
Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski

Technical Report CECS-03-11
May 15, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, shireesh, gajski}@cecs.uci.edu

1

Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski

Technical Report CECS-03-11
May 15, 2003

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{lcai, shireesh, gajski}@cecs.uci.edu

Abstract

In course of system-level design, designers need an efficient system level design language (SLDL), which can serve as
the design vehicle. The complexity of the design process at this level is determined upto an extent, by the semantics and
syntax definition of the SLDL being used. This report first analyzes the system-level design flow in order to establish the
requirements on an SLDL. It then compares SpecC and SystemC, the two popular SLDLs, in terms of the extent they meet
these requirements. Finally, it provides the essential modeling guidelines for both the SpecC and SystemC users for the cases
where the constructs or the features of the respective languages give rise to an ambiguous design.

2

Contents

1. Introduction 1

2. System design methodology 2
2.1 Abstraction models . 2
2.2 System design flow . 3
2.3 Requirements on SLDLs . 5

3. Specification model generation 5
3.1 Design Behavior . 5
3.2 Specification capture and modeling . 5

3.2.1 SpecC . 6
3.2.2 SystemC . 7
3.2.3 Comparison . 9

4. IP-assembly model generation 10
4.1 Architecture exploration . 10

4.1.1 SpecC . 10
4.1.2 SystemC . 10
4.1.3 Comparison . 11
4.1.4 Example . 11

4.2 Architecture refinement . 11
4.2.1 SpecC . 11
4.2.2 SystemC . 12
4.2.3 Comparison . 15

5. Bus-arbitration model generation 15
5.1 Transaction exploration . 15

5.1.1 SpecC . 16
5.1.2 SystemC . 16
5.1.3 Comparison . 16
5.1.4 Example . 16

5.2 Transaction refinement . 16
5.2.1 SpecC and SystemC . 16
5.2.2 Comparison . 16
5.2.3 Example . 17
5.2.4 Guidelines . 17

6. Bus-functional model generation 17
6.1 Protocol selection . 17

6.1.1 Comparison . 17
6.1.2 Example . 17

6.2 Communication refinement . 18
6.2.1 SpecC and SystemC . 18
6.2.2 Comparison . 18
6.2.3 Example . 19

i

6.2.4 Guidelines . 19

7. Implementation model generation 19
7.1 Implementation exploration . 19

7.1.1 SpecC and SystemC . 19
7.1.2 Comparison . 19

7.2 Implementation refinement . 20
7.2.1 SpecC . 20
7.2.2 SystemC . 21
7.2.3 Comparison . 22
7.2.4 Example . 22

8. Overall Comparison 22

9. Conclusion 24

ii

List of Figures

1 System modeling graph . 2
2 Comparison of defined abstraction models with models in [5] and [7] . 3
3 System design flow . 4
4 The general flow of synthesis task . 4
5 Requirements on system level design languages . 5
6 Design example: system behavior . 6
7 The execution sequence modeled in SpecC . 6
8 Design example in SpecC: specification model . 7
9 The SpecC code for the specification model of behaviorsB2B3andDesign. 8
10 Design example in SystemC: specification model . 9
11 The SystemC code for the specification model of behaviorsB2B3andDesign 9
12 Design example: architecture exploration result . 11
13 Design example in SpecC: after PE allocation and behavior mapping . 11
14 Design example in SpecC: after memory mapping . 12
15 Design example in SpecC: after static scheduling . 13
16 Design example in SystemC: after PE allocation and behavior mapping . 13
17 Design example in SystemC: after step 1 of memory mapping . 13
18 Design example in SystemC: after steps 2 and 3 of memory mapping . 14
19 Design example in SystemC: after step 4 of memory mapping . 14
20 Design example in SystemC: after step 5(a) of memory mapping . 15
21 Design example in SystemC: after step 5(b) of memory mapping . 15
22 Design example in SystemC: after static scheduling . 16
23 Design example in SpecC: bus-arbitration model . 17
24 Design example in SystemC: bus-arbitration model. 17
25 The interfaces ofPE1andPE2when using the double-handshake protocol 18
26 The timing diagram for the double-handshake protocol . 18
27 Design example in SpecC: after step 1 of communication refinement. 18
28 Design example in SpecC: after step 2 of communication refinement. 18
29 Design example in SystemC: after step 1 of communication refinement. 19
30 Design example in SystemC: after step 2 of communication refinement. 19
31 The SystemC code for processesB1andB13snd. 21
32 Incorrect SystemC code after merging processesB1andB13snd. 21
33 Correct SystemC code after merging processB1andB13snd. 22
34 Unmapped RTL model of SystemC and SpecC . 22

iii

List of Tables

1 Features of computational units of SystemC. 8
2 Overall comparison in terms of exploration and refinement . 23
3 Overall comparison in terms of design modeling . 23

iv

Comparison of SpecC and SystemC Languages for System Design

Lukai Cai, Shireesh Verma and Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine

Abstract

In course of system-level design, designers need an effi-
cient system level design language (SLDL), which can serve
as the design vehicle. The complexity of the design process
at this level is determined upto an extent, by the semantics
and syntax definition of the SLDL being used. This report
first analyzes the system-level design flow in order to estab-
lish the requirements on an SLDL. It then compares SpecC
and SystemC, the two popular SLDLs, in terms of the extent
they meet these requirements. Finally, it provides the essen-
tial modeling guidelines for both the SpecC and SystemC
users for the cases where the constructs or the features of
the respective languages give rise to an ambiguous design.

1. Introduction

According to Moore’s law, the number of transistors on
a chip will keep growing exponentially, propelling the tech-
nology towards the System-On-Chip (SoC) era. In order
to bridge the gap between growing complexity of chip de-
signs and increased time-to-market pressures, it is unani-
mous urge of the design community that the design process
be shifted to higher levels of abstraction and the reuse of
pre-designed, complex system components known as intel-
lectual property (IP) be encouraged.

So far several system level design approaches have been
proposed to meet the above criterion, which can be broadly
categorized into following three groups:

System-level synthesisThis design flow starts from the
system behavior, the system architecture is then gen-
erated from the behavior, and finally the RTL (register
transfer level)/ISS (instruction set simulation) model is
generated. The implementation details are added to the
design using a step by step process.

Once the components are synthesized they can always
be reused. SCE design methodology[5] is based on
system level synthesis approach.

Platform-based designPlatform-based[8] design ap-
proach is a medium path. The difference from the

system-level synthesis approach is that, in this case
the system behavior is mapped to a predefined system
architecture, instead of generating the architecture
from the behavior as is the case in system level
synthesis approach.

Component-based designIt is a bottom-up flow. In this
case the existing heterogenous computation/commu-
nication components are assembled and wrappers are
inserted between them in order to produce the prede-
fined platform. TIMA lab’s methodology is based on
component-based design[11] approach.

All of above three approaches require a system level de-
sign language(SLDL) for modeling the design. In general,
a SLDL should have the following two essential attributes:

1. It should support modeling at all the levels of abstrac-
tion, from purely functional un-timed model to the
cycle-accurate RTL/ISS model.

2. It models should be simulatable, so that functionality
and timing constraints of a design can be validated .

Among contemporary system level design languages,
SystemC[9][7], SpecC[5][10], and System-verilog[3] are
most prominent. SystemC is a C++ class library based lan-
guage, while SpecC is a super-set extending ANSI-C. Both
SystemC and SpecC qualify for the purpose with respect to
the above two attributes. System-Verilog is a high-level ab-
straction extension of Verilog. Unlike SystemC and SpecC,
System-Verilog specifically targets RTL-level implementa-
tion and verification.

However, satisfying the above two attributes is necessary
but not sufficient condition for a SLDL to serve the purpose.
The complete set of requirements can only be derived by
applying the system level design flow to an example and
analyzing the design process. These requirements form the
basis for judging the suitability of an SLDL and also for
establishing guidelines for the modeling style.

This report has following three goals:

1. Establishing the requirements for a SLDL by analysis
of the system-level design flow

1

Computation

Communication

1
 2

3

4
 5

Un-

timed

Approximate

timed

Cycle

timed

Un-

timed

Approximate

timed

Cycle

timed

1. Specification model

2. IP-assembly model

3. Bus-arbitration model

4. Bus-functional model

5. Implementation model

Figure 1. System modeling graph

2. Comparison of SpecC and SystemC in terms of their
fulfilment of the requirements derived above

3. Provision of modeling guidelines for both SpecC and
SystemC for the cases where the constructs or the fea-
tures of the respective languages give rise to an am-
biguous design

The report is organized as follows. Section 2 presents a
general system-level design flow adopted for the purpose of
this work and establishes the primary requirements which
need to be satisfied by a SLDL. In Sections 3 through 7
we apply consecutive steps (from specification capture to
implementation refinement) of the chosen design flow on
the design example using both SpecC and SystemC. In Sec-
tion 8 we perform an overall comparison between SpecC
and SystemC on the basis of results obtained in Sections 3
through 7. Finally, we conclude in Section 9.

2. System design methodology

2.1 Abstraction models

The objective of design at the system level is to generate
the system implementation from design functionality. In
order to reduce the complexity of system design, designers
generally define a number of intermediate models. The in-
termediate models slice the entire design into several small
design tasks, each of which has a specific design objective.
Since the models can be simulated and estimated, the re-
sult of each of these design tasks can be independently val-
idated.

