocks should be chosen
quirements on a SLDL as discussed earlier. Finally the such that it allows exhaustive exploration. Basically,

void main{

bl.main ();
b2 . main ();
}
(a) Sequential execution
B2B3 | void main{
| par{
B2 | B3 bl.main ();
v2 = vl + b*b; | v3=v1- b*b; b2.main ();
| }
}
I

Y (b) Parallel execution

void main{
pipe{
B4 bl.main ();
V4 = V2 +V3; b2 .main();
¢ = sqrt(v4); }

(c) Pipelined execution
Figure 6. Design example: system behavior

Figure 7. The execution sequence modeled in

the basic algorithmic blocks should form the smallest ~ SPecC
indivisible units for exploration.

3. The inherent parallelism of the system should be ex-

. 1. Function: SpecCfunctionfollows the same semantics
posed for the later exploration.

and syntax as the function in C language. A function
can be called hierarchically and executes sequentially

4. The computation and communication each should be))
according to the calling sequence.

modeled such that it does not limit the efficiency of the

other. 2. Behavior: SpecCbehavioris specified by éehav-
The modeling features of SpecC and SystemC are ana- [0 definition. There are two types of behaviotsaf
lyzed with respect to three aspects: behavior apd c_ompos_lte behavior A Ie_af beha_wor
may contain hierarchically called functions but it does
1. Computation: It reflects the capability of modeling not contain any sub-behavior instances. On the other
functional blocks. hand, acomposite behavioconsists of sub-behaviors
instances. These instances may be executing in par-
2. Data transfer: It reflects the capability of modeling allel, pipeline, or FSM fashion, which are explicitly
the data exchange among functional blocks. specified bypar, pipe andfsm constructs [5] respec-

tively. The sequential execution is the default execu-
tion order. e.g. behavior instanck$ andb2 are ex-
ecuting, sequentially in Figure 7(a), in parallel in Fig-
ure 7 (b), and in pipeline fashion in Figure 7(c).

3. Execution sequencelt reflects the capability of mod-
eling the execution sequence among functional blocks.

3.2.1 SpecC

The features of SpecC conducive to developing a specifi- Data transfer SpecC supports data transfer between
cation model, are discussed with respect to the above meny - o . through eitherariablesor channels Each be-

tioned three aspects. havior has a set of ports which connect to the ports of other

behaviors. It also has a set of variables and channels that

Computation SpecC provides two basic computation connect the ports of its sub-behavior instances. Like behav-
units: iors, channels also have hierarchical structure.

Execution sequence Functions execute sequentially in

type eventand thewait and notify statements which
are used for synchronization between behaviors. When
the wait statement such asit(e)is executed, the be-
havior ceases to execute until the waited eweaf a
behavior is notified witmotify estatement.

. ; Design
SpecC. In case of behaviors, SpecC provides two mecha-
nisms to model execution sequence.
1. Static scheduling In this case, the sequence of execu-
tion of behaviors is explicitly specified withar, pipe
and fsm constructs[5], the default order of execution
being sequential. B2B3 |
2. Dynamic scheduling SpecC usegvent-wait-notify B2 I B3
to schedule behaviors dynamically. SpecC has a data v2=vi+bb; I v3=vi-b*b;
I

B4
Guidelines The guidelines for modeling specification va=v2av3;
model, using SpecC, with respect to the previously dis-

cussed three aspects are:

c=sequ(v4);

1. Computation: Leaf behaviorsare used to model
smallest indivisible units for ease of exploration, with
just clearfcode. Although, thecomposite behaviors
can contain a hierarchy of functions, it is advisable
to use a hierarchy of behaviors. This allows parallel,
pipelined and FSM execution of behavior.

Figure 8. Design example in SpecC: specifi-
cation model

Computation SystemC provides three basic computa-

tion units:
2. Data transfer: Data transfer between behaviors is

modeled by Connecting ports through variables. Wedo 1. Func;tion: A functionis defined in the same way as the
not use channels, as separating computation and com- thatin C language.

munication is not required at this stage. 2. Process Processesre the basic behavioral entities

3. Execution sequenceStatic scheduling should be pre- of SystemC. Although, arocesscan contain function

ferred for modeling execution sequence between be-
haviors as far as the design allows. e.g. if two behav-
iors need to synchronize while they are executing con-
currently, then we have to rely on dynamic scheduling.

calls, it cannot invoke othgsrocessesTherefore, hi-
erarchical modeling of processes is not possible.

3. Module: Modulesare structural entities which serve

as basic blocks for partitioning a design. Modeling us-
ing modulegeflects structural hierarchy. The modules
can be classified into two categoridesaf moduleand
composite moduleA leaf modulecontains processes,
which specify the functionality of the module, but it
does not contain any module. @omposite module
consists of the instantiation of other modules.

Example Figure 8 shows the specification model of the
design in SpecC. The design contains four leaf behaviors:
B1, B2, B3andB4. Behaviors communicate through vari-
ablevl, v2andv3declared in the behavi@esign The thin
dotted arrows between behaviors represent the data transfer.
par construct is used to specify parallel execution between
B2andB3. The execution sequence is indicated by the thick
lines/arrows. The SpecC code for behaw2B3andDe-
signis shown in Figure 9.

Data transfer Data transfer is modeled by connecting
modules’ ports through eitheignalsor channels The data
transfer between modules essentially means data transfer
between processes in different modules. The data transfer
3.2.2 SystemC . . .

between processes in a module is performed through either
The features of SpecC conducive to developing a specifi-signals/channelsonnected to the modules’ port signal-
cation model, are discussed with respect to the previouslys/variablesdeclared in the module.
discussed three aspects.

Execution sequence SystemC only supports dynamic

4When we say clean code, we mean it does not contain any sub-) -
scheduling of execution sequence. There are two mecha-

behavior calls.

/1

behavior B2B3(in

{

Unit | Modeling hierarchy| Data transfer medium [Execution sequence \
Function || yes variable sequential
Process || no signal, channel, variable static sensitivity

dynamic sensitivity(s@vent, scsignal), channe
Module || yes signal, channel static sensitivity

dynamic sensitivity(ssignal), channel

Table 1. Features of computational units of SystemC.
nisms for dynamic scheduling:
1. Static sensitivity. When designers use a static sensi-
tivity mechanism, a list of signals are specified in a
Parallel composition of B2|| B3 "sensitivity list” of a process. If the value of any signal

int b, in int v1,

out int v2, out int v3)

B2 b2(b, vl, v2);
B3 b3(b, vl, v3);

void main(void)

behavior , specification model

in the sensitivity list of a process changes, the process
starts/resumes execution.

