
Specification Tuning of System-Level Design

Lukai Cai
Daniel D. Gajski

6/6/2002

updated from ““parallelization optimization of system-level specification”

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA

{lcai, gajski} @cecs.uci.edu

Abstract
This report presents the specification tuning of system-level design. Specification tuning changes the

specification representing the design’s functionality in the system level thus making the specification suitable for
architectural exploration. We introduce parallelization optimization and hierarchy reducing, the two main tasks
of specification tuning. In addition, we also introduce two tools, spec profiler and spec optimizer, to implement
these tasks automatically.

I

Index
1Introduction ... 1
2Parallelization Optimization ... 2

2.1 Introduction .. 2
2.2 Implementation ... 2

2.2.1 Parallelization Optimization Tasks ... 2
2.2.2 Sequential Behavior Searching... 3
2.2.3 Dependency Analysis... 3
2.2.4 Instance Structure Optimization ... 3

2.3 Specification Modeling Process .. 8
2.4 Experimental results ... 9

2.4.1 Manual Parallelization vs. Automatic Parallelization .. 9
2.4.2 Results for 10 Instance Examples ... 9
2.4.3 Results for 20 Instance Examples ... 10
2.4.4 Real Project Examples ... 10

3Hierarchy Reducing ... 11
3.1 Introduction .. 11
3.2 Implementation ... 12

3.2.1 Behavior-Pair Detection... 12
3.2.2 Specification Updating... 12

3.3 Experimental Result .. 13
3.3.1 Automatic vs. Manual Hierarchy Reducing .. 13
3.3.2 JPEG Design Example ... 13

4Conclusion... 13
Reference... 14

II

List of Figures

Figure 1: Extended Gajski and Kuhn’s Y chart .. 1
Figure 2: Example 1 of parallelization optimization .. 2
Figure 3: Parallelization optimization tasks... 3
Figure 4: Example 2 of parallelization optimization .. 4
Figure 5: Three types of ParGroup .. 5
Figure 6: Four cases of inserting instance x to a Flat ParGroup.. 6
Figure 7: Three cases of inserting instance x to a Par ParGroup.. 7
Figure 8: Three cases of inserting instance x to a Sequ ParGroup. ... 8
Figure 9: An example of designers’ improvements on the results of constructive algorithm 9
Figure 10: Example of behavior binding with and without hierarchy reducing... 11
Figure 11: The specification before hierarchy reducing ... 12
Figure 12: The specification after hierarchy reducing.. 13

List of Tables
Table 1 : Overview of three solutions for the example in Figure 9 ... 8
Table 2: Design time of the manual parallelization. ... 9
Table 3: Results for 10 instance examples ... 9
Table 4: Results for 20-30 instance examples .. 10
Table 5: Results for JPEG and Vocode Project Examples .. 10
Table 6: Design time of the hierarchy reducing.. 13

1

Specification Tuning of System-Level Design
Lukai Cai, Daniel D. Gajski

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA

{lcai, gajski} @cecs.uci.edu

Abstract
This report presents the specification tuning

of system-level design. Specification tuning changes
the specification representing the design’s
functionality in the system level thus making the
specification suitable for architectural exploration.
We introduce parallelization optimization and
hierarchy reducing, the two main tasks of specification
tuning. In addition, we also introduce two tools, spec
profiler and spec optimizer, to implement these tasks
automatically.

1 Introduction

In order to handle the ever increasing complexity
and time-to-market pressures in the design of system-
on-chips(SOCs) or embedded systems, the design has
been raised to the system level to increase
productivity. Figure 1 illustrates extended Gajski and
Kuhn’s Y chart[1] representing the entire design flow,
which is composed of four different levels: system
level, RTL level, logic level, and transistor level. The
thick arc represents the system level design. It starts
from the specification representing the design’s
functionality, which is denoted by point S. The
system level design then synthesizes the specification
to the system architecture denoted by point A. A
system architecture consists of a number of PEs
(processing elements) connected by buses. Each PE
implements a number of functional blocks in the
specification. The system level design contains a
series of tasks including PE allocation and behavior
binding. PE allocation selects PEs for the architecture.
Behavior binding maps different functional blocks in
the specification to different PEs.

Since the design starts from the specification
representing the design’s functionality, the quality of
this specification will heavily influence the later
design steps and the final design result. A good-
quality specification must have two attributes. First, it
specifies all the parallelism existing among functional
blocks. Second, it has the minimum hierarchy level

while keeping all the parallelism. Since we focus on
the system level, we don’t take the optimization of
each functional block into account. The importance of
these attributes will be explained in later sections.