We introduce the system modeling graph shown in Fig-
ure 1, which represents the system design domain. X-axis
in the graph represents computation and y-axis represents

communication. On each axis, three degrees of accuracy
are designated: un-timed, approximate timed, and cycle
timed. Un-timed computation/communication represents
the pure functionality of the design without any implemen-
tation details. Approximate-timed computation/communi-
cation contains system-level implementation details, such
as the selected system architecture, the mapping relations
between processes of the system behavior and the process-
ing elements of the system architecture. The execution time
for approximate-timed computation/communication is esti-
mated at the system level without cycle accurate RTL/ISS
level evaluation. Cycle timed computation/communication
contains implementation details at both system level and the
RTL/ISS level, such that cycle accurate estimation can be
obtained.

Inspired by [5] [7], we define five abstraction models in
the system modeling graph. The broken arrows denote a
proposed design flow based on the refinement of these mod-
els. The five models are:

1. Specification model. It represents system behavior/-
functionality. It is free of any implementation details.
It is an un-timed model in terms of both computation
and communication.Specification modelcorresponds
to specification modelin [5] and un-timed functional
modelin [7].

2. IP-assembly model. It defines the component struc-
ture of the system architecture. The system function-
ality is partitioned and partitions are assigned to dif-
ferent components. The execution delays of the pro-
cesses assigned to components are annotated into the
model by means ofwait statements. So, the model is
approximate-timed in terms of computation. The com-
munication is modeled at an abstract level and com-
ponents communicate via message-passing channels.

2

Hence, this model is un-timed in terms of communica-
tion. IP-assembly modelcorresponds toarchitecture
model in [5] and is subsumed intotimed functional
modelin [7]. 1

3. Bus-arbitration model. In this report, we define bus-
arbitration model as the one which models communi-
cation in terms of the function calls of channels rep-
resenting buses. The protocols of communication are
selected from the categories, i.e. blocking and non-
blocking. Hence, the channels hide unnecessary im-
plementation details including pin-accurate interface
and timing-accurate transaction. Each processing el-
ement is assigned a bus priority. An arbiter assigns bus
grant to processing elements on the basis of their pri-
orities. The time required for each data transaction is
inserted into the channel by means ofwait statements.
So, the communication is approximate-timed. The
computational behavior is also approximate-timed as
is inherited from the previous model.Bus-arbitration
modelis subsumed intotransaction-level modelin [7].
2

4. Bus-functional model. It defines the bus-functional
representation of components. It models the cycle-
accurate implementation of bus transactions over the
wires and protocols of the system bus. This model has
protocols inlined into processing elements. So, it also
includes pin-accurate interfaces. This model is cycle-
accurate in terms of communication. The computa-
tional behavior is same (approximate-timed) as that in-
herited from the IP-assembly model.Bus-functional
modelcorresponds tocommunication modelin [5] and
behavior-level modelin [7].

5. Implementation model. It defines the components in
terms of their register-transfers or instruction-set archi-
tecture. The granularity of time and hence of the event
order in the system is refined down to individual clock
cycles in each component. The communication as well
as computational behavior both are cycle-accurate in
this model.Implementation modelcorresponds toim-
plementation modelin [5] and register transfer model
in [7].

Among above five models,specification model, bus-
arbitration model, and implementation modelare golden
models since they are at pure un-timed, approximate timed,

1In [7], timed functional modelis defined in terms of model’s timing
aspect, rather than its abstraction level. Thustimed functional modelcan
be a model representing a pure specification, a component structure of the
system architecture, or even a complete system architecture.

2In [7], transaction level modelis defined in terms of model’s com-
munication modeling style, rather than its abstraction level.IP-assembly
modelandBus-arbitration modeldefined in this report belongs totransac-
tion level modelin [7].

� � � �
� � � �
� � � �
� � � �

Specification model

Architecture model

Communication

model

Implemenation

model

Untimed funcational

model

Timed funcational

model

Transaction level

model

Behavior-level model

Register-transfer

model

Definition

in [5]

Definition

in[7]

Specification model

IP-assembly

model

Bus-arbitration

model

Bus-functional

 model

Implementation

model

Our

Definition

=

=

=

=
 =

=

=

?

?

Figure 2. Comparison of defined abstraction
models with models in [5] and [7]

and cycle timed levels respectively. Other two models,
namely IP-assembly modeland bus-functional model, are
intermediate ones defined to complete the our design flow
described in Section 2.2. The refinement flow contain-
ing only the golden models is denoted by think gray solid
arrows in Figure 1. It fits well into all the design ap-
proaches, including system-synthesis, platform-based de-
sign, and component-based design approaches.

The comparison between models defined in this report
and models in [5] and [7] is presented in Figure 2. ”=” indi-
cates equivalence of two models. It should be noted that the
models defined in this report and those in [5] are taxono-
mized on the basis of their abstraction levels, while in cases
of [7], timed-functional modelis defined in terms of model’s
timing aspect,transaction level modelis defined on the ba-
sis of their communication modeling style, and rest of three
models are defined in terms of model’s abstraction levels.
Therefore, thetimed-functional modelandtransaction level
modelin [7] are not really comparable with other models,
which is indicated by cloud and question marks.

2.2 System design flow

Figure 3 demonstrates the system design flow as dis-
cussed in this report, which consists of the five abstraction
models as discussed earlier.

The left-hand side of Figure 3 shows the refinement en-
gine of the design flow. The right-hand side of Figure 3

3

Specification model

IP assembly model

Capture

Arch. explor

Validation, Analysis

Refinement

Arch. refinment

Bus-arbitration

model

Tran. explor

Validation, Analysis

Tran. refinement

Bus-funtional

model

Comm. refinment

Implementation

model

Impl refinement

Validation, Analysis

Impl. explor

Validation, Analysis

Validation

Exploration

Protocol selection

Figure 3. System design flow

shows the four exploration stages of the design flow as fol-
lows:

Architecture exploration At this stage, the selection of
processing and storage components is performed. The
processes of the system behavior are mapped to pro-
cessing components. The variables of the system be-
havior are mapped to either local memories of PEs or
global memories(storage components).

Transaction exploration This step involves defining the
connectivity of processing and storage components via
the system bus, i.e. defining the system topology. The
channels are mapped onto the system buses (modeled
as bus-arbitration model). At this stage the commu-
nication protocols are categorized into blocking and
non-blocking protocols3. In this step, a bus arbitra-
tion mechanism is also selected if required.

Protocol selection This step involves explicit selection of
bus protocols. The inlining of protocols is performed
at this stage and decisions are made as to how different

3if two PEs communicate through an unblocking protocol, then the
transmitter starts executing other tasks right after sending the data to the
channel, without waiting the receiver to finish receiving data. On the other
hand, if two PEs communicate through a blocking protocol, the transmitter
cannot start executing other tasks until the receiver receives the data.

Model1

Model2

Exploration

Analysis

Refinement

Validation

Figure 4. The general flow of synthesis task

parts of a protocol are distributed among the process-
ing elements.

Implementation exploration At this stage, the allocation,
binding and scheduling decisions are made for the be-
haviors mapped to the custom hardware. The exe-
cutable C code and RTOS are generated for the behav-
iors which are mapped to microprocessors. Unlike first
three tasks which correspond to those in system level
design, this main process of this task is on component
design, which refines processes in PEs to the RTL/ISS
levels.

The design flow consists of several steps, each of which
generates the succeeding abstraction model from the pre-
ceding one. As shown in Figure 4, each design step consists
of four tasks. In the Figure,Model 1is the initial model at
start of the step whileModel 2is the outcome model of the
refinement step.

Analysis It involves analysis/estimation ofModel 1 to es-
tablish its characteristics.

Exploration This task focuses on design decision which
shape the succeedingModel 2. It determines the imple-
mentation details which need to be added to transform
the design to the succeedingModel 2, on the basis of
the characteristics established in the previous task.

Refinement It focuses on model refinement. At this stage
the design decisions made in the previous task are
implemented by adding the implementation details to
Model 1. This produces the succeedingModel 2.

Validation Finally, the newly generatedModel 2 is vali-
dated.

Although, the key ideas of this design flow are based on
system-synthesis approach[5], it also subsumes platform-
based and component-based approaches.

If we look at the design flow from point of view of the
platform-based design approach, the processing element se-
lection at the architecture exploration stage and intercon-
nection topology generation at the transaction exploration
stage are limited in scope.

4

On the other hand, the component-based design ap-
proach such as TIMA lab’s[11] starts at the protocol selec-
tion stage and finishes at implementation refinement stage
of the design flow.

2.3 Requirements on SLDLs

Figure 5 shows the general requirements on SLDLs,
which are derived from Figure 4. We evaluate an SLDL
in terms of fulfilment of these requirements. They are dis-
cussed as follows.

Analyzability In order to establish the characteristics of
models, designers should be able to analyze them. So,
an SLDL should be conducive to analysis of models at
all the levels of abstraction. e.g SpecC features analy-
sis by profiling/estimation.

Explorability The syntax and semantics of a SLDL should
allow explicit specification of the characteristics of a
model at any level of abstraction. This gives the de-
signers an enhanced latitude in making implementa-
tion decisions. e.g. SpecC haspar andpipeconstructs
for modeling parallelism and pipelined execution re-
spectively.

Refinability The exploration tools should allow specifica-
tion of design decisions taken, in an explicit format.
This allows unambiguous refinement of the model us-
ing refinement tools or through manual refinement.
Secondly, the modeling styles of the model to be re-
fined and the resulting model after refinement should
be consistent.