. Dynamic sensitivity: The dynamic sensitivity mech-

anism usesevent-wait-notifyto schedule processes,
which is the same as the dynamic scheduling in
SpecC. A process can wait and notify a event. If
the waited event of a process is notified, the process
starts/resumes execution. However, in case of Sys-
temC ports of modules cannot be connected through an
eventéc evenj, therefore, thevent-wait-notificannot

be used for synchronization between processes in dif-
ferent modules. Designers have to encapsulate events
into a channel in order to achieve synchronization be-
tween such processes.

Table 1 analyzes the computational units of SystemC for

three features: possibility of modeling of hierarchy, means
of data transfer and scheduling mechanism for the execution
sequence.

Guidelines The guidelines for modeling specification

{
par {
b2.main ();
b3 .main ();
}
}
¥
/Il Top-level
behavior Design(in int a, in int b,
out double c)
{
int vil;
int v2;
int v3;
B1 bl(a, vl);

s

B2B3 b2b3 (b, vl, v2, v3);
B4 b4(v2, v3,c);

void main(void)

{

bl.main();
b2b3 . main ();
b4 . main ();

}

Figure 9. The SpecC code for the specification
model of behaviors B2B3and Design

model, using SystemC, with respect to the previously dis-
cussed three aspects are:

1. Computation: Leaf moduleshould be used to model

smallest indivisible units for ease of exploration. Pro-
cesses are encapsulated inside tHeaé modulesto
model their functionality. Modulesare preferred for
modeling the smallest indivisible algorithmic units on
account of two reasons. Firstlgrocessesre not ca-
pable of modeling structural hierarchy. Secondly, dy-
namic scheduling diunctionsis not supported.

. Data transfer: Data transfer betweanoduless mod-

eled by connecting their ports througignals

. Execution sequence The dynamic sensitivity mech-

anism is recommended for the reasons explained later
in Section 4.2.2. However, for cases where a process

Design

SCMODULE(B2B3) {
sc_in<int > b;

B2B3 sc_in<int > v1;
y \ sc_out<int > v2;
B2 B3 sc_out<int > v3;
v2=v1+b*b; v3=v1-b*b;
e - 52 - b2:
B3 *b3;

SCCTOR (B2B3)

{

b2 = new B2("b2");
//port binding

wait(e2 & e3); ” »
V4=v2+V3; b3 = new BS(b3) ;
¢ = sequ(va)y; ... llport binding
}
I

Figure 10. Design example in SystemC: spec-

ification model SCMODULE (Design) {
sc_in<int > a;
sc_.in<int > b;
sc_out<double> c;
sc_signal<int > v1;
sc_signal<int > v2;
sc_signal<int > v3;

has to wait for the output of another process, static sen-
sitivity mechanism can be applied.

Example Figure 10 shows the specification model of the Bl xbl;
design in SystemC. The design contains four leaf modules: B2B3 *b2b3;
B1, B2, B3andB4. Modules exchange data through sig- B4 «b4;

nalsvl, v2andv3. The thin dotted arrows between modules
represent the data transfer. The thick solid arrows shows
the execution sequence. The execution sequence of mod- {
ules are determined by either static sensitivity mechanism

or dynamic sensitivity mechanism. ModuB2 andB3 are

SCCTOR(Design)

bl = new B1("b1");
/l port binding

statically sensitive to signail while moduleB4 is dynam- b2b3 = new B2B3("b2b3"):
ically sensitive to events2 ande3since this situation can ... Il port binding

not be modeled by static mechanisrB4 contains state-

mentwait (e2 & e3)which directs it to wait for completion b4 = new B4("b4");

of execution of bottB2 andB3. Since an event cannot be ... Ilport binding
connected to the port of modules2 and e3 are declared }

globally. The SystemC code for module B2B3 and Design b

is shown in Figure 11.

Figure 11. The SystemC code for the specifi-
3.2.3 Comparison cation model of behaviors B2B3and Design

Although SpecC and SystemC share many features, such
as dynamic sensitivity mechanism for dynamic scheduling
of execution sequence, there are three primary differences
which we come across when specification modeling is con-
sidered.

1. SpecC useslaehavior which is a consolidated repre- 4.1.1 SpecC

sentation for both structure and behavior. But in case]
of SystemC, there is a separation of the basic struc-SPeCC is a super-set of C langauge. Therefore, SpecC

tural and behavioral entities. The structure is modeled Model can be profiled easily. In addition, SpecC has a

using fnodule$ and behavior is modeled usingro- profiler[4] with a user friendly graphical interface.
cessep In summary, SpecC supports behavioral hier- ~ The execution of behaviors is primarily scheduled with
archy which is not available in SystemC. the use of definitionpar, pipeandfsmconstructs and the

default execution order is sequential. Therefore, the exe-

2. SpecC supports static scheduling while SystemC hascutiqn_ sequence can be directly derived just by reading t_he
to depend only on dynamic scheduling of execution se- speglflcatlon. e.g.'the Spe;cC code for the top level behavior
quence. Therefore, synchronization between concur-D€signand behavioB2B3in the taken example are shown
rently executing processes in SystemC is complex and" Figure 9. InBZBBf par construct |n_d|cat_es that behaviors
tedious to model. (e.g84in Figure 11). B2 an(_jB3 execute in parallel. IIbesign since none of the

par, pipg or fsmconstructs are used, we know by default

the behavior instance31, B2B3 andB4 execute sequen-
tially. Here, behavior82 andB3 can be mapped to differ-

| ent processing elements in order to exploit their parallelism

discovered directly from the specification.

3. SpecC doesn’t support static sensitivity mechanism
while SystemC does. However, the static sensitivity
mechanism in SystemC has disadvantages which wil
be explained later in Section 4.2.2. These disadvan-
tages can be circumvented by using dynamic sensitiv-
ity mechanism, which is same as dynamic scheduling 412 systemC
supported by SpecC.

SystemC is a C++ library extension. It is difficult to pro-
Therefore, we conclude that SpecC is better capable forfile the SystemC model accurately because of the C++ class
specification modeling as compared to SystemC. library burden, which obscures the computational needs
of the system under consideration from the computational
. overheads of the SystemC simulator. Therefore, profiling
4. |P-assembly model generation has to be performed with the C specification model.
There are three ways to determine the execution se-
In this section, we introduce the process of IP-assemblyquence.
model generation. We first analygpecification modednd

performarchitecture explorationWe then carry ouarchi- 1. Specification model can be analyzed manually or au-
tecture refinemertiased on the decisions taken after explo- tomatically by tools. However, this analysis is tedious.
ration. e.g. Figure 11 depicts only the structural hierarchy

without providing any information about execution se-
guence. Designers must investigate the processes in
each leaf module to establish all the static and dynamic
sensitivities. If the specification model is complex and
Architecture exploration entails selection of processing contains many hierarchal levels, analysis is extremely
elements (PEs) and mapping the behaviors on to them. It difficult.
also involves allocating of local and global memories and
mapping the variables of the behaviors on to them. If re- 2. Languages, such as UML, can be used to record the
quired, it also determines the RTOS of microprocessor pro- execution sequence.
cessing elements.
Designers perform architecture exploration on the basis 3. The execution sequence can be annotated to the Sys-
of following two factors. temC specification.