In order to produce good-quality specifications, in
this report, we introduces two tasks of specification
tuning: parallelization optimization, which explores
maximal parallelism existing in the specification, and
hierarchy reducing, which reduce the hierarchy depth
while keeping all the parallelism.

In addition to parallelization optimization and
hierarchy reducing, we also produce two tools, spec
profiler and spec optimizer, to implement both tasks
automatically. With the tools, the design time of
specification tuning can be hundreds of times faster
than without them.

Behavioral System

RTL

Logic

Transistor
S A

Architectural

Physical

Specification
tuning

Figure 1: Extended Gajski and Kuhn’s Y chart

The report is organized as follows: Section 2
describes the parallelization optimization; Section 3
introduces the hierarchy reducing. Finally, the
conclusion is given in Section 4.

2

2 Parallelization Optimization

2.1 Introduction

This section introduces the parallelization
optimization of specification tuning, which exploits
maximal parallelism among functional blocks of the
design’s specification. Designers can implement
parallelization optimization manually. In general,
designers start modeling the specification from
existing C/C++ code. Since C/C++ language does not
support parallelism, designers must manually find the
parallelism by analyzing the code or designs’
algorithms, which is time-consuming.

After finding the parallelism among the functional
blocks in the specification, designers must determine
the hierarchical parallel structure of the specification.
After parallelization optimization, one original
specification may produce different hierarchical
parallel structures. For example, in Figure 2(a),
functional blocks A, B, C, and D are executed
sequentially. In Figure 2(b), the dependencies among
the functional blocks are displayed. Block C can only
be executed after the execution of A, while block D
can only be executed after the execution of B. In
Figure 2(c) and (d), two possible hierarchical parallel
structures are shown. The functional blocks separated
by dotted line represent parallel executed blocks. In
Figure 2(c), block C and D are executed parallel after
the parallel execution of A and B. In Figure 2(d),
block C is executed after A while block D is executed
after B. The execution of A and C is parallel with the
execution of B and D. Because one original
specification may produce different hierarchical
parallel structures, we prefer implementing
parallelization optimization structurally by tools rather
than randomly by hand.

Therefore we make two tools, spec profiler and
spec optimizer, to implement parallelization
optimization automatically: spec profiler analyzes the
dependencies among functional blocks; spec optimizer
finds out the hierarchical parallel structure with
maximal parallelism. We compare the manual
parallelization with the automatic parallelization and
conclude that the automatic parallelization produce
better results in terms of design time and hierarchical
parallel structures.

A

B

C

D

(a) Original
executing sequence

A B

C D

(b) Dependencies
among functional blocks

A B

C D

A B

C D

(c) Solution 1 after
parallelization optimization

(d) Solution 2 after
parallelization optimization

Figure 2: Example 1 of parallelization optimization

We use SpecC language[2][3] to model the
specification. In contrast to other system level design
languages such as SystemC[4], SpecC language is a
synthesis-based design language since it provides
keywords such as par and pipe to model parallel and
pipeline executing relations among functional blocks.
Explicitly specifying the executing relations enables
system-level synthesis tools to recognize the
hierarchical parallel structures, which make it possible
for them to implement PE selection and behavior
binding automatically.

SpecC uses a keyword behavior to represent a
functional block. Each behavior contains a number of
methods that define the functionality, a set of ports
that connect it with other behaviors, and a number of
behavior instances to support behavior hierarchical
modeling.

2.2 Implementation

2.2.1 Parallelization Optimization Tasks
In this report, we parallelize sequential behaviors.

A sequential behavior is defined as the behavior that
only contains a number of sequential executing
behavior instances.

The parallelization optimization contains three
tasks shown in Figure 3. The first task, sequential
behavior searching, finds all the sequential behaviors

3

in the specification. The second task, dependency
analysis, computes the dependencies among behavior
instances of the sequential behaviors. Finally, the third
task, instance structure optimization, finds the
hierarchical parallel structure for each sequential
behavior according to the dependencies.

Sequential behavior
searching

Dependency analysis

Instance structure
optimization

Figure 3: Parallelization optimization tasks

2.2.2 Sequential Behavior Searching
We first find all the sequential behaviors in the

specification. Sequential behaviors are identified by
internally attributes of SpecC internal representing
format.