Validability Models written in SLDL should be able to be
validated at all the levels of abstraction. e.g. SpecC
and SystemC both allow validation by simulation. Be-
sides validation by simulation, SpecC also allows val-
idation by refinement. Abdi [1] develops theorems
and proofs to show that the refinement algorithms for
SpecC produce the outcome models which are func-
tionally equivalent to the initial models. Thus, the cor-
rectness of the outcome models can be ensured by val-
idating the initial models and refinement algorithms.

In order to study the suitability of SpecC/SystemC for
system level design, we model a simple system. We start
with capturing the specification model, subsequently imple-
menting the intermediate models following the design flow
in Figure 3, and finally develop the implementation model.

At each design step, models are written in both SpecC
and SystemC languages. The design guidelines introduced
in [6] are followed throughout this process. The two lan-
guages are compared in terms of their fulfilment of the re-
quirements on a SLDL as discussed earlier. Finally the

Model

Analyzability
 Explorability

Validability
Refinability

Figure 5. Requirements on system level de-
sign languages

modeling guidelines are provided for both SpecC and Sys-
temC users for the cases where the constructs or the fea-
tures of the respective languages give rise to an ambiguous
design.

Validation is done by simulation in case of both SpecC
and SystemC, so they are not compared in term of validabil-
ity. We compare them in terms of analyzability, explorabil-
ity and refinability.

3. Specification model generation

In this section, we discuss the method of generating the
specification modelfrom the design behavior.

3.1 Design Behavior

The behavior of the design example is shown in Fig-
ure 6. It has two inputs (a andb) and an output (c). The
design consists of five functional blocks:B1, B2, B3, B4,
andB2B3. B1 computesv1. B2 andB3 computesv2 and
v3 with v1 as input. B4 computesc with v2 andv3 as in-
puts. B2B3 is a hierarchical block, which encapsulatesB2
andB3. The dotted line inB2B3represents the parallel ex-
ecution ofB2 andB3. The functionalities of the blocks are
shown in Figure 6.

3.2 Specification capture and modeling

The first step of design is modelingspecification model
using SpecC and SystemC. An idealspecification modelal-
lows smooth refinement at the later design steps and at the
same time demands minimum modeling work. The general
guidelines for developing the specification model are:

1. The functionality should be modeled hierarchically to
allow easy manipulation of complex systems.

2. The granularity of functional blocks should be chosen
such that it allows exhaustive exploration. Basically,

5

v3= v1- b*b;

v1

v1 = a*a;

v2

v4 = v2 + v3;

c = sqrt(v4);

B1

v3

B3

B4

B2B3

v2 = v1 + b*b;

B2

Figure 6. Design example: system behavior

the basic algorithmic blocks should form the smallest
indivisible units for exploration.

3. The inherent parallelism of the system should be ex-
posed for the later exploration.

4. The computation and communication each should be
modeled such that it does not limit the efficiency of the
other.

The modeling features of SpecC and SystemC are ana-
lyzed with respect to three aspects:

1. Computation: It reflects the capability of modeling
functional blocks.

2. Data transfer: It reflects the capability of modeling
the data exchange among functional blocks.

3. Execution sequence:It reflects the capability of mod-
eling the execution sequence among functional blocks.

3.2.1 SpecC

The features of SpecC conducive to developing a specifi-
cation model, are discussed with respect to the above men-
tioned three aspects.

Computation SpecC provides two basic computation
units:

vo id main{
b1 . main () ;
b2 . main () ;

}

(a) S e q u e n t i a l e x e c u t i o n

vo id main{
par{

b1 . main () ;
b2 . main () ;

}
}

(b) P a r a l l e l e x e c u t i o n

vo id main{
p ipe{

b1 . main () ;
b2 . main () ;

}
}

(c) P i p e l i n e d e x e c u t i o n

Figure 7. The execution sequence modeled in
SpecC

1. Function: SpecCfunctionfollows the same semantics
and syntax as the function in C language. A function
can be called hierarchically and executes sequentially
according to the calling sequence.

2. Behavior: SpecCbehavior is specified by abehav-
ior definition. There are two types of behaviors:leaf
behavior and composite behavior. A leaf behavior
may contain hierarchically called functions but it does
not contain any sub-behavior instances. On the other
hand, acomposite behaviorconsists of sub-behaviors
instances. These instances may be executing in par-
allel, pipeline, or FSM fashion, which are explicitly
specified bypar, pipe, andfsmconstructs [5] respec-
tively. The sequential execution is the default execu-
tion order. e.g. behavior instancesb1 andb2 are ex-
ecuting, sequentially in Figure 7(a), in parallel in Fig-
ure 7 (b), and in pipeline fashion in Figure 7(c).

Data transfer SpecC supports data transfer between
behaviors through eithervariablesor channels. Each be-
havior has a set of ports which connect to the ports of other
behaviors. It also has a set of variables and channels that
connect the ports of its sub-behavior instances. Like behav-
iors, channels also have hierarchical structure.

6

Execution sequence Functions execute sequentially in
SpecC. In case of behaviors, SpecC provides two mecha-
nisms to model execution sequence.

1. Static scheduling: In this case, the sequence of execu-
tion of behaviors is explicitly specified withpar, pipe
and fsm constructs[5], the default order of execution
being sequential.

2. Dynamic scheduling: SpecC usesevent-wait-notify
to schedule behaviors dynamically. SpecC has a data
type eventand thewait and notify statements which
are used for synchronization between behaviors. When
the wait statement such aswait(e) is executed, the be-
havior ceases to execute until the waited evente of a
behavior is notified withnotify estatement.

Guidelines The guidelines for modeling specification
model, using SpecC, with respect to the previously dis-
cussed three aspects are:

1. Computation: Leaf behaviorsare used to model
smallest indivisible units for ease of exploration, with
just clean4code. Although, thecomposite behaviors
can contain a hierarchy of functions, it is advisable
to use a hierarchy of behaviors. This allows parallel,
pipelined and FSM execution of behavior.

2. Data transfer: Data transfer between behaviors is
modeled by connecting ports through variables. We do
not use channels, as separating computation and com-
munication is not required at this stage.

3. Execution sequence: Static scheduling should be pre-
ferred for modeling execution sequence between be-
haviors as far as the design allows. e.g. if two behav-
iors need to synchronize while they are executing con-
currently, then we have to rely on dynamic scheduling.

Example Figure 8 shows the specification model of the
design in SpecC. The design contains four leaf behaviors:
B1, B2, B3andB4. Behaviors communicate through vari-
ablev1, v2andv3declared in the behaviorDesign. The thin
dotted arrows between behaviors represent the data transfer.
par construct is used to specify parallel execution between
B2andB3. The execution sequence is indicated by the thick
lines/arrows. The SpecC code for behaviorB2B3andDe-
sign is shown in Figure 9.

3.2.2 SystemC

The features of SpecC conducive to developing a specifi-
cation model, are discussed with respect to the previously
discussed three aspects.

4When we say clean code, we mean it does not contain any sub-
behavior calls.

v2=v1+b*b;
 v3=v1-b*b;

v1

v1=a*a;

v2

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

Design

B2B3

Figure 8. Design example in SpecC: specifi-
cation model

Computation SystemC provides three basic computa-
tion units:

1. Function: A functionis defined in the same way as the
that in C language.

2. Process: Processesare the basic behavioral entities
of SystemC. Although, aprocesscan contain function
calls, it cannot invoke otherprocesses. Therefore, hi-
erarchical modeling of processes is not possible.

3. Module: Modulesare structural entities which serve
as basic blocks for partitioning a design. Modeling us-
ing modulesreflects structural hierarchy. The modules
can be classified into two categories:leaf moduleand
composite module. A leaf modulecontains processes,
which specify the functionality of the module, but it
does not contain any module. Acomposite module
consists of the instantiation of other modules.

Data transfer Data transfer is modeled by connecting
modules’ ports through eithersignalsor channels. The data
transfer between modules essentially means data transfer
between processes in different modules. The data transfer
between processes in a module is performed through either
signals/channelsconnected to the modules’ port orsignal-
s/variablesdeclared in the module.

Execution sequence SystemC only supports dynamic
scheduling of execution sequence. There are two mecha-

7

Unit Modeling hierarchy Data transfer medium Execution sequence

Function yes variable sequential
Process no signal, channel, variable static sensitivity

dynamic sensitivity(scevent, scsignal), channel
Module yes signal, channel static sensitivity

dynamic sensitivity(scsignal), channel

Table 1. Features of computational units of SystemC.

/ / P a r a l l e l c o m p o s i t i o n o f B2 | | B3
b e h a v i o r B2B3 (i n i n t b , i n i n t v1 ,

ou t i n t v2 , ou t i n t v3)
{

B2 b2 (b , v1 , v2) ;
B3 b3 (b , v1 , v3) ;

vo id main (vo id)
{

par {
b2 . main () ;
b3 . main () ;

}
}

} ;

/ / Top− l e v e l behav io r , s p e c i f i c a t i o n model
b e h a v i o r Design (i n i n t a , i n i n t b ,

ou t double c)
{

i n t v1 ;
i n t v2 ;
i n t v3 ;

B1 b1 (a , v1) ;
B2B3 b2b3 (b , v1 , v2 , v3) ;
B4 b4 (v2 , v3 , c) ;

vo id main (vo id)
{

b1 . main () ;
b2b3 . main () ;
b4 . main () ;

}
} ;

Figure 9. The SpecC code for the specification
model of behaviors B2B3and Design

nisms for dynamic scheduling:

1. Static sensitivity: When designers use a static sensi-
tivity mechanism, a list of signals are specified in a
”sensitivity list” of a process. If the value of any signal
in the sensitivity list of a process changes, the process
starts/resumes execution.