4.1 Architecture exploration

Complexity of functional blocks The complexity of func- Guidelines Because SystemC doesn't support a straight-
tional blocks is estimated by proflllng the SpECiﬁcation forward pr0f|||ng and doesn’t exp||c|t|y Specify the execu-
model. tion sequence of behavior, we recommend the guidelines for

architecture exploration using SystemC as follows:

Execution sequenceThe execution sequence of functional
blocks is determined by analyzing the specification 1. C specification model should be profiled before con-
model. verting the design into SystemC.

10

PE1 PE2

B13rcv

B3
v3=v1-b*b;

@
NS
D]
S
s
i
&
z
g

/ B2 , B3 \
\ [

l v2=v1+b*b; v3=v1-b*b; } /
\
S~— B4

\ VA4=v2+V3;

v2 S v3 c=sequ(v4);

< (e]
N 6‘24;;’55("\,34); Figure 13. Design example in SpecC: after PE
~ / allocation and behavior mapping

4.2 Architecture refinement

Figure 12. Design example: architecture ex-
ploration result Architecture refinement gradually refines the specifica-
tion model to the IP-assembly model on the basis of de-
cisions taken during architecture exploration. Architecture
refinement[6] consists of four steps as follows.
2. The execution sequence should be modeled using lan-
guages such as UML or should be annotated to Sys- 1. PE allocation. Processing elements(PEs) and mem-
temC specification. ory components are selected out of the component/IP
library and instantiated as part of the system architec-
4.1.3 Comparison wre.
We conclude that SpecC is better suited for the architec- 2 Behavior mapping. Behaviors are mapped onto the
ture exploration as compared to SystemC in terms of pro- processing elements and refined by adding behavior
filing and determination of execution sequence. A SpecC execution delays.
model can be profiled easily and designers or tools can de-
termine the execution sequence of behaviors by identifying
constructs such gsar andpipeetc. This eases the decision
making task of architecture exploration. However, SystemC
has to rely on C specification model for profiling and on
UML/annotations for determining execution sequence.

3. Memory mapping. Global variables in the specifica-
tion model are assigned to local memory of a process-
ing element in case of a message-passing implemen-
tation or to a dedicated, global memory component in
case of a shared-memory architecture.

4. Scheduling. Since any processing element(PE) only
4.1.4 Example executes single process at atime, processes inside each

PE are sequentialized by either static scheduling or dy-
In the design example, we select two processing elements namic scheduling.

from the library. We map the parallel behavi®@2 andB3

to two different processing elements in order to exploit par-

allelism. The mapping decision is shovx{n in Figure 12. In 421 SpecC

our IP-assembly model we do not require global memory.

All the variables are mapped to the local memories of the PE allocation and Behavior mapping In our example, at
processing elements. We use message passing architectutbe top level, two behaviors, call®ElandPE2 are added

for communication. to represent two processing elements. These two behaviors

11

represent the structural entities. We usegheconstruct to PE1 B1 PE2
ensure the parallel execution of the two behaviors. vi=aa;

Next, we map behavidB3to PE2while map rest of the 3
behaviors tdPEL1 The behavioral hierarchy of the specifi- Vi

[v]
cation changes after this mapping. Therefore, the behaviors :
must be rescheduled . We insert pairs of behaviors commu- (Cessona Jioobss '@L]
[]

\
nicating via message-passing channels for synchronization }
\ B3
shown in Figure 13. The paB13sndandB13rcvsynchro- B2 e | Va=V1-bb;
v2=v1+b*b; ‘
\
\
\

between concurrently executing behaviBilandPE2, as
nizes before the starting point 8f3 via channetb13 and

pair B34rcv and B34sndsynchronizes after the end point
of B3via channetb34 B34rcvexecutes afteB13snd The (_ msarev Jor@ov34 P{_ B3asna
behavior containin@13sndandB34rcvexecutes in parallel ;
with B2, [] []

B4
Memory mapping Memory mapping using SpecC con- e

sists of further two steps:

1. Alocal copy of each global variable is created in each

of processing elements where the variable is used. Figure 14. Design example in SpecC: after

memory mapping
2. A channel and a pair of behaviors is inserted for each
global variable. The channel is needed for data trans-

fers between the local copies of the global variables, Since, SpecC supports constructs for explicit specifica-
created in the processing elements. The pair of behav- » 9P bp b P

. . : " tion of the execution sequence, the inherent parallelism is
iors read/write the values of the local copies of vari- q P

. easily identified.
ables over the inserted channels. . : .
Furthermore, designers can easily serialize the parallel

If a channel and a pair of behaviors were added to the behaviors just by removingar construct since default exe-

model for the synchronization during the previous re- cution sequence is serial. The result of static scheduling of
finement steps, the two channels and two pairs of be-the example is shown in Figure 15.
haviors are merged at this stage if possible.

In our example, we first create local copies for global ~ Dynamic scheduling For the dynamic scheduling of
variablevl andv3. Then, we create a channel and a pair of Pehaviors, anew behavior has to be created in each process-
behaviors fov1, and a channel and a pair of behaviors for iNg élément. The newly created behavior acts as a scheduler.
v3. Finally, we merge the channel and the pair of behaviors It notifies an event, to the behavior which is ready to exe-
for v1with channekb13and behavior813sndandB13rcv cute. All the behaviors start or resume execution when their
inherited from the previous refinement steps. We also mergeWaited events are notified.
the channel and the pair of behaviors f@& with channel
chb34and behavior834sndandB34rcv The final modelis 4.2.2 SystemC

shown in Figure 14. . . .
PE allocation and Behavior mapping In our example, at

_) the top level, two modules, calldRE1andPE2, are added
Scheduling Before scheduling, we remove the redundant represent the two processing elements.

behavior hierarchy. When using SpecC with the design ex-
ample, we remove the behavior encapsulaBi@snd, B2
andB34rcv.

