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Abstract--Emulation of CMS 1  systems is an interesting 
approach to complete the validation of new digital control unit 
and to perform the diagnosis tasks. However to be efficient, the 
emulator have to run in real time in order to reproduce exactly 
the physical process functioning. 

This paper describes the design of an Autonomous Emulator 
employing the system-level design methodology developed at 
CECS-UC Irvine (SpecC methodology). Starting from the 
abstract executable specification written in SpecC language, the 
emulator is gradually refined and mapped to a final 
communication model. This model can then be used with 
backend tools for implementation and manufacturing. 

Index Terms-- Co-design, Embedded Systems, Autonomous 
Emulators, Electromechanical systems 

I.  INTRODUCTION 

In this work we propose to design an autonomous real time 
emulator for electromechanical systems using SpecC 
methodology [1,2]. This emulator will be used with the control 
device either for complete validation of this one at the 
development and validation stage or for diagnosis at normal 
functioning stage. In both cases, the emulator should behave 
like the physical system in real time. 

Today, realization of this emulator is not possible using 
standard electronic components. Therefore, we oriented our 
work to the development of new embedded systems specific to 
these applications of emulation. 

Realization of this emulator is essentially faced to the 
execution time constraints. Indeed the emulator has to replace 
high dynamic systems in real time. So we distinguish three 
approaches in which real time emulator can be implemented: 
Digital, Analog and Hybrid. These approaches were discussed 
in previous publications [3,4,5].  

The main difficulty in this realization is to satisfy both 
specifications of real time functioning and of flexibility. 
Association of these characteristics imposed uses of digital 
approaches, which guaranty user-friendliness. 

On the other side, improvements in VLSI technology have 
to led the wide spread use of specific processor, which may 
also be used to realize complete system.  

According to these considerations, our work is oriented to 
the design of embedded systems specific to the emulation 
application. Therefore, we study the synthesis process of the 
emulation systems directly from their specification. This 
approach requires the ability to synthesize specified functions 
into software or hardware to meet the given constraints. It has 

                                                                 
1 Static Converters / electric Motors / Sensors 

the most flexibility since software, architecture and each 
component are custom made. However, it requires a well-
defined methodology with clear steps, easy transformations 
and efficient tools to help the designer in the synthesis 
process. 

In this paper, we describe a new approach based on the 
SpecC methodology for the design of an autonomous real-time 
emulator. We present at the beginning an introduction to the 
emulation principles. From this description and according to 
the SpecC methodology, we deduce the specification model of 
the emulator. Then, we describe the different steps and 
transformations used to convert this model to a communication 
model, which can be then transformed to an implementation 
model ready for manufacturing. 

II.  EMULATOR PRINCIPLES 
The objective of the emulation approach in the electric drive 
applications is to design an electronic system, which can 
reproduce the physical system functioning in real time and 
with high precision. This system, called emulator, will be used 
for both of the new control device validation (Fig. 1) and of 
diagnosis (Fig. 2). 

 
 
 
 
 
 
 
 

Fig. 1 Structure of the emulation application 

 
 
 
 
 
 
 

Fig. 2 Structure of the diagnosis application 

In both cases, the emulator has to reproduce accurately the 
process functioning. Therefore, it has to compute the System 
State and to convert the obtained results in forms identical to 
those obtained by sensors. 

For this and in order to obtain precise results, we should 
use precise models of different components used on this 
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process and a high performance computing system with the 
lowest computing step as possible (1µs or less). 

On the other hand, this emulator must be flexible, easily 
configurable by the user according to her/his application, and 
it must allow the storage of results and if necessary 
monitoring. 

According to these previous considerations, the emulator 
structure will be composed of three main modules [5]: 

- Computing module: it computes, according to the digitized 
models, the system state variables. 

- Emulation sensors module: it converts numeric results on 
different other forms identical to those obtained by the 
used sensors.  

- Monitoring module: it performs the acquisition of new 
parameters and the storage of results. It can also perform 
some monitoring tasks.  

III.  SPECC METHODOLOGY  

Managing the complexity at higher levels of abstraction, in 
the design of systems-on-chip (SOCs) or embedded systems in 
general, is not possible without having a very well defined 
system-level design flow [6,7,8].  

Therefore, in this project we propose to use the SpecC 
methodolo gy [1,2], which is a set of models and 
transformations on these models: 

- The models written in programming language (SpecC 
language) are executables descriptions of the same system 
at different levels of abstraction in the design process.  

- The transformations are a series of well-defined steps 
through which the initial specification is gradually mapped 
onto a detailed implementation description ready for 
manufacturing. 

This methodology is based on 4 well-defined models, 
namely a specification model, an architecture model, a 
communication model, and finally, an implementation model.  