2. Dynamic sensitivity: The dynamic sensitivity mech-
anism usesevent-wait-notifyto schedule processes,
which is the same as the dynamic scheduling in
SpecC. A process can wait and notify a event. If
the waited event of a process is notified, the process
starts/resumes execution. However, in case of Sys-
temC ports of modules cannot be connected through an
event(sc event), therefore, theevent-wait-notifycannot
be used for synchronization between processes in dif-
ferent modules. Designers have to encapsulate events
into a channel in order to achieve synchronization be-
tween such processes.

Table 1 analyzes the computational units of SystemC for
three features: possibility of modeling of hierarchy, means
of data transfer and scheduling mechanism for the execution
sequence.

Guidelines The guidelines for modeling specification
model, using SystemC, with respect to the previously dis-
cussed three aspects are:

1. Computation: Leaf modulesshould be used to model
smallest indivisible units for ease of exploration. Pro-
cesses are encapsulated inside theseleaf modulesto
model their functionality. Modulesare preferred for
modeling the smallest indivisible algorithmic units on
account of two reasons. Firstly,processesare not ca-
pable of modeling structural hierarchy. Secondly, dy-
namic scheduling offunctionsis not supported.

2. Data transfer: Data transfer betweenmodulesis mod-
eled by connecting their ports throughsignals.

3. Execution sequence: The dynamic sensitivity mech-
anism is recommended for the reasons explained later
in Section 4.2.2. However, for cases where a process

8

Design

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1 = a*a;

v2

wait(e2 & e3);

v4=v2+v3;

c = sequ(v4);

B1

B2

v3

B3

B4

e2
 e3

B2B3

Figure 10. Design example in SystemC: spec-
ification model

has to wait for the output of another process, static sen-
sitivity mechanism can be applied.

Example Figure 10 shows the specification model of the
design in SystemC. The design contains four leaf modules:
B1, B2, B3andB4. Modules exchange data through sig-
nalsv1, v2andv3. The thin dotted arrows between modules
represent the data transfer. The thick solid arrows shows
the execution sequence. The execution sequence of mod-
ules are determined by either static sensitivity mechanism
or dynamic sensitivity mechanism. ModuleB2 andB3 are
statically sensitive to signalv1 while moduleB4 is dynam-
ically sensitive to eventse2 ande3since this situation can
not be modeled by static mechanism.B4 contains state-
mentwait (e2 & e3)which directs it to wait for completion
of execution of bothB2 andB3. Since an event cannot be
connected to the port of modules,e2 ande3 are declared
globally. The SystemC code for module B2B3 and Design
is shown in Figure 11.

3.2.3 Comparison

Although SpecC and SystemC share many features, such
as dynamic sensitivity mechanism for dynamic scheduling
of execution sequence, there are three primary differences
which we come across when specification modeling is con-
sidered.

SCMODULE(B2B3) {
s c i n <i n t > b ;
s c i n <i n t > v1 ;
s c o u t<i n t > v2 ;
s c o u t<i n t > v3 ;

B2 ∗ b2 ;
B3 ∗ b3 ;

SC CTOR(B2B3)
{

b2 = new B2 (” b2 ”) ;
. . . / / p o r t b i n d i n g

b3 = new B3 (” b3 ”) ;
. . . / / p o r t b i n d i n g

}
} ;

SCMODULE(Design) {
s c i n <i n t > a ;
s c i n <i n t > b ;
s c o u t<double> c ;
s c s i g n a l<i n t > v1 ;
s c s i g n a l<i n t > v2 ;
s c s i g n a l<i n t > v3 ;

B1 ∗ b1 ;
B2B3 ∗ b2b3 ;
B4 ∗ b4 ;

SC CTOR(Design)
{

b1 = new B1 (” b1 ”) ;
. . . / / p o r t b i n d i n g

b2b3 = new B2B3 (” b2b3 ”) ;
. . . / / p o r t b i n d i n g

b4 = new B4 (” b4 ”) ;
. . . / / p o r t b i n d i n g

}
} ;

Figure 11. The SystemC code for the specifi-
cation model of behaviors B2B3and Design

9

1. SpecC uses abehavior, which is a consolidated repre-
sentation for both structure and behavior. But in case
of SystemC, there is a separation of the basic struc-
tural and behavioral entities. The structure is modeled
using (modules) and behavior is modeled using (pro-
cesses). In summary, SpecC supports behavioral hier-
archy which is not available in SystemC.

2. SpecC supports static scheduling while SystemC has
to depend only on dynamic scheduling of execution se-
quence. Therefore, synchronization between concur-
rently executing processes in SystemC is complex and
tedious to model. (e.g.B4 in Figure 11).

3. SpecC doesn’t support static sensitivity mechanism
while SystemC does. However, the static sensitivity
mechanism in SystemC has disadvantages which will
be explained later in Section 4.2.2. These disadvan-
tages can be circumvented by using dynamic sensitiv-
ity mechanism, which is same as dynamic scheduling
supported by SpecC.

Therefore, we conclude that SpecC is better capable for
specification modeling as compared to SystemC.

4. IP-assembly model generation

In this section, we introduce the process of IP-assembly
model generation. We first analyzespecification modeland
performarchitecture exploration. We then carry outarchi-
tecture refinementbased on the decisions taken after explo-
ration.

4.1 Architecture exploration

Architecture exploration entails selection of processing
elements (PEs) and mapping the behaviors on to them. It
also involves allocating of local and global memories and
mapping the variables of the behaviors on to them. If re-
quired, it also determines the RTOS of microprocessor pro-
cessing elements.

Designers perform architecture exploration on the basis
of following two factors.

Complexity of functional blocks The complexity of func-
tional blocks is estimated by profiling the specification
model.

Execution sequenceThe execution sequence of functional
blocks is determined by analyzing the specification
model.

4.1.1 SpecC

SpecC is a super-set of C langauge. Therefore, SpecC
model can be profiled easily. In addition, SpecC has a
profiler[4] with a user friendly graphical interface.

The execution of behaviors is primarily scheduled with
the use of definitionspar, pipeand fsmconstructs and the
default execution order is sequential. Therefore, the exe-
cution sequence can be directly derived just by reading the
specification. e.g. the SpecC code for the top level behavior
Designand behaviorB2B3in the taken example are shown
in Figure 9. InB2B3, par construct indicates that behaviors
B2 andB3 execute in parallel. InDesign, since none of the
par, pipe, or fsmconstructs are used, we know by default
the behavior instancesB1, B2B3, andB4 execute sequen-
tially. Here, behaviorsB2 andB3 can be mapped to differ-
ent processing elements in order to exploit their parallelism
discovered directly from the specification.

4.1.2 SystemC

SystemC is a C++ library extension. It is difficult to pro-
file the SystemC model accurately because of the C++ class
library burden, which obscures the computational needs
of the system under consideration from the computational
overheads of the SystemC simulator. Therefore, profiling
has to be performed with the C specification model.

There are three ways to determine the execution se-
quence.

1. Specification model can be analyzed manually or au-
tomatically by tools. However, this analysis is tedious.
e.g. Figure 11 depicts only the structural hierarchy
without providing any information about execution se-
quence. Designers must investigate the processes in
each leaf module to establish all the static and dynamic
sensitivities. If the specification model is complex and
contains many hierarchal levels, analysis is extremely
difficult.

2. Languages, such as UML, can be used to record the
execution sequence.

3. The execution sequence can be annotated to the Sys-
temC specification.

Guidelines Because SystemC doesn’t support a straight-
forward profiling and doesn’t explicitly specify the execu-
tion sequence of behavior, we recommend the guidelines for
architecture exploration using SystemC as follows:

1. C specification model should be profiled before con-
verting the design into SystemC.

10

v2=v1+b*b;
 v3=v1-b*b;

v1

v1 = a*a;

v2

v4=v2+v3;

c = sequ(V4);

B1

B2

v3

B3

B4

PE2

PE1

Figure 12. Design example: architecture ex-
ploration result

2. The execution sequence should be modeled using lan-
guages such as UML or should be annotated to Sys-
temC specification.

4.1.3 Comparison

We conclude that SpecC is better suited for the architec-
ture exploration as compared to SystemC in terms of pro-
filing and determination of execution sequence. A SpecC
model can be profiled easily and designers or tools can de-
termine the execution sequence of behaviors by identifying
constructs such aspar andpipeetc. This eases the decision
making task of architecture exploration. However, SystemC
has to rely on C specification model for profiling and on
UML/annotations for determining execution sequence.

4.1.4 Example

In the design example, we select two processing elements
from the library. We map the parallel behaviorsB2 andB3
to two different processing elements in order to exploit par-
allelism. The mapping decision is shown in Figure 12. In
our IP-assembly model we do not require global memory.
All the variables are mapped to the local memories of the
processing elements. We use message passing architecture
for communication.

v1

v2
 v3

PE2
PE1

v4=v2+v3;

c=sequ(v4);

B4

v3=v1-b*b;

B3
v2=v1+b*b;

B2

v1=a*a;

B1

B13snd

B34rcv

B13rcv

B34snd

cb13

cb34

Figure 13. Design example in SpecC: after PE
allocation and behavior mapping

4.2 Architecture refinement

Architecture refinement gradually refines the specifica-
tion model to the IP-assembly model on the basis of de-
cisions taken during architecture exploration. Architecture
refinement[6] consists of four steps as follows.

1. PE allocation. Processing elements(PEs) and mem-
ory components are selected out of the component/IP
library and instantiated as part of the system architec-
ture.