Next, we map modul83to PE2while rest of the mod-
ules are mapped tBEL Since a module in SystemC is
a structural entity and the processes are scheduled dynami-
cally , we just move the moduB3to PE2 without any need
Static scheduling In general, Static scheduling task for reschedule. The final model is shown in Figure 16.
consists two steps:

1. Identification of the possible parallelism inside each Mémory mapping In the SystemC model, the global

processing element. vgriabl_es are represented by global signa!s_. However, the
signal is not only used for data transfer, but it is also used for
2. Sequentializing the parallel processes. scheduling of execution sequence using the sensitivity list.

12

B13snd

B2
v2=v1+b*b;

o cbs P esrev

V.

B3
v3=v1-b*b;

1
[]
¥

vz Ba4r)<—w—| B34snd
”””” B4

Vv4=v2+v3;

c=sequ(v4);

Figure 15. Design example in SpecC: after

static scheduling

PE1

B2
V2=vi+bH;
notify(SC_ZERO
_TIME, e2);

wait(e2 & e3);
VA=V2+V3;
c=sequ(v4);

B3
v3=v1-b*b;
notify(SC_ZERO
_TIME, e3)

Figure 16. Design example in SystemC: after
PE allocation and behavior mapping

PE2

PE2

13

PE1 PE2

Bl

vl=a*a;
notify(el)

B2
wait(e1);
v2=v1+b*b;
notify(SC_ZERO
_TIME, e2);

B3 wait(e1);
v3=v1-b*b;
notify(SC_ZERO
_TIME, e3)

4 .
wait(e2 & e3);
VA=v2+V3;
¢ = sequ(va);

Figure 17. Design example in SystemC: after
step 1 of memory mapping

Therefore, memory mapping in SystemC not only influ-
ences the data transfer, but also interferes with the schedul-
ing of execution sequence.

The architecture refinement step involving memory map-
ping using SystemC consists of five steps:

1. Anevenfsc event)s created for each global signal if it
is used in the sensitivity list of any process. This newly
created event is substituted for the global signal in the
sensitivity list. It is used to achieve complete separa-
tion of data transfer from scheduling and to perform
scheduling using dynamic sensitivity mechanism.

2. Alocal copy of each global signal and its correspond-
ing created event is maintained in the processing ele-
ments where the variable is accessed.

3. A channel and a pair of processes is inserted for each
global signal. The channel is needed for data transfers
between the corresponding local copies of each global
signal, created in the processing elements. The pair of
processes read/write the values of the local copies of
the signals over the inserted channels. The schedul-
ing after inserting the processes is done using the local
copies of the event.

4. The local copies of the corresponding events and sig-
nals are merged, if possible. This is done in order to
replace the dynamic sensitivity by the static sensitivity.

5. Since, an event in SystemC is not allowed to connect
to the port of a module, an event declared in a module

PE1 PE2 PE1 PE2
@ cv13 P B13rcy B13snd Qoo P B13rcv
“
ait(el1); / :?Mawle B2 B3
e, e it o
i i e ST <3
‘ i
@ cv3a Pe—{ B34sna (@ o34 Pet—{ B3asna
B4 B4
wait(e2 & e3); wait(e2 & e3);
V4=v2+V3; VA=V2+V3;
c=sequ(va); = sequ(va);
Figure 18. Design example in SystemC: after Figure 19. Design example in SystemC: after
steps 2 and 3 of memory mapping step 4 of memory mapping

cannot be accessed by its child modules. There are Finally, the model after performing step 5(a) of mem-

following two possible solutions. ory mapping for the design example is shown in Figure 20.
(a) The remaining local events in each processing ele-Eventse2ande3l1are encapsulated in the channoel.
ment are encapsulated by channels. Alternatively, the model after performing step 5(b) of

memory mapping for the design example is shown in Fig-
ure 21. In this case, all the blocks inside the processing
'&Iement?ElandPEZ represent processes instead of mod-
ules.

(b) All the modules in each processing element are re-
moved while keeping the module’s processes. Here
an event is used to schedule between processes, rath
than between modules.

The model after performing step 1 of memory mapping
for the example is shown in Figure 17. In step 1, eveht
is created for the global signel. to trigger the moduleB2
andB3 after the execution d81 has finished.

The model after performing steps 2 and 3 of the mem-
ory mapping for the example is shown in Figure 18. In this
model, eventgllandel2are the local copies of eveai.
Evente3lande32 are the local copies of eveaB Global
signalsv1 andv3 also have the local copies in both the pro- Static scheduling As mentioned before, SystemC
cessing elemenBElandPE2 A channelcbl3and a pair does not allow explicit specification of the execution se-
of behaviorsB13sndandB13rcvare inserted for exchange quence. Therefore, identifying the parallelism inside each
of data between local copies of signdlin both the pro- processing element is difficult. Designers may need UML
cessing elements. Similarly, a changbB4and a pair of or SystemC annotation to specify the execution sequence
behaviorsB34sndandB34rcvare inserted for exchange of between processes.
data between local copies of signdlin both the processing On the other hand, in order to serialize the parallel pro-
elements. cesses in SystemC, designers must add a pair of wait and

The model after carrying out step 4 of memory mapping notify statements, which is tedious if the behavior hierarchy
for the example is shown in Figure 19. At this step, the is complex.

Scheduling When using SystemC with the design exam-

ple, we have two cases. If we have followed step 5(a) of
memory mapping then we remove all the modules in each
processing element. Otherwise if we have followed step
5(b) of memory mapping, we already have modules re-
placed by processes.

variablevl and the evenellin processing elemerRE], In the design example, We apply static scheduling on
the variablesr1and the everg12in processing elemeRtE2, the model shown in Figure 21. We serialize processes
and the variable@3 and the eveng32in processing element B13snd B2, andB34rcvsuch that they execute in the order
PE2are merged. of B13sngd B2, andB34rcv. A signalv5is added to serialize

14

PE1 PE2 PE1 PE2

B13snd

ez Py

B13snd

ooz P

B13rcv B13rcv

B2
v2=vi+bth;
notify(SC_ZERO
_TIME, e2);

B2
v2=vi+bh;
notify(SC_ZERO

v3=vl-b*b;

va=vi-bb; ;
notify(SC_ZERO

notify(SC_ZERO
_TIME, e3)

_TIME, e2); _TIME, e3)

(034 Pet——{ B34sna @ cb34 Pel— Bsd;nd
B4
Vi, ey
redutuay Rimesrrt
Figure 20. Design example in SystemC: after Figure 21. Design example in SystemC: after
step 5(a) of memory mapping step 5(b) of memory mapping

processe82 andB34rcvusing the static sensitivity mech- ing SpecC compared to that using SystemC. This is can be

anism. Evene3lis merged with the signal3in order to said on account of the following two reasons:

serialize the process@&34rcvandB4. Evente2is deleted.