2.2.3 Dependency Analysis

2.2.3.1 Definition
A sequential behavior A contains behavior

instances B and C, a set of local variable Vi, and a set
of port Pj. B is executed before C. If there exists a Vi
or Pj that

(a) B write to Vi/Pj and C reads from Vi/Pj, or
(b) Both B and C write to Vi/Pj, or
(c) There exists a behavior instance D of A such

that D depends on B and C depends on D,

then behavior instance C depends on behavior
instance B.

If Behavior instance C depends on behavior
instance B, then C must be executed after the
execution of B. Otherwise, Behavior instances B and
C can be executed parallel.

2.2.3.2 Dependency analysis
We compute the dependencies among behavior

instances by analyzing the port traffic of behavior
instances.

First, we use a spec profiler [5] to produce the
specification statistics. Spec profiler generates the
static traffic and dynamc traffic of behavior ports.

Static traffic of the port refers to the number of ports
of leaf behaviors to which it is connected. Leaf
behavior is the behavior containing only a set of
methods without any behavior instances, which is used
as the instance of other behaviors. Dynamic traffic of
the port refers to the number of port access during
simulation. If the port is an input port, and
static/dynamic traffic is greater than 0 for that port, we
conclude that the behavior statically/dynamically read
from the port. Likewise, if the port is an output port
and static/dynamic traffic is greater than 0, we
conclude that the behavior statically/dynamically write
to the port. The “inout” port can be treated in a
similar way.

Second, we analyze the port connections of
behavior instances. If behavior instances B and C of
sequential behavior A meet the conditions (a) or (b) in
2.2.3.1 statically or dynamically, then C statically or
dynamically depends on B.

Finally, we find the static/dynamic behavior
dependencies based on the condition (c) in 2.2.3.1.

After dependency analysis, designers can
determine whether one behavior instance depends on
another based on either static dependency or more
greedy, dynamical dependency.

2.2.4 Instance Structure Optimization

2.2.4.1 Hierarchical Parallel Structure
Instance structure optimization changes the

instance structure from one-level pure-sequential
structure to multi-level hierarchical parallel structure.
Figure 4 gives an example of the hierarchical parallel
structure. After instance structure optimization, the
produced hierarchical parallel structure has three
levels shown in Figure 4(c). In the first level, D and E
are parallel executed. In the second level, B is
executed before the execution of D and E. In the third
level, A and C(C is executed after A) are executed
parallel with B, D, and E. Note that two of three
levels are parallel structure.

4

A

B

C

D

(a) Original
executing sequence

A B

C D

(b) Dependencies
among functional blocks

A B

C D

(c) Hierarchial parallel
structure after
parallelization
optimization

E

E E

Figure 4: Example 2 of parallelization optimization

2.2.4.2 Goals of Instance Structure Optimization
During instance structure optimization, we want to

achieve two goals.

(a) Minimize the number of added dependencies
among behavior instances.

After instance structure optimization, some
independent behavior instances will be changed to
dependent behavior instances because of overuse
parallelism. For example, the solution shown in Figure
2(c) adds two pairs of dependencies: D depends on A
and C depends on B, while do not exist in Figure 2(b).
Adding dependencies among behavior instances are
unavoidable; therefore we choose minimizing the
number of added dependencies as the first goal.

(b) Minimize the length of critical path of produced
hierarchical parallel structure.

The length of the critical path of hierarchical
parallel structure is defined as the number of behavior
instances on the longest path from the first starting
behavior instance to the last ending behavior instance,
while parallel-executed instances can be executed
simultaneously.

2.2.4.3 Algorithms for Instance Structure
Optimization

We implemented two algorithms for instance
structure optimization: ASAP(as soon as possible)
algorithm and constructive algorithm.

2.2.4.3.1 ASAP Algorithm

Algorithm 1 outlines the ASAP algorithm for
instance structure optimization for each sequential
behavior. B is an instance group that contains a set of
behavior instances in sequential behaviors.
Hier_Struct denotes the generated hierarchical parallel
structure containing a link of groups, each of which is
executed sequentially from the head to the tail of the
link. The function DependentOnB(b) returns Φ if no
behavior instance on which b depends is in B,
otherwise it returns the first instance on which b
depends. CurGroup.Append(b) inserts b to a group
CurGroup. All the instances in CurGroup are executed
parallel. After the execution of for loop each time,
CurGroup records a set of parallel executing behavior
instances. Hier_Struct.Append(CurGroup) then
appends the current CurGroup at the end of the link of
Hier_Struct. Figure 2(c) is the hierarchical parallel
structure generated by ASAP algorithm.