2. Behavior mapping. Behaviors are mapped onto the
processing elements and refined by adding behavior
execution delays.

3. Memory mapping. Global variables in the specifica-
tion model are assigned to local memory of a process-
ing element in case of a message-passing implemen-
tation or to a dedicated, global memory component in
case of a shared-memory architecture.

4. Scheduling. Since any processing element(PE) only
executes single process at a time, processes inside each
PE are sequentialized by either static scheduling or dy-
namic scheduling.

4.2.1 SpecC

PE allocation and Behavior mapping In our example, at
the top level, two behaviors, calledPE1andPE2, are added
to represent two processing elements. These two behaviors

11

represent the structural entities. We use thepar construct to
ensure the parallel execution of the two behaviors.

Next, we map behaviorB3 to PE2while map rest of the
behaviors toPE1. The behavioral hierarchy of the specifi-
cation changes after this mapping. Therefore, the behaviors
must be rescheduled . We insert pairs of behaviors commu-
nicating via message-passing channels for synchronization
between concurrently executing behaviorsPE1andPE2, as
shown in Figure 13. The pairB13sndandB13rcvsynchro-
nizes before the starting point ofB3 via channelcb13, and
pair B34rcv and B34sndsynchronizes after the end point
of B3via channelcb34. B34rcvexecutes afterB13snd. The
behavior containingB13sndandB34rcvexecutes in parallel
with B2.

Memory mapping Memory mapping using SpecC con-
sists of further two steps:

1. A local copy of each global variable is created in each
of processing elements where the variable is used.

2. A channel and a pair of behaviors is inserted for each
global variable. The channel is needed for data trans-
fers between the local copies of the global variables,
created in the processing elements. The pair of behav-
iors read/write the values of the local copies of vari-
ables over the inserted channels.

If a channel and a pair of behaviors were added to the
model for the synchronization during the previous re-
finement steps, the two channels and two pairs of be-
haviors are merged at this stage if possible.

In our example, we first create local copies for global
variablev1 andv3. Then, we create a channel and a pair of
behaviors forv1, and a channel and a pair of behaviors for
v3. Finally, we merge the channel and the pair of behaviors
for v1with channelcb13and behaviorsB13sndandB13rcv
inherited from the previous refinement steps. We also merge
the channel and the pair of behaviors forv3 with channel
cb34and behaviorsB34sndandB34rcv. The final model is
shown in Figure 14.

Scheduling Before scheduling, we remove the redundant
behavior hierarchy. When using SpecC with the design ex-
ample, we remove the behavior encapsulatingB13snd, B2,
andB34rcv.

Static scheduling In general, Static scheduling task
consists two steps:

1. Identification of the possible parallelism inside each
processing element.

2. Sequentializing the parallel processes.

v2

PE1

v4=v2+v3;

c=sequ(v4);

B4

v2=v1+b*b;

B2

v1=a*a;

B1

B34rcv

v1

v3

PE2

v3=v1-b*b;

B3

B13rcv

B34snd

cb13

cb34

v1

v3

B13snd

Figure 14. Design example in SpecC: after
memory mapping

Since, SpecC supports constructs for explicit specifica-
tion of the execution sequence, the inherent parallelism is
easily identified.

Furthermore, designers can easily serialize the parallel
behaviors just by removingpar construct since default exe-
cution sequence is serial. The result of static scheduling of
the example is shown in Figure 15.

Dynamic scheduling For the dynamic scheduling of
behaviors, a new behavior has to be created in each process-
ing element. The newly created behavior acts as a scheduler.
It notifies an event, to the behavior which is ready to exe-
cute. All the behaviors start or resume execution when their
waited events are notified.

4.2.2 SystemC

PE allocation and Behavior mapping In our example, at
the top level, two modules, calledPE1andPE2, are added
to represent the two processing elements.

Next, we map moduleB3 to PE2while rest of the mod-
ules are mapped toPE1. Since a module in SystemC is
a structural entity and the processes are scheduled dynami-
cally , we just move the moduleB3 to PE2 without any need
for reschedule. The final model is shown in Figure 16.

Memory mapping In the SystemC model, the global
variables are represented by global signals. However, the
signal is not only used for data transfer, but it is also used for
scheduling of execution sequence using the sensitivity list.

12

v1

v2

v3

PE2
PE1

v4=v2+v3;

c=sequ(v4);

B4

v3=v1-b*b;

B3
v2=v1+b*b;

B2

v1=a*a;

B1

B13snd

B34rcv

B13rcv

B34snd

cb13

cb34

v1

v3

Figure 15. Design example in SpecC: after
static scheduling

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

wait(e2 & e3);

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

e2
 e3

Figure 16. Design example in SystemC: after
PE allocation and behavior mapping

PE2
PE1

wait(e1);

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

wait(e1);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

e1

v1=a*a;

notify(e1)

v2

wait(e2 & e3);

v4=v2+v3;

c = sequ(v4);

B1

B2

v3

B3

B4

e2
 e3

v1

Figure 17. Design example in SystemC: after
step 1 of memory mapping

Therefore, memory mapping in SystemC not only influ-
ences the data transfer, but also interferes with the schedul-
ing of execution sequence.

The architecture refinement step involving memory map-
ping using SystemC consists of five steps:

1. An event(sc event)is created for each global signal if it
is used in the sensitivity list of any process. This newly
created event is substituted for the global signal in the
sensitivity list. It is used to achieve complete separa-
tion of data transfer from scheduling and to perform
scheduling using dynamic sensitivity mechanism.

2. A local copy of each global signal and its correspond-
ing created event is maintained in the processing ele-
ments where the variable is accessed.

3. A channel and a pair of processes is inserted for each
global signal. The channel is needed for data transfers
between the corresponding local copies of each global
signal, created in the processing elements. The pair of
processes read/write the values of the local copies of
the signals over the inserted channels. The schedul-
ing after inserting the processes is done using the local
copies of the event.

4. The local copies of the corresponding events and sig-
nals are merged, if possible. This is done in order to
replace the dynamic sensitivity by the static sensitivity.

5. Since, an event in SystemC is not allowed to connect
to the port of a module, an event declared in a module

13

PE2
PE1

wait(e11);

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

wait(e12);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

e11

v1=a*a;

v2

wait(e2 & e3);

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

e2

e32

v1

cb13

v1
e12

B13snd
 B13rcv

B34rcv
 B34snd
cb34

e31
v3

Figure 18. Design example in SystemC: after
steps 2 and 3 of memory mapping

cannot be accessed by its child modules. There are
following two possible solutions.

(a) The remaining local events in each processing ele-
ment are encapsulated by channels.

(b) All the modules in each processing element are re-
moved while keeping the module’s processes. Here,
an event is used to schedule between processes, rather
than between modules.

The model after performing step 1 of memory mapping
for the example is shown in Figure 17. In step 1, evente1
is created for the global signalv1 to trigger the modulesB2
andB3after the execution ofB1has finished.

The model after performing steps 2 and 3 of the mem-
ory mapping for the example is shown in Figure 18. In this
model, eventse11ande12are the local copies of evente1.
Evente31ande32 are the local copies of evente3. Global
signalsv1andv3also have the local copies in both the pro-
cessing elementsPE1andPE2. A channelcb13and a pair
of behaviorsB13sndandB13rcvare inserted for exchange
of data between local copies of signalv1 in both the pro-
cessing elements. Similarly, a channelcb34and a pair of
behaviorsB34sndandB34rcvare inserted for exchange of
data between local copies of signalv3 in both the processing
elements.

The model after carrying out step 4 of memory mapping
for the example is shown in Figure 19. At this step, the
variablev1 and the evente11 in processing elementPE1,
the variablev1and the evente12in processing elementPE2,
and the variablev3and the evente32in processing element
PE2are merged.

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

wait(e2 & e3);

v4=v2+v3;

c = sequ(v4);

B1

B2

v3

B3

B4

e2

cb13

v1

B13snd
 B13rcv

B34rcv
 B34snd
cb34

e31
v3

Figure 19. Design example in SystemC: after
step 4 of memory mapping

Finally, the model after performing step 5(a) of mem-
ory mapping for the design example is shown in Figure 20.
Eventse2ande31are encapsulated in the channelc 1.

Alternatively, the model after performing step 5(b) of
memory mapping for the design example is shown in Fig-
ure 21. In this case, all the blocks inside the processing
elementsPE1andPE2represent processes instead of mod-
ules.

Scheduling When using SystemC with the design exam-
ple, we have two cases. If we have followed step 5(a) of
memory mapping then we remove all the modules in each
processing element. Otherwise if we have followed step
5(b) of memory mapping, we already have modules re-
placed by processes.

Static scheduling As mentioned before, SystemC
does not allow explicit specification of the execution se-
quence. Therefore, identifying the parallelism inside each
processing element is difficult. Designers may need UML
or SystemC annotation to specify the execution sequence
between processes.

On the other hand, in order to serialize the parallel pro-
cesses in SystemC, designers must add a pair of wait and
notify statements, which is tedious if the behavior hierarchy
is complex.

In the design example, We apply static scheduling on
the model shown in Figure 21. We serialize processes
B13snd, B2, andB34rcvsuch that they execute in the order
of B13snd, B2, andB34rcv. A signalv5 is added to serialize

14

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

c_1.wait();

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

cb13

v1

B13snd
 B13rcv

B34rcv
 B34snd
cb34

v3

c_1

Figure 20. Design example in SystemC: after
step 5(a) of memory mapping

processesB2 andB34rcvusing the static sensitivity mech-
anism. Evente31 is merged with the signalv3 in order to
serialize the processesB34rcvandB4. Evente2 is deleted.
The model obtained after this architecture refinement step
(static scheduling) is shown in Figure 22.