The model obtained after this architecture refinement step 1. Use of static sensitivity in SystemC leads to inter-

(static scheduling) is shown in Figure 22. dependence between data transfer and execution se-
guence scheduling.

Dynamic scheduling The process of dynamic

scheduling of SystemC is same as the scheduling of SpecC. 2- An éventsceventin SystemC cannot be used to con-
nect ports thereby preventing the use of the events of a

module by its child modules.
Guidelines In order to ease the tedious memory mapping y

task of architecture refinement, designers can follow the
guidelines as given below: Scheduling In general, the complexities of dynamic
o) o o scheduling using SystemC and SpecC are similar. But, im-
1. Avoiding use of static sensitivity in the specification plementation of static scheduling using SpecC is easier than
model that using SystemC because SpecC identifies the execution

2. Following step 5(b) rather than step 5(a) discussed ear-S€quence of behavior while SystemC does not.

lier.
5. Bus-arbitration model generation
4.2.3 Comparison

PE allocation and Behavior mapping The architecture In this section, we describe the process of Bus-arbitration
refinement step involving allocation, partitioning and map- Model generation. This section introduces two tagiesis-

ping is easier using SystemC compared to that using Speccaction exploratiorandtransaction refinement

Since the refinement changes the behavioral hierarchy, be-

haviors in SpecC have to be rescheduled. On the other hand5.1 Transaction exploration

modules in SystemC can be easily moved across the parent

module without the need for reschedule. The transaction exploration determines the interconnec-
tion of the system components via the system bus or in other

Memory mapping In general, the architecture refinement words the topology of the system. The channels between

steps involving memory mapping are easier to perform us-the processing elements are mapped onto the system buses.

15

in the IP-assembly model.

As discussed earlier in Section 4.1, it is tedious to profile
SystemC, on account of its C++ library burden.

Again, the start and end time of execution of channel
cannot be evaluated from the IP-assembly model because it
—— o3 P Barov depends on the outcome of the communication exploration.

PE1

B2
v2=vi+bh;
notify(SC_ZERO
_TIME, e2);

5.1.3 Comparison

B3
va=vi-b*b;

notify(SC_ZERO

_TIME, e3)

We conclude that SpecC and SystemC have similar capabil-

ities in terms of support for transaction exploration, except

L for the determination of channel traffic which is much easily
[] — e3P,

feasible using SpecC on account of its profiling capability.

O 5.1.4 Example
VA=V2+V3;

¢ = sequ(v);

There are only two processing elements in our design ex-
ample, hence we select a duss1to connecPElandPE2

Both channelsbl3andcb34are mapped ontbusl We
select a blocking protocol fdsuslwith a master-slave ar-
rangement. In this case PE1 is a master and PE2 is slave.
We do not need any arbiter here, as there is only one master
The bus protocol is chosen from among the two broad cate-and one slave.

gories, blocking and non-blocking. A bus arbitration mech-
anism is also decided if required. The transaction explo-
ration is determined by the following communication char-
acteristics of the IP-assembly model:

Figure 22. Design example in SystemC: after
static scheduling

5.2 Transaction refinement

The decisions taken at the transaction exploration step
1. Channel topology. (or outcome of transaction exploration step) are imple-
mented during the transaction refinement. The transaction
refinement consists of two steps:

2. Channel traffic.
3. Start and end time of execution of channel.

The first characteristic, channel topology is the primary de- 1. Encapsulgtion of channels into a hierarchical channel
terminant of the overall system topology. The remaining representing the bus.

two characteristics have bearing upon both the bus load and

competition, they together determine the bus protocol selec- 2: The functionality of the abstract channels represent-
tion and channel mapping. ing the buses are implemented using the selected bus

protocols i.e. blocking or non-blocking, with the bus
511 SpecC modeled at the transaction level.
Designers can easily derive channel topology since SpecC
allows explicit specification of the channel topology in the 5.2.1 SpecC and SystemC

IP-assembly model. The first step of transaction refinement requires the hierar-

, The Des!gners can obtain channel traffic by profiling us- pica| channel modeling. Second step requires abstract time
ing the profiler[4]. modeling i.e. modeling communication delay, in channels.

However, the start and end time of execution of channeI'Both SystemC and SpecC support above requirements.
cannot be evaluated from the IP-assembly model because it

depends on the outcome of the communication exploration.
5.2.2 Comparison

5.1.2 SystemC
ystem We conclude that both the SpecC and SystemC are equally

Designers can easily derive channel topology since Sys-capable for transaction refinement and the refinement pro-
temC allows explicit specification of the channel topology cess is quite similar for both of them.

16

PE2

B1

PE1 [:]Bl PE2 PEL
vl=a*a;

B13rcv

B13snd

13snd

vi=a*a;
P

Busl
B2 N =3 } Busl
V2Lt N H m v3=v1-b*b; ® v+t] =vibrb;
— = bend e

B34snd

B34snd

Figure 24. Design example in SystemC: bus-

Figure 23. Design example in SpecC: bus- e
arbitration model.

arbitration model

6. Bus-functional model generation
5.2.3 Example
) o o This section introduces two tasksotocol selectiorand
In general, in the bug—arbltratlon model, bus arbiter is mod- -ommunication refinement
eled to handle conflicts for the control of the bus. Every
processing element is assigned a priority for bus grant. Theg 1 protocol selection
total communication time for every transaction is annotated

by usingwait statements. After transaction refinement, the next step is the commu-
Our design example consists of only two processing ele-njcation exploration. The communication exploration de-

ments.PE1is the bus master arlE2is the slave. There- termines the exact bus protocols for buses from the broad

fore, modeling a bus arbiter and priority assignment to pro- pjocking and non-blocking categories. The inlining of pro-

cessing elements is not required. tocols is also performed at this stage and decisions are made
The model of the design example using SpecC afteras how different parts of a protocol are distributed among

transaction refinement is shown in Figure 23. The differ- the processing elements. The communication exploration is

ence between the models at steps 1 and 2 of transaction redetermined by the bus protocol selected.

finement is that the channel in step 2 contaieit state-

ments representing the required communication time forg.1.1 Comparison

each data transaction while step 1 does not. Similarly, the

model of the design example using SystemC after transac->PecC and SystemC have similar capabilities in terms of
tion refinement is shown in Figure 24. support for communication exploration.