The ASAP algorithm has only goal (b), which is to
minimize the length of the critical path. It gives the
optimal solution in terms of the critical path but may
add a large amount of dependencies among behavior
instances.

Algorithm 1: ASAP Algorithm.

B = {all the behavior instances};
Hier_Struct = {};

while B ≠ Φ do
CurGroup = {};
for each instance bi ∈ B do

if DependentOnB(bi) = Φ then
CurGroup = CurGroup.Append(bi , Par);
B = B - {bi);

do
endfor
Hier_Struct = Hier_Struct.Append(CurGroup,

Sequ);
do

2.2.4.3.2 Constructive Algorithm
Besides ASAP algorithm, we also implemented a

constructive algorithm. The constructive algorithm
schedules one behavior instance at a time in the order
of the execution sequence in the original sequential
behavior and produces a temporal hierarchical parallel
structure. It is constructive because it constructs the
hierarchical parallel structure without performing any
backtracking, i.e. changing the previously produced
temporal structure. The constructive algorithm has
both goals (a) and (b) during instance structure

5

optimization. Figure 2(d) is the hierarchical parallel
structure generated by the constructive algorithm.

2.2.4.3.2.1 Data Structure of Hierarchical Parallel Structure

Before introducing the constructive algorithm, we
first specify the data structure for the hierarchical
parallel structure in the algorithm. Each hierarchical
parallel structure is represented by a data structure
ParGroup. Each ParGroup contains a set/link of child
ParGroups, or a link of behavior instances. The items
in the links are executed sequentially from head to tail
of the link. The items in the set are executed parallel.
Figure 5 shows three types of ParGroups. Flat
ParGroup contains a behavior instance link without
any child ParGroups. Par ParGroup contains a set of
child ParGroups. Sequ ParGroup contains a link of
child ParGroups.

A

B

C

D

G1

G1

A

B

C

D

G1

(a) G1 is
 Flat ParGroup

(b) G1 is
 Par ParGroup

(c) G1 is
 Sequ ParGroup

A

B

C

D

Figure 5: Three types of ParGroup

2.2.4.3.2.2 Algorithm Overview

Algorithm 2.1 outlines the constructive algorithm.
The behavior instance link B contains all of the
behavior instances of the sequential behavior, which
are saved in the order of execution sequence of the
sequential behavior. Starting from the head of link B,
an instance of B is inserted into a ParGroup
Hier_Struct at a time by function Insert. Function
Insert calls different inserting functions according to
the type of Hier_Struct. After all of the instances in B
are inserted, Hier_Struct represents the final
hierarchical parallel structure.

Algorithm 2.1: The Constructive Algorithm

B = {all the behavior instances}
Hier_Struct = {};

for each instance bi ∈ B do
Insert(Hier_Struct, bi);

endfor

Function Insert(Hier_Struct, b)
switch Type(Hier_Struct) do
case FLAT: Hier_Struct = InsertToFlat(Hier_Struct,
bi);
break;
case PAR: Hier_Struct = InsertToPar(Hier_Struct, bi);
break;
case SEQU: Hier_Struct = InsertToSequ(Hier_Struct,
bi);
endswitch

2.2.4.3.2.3 Insert to Flat ParGroup

Algorithm 2.2 outlines the function InsertToFlat
that inserts an instance b to a Flat ParGroup
Hier_Struct. InsertToFlat contains four different cases
according to different dependency relations between b
and instances in Hier_Struct’s instance links. The
result records the produced hierarchical parallel
structure. The examples of the four cases are displayed
in Figure 6.