Dynamic scheduling The process of dynamic
scheduling of SystemC is same as the scheduling of SpecC.

Guidelines In order to ease the tedious memory mapping
task of architecture refinement, designers can follow the
guidelines as given below:

1. Avoiding use of static sensitivity in the specification
model

2. Following step 5(b) rather than step 5(a) discussed ear-
lier.

4.2.3 Comparison

PE allocation and Behavior mapping The architecture
refinement step involving allocation, partitioning and map-
ping is easier using SystemC compared to that using SpecC.
Since the refinement changes the behavioral hierarchy, be-
haviors in SpecC have to be rescheduled. On the other hand,
modules in SystemC can be easily moved across the parent
module without the need for reschedule.

Memory mapping In general, the architecture refinement
steps involving memory mapping are easier to perform us-

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

wait(e2 & e3);

v4=v2+v3;

c = sequ(v4);

B1

B2

v3

B3

B4

e2

cb13

v1

B13snd
 B13rcv

B34rcv
 B34snd
cb34

e31
v3

Figure 21. Design example in SystemC: after
step 5(b) of memory mapping

ing SpecC compared to that using SystemC. This is can be
said on account of the following two reasons:

1. Use of static sensitivity in SystemC leads to inter-
dependence between data transfer and execution se-
quence scheduling.

2. An eventsc eventin SystemC cannot be used to con-
nect ports thereby preventing the use of the events of a
module by its child modules.

Scheduling In general, the complexities of dynamic
scheduling using SystemC and SpecC are similar. But, im-
plementation of static scheduling using SpecC is easier than
that using SystemC because SpecC identifies the execution
sequence of behavior while SystemC does not.

5. Bus-arbitration model generation

In this section, we describe the process of Bus-arbitration
model generation. This section introduces two tasks:trans-
action explorationandtransaction refinement.

5.1 Transaction exploration

The transaction exploration determines the interconnec-
tion of the system components via the system bus or in other
words the topology of the system. The channels between
the processing elements are mapped onto the system buses.

15

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

wait(e2&e3);

v4=v2+v3;

c = sequ(v4);

B1

B2

v3

B3

B4

v1

B13snd
 B13rcv

B34rcv
 B34snd

v4

v5

v3

cb13

cb34

Figure 22. Design example in SystemC: after
static scheduling

The bus protocol is chosen from among the two broad cate-
gories, blocking and non-blocking. A bus arbitration mech-
anism is also decided if required. The transaction explo-
ration is determined by the following communication char-
acteristics of the IP-assembly model:

1. Channel topology.

2. Channel traffic.

3. Start and end time of execution of channel.

The first characteristic, channel topology is the primary de-
terminant of the overall system topology. The remaining
two characteristics have bearing upon both the bus load and
competition, they together determine the bus protocol selec-
tion and channel mapping.

5.1.1 SpecC

Designers can easily derive channel topology since SpecC
allows explicit specification of the channel topology in the
IP-assembly model.

The Designers can obtain channel traffic by profiling us-
ing the profiler[4].

However, the start and end time of execution of channel
cannot be evaluated from the IP-assembly model because it
depends on the outcome of the communication exploration.

5.1.2 SystemC

Designers can easily derive channel topology since Sys-
temC allows explicit specification of the channel topology

in the IP-assembly model.
As discussed earlier in Section 4.1, it is tedious to profile

SystemC, on account of its C++ library burden.
Again, the start and end time of execution of channel

cannot be evaluated from the IP-assembly model because it
depends on the outcome of the communication exploration.

5.1.3 Comparison

We conclude that SpecC and SystemC have similar capabil-
ities in terms of support for transaction exploration, except
for the determination of channel traffic which is much easily
feasible using SpecC on account of its profiling capability.

5.1.4 Example

There are only two processing elements in our design ex-
ample, hence we select a busbus1to connectPE1andPE2.
Both channelscb13andcb34are mapped ontobus1. We
select a blocking protocol forbus1with a master-slave ar-
rangement. In this case PE1 is a master and PE2 is slave.
We do not need any arbiter here, as there is only one master
and one slave.

5.2 Transaction refinement

The decisions taken at the transaction exploration step
(or outcome of transaction exploration step) are imple-
mented during the transaction refinement. The transaction
refinement consists of two steps:

1. Encapsulation of channels into a hierarchical channel
representing the bus.

2. The functionality of the abstract channels represent-
ing the buses are implemented using the selected bus
protocols i.e. blocking or non-blocking, with the bus
modeled at the transaction level.

5.2.1 SpecC and SystemC

The first step of transaction refinement requires the hierar-
chical channel modeling. Second step requires abstract time
modeling i.e. modeling communication delay, in channels.
Both SystemC and SpecC support above requirements.

5.2.2 Comparison

We conclude that both the SpecC and SystemC are equally
capable for transaction refinement and the refinement pro-
cess is quite similar for both of them.

16

v1

v2

v3

PE2
PE1

v4=v2+v3;

c=sequ(v4);

B4

v3=v1-b*b;

B3
v2=v1+b*b;

B2

v1=a*a;

B1

B13snd

B34rcv

B13rcv

B34snd

v1

v3

cb13

cb34

Bus1

Figure 23. Design example in SpecC: bus-
arbitration model

5.2.3 Example

In general, in the bus-arbitration model, bus arbiter is mod-
eled to handle conflicts for the control of the bus. Every
processing element is assigned a priority for bus grant. The
total communication time for every transaction is annotated
by usingwait statements.

Our design example consists of only two processing ele-
ments.PE1 is the bus master andPE2 is the slave. There-
fore, modeling a bus arbiter and priority assignment to pro-
cessing elements is not required.

The model of the design example using SpecC after
transaction refinement is shown in Figure 23. The differ-
ence between the models at steps 1 and 2 of transaction re-
finement is that the channel in step 2 containswait state-
ments representing the required communication time for
each data transaction while step 1 does not. Similarly, the
model of the design example using SystemC after transac-
tion refinement is shown in Figure 24.

5.2.4 Guidelines

After the first step of transaction refinement, several chan-
nels in the PE-assembly model are encapsulated into a sin-
gle hierarchical channel. As a result, all the communicating
behaviors compete for the access of the newly created uni-
fied channel. So, in order to ensure the correctness of the
resulting model, the behavior/process involving the chan-
nel accesses in each processing element must be serialized.
Failure to comply to this may result in an incorrect outcome
model which will be illustrated in Section 6.2.

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

v1

B13snd
 B13rcv

B34rcv
 B34snd

v4

v5

v3

cb13

cb34

Bus1

Figure 24. Design example in SystemC: bus-
arbitration model.

6. Bus-functional model generation

This section introduces two tasks:protocol selectionand
communication refinement.

6.1 Protocol selection

After transaction refinement, the next step is the commu-
nication exploration. The communication exploration de-
termines the exact bus protocols for buses from the broad
blocking and non-blocking categories. The inlining of pro-
tocols is also performed at this stage and decisions are made
as how different parts of a protocol are distributed among
the processing elements. The communication exploration is
determined by the bus protocol selected.

6.1.1 Comparison

SpecC and SystemC have similar capabilities in terms of
support for communication exploration.

6.1.2 Example

As discussed earlier in Section 5.1, we already mapped
channelscb13andcb34onto bus1. We now explicitly se-
lect the double handshake protocol forbus1. The double-
handshake protocol is a point-to-point protocol in a master-
slave arrangement. The master drives the address bus, sig-
nals the start of a transfer to the slave via thereadyline and
waits for an acknowledgement from the slave via theack
line. The slave, on the other hand, samples theaddressbus
upon receiving thereadysignal and, in case of an address
match, acknowledges the transfer by asserting theack line.
The data bus can be driven by either the master or the slave

17

ready

ack

address[15:0]

data[31:0]

PE1
 PE2

Figure 25. The interfaces of PE1and PE2when
using the double-handshake protocol

ready

ack

address[15:0]

data[31:0]

(5, 15)
 (5, 25)

(10, 20)
 (5, 15)

Figure 26. The timing diagram for the double-
handshake protocol

depending on the direction of the data transfer. The inter-
connection betweenPE1 andPE2 is shown in Figure 25.
The timing diagram of the protocol is shown in Figure 26.

6.2 Communication refinement

The decisions taken at the communication exploration
step are implemented during the communication refine-
ment. The communication refinement consists of two steps:

1. The chosen bus protocol is modeled at the bus-
functional level.

2. The communication functionality is inlined into the
behaviors for implementation on the components. In
course of this process, the communication function-
ality has to be refined and adapted to the component
capability.

6.2.1 SpecC and SystemC

The first step requires modeling the channel parameters.
The second and the final step requires implementing the
functionality of channels in the behaviors/modules. Both
SpecC and SystemC support above requirements.

6.2.2 Comparison

We conclude that both the SpecC and SystemC are equally
capable for communication refinement and the refinement
process is quite similar for both of them.

v1

v2

v3

PE2
PE1

v4=v2+v3;

c=sequ(v4);

B4

v3=v1-b*b;

B3
v2=v1+b*b;

B2

v1=a*a;

B1

B13snd

B34rcv

B13rcv

B34snd

v1

v3

DblHSBus

IB
u

sS
la

ve

IB
u

sM
as

te
r

ready

ack

address[15:0]

data[31:0]

DblHSProtocol

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

Figure 27. Design example in SpecC: after
step 1 of communication refinement.

v1

v2

v3

PE2
PE1

v4=v2+v3;

c = sequ(v4);

B4

v3=v1-b*b;

B3

v2=v1+b*b;

B2

v1=a*a;

B1

B13snd

B34rcv

B13rcv

B34snd

v1

v3

ready

ack

address[15:0]

data[31:0]

Figure 28. Design example in SpecC: after
step 2 of communication refinement.