6.1.2 Example

5.2.4 Guidelines As discussed earlier in Section 5.1, we already mapped
channelsxcb13andcb34ontobusl We now explicitly se-
After the first step of transaction refinement, several chan-lect the double handshake protocol fars1 The double-
nels in the PE-assembly model are encapsulated into a sinhandshake protocol is a point-to-point protocol in a master-
gle hierarchical channel. As aresult, all the communicating slave arrangement. The master drives the address bus, sig-
behaviors compete for the access of the newly created uninals the start of a transfer to the slave viaradyline and
fied channel. So, in order to ensure the correctness of thewaits for an acknowledgement from the slave via ok
resulting model, the behavior/process involving the chan- line. The slave, on the other hand, samplesatidressbus
nel accesses in each processing element must be serializedpon receiving theeadysignal and, in case of an address
Failure to comply to this may result in an incorrect outcome match, acknowledges the transfer by assertingattdine.
model which will be illustrated in Section 6.2. The data bus can be driven by either the master or the slave

17

address[15:0]
data[31:0]

PE1 PE2

ready

ack

Figure 25. The interfaces of PEland PE2when
using the double-handshake protocol

address[15:0]

data[31:0]

ready

ack

(5,15) (5,25)

PE1 B1
vi=a*a;

B13snd

(10, 20) (5,15)

Figure 26. The timing diagram for the double-
handshake protocol

depending on the direction of the data transfer. The inter-
connection betweeRE1 and PE2is shown in Figure 25.
The timing diagram of the protocol is shown in Figure 26.

6.2 Communication refinement

The decisions taken at the communication exploration
step are implemented during the communication refine-
ment. The communication refinement consists of two steps:

1. The chosen bus protocol is modeled at the bus-
functional level.

2. The communication functionality is inlined into the
behaviors for implementation on the components. In
course of this process, the communication function-
ality has to be refined and adapted to the component
capability.

6.2.1 SpecC and SystemC

The first step requires modeling the channel parameters
The second and the final step requires implementing the

Figure 27. Design example in SpecC: after

IBusMaster

DbIHSBus

Db
ad

step 1 of communication refinement.

address[15:0]

IBusSlave

B13rcv

B34snd

PE2

PE2

Bl3rcv

data[31:0]

ready

v4=v2+v3;
¢ = sequ(v4)

ack

functionality of channels in the behaviors/modules. Both
SpecC and SystemC support above requirements.
6.2.2 Comparison

We conclude that both the SpecC and SystemC are equally
capable for communication refinement and the refinement
process is quite similar for both of them.

18

Figure 28. Design example in SpecC: after

step 2 of communication refinement.

PE2

PE2

B13snd

DbIHSBus

address[15:0]
data[31:0]

B2

Va=vi-bb;
notify(SC_ZERO
_TIME, 3)

V2=vi+bh;
notify(SC_ZERO
_TIME, e2);

ready
ack

i)

b*b:
)

B34snd]

V4=V2+V3;
© = sequ(va);

Figure 29. Design example in SystemC: after

step 1 of communication refinement. Figure 30. Design example in SystemC: after

step 2 of communication refinement.

6.2.3 Example 7.1 Implementation exploration

The models of the design example using SpecC after com- o i)
munication refinement steps 1 and 2 are shown in Figures 27 1 "€ last task of design is to refine the bus-functional
and 28 respectively. The models using SystemC after refine-N0de! to the implementation model. As defined in Sec-

ment steps 1 and 2 are shown in Figures 29 and 30 reSIOeCt_lon 2 implementation model is specified in terms of the reg-
tively. ister transfers for the behaviors mapped to custom hardware

components and in terms of the instruction set architecture

for the behaviors mapped to programmable processors. The

implementation exploration achieves decision making for
6.2.4 Guidelines this task.

For the custom hardware components, implementa-

Here, we discuss an example illustrating the need to seri-tion exploration consists of taking allocation, binding,
alize the channel accesses of each processing element agg scheduling decisions of high-level/behavior synthe-
stated in Section 5.2. e.g., in the design example, if we sjs for both the computation and communication/protocol
don't serialize the processes in SystemC during architectureparts_ Implementation exploration is not required for pro-
refinement. Modul13sndin PE1will send signalready grammable processors, because architecture exploration al-

to PE2then it will wait for theack signal. After the mod- yeady determines the processor's RTOS and instruction set.
ule B13rcvin PE2 asserts thexck signal, moduleB34rcv

starts execution. Sind&34rcvobserves thaickis asserted,
it starts receiving data frolRE2 Obviously, the result ob- 7.1.1 SpecC and SystemC

tained is incorrect.
SpecC and SystemC are both C/C++ based languages. The

Therefore, during architecture refinement, if dynamic . | . loration f hard ina both
scheduling is used instead of static scheduling, it is recom—Imlo emgnta_ﬂo_n exp ora_tlon or custo_m araware using ot
mended to serialize the modules/orocesses th'at access t of them is similar to the implementation exploration from C

P t]gmgauge, which has been studied in details in the field of

channels. high level synthesis.

7. Implementation model generation 7.1.2 Comparison
Therefore, we conclude that the capabilities of SpecC and

This section introduces two taskmiplementation explo- SystemC are quite comparable with respect to implementa-
ration andimplementation refinement tion exploration.

19

7.2 Implementation refinement In this report we do not cover all the five RTL models.
We select the unmapped RTL as the final model at the sys-

The task of implementation refinement is to generate thetem level. The modeling below unmapped RTL model be-
implementation model, on the basis of the decisions takenlongs to the behavioral synthesis problem, which we are not

during implementation exploration . The following are the interested into. S
steps involved in the implementation refinement. The unmapped RTL generation is divided into two steps.

Flattening and merging This step of unmapped RTL gen-
eration involves flattening and merging behaviors/pro-
cesses. This is performed because each custom hard-
ware should contain only one FSM.

2. Software synthesis: The behaviors mapped onto a proRefinement to cycle-accuracyThis step involves refine-

1. Custom hardware synthesis: The behavior descrip-
tion is synthesized into a netlist of register-transfer
level(RTL) components.

grammable processor are converted into C code, COM- ment of the model to a cycle-accurate one. The state-
piled into the processor’s instruction set, and linked ments in each cycle in the FSM are determined by im-
against an RTOS if required. plementation exploration/high-level-synthesis.

3. Synthesis of bus interfaces and bus drivers: The ap-

plication and protocol layer [6] functionality is synthe- Software Implementation refinement for software in-

sized into a cycle-accurate implementation of the bus volves conversion of the SpecC/SystemC model into a C

protocols on each component. This requires Synthe_model, its compilation into the processor’s instruction set
sis of bus interface ESMDs on the hardware side ang&nd linking against an RTOS if required. Implementation

generation of assembly code for the bus drivers on theefinement also involves generation of assembly code for
software side. the bus drivers.