Algorithm 2.2: InsertToFlat(Hier_Struct, b)

// Case 1
if NoInstInGroup(Hier_Struct) = 1 do

result = AppendInst(Hier_Struct, b);

// Case 2
else if NotDependOnGroup(Hier_Strcut, b) = 1 do

new_group = Group(b, FLAT);
result = Group(Hier_Struct, new_group, PAR)

// Case 3
else if DependOnLastInst(Hier_Strcut, b) = 1 do

result = AppendInst(Hier_Struct, b);

// Case 4
else if

d1 = FindLastDependInst(Hier_Strcut, b);
new_group1 = Group(b, FLAT);
new_group2 = Group(AllSucc(Hier_Struct,d1),FLAT);
new_group3 = Group(AllPred(Hier_Struct,d1),FLAT);
new_group4 = Group(new_group1, new_group2, PAR);
result = Group(new_group3, new_group4, SEQU);

endif

return result;

6

(c) case 3: x depends on b, c

a

b

c

(before)

(b) case 2: x does not depends on a, b, c

a

b

c

(before) (after)

a

b

c

x

x

(a) case 1: no instantiation in group(before)

(before) (after)

(d) case 4: x depends on a, b

(before) (after)

new_group = {x}
result = { {a, b, c}, {x} }

result = {x}

a

b

c

x

(after)
result = { a, b, c, x}

a

b

c

new_group1 = {x}
new_group2 = {c}
new_group3 = {a, b}
new_group4 ={ {x}, {c} }
result = { {a, b}, { {x}, {c} } }

a

b

xc

Figure 6: Four cases of inserting instance x to a
Flat ParGroup.

In the first case, function NoInstInGroup finds
whether Hier_Struct’s instance link contains any
instances. If not, b is inserted in to the link by function
AppendInst. In the second case, if function
NotDependOnGroup finds that b does not depend on
any instances in the link, then function Group creates
a new Flat ParGroup new_group containing only b
and creates a new Par ParGroup result which contains
Hier_Struct and new_group as its child ParGroups. In
the third case, function DependOnLastInst finds
whether b depends on the last instance in the link. If
so, AppendInst appends b to the end of the instance
link of Hier_Struct.

In the last case, function FindLastDependInst finds
the latest instance d1 on which b depends. The latest
instance refers to the instance that is most close to the
tail of the instance link of Hier_Struct. New_group1 is
a new Flat ParGroup containing b. New_group2 is
another new Flat ParGroup containing all the
instances following d1 in the instance link of
Hier_Struct. The instances in New_group2 are stored
in New_group2’s instance link in the same order as
that of Hier_Struct. New_group3 is the third new
Flat ParGroup that contains all the instances in front
of d1 inclusively, saved in the same order as that of
Hier_Sturt. New_group4 is a Par ParGroup
containing new_group1 and new_group2. The result
is a new Sequ ParGroup containing new_group3
followed by new_group4 in its child ParGroup link.

Algorithm 2.3: InsertToPar(Hier_Struct, b)

// Case 1
if NotDependOnChildGroup(Hier_Strcut, b) = 1 do

new_group = Group(b, FLAT);
result = AddChildGroup(Hier_Struct, new_group);

// Case 2
else if DependOnOneChildGroup(Hier_Struct, b) = 1 do

sub_group = FindDependChildGroup(Hier_Struct, b);
result = Insert(sub_group, b);

// Case 3
else if

new_group1 = Group(b, FLAT);
new_group2 = Group(DependChildGroup(Hier_Struct,d1)
 ,PAR);
new_group3 = Group(IndependChildGroup(Hier_Struct,d1)

,PAR);
new_group4 = Group(new_group2, new_group1, SEQU);
result = Group(new_group3, new_group4, PAR);

endif

2.2.4.3.2.4 Insert to Par ParGroup

Algorithm 2.3 outlines the function InsertToPar
that inserts an instance b to a Par ParGroup
Hier_Struct. InsertToPar contains three different cases
according to different dependency relations between b

7

and child ParGroups in Hier_Struct’s instance. We
define that an instance A depends on a ParaGroup B
if and only if A depends on at least one instance in
ParaGroup B. The result records the produced
hierarchical parallel structure. The examples of the
three cases are displayed in Figure 7.

(a) case 1: x does not depend on
a, b, and c.

(before)

a b c

a b c x

(b) case 2: x depends on b. x is
inserted to b's ParGroup by Insert

a cb

x

ab c

x

(c) case 3: x depends on a and b

new_group = {x}
result = { {a}, {b}, {c}, {x} }

result = { {a}, {b, x}, {c} }

new_group1 = {x}
new_group2 = { {a}, {b} }
new_group3 = {c}
new_group4 = { { {a}, {b} }, {x} }
result = { { { {a}, {b} }, {x} } , {c} }

a

Figure 7: Three cases of inserting instance x to a
Par ParGroup.