18

PE2
PE1

V2 = V1 + b*b;

notify(SC_ZERO_TIM

E, e2);

V3= V1- b*b;

notify(SC_ZERO_TI

ME, e3)

v1

V1 = a*a;

v2

V4 = V2 + V3;

c = sequ(V4);

B1

B2

v3

B3

B4

v1

B13snd
 B13rcv

B34rcv
 B34snd

v4

v5

v3

DblHSBus

IB
u

sS
la

ve

IB
u

sM
as

te
r

ready

ack

address[15:0]

data[31:0]

DblHSProtocol

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

Figure 29. Design example in SystemC: after
step 1 of communication refinement.

6.2.3 Example

The models of the design example using SpecC after com-
munication refinement steps 1 and 2 are shown in Figures 27
and 28 respectively. The models using SystemC after refine-
ment steps 1 and 2 are shown in Figures 29 and 30 respec-
tively.

6.2.4 Guidelines

Here, we discuss an example illustrating the need to seri-
alize the channel accesses of each processing element as
stated in Section 5.2. e.g., in the design example, if we
don’t serialize the processes in SystemC during architecture
refinement. ModuleB13sndin PE1will send signalready
to PE2 then it will wait for theack signal. After the mod-
ule B13rcv in PE2 asserts theack signal, moduleB34rcv
starts execution. SinceB34rcvobserves thatack is asserted,
it starts receiving data fromPE2. Obviously, the result ob-
tained is incorrect.

Therefore, during architecture refinement, if dynamic
scheduling is used instead of static scheduling, it is recom-
mended to serialize the modules/processes that access the
channels.

7. Implementation model generation

This section introduces two tasks:implementation explo-
ration andimplementation refinement.

PE2
PE1

v2=v1+b*b;

notify(SC_ZERO

_TIME, e2);

v3=v1-b*b;

notify(SC_ZERO

_TIME, e3)

v1

v1=a*a;

v2

v4=v2+v3;

c=sequ(v4);

B1

B2

v3

B3

B4

v1

B13snd
 B13rcv

B34rcv
 B34snd

v4

v5

v3

ready

ack

address[15:0]

data[31:0]

Figure 30. Design example in SystemC: after
step 2 of communication refinement.

7.1 Implementation exploration

The last task of design is to refine the bus-functional
model to the implementation model. As defined in Sec-
tion 2 implementation model is specified in terms of the reg-
ister transfers for the behaviors mapped to custom hardware
components and in terms of the instruction set architecture
for the behaviors mapped to programmable processors. The
implementation exploration achieves decision making for
this task.

For the custom hardware components, implementa-
tion exploration consists of taking allocation, binding,
and scheduling decisions of high-level/behavior synthe-
sis for both the computation and communication/protocol
parts. Implementation exploration is not required for pro-
grammable processors, because architecture exploration al-
ready determines the processor’s RTOS and instruction set.

7.1.1 SpecC and SystemC

SpecC and SystemC are both C/C++ based languages. The
implementation exploration for custom hardware using both
of them is similar to the implementation exploration from C
langauge, which has been studied in details in the field of
high level synthesis.

7.1.2 Comparison

Therefore, we conclude that the capabilities of SpecC and
SystemC are quite comparable with respect to implementa-
tion exploration.

19

7.2 Implementation refinement

The task of implementation refinement is to generate the
implementation model, on the basis of the decisions taken
during implementation exploration . The following are the
steps involved in the implementation refinement.

1. Custom hardware synthesis: The behavior descrip-
tion is synthesized into a netlist of register-transfer
level(RTL) components.

2. Software synthesis: The behaviors mapped onto a pro-
grammable processor are converted into C code, com-
piled into the processor’s instruction set, and linked
against an RTOS if required.

3. Synthesis of bus interfaces and bus drivers: The ap-
plication and protocol layer [6] functionality is synthe-
sized into a cycle-accurate implementation of the bus
protocols on each component. This requires synthe-
sis of bus interface FSMDs on the hardware side and
generation of assembly code for the bus drivers on the
software side.

Hardware Accellera RTL [2] standard defines five differ-
ent RTL models, from the most abstract to the least abstract
level:

1. Unmapped RTL: The behavior is scheduled to the
cycle-accurate model. The Unmapped RTL is equiva-
lent to the programming language code with exception
that such code is divided into states, with conditional
transition between states added to the code.

2. Storage-mapped RTL: The allocated storage unit such
as register, register file, and memory are explicitly
specified. The variables of behavior bound to the stor-
age units are replaced by the specified storage units.

3. Function-mapped RTL: The function unit such as
adder, shifter are allocated and the computation opera-
tions of behavior are replaced by the specified function
units.

4. Connection-mapped RTL: The allocated local buses
are specified and the variable of behavior bound to the
local buses are replaced by the specified local buses.

5. Exposed-control RTL: The model consists of two
parts: netlist of datapath components and a controller
that assign a constant to each control variable in each
state. The value of control variables determines the
status/funcationility of each storage, functional or bus
component in the datapath.

In this report we do not cover all the five RTL models.
We select the unmapped RTL as the final model at the sys-
tem level. The modeling below unmapped RTL model be-
longs to the behavioral synthesis problem, which we are not
interested into.

The unmapped RTL generation is divided into two steps.

Flattening and merging This step of unmapped RTL gen-
eration involves flattening and merging behaviors/pro-
cesses. This is performed because each custom hard-
ware should contain only one FSM.

Refinement to cycle-accuracyThis step involves refine-
ment of the model to a cycle-accurate one. The state-
ments in each cycle in the FSM are determined by im-
plementation exploration/high-level-synthesis.

Software Implementation refinement for software in-
volves conversion of the SpecC/SystemC model into a C
model, its compilation into the processor’s instruction set
and linking against an RTOS if required. Implementation
refinement also involves generation of assembly code for
the bus drivers.

7.2.1 SpecC

Hardware SpecC supports all the five Accellera RTL
models and their step by step refinement. For unmapped
RTL generation, thefsmdconstruct in SpecC can be used to
model the RTL level FSM, which models behaviors with cy-
cle accuracy. For storage-mapped RTL generation,buffered
variableconstruct can be used to replace the behavior vari-
ables with modular storage units. For function-mapped
RTL generation, functions representing functional units can
be used to replace the operations such as ”+”, ”-”. For
connection-mapped RTL generation, data typebit can be
used to replace the behavior variables in order to model the
local buses. Finally, for exposed-control RTL generation,
SpecCsignal variablecan be used to model the control vari-
ables for storage and functional components. Therefore, we
conclude that SpecC has complete support for RTL model-
ing.

Flattening and merging behaviors in SpecC is straight-
forward. The leaf behaviors are removed and the statements
of leaf behaviors are inserted into a hierarchical behavior
depending on leaf behaviors’ execution sequence.

We use thefsmdconstruct to specify cycle-accurate finite
state machine in SpecC.

Software In order to convert a SpecC code to one in C,
designers need to remove all SpecC language specific con-
structs and elements, such asbehavior, par, notify, andwait.
Because of the space constraint, we do not carry out the im-
plementation refinement for software in this report.

20

/ / d e s i g n . h
SCMODULE(PE1) {

s c s i g n a l<i n t > v1 ;
. . .
SC CTOR(PE1)
{

. . .
SC THREAD(b1) ;
d o n t i n i t i a l i z e () ;
s e n s i t i v e << a ;

SC THREAD(b13snd) ;
d o n t i n i t i a l i z e () ;
s e n s i t i v e << v1 ;
}

}

/ / d e s i g n . cpp
vo id PE1 : : b1 (){

v1 = a∗a ;
} ;

vo id PE1 : : b13snd (){
bus−>w r i t e (ADDR CB13 , v1) ;

} ;

Figure 31. The SystemC code for processes
B1 and B13snd.

7.2.2 SystemC

Hardware SystemC provides two ways to model the
FSM.

1. Using SCCTHREAD [7] for implicit modeling of
FSM by insertingwait statement along with the state-
ments executing every cycle.

2. Using SCMETHOD/SCTHREAD [7] for explicit
modeling of FSM by usingswitchstatement.

SystemC also provides functions, variables with data
typebit, and signalsc signal. SystemC uses signal to rep-
resent the storage unit in FSMD (SpecC usesbuffered vari-
able). Hence, we conclude that SpecC and SystemC pro-
vide similar support for RTL modeling.

Merging process is specially important for SystemC be-
cause it can remove the overhead of implementing static or
dynamic sensitivity between processes in the same process-
ing element. The processes should be statically serialized
before flattening and merging.

Merging of processes using SystemC should be per-
formed cautiously. This is because SystemC uses signals

/ / d e s i g n . h
SCMODULE(PE1) {

s c s i g n a l<i n t > v1 ;
. . .
SC CTOR(PE1)
{

. . .
SC THREAD(b1 b13rcv) ;
d o n t i n i t i a l i z e () ;
s e n s i t i v e << a ;

}

/ / d e s i g n . cpp
vo id PE1 : : b1 b13snd (){

v1 = a∗a ;
bus−>w r i t e (ADDR CB13 , v1) ;

} ;

Figure 32. Incorrect SystemC code after
merging processes B1 and B13snd.

for data transfer between processes as well as for schedul-
ing, and the value of a SystemC signal is not updated until a
delta cycle. Furthermore, SystemC doesn’t allow binding of
variables to ports of modules, which limits use of variables
for data transfer between processes in different modules.