In this paper we focus on the synthesis flow which contains 
the steps of specification, architecture exploration and 
communication synthesis. Implementation can then be done 
easily using standard tools. 

IV.  SPECIFICATION MODEL 
According to the SpecC language syntax [1], the emulator 

can be described by a main behavior (Emul) including different 
sub-behaviors: one for the computing module, one for sensors 
and one for monitoring (Fig. 3a).  

These behaviors are usually composed of other sub-
behavior according to the modular structure of the physical 
system (Fig. 3b). So, we use a sub-behavior for each of the 
converter, motor/load and sensor component and we add 
separate sub-behaviors for initialization process and for the 
monitoring module (including storage). These behaviors can 
also be decomposed of child-behaviors as we usually do with 
the motor/load behavior. Indeed, this behavior is usually 
decomposed on mechanic-child-behavior and electric -child-
behavior. 

Computing steps used with different modules are not the 
same since they don’t have the same temporal characteristics. 

So we propose, for more flexibility, to add to each of the 
obtained child-behaviors a clock-generator behavior that 
controls its execution. The occurrence of the clock event is 
defined according to the module temporal characteristics. 

However, we usually use the same computing step for the 
CM system (1µs) and different computing steps for each 
different type of sensor… 

The obtained specification model shown on Fig. 3 was 
validated for the case of DC and AC systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Detailed Specification model of the emulator 

Constraints: One of the most important constraints with this 
application is the computing time of the CM System State. 
Indeed, this computing must be done, according to the given 
models, in a periodic manner with a computing step of 1µs or 
less. While this seems to be realizable using High performance 
standard processors for the case of simple system using simple 
models, it is not possible for high performance application that 
needs sophisticated models and smaller computing step. 
Temporal problems of this computing, implemented into a 
processor, are related to the computing load and to the use of 
interruption for the periodic functioning management. 

Other constraints such as the resolution of the used DAC 
devices and the resolution and precision of the used sensors 
(encoders, resolvers,…) will certainly influence the design 
procedure. 

V.  ARCHITECTURE EXPLORATION 

Architecture exploration is the first part of the system 
synthesis process that develops system architecture from the 
specification model. The purpose of architecture exploration is 
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to map the computational parts of the specification onto the 
components of system architecture. The steps involved in this 
process are allocation, partitioning and scheduling. Through 
this process, the specification model is gradually refined into 
the architecture model.  

At this stage, we propose to study the case of an 
Autonomous Emulator: the emulator is associated to an 
external memory on which will be stored parameters and 
emulation results. The emulator functioning is then 
independent from other computing systems. At the starting 
step, it reads new parameters from the external memory block 
and then, at each new storage period, it will write new results 
into successive registers of this memory. Another processor 
used for initialization and monitoring will manage this memory 
when the emulation is off-line in order to initialize the process 
parameters and to restore emulation results. This solution is 
very useful when used with the micro-controller of the control 
device since it will not disturb the control tasks. However it 
introduces some delay in the monitoring operation. 

 

A.  Allocation and Behaviors Partitioning 

The first step in architecture exploration is to allocate a set 
of processing elements (PEs) and to map the behaviors of 
specification onto the allocated PEs. In this structure and 
according to the previous considerations, the emulation 
system will be composed of three PEs: the EmulCore hardware 
component, the software component (processor) and the 
memory block. This memory, shared by the two active 
components, is used for storage of parameters and emulation 
results. 

Fig. 4 represents the obtained refined model after behavior 
partitioning. In this model, two behaviors (init & storage) are 
added to PE1 (EmulCore) in order to synchronize and 
establish communication with the software and memory 
components. This communication becomes system-global and 
it is moved to the top-level connecting the PE behaviors. 
Synchronization is done at the beginning and the end of the 
emulation procedure by using two events Start and End. 
 
 
 
 
 

 
 
 
 

 

Fig. 4 Architecture model after allocation and behavior partitioning 

B.  Variable Partitioning and Scheduling 

The number of exchanged variables between HW and SW 
components is very limited (usually less than 10), so we chose 
to use local copies for these variables in each PEs. Therefore in 
the refined model obtained after variable partitioning, global 
variables for results (Ei) and parameters (Pi) are replaced with 
their respective abstract channels CPi and CEi. Code is inserted 

into behaviors to communicate variable values over these 
channels. Note that data are exchanged in a vector type: one 
for parameters and one for results. 
 