7.2.1 SpecC
Hardware Accellera RTL [2] standard defines five differ- P

ent RTL models, from the most abstract to the least abstractHardware SpecC supports all the five Accellera RTL
level: models and their step by step refinement. For unmapped
RTL generation, thésmdconstruct in SpecC can be used to
1. Unmapped RTL: The behavior is scheduled to the model the RTL level FSM, which models behaviors with cy-
cycle-accurate model. The Unmapped RTL is equiva- cle accuracy. For storage-mapped RTL generabaffered
lent to the programming language code with exception variable construct can be used to replace the behavior vari-
that such code is divided into states, with conditional ables with modular storage units. For function_mapped
transition between states added to the code. RTL generation, functions representing functional units can
. be used to replace the operations such as "+", "-". For
2. Storagg—mappeq RTLE The allocated storage un|§ S,UChconnection-mapped RTL generation, data tyitecan be
as register, register file, and memory are explicitly \seq to replace the behavior variables in order to model the
specified. The variables of behavior bound to the stor- |5c4| puses. Finally, for exposed-control RTL generation,
age units are replaced by the specified storage units. gneccsignal variablecan be used to model the control vari-
ables for storage and functional components. Therefore, we

3. Function-mapped RTL: The function unit such as i
adder, shifter are allocated and the computation opera—.ConCIUde that SpecC has complete support for RTL model

. . " . ing.
Llcr)"r:: of behavior are replaced by the specified function Flattening and merging behaviors in SpecC is straight-

forward. The leaf behaviors are removed and the statements
of leaf behaviors are inserted into a hierarchical behavior
depending on leaf behaviors’ execution sequence.

We use thésmdconstruct to specify cycle-accurate finite
state machine in SpecC.

5. Exposed-control RTL: The model consists of two
parts: netlist of datapath components and a controller Software In order to convert a SpecC code to one in C,
that assign a constant to each control variable in eachdesigners need to remove all SpecC language specific con-
state. The value of control variables determines the structs and elements, suchtehavior par, notify, andwait.
status/funcationility of each storage, functional or bus Because of the space constraint, we do not carry out the im-
component in the datapath. plementation refinement for software in this report.

4. Connection-mapped RTL: The allocated local buses
are specified and the variable of behavior bound to the
local buses are replaced by the specified local buses.

20

/1 design.h /I design.h

SCMODULE(PE1) { SCMODULE (PE1) {
sc_signal<int > v1; sc_signal<int > v1;
SCCTOR(PE1) SCCTOR(PE1)
{ {
SCTHREAD(b1); SCTHREAD(b1.b13rcv);
dont_initialize (); dont_initialize ();
sensitive<< a; sensitive<< a;
SC.THREAD(b13snd); }
dont.initialize ();
sensitive<< vl; /1 design.cpp
} void PE1::b1b13snd (X
} vl = axa;
bus—>write (ADDR.CB13, v1);
!l design.cpp I
void PE1::bl(X
vl = axa;
}; Figure 32. Incorrect SystemC code after

merging processes Bland B13snd
void PE1::b13snd(}
bus—>write (ADDR.CB13, v1);
b

for data transfer between processes as well as for schedul-
. ing, and the value of a SystemC signal is not updated until a
Figure 31. The SystemC code for processes delta cycle. Furthermore, SystemC doesn’t allow binding of
Bland B13snd variables to ports of modules, which limits use of variables
for data transfer between processes in different modules.
For example, the SystemC models of prod&$and pro-
7.2.2 SystemC cessB13sndare shown in Figure 31. The incorrect Sys-
temC model after merginB1 andB13sndis shown in Fig-
Hardware SystemC provides two ways to model the yre 32, In this model, the statements of two processes are
FSM. just put together. The model is incorrect becausds a
SystemC signal, whose value is not updated immediately.
Therefore, the value ofl which bus=>write(ADDR CB13,
vl) accesses is the old value, instead of the new vatae
In order to solve this problem, the SystemC signals being
2. Usng SGETHODISCTHREAD [7] fo expict 12201 e [anstebetueen procecees s e plces
modeling of FSM by usingwitchstatement. B1andB13snds shown in Figure 33.
SystemC also provides functions, variables with data We use SCTHREAD to specify the cycle-accurate finite
type bit, and signabkcsignal SystemC uses signal to rep- State machine in SystemC.
resent the storage unitin FSMD (SpecC useffered vari-
able). Hence, we conclude that SpecC and SystemC pro-
vide smﬂar support for RTL'moc.Jellng. transfer between processes should be replaced by the Sys-
Merging process is specially important for SystemC be- temC variables.
cause it can remove the overhead of implementing static or
dynamic sensitivity between processes in the same process-
ing element. The processes should be statically serializedSoftware Conversion of a SystemC code to one in C in-
before flattening and merging. volves two steps. First, SystemC code is converted to a C++
Merging of processes using SystemC should be per-code by removing all the SystemC specific constructs and
formed cautiously. This is because SystemC uses signalelements, such asodule port, channel Second, C++ code

1. Using SCCTHREAD [7] for implicit modeling of
FSM by insertingwait statement along with the state-
ments executing every cycle.

Guidelines The SystemC signals being used for data

21

/1 design.h
SCMODULE(PE1) {

int vil;

SCCTOR(PE1)
{

SCTHREAD(b1.b13rcv);
dont_initialize ();
sensitive<< a;

}

// design.cpp
void PE1::b1b13snd (X

vl = axa,;

bus—>write (ADDR.CB13, v1);
s

Figure 33. Correct SystemC code after merg-
ing process Bland B13snd

is then converted to a C code, which is compilable and exe-

cutable on the microprocessors.

7.2.3 Comparison

PE2

address[15:0]

data[31:0]
ready

Figure 34. Unmapped RTL model of SystemC
and SpecC

design flow. We classify the difficulty of each design task at
three levels: easy, medium, and hard, in terms of the used
system languages. The bold item indicates that it has the
advantage over the normal item in the same row, where each
row represents a step. System design using SpecC is easier
at six steps, while system design using SystemC is easier
at only one step. Therefore, we conclude SpecC is a better
suited design language than SystemC considering the whole
design flow.

Table 3 shows the overall comparison between SpecC
and SystemC in terms of design modeling. Table 3 throws

Hardware Both the languages have similar capability for light on the reasons of the differences between SpecC and
modeling cycle-accurate model. However, merging of the SystemC, shown in Table 2. Some of the major differences
processes has quite complex consideration in case of Sysare summarized below:

temC compared to SpecC where it is fairly easy. Hence, we

conclude that SpecC is better capable for implementation 1. SpecC supports static scheduling usiag pipe and

refinement compared to SystemC.