In the first case, if function
NotDependOnChildGroup finds that b does not depend
on any child ParGroups of Hier_Struct, then function
Group creates a new Flat ParGroup new_group
containing b. Function AddChildGroup then adds
new_group into Hier_Struct as its child ParGroup.

In the second case, if function
DependOnOneChildGroup finds that b only depends
on one child ParGroup of Hier_struct denoted by
sub_group, then function Insert described in
Algorithm 2.1 inserts b to sub_group.

In the last case, if b depends on more than one
child ParGroups of Hier_struct, then five new
ParGroups will be produced. New_group1 is a Flat
ParGroup containing b. New_group2 is a Par
ParGroup containing all the child ParGroups of
Hier_struct that b depends on. New_group3 is a Par
ParGroup containing all the child ParGroups of
Hier_struct that b does not depend on. New_group4 is
Sequ ParGroup containing new_group2 followed by
new_group1 in this child ParGroup link. Finally, the
result is a Par ParGroup containing child ParGroup
new_group3 and new_group4 in its child ParGroup
set.

2.2.4.3.2.5 Insert to Sequ ParGroup

Algorithm 2.4 outlines the function InsertToSequ
that inserts an instance b to a Sequ ParGroup
Hier_Struct. InsertToSequ contains three different
cases according to different dependency relations
between b and child ParGroups in Hier_Struct. The
examples of the three cases are displayed in Figure 8.

Algorithm 2.4: InsertToSequ(Hier_Struct, b)

// Case 1
if NotDependOnChildGroup(Hier_Strcut, b) = 1 do
 new_group = Group(b, FLAT);
 result = result = AddChildGroup(Hier_Struct,

new_group);

// Case 2
else if DependOnLastChildGroup(Hier_Struct, b)
 = 1 do
 child_group = FindLastChildGroup(Hier_Struct);
 result = Insert(child_group, b);

// Case 3
else if

last_depend_child = FindLastDependChildGroup
 (Hier_Struct, b);
next_child = Next(last_depend_child);
solution1 = Insert(last_depend_child, b);
solution2 = Insert(next_child, b)
result = Best(solution1, solution2);

The first case of InsertToSequ is the same as the
first case of InsertToPar. In the second case, if
function DependOnLastChildGroup finds that b
depends on the tail ParGroup of child ParGroup link
of Hier_struct, then function Insert described in
Algorithm 2.1 inserts b to this child ParGroup
child_group.

8

In the third case, function
FindLastDependChildGroup finds last_depend_group,
which is the child ParGroup in its child ParGroup
link that is most closest to the tail of its child
ParGroup link, among the child ParGroups on which
b depends. Next_child is the immediate successive
child ParGroup of last_depend_group in the link.
Then two alternate solutions, inserting b in
last_depend_group and inserting b in next_child, are
explored. The first solution ensures that its amount of
added dependencies are not greater than that of the
second solution, while the second solution ensures that
its length of critical path is not longer than that of the
first solution. Finally, function Best chooses the
solution1 in the case that the length of critical path of
solution1 is not longer than that of solution2.
Otherwise, Best chooses solution2 as the result.

2.3 Specification Modeling Process
We introduce the process of specification modeling

using the spec profiler and the spec optimizer, which
contains three steps. First, designers write SpecC
specification model by referencing original C/C++
code. Designers can specify top level parallelism
among behavior instances according to design
algorithms/standards. Second, designers use the spec
profiler and the spec optimizer. The tools read SpecC
specification model and generate hierarchical parallel
structures in the format of textural file for sequential
behaviors. Third, designers optimize the specification
model based either on the result of ASAP algorithm or
on the result of the constructive algorithm.

In the third step, designers can also change the
result of constructive algorithm by referencing ASAP
algorithm for shorter critical path, which is illustrated
in Figure 9. By referencing the result of ASAP
algorithms shown in Figure 9(b), designers can change
the result of constructive algorithm shown in Figure
9(c), to parallel execute instance e and f. As shown
Figure 9(d), the improved solution has the shorter
critical path than the solution in Figure 9(c). Table 1
gives overview of three solutions.

a

b

x

(before) (a) case 1: c does
not depend on a

and b

(b) case 2: c
depends on b

a

b x

b

a

x

case 3: c depends on a.
Solution2 is the result

(c) case3 - solution1 (d) case3 - solution2

a

b

x

a

b

new_group = {x}
result = {{ {a}, {b} } , {x} }

result = { {a}, {b ,x} }

last_depend_child = {a}
next_child = {b}
result = { {a}, { {b} , {x} } }

Figure 8: Three cases of inserting instance x to a
Sequ ParGroup.