Scheduling  The next step in the architecture exploration 
process is to schedule behavior executions on the inherently 
sequential processing elements. We consider that processing 
elements have a single thread of control only. Therefore, 
behaviors mapped to the same PE can only execute 
sequentially and have to be serialized. 
In this application and according to the previous 
specifications, synchronization between HW and SW 
components are performed by using of two events Start and 
End.  
The Start event can be associated to the parameters variables 
Pi and encapsulated into a Message-Passing channel that 
models the abstract communication semantics of blocking, 
unbuffered message-passing between any two client-
behaviors. 
On the other hand, the End event will be connected to a 
processor interrupt input. The interruption program is used to 
set a flag F_end when this interruption is activated. When the 
software program needs the emulation results for monitoring, it 
tests this flag. If it is set, it performs the data read sequences 
from memory, otherwise it waits for the interruption activation. 
 

C.  Channel Partitioning 

In this application, the obtained architecture target is 
composed of two active PEs (PE1 and PE2) that share a 
memory block (PE3). Therefore, only one bus is used into 
which all the global channels and their implementation are 
encapsulated. 

The obtained refined model after variable partitioning, 
scheduling and channel partitioning is shown on Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Architecture refined model after channel partitioning 

VI.  COMMUNICATION  SYNTHESIS 
The purpose of communication synthesis is to refine the 

abstract communication in the architecture model into an actual 
implementation over the wires of the system busses. This 
requires insertion of communication pro tocols for the busses, 
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synthesis of protocol transducers to translate between 
incompatible protocols, and inlining of protocols into hardware 
and software. 

For the illustration of our application we use the DSP56600 
(Motorola) as the chosen IP component for implementing the 
software behaviors (PE2) [9]. 

A.  Protocol Insertion 

During the protocol insertion, a description of the used 
protocol is inserted into the corresponding virtual system bus 
channel.  

The abstract communication primitives provided of the bus 
channel are rewritten into an implementation using the 
primitives provided by the protocol layer. The outer 
application layer of the bus channel implements the required 
semantics over the actual bus protocol. This includes tasks like 
synchronization, arbitration, bus addressing, data slicing, and 
so on.  

All the abstract bus channels in the model are replaced with 
their equivalent hierarchical combinations of protocol and 
application layers that implements the abstract communication 
of each bus over the actual protocol for that bus. 

To illustrate our study, the protocol channel in the system 
bus and the wrapped processor model describe and implement 
the DSP56600 bus protocol according to its timing diagram 
shown in Fig. 6 [9].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Protocols of the DSP56600 external bus 

Fig. 7 shows the emulator model after the insertion of the 
DSP bus protocol as the system bus protocol, and after the 
processor behavior has been replaced with a model of the real 
processor with a wrapper. Transducer will be added, if needed, 
between hardware protocol and the system bus protocol. On 
the other hand, memory must be able to respond to the read 
and write requests from DSP and ASIC. This again requires 
design of a bus interface for memory to respond to bus 
read/write requests. The behaviors and complexity of such 
interfaces depends on the time-constrained behavior of these 
components at their ports. So, we must discuss the timing 

behavior of these components and then analyze these 
interfaces [10]. 
 
 
 
 
 
 
 
 
 

Fig. 7 Communication model after protocol insertion  

Note that in order to simplify this illustration, we assume 
that the hardware component has the same protocol as the 
system bus (DSP56600 protocol).  

On the other hand, we experimented with Samsung memory 
KM68257C [11], which is a CMOS static RAM and has 8 
common input and output lines. The different pins and the 
memory specification for read and write cycles are shown in 
Fig. 8.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8 Memory bus protocol (KM68257C) 

According to these specifications, this memory is fast 
enough and will be used directly without any additional 
interface according to the schema of Fig. 9. Therefore, no 
interfaces are required with this architecture model. 
 
 
 
 
 

Fig. 9 DSP-ASIC / Memory interfacing model 

Parameters and results are stored in the memory at precise 
corresponding locations with precise addresses that 
correspond to free locations in the DSP and ASIC memory 
spaces. 

A0-A15 

/MCS 

/AT 

/RD 

/WR 

D0-D23 Data Out 

(28.9, -) 

(0.5,-) (19.3,-) 

(0.4,-) 

(8.8,-) (0.4,-) 

DSP56600 - SRAM Write Access 

A0-A15 

/MCS 

/AT 

/RD 

/WR 

D0-D23 Data In 

(28.9, -) 

(4.3,-) 

(-,16.5) (0.0,-) 

(17.0, -) 
(1.2,-) 

DSP56600 - SRAM Read Access 

 

56
60

0 
Pr

ot
oc

ol
 

B
us

 PE3 
Mem 

IP2 

IP
B

us
 

 PE1 
T3 

T2 

T1 

ASIC 

Address 

/CS 

/OE 

Data out  

(12,-) 

(0,6) 

(-,12) 

(-,6) 

(-,12) 

(0,6) 
(3,-) 

(3,-) 
valid data  

KM68257C - Read Access 

Address 

/OE 

/CS 

Data out  

(12,-) 

(9,-) 

(7,-) (0,-) 
/WE 

(9,-) 

(9,-) 

(0,-) 

(0,-) 

KM68257C - Write Access 

valid data  

A 
D 

/MCS 
/RD 

/WR 

DSP/ 
ASIC 

A 
D 
/CS 
/OE 
/WE 

MEM 



 

According to this architecture model, we distinguish two 
masters sharing the same bus and the same memory 
component: 
 

- DSP: it writes at the beginning parameters values to their 
corresponding locations in the memory block, and reads 
results tables; 

- ASIC: it reads at the beginning parameters from their 
corresponding locations, and writes results at each 
execution of the storage behavior (Ts period). 