Software In both the cases of SpecC and SystemC the

language specific constructs and elements need to be re-
moved. Furthermore, since SpecC is C based language and
SystemC is C++ based language, an additional step of con-

verting a C++ code to a C code is required for SystemC.

7.2.4 Example

Hardware In this design, we assume both PE1 and PE2

are mapped to the custom hardware. The genenated

mapped RTImodels for SpecC and SystemC are the same,

which are shown in Figure 34.

8. Overall Comparison

fsmconstructs, or default sequential execution. Static
schedule allows designers to determine the explicitly
modeled execution sequence, which is used during ar-
chitecture exploration. It also eases the static schedul-
ing during architecture refinement. These features are
not available in SystemC.

2. SystemC usesioduleas the structural entity amato-
cessas the behavioral entity. It does not support hier-
archical modeling oprocess Therefore, botlprocess
andmoduledo not fully support behavior entity mod-
eling. On the other hand, Spedighavior supports
modeling of behavioral hierarchy.

3. In case of System@ariable andeventcannot be used
to connect the ports of different modules. Therefore,
they can only be used either inside the modules or
globally. This limits the use of events for schedul-

Table 2 illustrates the differences between system design ing modules and variables for data transfer between
using SpecC and SystemC in terms of design steps in our modules. On the other hand, Spes€haviorsupports

22

| Design steps | Sub-steps | SpecC | SystemC
Architecture exploration Computation profiling Easy Hard: Tedious
C++ library burden
Executing sequence scheduling Easy: Explicit Hard: Implicit
Architecture refinement Allocation and partitioning Hard: Reschedule requiredEasy
Variable mapping Easy Medium: Data transfer
and schedule separation
Scheduling Easy: Explicit Hard: Implicit
Behavior/module flattening Easy Easy(removal of modules in PE;S
Transaction exploration Transaction Profiling Easy Hard
Channel topology modeling Easy Easy
Transaction refinement Channel grouping Easy Easy
Transaction protocol insertion || Easy Easy
Communication exploration Exact protocol selection Easy Easy
Channel inlining decisions Easy Easy
Communication refinement| Bus functional protocol insertion] Easy Easy
Channel inlining Easy Easy
Implementation exploratior N/R N/R
Implementation refinement| Process/module merging Easy Medium: Conversion of
signal to variable

Table 2. Overall comparison in terms of exploration and refinement

| Abstract models | Model aspect | SystemC | SpecC \
Specification model functional block module behavior
schedule event, signal event, definition(par..
data transfer signal variable
IP-assembly model structure blocks module behavior
functional blocks process behavior
schedule inside PEs event, signal event, definition(par..
schedule between PEs | channel channel
data transfer inside PEs || signal variable
data transfer between PEschannel channel

Bus-arbitration model

same as Arch model

same as Arch model

Bus-functional model

same as Arch model

same as Arch model

Implementation mode

fsm switch(SCTHREAD), SCCTHREAD | fsmd

function units function/module function/behavior
storage variable signal buffered signal
bus bit bit

control signal signal signal

Table 3. Overall comparison in terms of design modeling

23

D

scheduling using events and data transfer using vari-References

ables without any constraint.

4. SystemC uses lower level semantics and syntax to
model concepts at higher levels of abstraction. An
example is the use of module (which is essentially a
structural entity) as behavioral entity in the specifica-
tion model. Another example is the use of signals for
data transfer. Since the value of signal is updated after
a delta cycle delay, using signal to model data transfer-
ring causes problems such as those described during
the process merging step in Section 7.2.

5. SystemC is C++ based language, which is tedious to
profile because of C++ library burden. There are no
such limitations with SpecC.

6. In case of SystemC, when static sensitivity is used
for scheduling, it affects both the data transfer and
the execution sequence scheduling. Therefore, design-
ers should only use dynamic sensitivity for scheduling
in the specification model. This is not the case with
SpecC.

The first four limitations of SystemC can not be circum-
vented since they follow from the definition of the semantics
and syntax of SystemC. However, the last two limitations
can be circumvented as discussed there.

9. Conclusion

We first establish the requirements on a SLDL for the

system-level design flow. We come up with four essential [10]
properties required of a SLDL namely, analyzability, ex- [11]

plorability, refinability and validability.

We then compare the capabilities of SpecC and SystemC
in terms of the fulfilment of the established requirements on
a SLDL. Although SpecC and SystemC share many con-
cepts, SpecC proves better than SystemC in terms of fulfil-
ment of these requirements. This is primarily on account of
the clear semantics and syntax definition of SpecC. It should
be noted that we choose a general design flow (which befits
both SpecC and SystemC) in order to keep our evaluation
fair to both.

We also provide design guidelines for SpecC and Sys-
temC users. Although, following the guidelines allows for
smooth and efficient system-level design, at the same time,
the need of too many guidelines exposes the lack of expres-
siveness of the language. As we see, there are very few
guidelines required for SpecC compared to SystemC where
we have numerous guidelines. So we conclude SpecC is
superior with respect to this aspect also.

24

[1] S. Abdi and D. Gajski. Formal Verification of Speci-

fication Partitioning. Technical Report CECS-TR-03-
06, University of California, Irvine, March 2003.

Accellera. RTL Semantics and Methodology,
http://www.eda.org/alc-cwg.

3] Accellera. SystemVerilog 3.0 Accellera’s Extensions

to Verilog, http://www.accellera.org.

L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and

S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

6] A. Gerstlauer, R. Domer, J. Peng, and D. Gajskys-

tem Design: A Practical Guide with Spec®&luwer
Academic Publishers, 2001.

[7] Thorstn Grotker, Stan Liao, Grant Martin, and Stuart

Swan. System Design with System®&Iluwer Aca-
demic Publishers, 2002.

Keutzer K, Newton AR, Rabaey JM, and Sangiovanni-
Vincentelli A. System-Level Design: Orthogonaliza-
tion of Concerns and Platform-Based DesignlHEE
Transactions on Computer-Aided Design of Integrated
Circuits and System®ec 2000.

OSCI. http://www.systemc.org.
STOC. http://www.specc.org.

Cesario WO, Lyonnard D, Nicolescu G, Paviot Y,
Sungjoo Yoo, Jerraya AA, Gauthier L, and Diaz-Nava
M. Multiprocessor SoC platforms: A Component-
Based Design Approach. IlEEE Design and Test
of ComputersNov-Dec 2002.