For example, the SystemC models of processB1and pro-
cessB13sndare shown in Figure 31. The incorrect Sys-
temC model after mergingB1 andB13sndis shown in Fig-
ure 32. In this model, the statements of two processes are
just put together. The model is incorrect becausev1 is a
SystemC signal, whose value is not updated immediately.
Therefore, the value ofv1 which bus->write(ADDRCB13,
v1) accesses is the old value, instead of the new valuea*a.
In order to solve this problem, the SystemC signals being
used for data transfer between processes should be replaced
by the SystemC variables. The correct model after merging
B1andB13sndis shown in Figure 33.

We use SCTHREAD to specify the cycle-accurate finite
state machine in SystemC.

Guidelines The SystemC signals being used for data
transfer between processes should be replaced by the Sys-
temC variables.

Software Conversion of a SystemC code to one in C in-
volves two steps. First, SystemC code is converted to a C++
code by removing all the SystemC specific constructs and
elements, such asmodule, port, channel. Second, C++ code

21

/ / d e s i g n . h
SCMODULE(PE1) {

i n t v1 ;
. . .
SC CTOR(PE1)
{

. . .
SC THREAD(b1 b13rcv) ;
d o n t i n i t i a l i z e () ;
s e n s i t i v e << a ;

}

/ / d e s i g n . cpp
vo id PE1 : : b1 b13snd (){

v1 = a∗a ;
bus−>w r i t e (ADDR CB13 , v1) ;

} ;

Figure 33. Correct SystemC code after merg-
ing process B1 and B13snd.

is then converted to a C code, which is compilable and exe-
cutable on the microprocessors.

7.2.3 Comparison

Hardware Both the languages have similar capability for
modeling cycle-accurate model. However, merging of the
processes has quite complex consideration in case of Sys-
temC compared to SpecC where it is fairly easy. Hence, we
conclude that SpecC is better capable for implementation
refinement compared to SystemC.

Software In both the cases of SpecC and SystemC the
language specific constructs and elements need to be re-
moved. Furthermore, since SpecC is C based language and
SystemC is C++ based language, an additional step of con-
verting a C++ code to a C code is required for SystemC.

7.2.4 Example

Hardware In this design, we assume both PE1 and PE2
are mapped to the custom hardware. The generatedun-
mapped RTLmodels for SpecC and SystemC are the same,
which are shown in Figure 34.

8. Overall Comparison

Table 2 illustrates the differences between system design
using SpecC and SystemC in terms of design steps in our

PE2
PE1

ready

ack

address[15:0]

data[31:0]

B13Re

c

B3

B34Sn

d

S0

S1

S2

S3

S4

S0

S1

S2

S3

S4

B1

B13Sn

d

B2

B34Rc

v

B4

Figure 34. Unmapped RTL model of SystemC
and SpecC

design flow. We classify the difficulty of each design task at
three levels: easy, medium, and hard, in terms of the used
system languages. The bold item indicates that it has the
advantage over the normal item in the same row, where each
row represents a step. System design using SpecC is easier
at six steps, while system design using SystemC is easier
at only one step. Therefore, we conclude SpecC is a better
suited design language than SystemC considering the whole
design flow.

Table 3 shows the overall comparison between SpecC
and SystemC in terms of design modeling. Table 3 throws
light on the reasons of the differences between SpecC and
SystemC, shown in Table 2. Some of the major differences
are summarized below:

1. SpecC supports static scheduling usingpar, pipe, and
fsmconstructs, or default sequential execution. Static
schedule allows designers to determine the explicitly
modeled execution sequence, which is used during ar-
chitecture exploration. It also eases the static schedul-
ing during architecture refinement. These features are
not available in SystemC.

2. SystemC usesmoduleas the structural entity andpro-
cessas the behavioral entity. It does not support hier-
archical modeling ofprocess. Therefore, bothprocess
andmoduledo not fully support behavior entity mod-
eling. On the other hand, SpecCbehavior supports
modeling of behavioral hierarchy.

3. In case of SystemCvariableandeventcannot be used
to connect the ports of different modules. Therefore,
they can only be used either inside the modules or
globally. This limits the use of events for schedul-
ing modules and variables for data transfer between
modules. On the other hand, SpecCbehaviorsupports

22

Design steps Sub-steps SpecC SystemC

Architecture exploration Computation profiling Easy Hard: Tedious
C++ library burden

Executing sequence scheduling Easy: Explicit Hard: Implicit
Architecture refinement Allocation and partitioning Hard: Reschedule requiredEasy

Variable mapping Easy Medium: Data transfer
and schedule separation

Scheduling Easy: Explicit Hard: Implicit
Behavior/module flattening Easy Easy(removal of modules in PEs)

Transaction exploration Transaction Profiling Easy Hard
Channel topology modeling Easy Easy

Transaction refinement Channel grouping Easy Easy
Transaction protocol insertion Easy Easy

Communication exploration Exact protocol selection Easy Easy
Channel inlining decisions Easy Easy

Communication refinement Bus functional protocol insertion Easy Easy
Channel inlining Easy Easy

Implementation exploration N/R N/R
Implementation refinement Process/module merging Easy Medium: Conversion of

signal to variable

Table 2. Overall comparison in terms of exploration and refinement

Abstract models Model aspect SystemC SpecC

Specification model functional block module behavior
schedule event, signal event, definition(par..)
data transfer signal variable

IP-assembly model structure blocks module behavior
functional blocks process behavior
schedule inside PEs event, signal event, definition(par..)
schedule between PEs channel channel
data transfer inside PEs signal variable
data transfer between PEschannel channel

Bus-arbitration model same as Arch model same as Arch model
Bus-functional model same as Arch model same as Arch model
Implementation model fsm switch(SCTHREAD), SCCTHREAD fsmd

function units function/module function/behavior
storage variable signal buffered signal
bus bit bit
control signal signal signal

Table 3. Overall comparison in terms of design modeling

23

scheduling using events and data transfer using vari-
ables without any constraint.

4. SystemC uses lower level semantics and syntax to
model concepts at higher levels of abstraction. An
example is the use of module (which is essentially a
structural entity) as behavioral entity in the specifica-
tion model. Another example is the use of signals for
data transfer. Since the value of signal is updated after
a delta cycle delay, using signal to model data transfer-
ring causes problems such as those described during
the process merging step in Section 7.2.

5. SystemC is C++ based language, which is tedious to
profile because of C++ library burden. There are no
such limitations with SpecC.

6. In case of SystemC, when static sensitivity is used
for scheduling, it affects both the data transfer and
the execution sequence scheduling. Therefore, design-
ers should only use dynamic sensitivity for scheduling
in the specification model. This is not the case with
SpecC.

The first four limitations of SystemC can not be circum-
vented since they follow from the definition of the semantics
and syntax of SystemC. However, the last two limitations
can be circumvented as discussed there.

9. Conclusion

We first establish the requirements on a SLDL for the
system-level design flow. We come up with four essential
properties required of a SLDL namely, analyzability, ex-
plorability, refinability and validability.

We then compare the capabilities of SpecC and SystemC
in terms of the fulfilment of the established requirements on
a SLDL. Although SpecC and SystemC share many con-
cepts, SpecC proves better than SystemC in terms of fulfil-
ment of these requirements. This is primarily on account of
the clear semantics and syntax definition of SpecC. It should
be noted that we choose a general design flow (which befits
both SpecC and SystemC) in order to keep our evaluation
fair to both.

We also provide design guidelines for SpecC and Sys-
temC users. Although, following the guidelines allows for
smooth and efficient system-level design, at the same time,
the need of too many guidelines exposes the lack of expres-
siveness of the language. As we see, there are very few
guidelines required for SpecC compared to SystemC where
we have numerous guidelines. So we conclude SpecC is
superior with respect to this aspect also.

References

[1] S. Abdi and D. Gajski. Formal Verification of Speci-
fication Partitioning. Technical Report CECS-TR-03-
06, University of California, Irvine, March 2003.

[2] Accellera. RTL Semantics and Methodology,
http://www.eda.org/alc-cwg.

[3] Accellera. SystemVerilog 3.0 Accellera’s Extensions
to Verilog, http://www.accellera.org.

[4] L. Cai and D. Gajski. Introduction of Design-Oriented
Profiler of SpecC Language. Technical Report ICS-
TR-00-47, University of California, Irvine, June 2001.

[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and
S. Zhao.SpecC: Specification Language and Method-
ology. Kluwer Academic Publishers, January 2000.

[6] A. Gerstlauer, R. Domer, J. Peng, and D. Gajski.Sys-
tem Design: A Practical Guide with SpecC. Kluwer
Academic Publishers, 2001.

[7] Thorstn Grotker, Stan Liao, Grant Martin, and Stuart
Swan. System Design with SystemC. Kluwer Aca-
demic Publishers, 2002.

[8] Keutzer K, Newton AR, Rabaey JM, and Sangiovanni-
Vincentelli A. System-Level Design: Orthogonaliza-
tion of Concerns and Platform-Based Design. InIEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Dec 2000.

[9] OSCI. http://www.systemc.org.

[10] STOC. http://www.specc.org.

[11] Cesario WO, Lyonnard D, Nicolescu G, Paviot Y,
Sungjoo Yoo, Jerraya AA, Gauthier L, and Diaz-Nava
M. Multiprocessor SoC platforms: A Component-
Based Design Approach. InIEEE Design and Test
of Computers, Nov-Dec 2002.

24