 
So, cautions must be taken in order to avoid 

communication conflicts. In this project, we implement the case 
of the solution without management of the bus, which 
represents a simple bus management protocol. 

In this case the required synchronous passing semantics 
are realized as follows: The DSP determines new parameters 
and it stores them in their locations inside the memory block. 
Then, it signals by an asynchronous event to the emulator that 
data are ready and it continue execution of other tasks without 
using its external bus. The emulator waiting for the start signal 
from the DSP, receives this event and then execute the init 
behavior before beginning emulator computing. At each Ts 
period, the emulator increments the memo ry address and store 
new results in a table. At the end of its computing, the ASIC 
signals by an asynchronous event to the DSP that results are 
ready in the memory. This event will interrupt the DSP program 
and set a flag. The DSP, tests this flag when results are 
required in order to perform new acquisition. 

 

B.  Protocol Inlining 

Protocol inlining is the process of inlining the channel 
functionality into the connected components and exposing the 
actual wires of the busses. The communication code is moved 
into the components where it is implemented in software or 
hardware. On the hardware side, FSMDs that implement the 
communication and bus protocol functionality are synthesized. 
On the software side, bus drivers and interrupt handlers that 
perform the communication using the processor’s I/O 
instructions are generated or customized. 

The communication model obtained after protocol inlining 
is shown in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 Communication model after protocol inlining 

The Init SFSMD synchronizes with the software on the 
DSP, it receives the start signal from it. Then, it reads the 

process parameters over the processor bus from the memory, 
and starts the emulator computing. At each new storage period 
(Ts=xs hor), the storage SFSMD writes emulation results into 
the memory table. When finished, the ASIC send an event to 
the DSP signaling that data are ready in the memory and that 
bus is “free”.  

For the ASIC, communication primitives are inlined into the 
exchanges sub-behavior (Init and storage).  

Therefore, exchanges SFSMD models are created and 
inserted into the ASIC SFSMD model (Fig. 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11 HW communication SFSMDs (Autonomous emulator) 

Fig. 12 shows the implementation of the interconnection 
between the three used components after final inlining.  
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After validation by simulation, the obtained communication 
model will be ready for use directly to generate the 
implementation model. Indeed, The leaf behaviors of the 
design model will be fed into different tools in order to obtain 
their implementation [12]. 
 
 
  
 
 
 
 
 

Fig. 12 DSP/Memory interfacing model  

VII.  CO-DESIGN APPROACH PERFORMANCES 
An application to the case of DC system is done and 

demonstrates the efficiency of this approach. The development 
of this emulator is performed very easily (in few hours) using 
the defined approach and the previous study of the emulator 
structures. 

The used co-design approach presents a simplified design 
process based on well-defined, clear and structured models at 
each exploration step. This enables quick exploration and 
synthesis. 

In each of the tasks the designer can make design 
decisions and generate a corresponding SpecC model. Then, 
the design can be statically analyzed or simulated for 
validation of design correctness in terms of functionality, 
performance, and other constraints. A simulation model is 
compiled after each step, which can be run on the host 
computer to validate correctness for simulation. 

The presented synthesis flow demonstrates the efficiency 
of a system-level design methodology, which allows moving 
the design to higher levels of abstraction, in order to increase 
productivity. 

Using components and protocols libraries with specific 
tools for step automation will facilitate the design process and 
reduce further more the time-to-market. The user will be able in 
the near future to design her/his emulator and implement it 
(using for example FPGA circuits) in few hours without the 
need of any high qualification. 

Development of these tools and libraries represent our main 
objectives for the future works. 

VIII.  CONCLUSIONS 
In this paper, we present a design process of an 

autonomous emulator, based on the SpecC methodology. This 
methodology presents a simplified design process based on 
well-defined, clear and structured models at each exploration 
step. This enables quick exploration and synthesis. 

According to this methodology and during the synthesis 
process, three models are constructed: the specification model, 
the architecture model and the communication model. For each 
of them we discussed the mechanism of refinement and we 
proceeded to a validation by simulation. The correct output 
demonstrates the correctness of our models. 
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