Table 1 : Overview of three solutions for the
example in Figure 9

Added
Dependency

Length of
critical path

ASAP 4 3
Constructive 1 4
Improved 2 3

9

a

f

d

cb

e

(a) Dependencies
among instantiations (b) Solution1: ASAP

algorithm's result

a cb

d

e f

(c) Solution2:
constructive algorithm 's

result

b ca

d

e

f

(d) Solution3: improved
result

b ca

d

e f

Figure 9: An example of designers’ improvements
on the results of constructive algorithm

2.4 Experimental results
We evaluate the efficiency of the spec profiler and

the spec optimizer in terms of design time, the length
of the critical path of the resulting hierarchical parallel
structure, and the added dependencies of the resulting
structure.

We chose four sets of testing examples. First, we
chose three examples for comparing the manual
parallelization with the automatic parallelization.
Second, we chose behaviors with no more than 10
instances. Third, we chose behaviors with more than
20 instances. Finally, we chose real project examples.

2.4.1 Manual Parallelization vs. Automatic
Parallelization

First, we evaluate the efficiency of the spec profiler
and the spec optimizer in terms of design time. We
randomly generated three sequential behaviors, two of
which contains 10 behavior instances, the rest of
which contains 20 behavior instances. The required

design time for the manual parallelization is listed in
Table 2. Table 2 also shows that the manual
parallelization cannot analyze dynamic dependency.

Table 2: Design time of the manual parallelization.

Design time (mins)
Manual design
tasks

Ex. 1
(10 inst.)

Ex. 2
(10 inst.)

Ex. 3
(20 inst.)

Analyze static
dependency

6 7 16

Analyze dynamic
dependency

Not aval. Not aval. Not aval.

ASAP 2 2 6
Constructive 3 2 17
Total 11 11 39

In contrast to 11/11/39 minutes required by the
manual parallelization in the examples, the automatic
parallelization took less than 3 seconds for each
example, which is 220/220/780 times faster than the
time for the manual parallelization. As the complexity
of a design increases, designers can save more time by
using the tools.

Table 3: Results for 10 instance examples

 Ex1 Ex2 Ex3 Ex4 Ex5

Original
Num. instantiation 8 10 10 10 10
Num. depedency 14 34 13 22 36
Length. CP 8 10 10 10 10

Constructive Algorithm
Num. depedency 18 39 15 23 37
Length. CP 4 8 4 5 7
Added dependency (%) 28.57% 14.71% 15.38% 4.55% 2.78%
Reduced CP (%) 50.00% 20.00% 60.00% 50.00% 30.00%

ASAP Algorithm
Num. Dependency 24 42 32 38 40
Length. CP 4 7 4 5 6
Added Dependency (%) 71.43% 23.53% 146.15% 72.73% 11.11%
Reduced CP (%). 50.00% 30.00% 60.00% 50.00% 40.00%

2.4.2 Results for 10 Instance Examples

We randomly generate 5 behaviors, each of which
contains no more than 10 instances. Table 3 shows the
results of parallelization optimization for the
examples. Length. CP represents the length of critical
path. Num. dependency represents the number of

10

static dependencies among instances of behavior.
Added dependency (%) is equal to the difference
between Num. dependency(Original) and Num.
dependency(Constructive/ASAP algorithm) divided by
Num. dependency(Original). Reduced CP(%) is equal
to the difference between Length. CP (Original) and
Length. CP (Constructive/ASAP algorithm) divided by
Length. CP(Original).

Table 3 shows that the average Added dependency
for the constructive algorithm is 13.2%, while for
ASAP algorithm is 65.0%. Therefore, constructive
algorithm is much better than ASAP algorithm in
terms of goal (a) described in 2.2.4.2. On the other
hand, the average Reduced CP for the constructive
algorithm is 42%, while for the ASAP algorithm is
46%, both of which are similar. By considering the
number of dependency as well as the length of the
critical path, we conclude that the constructive
algorithm is better for 10 instance behaviors.

2.4.3 Results for 20 Instance Examples
We generate another five examples shown in Table

4, each of which has no less than 20 instances. Ex6
and Ex9 do not have locality attribute, while Ex7,
Ex8, and Ex10 have. For a behavior without locality
attribute, the instance has the same probability of
having dependent relations with any other instances.
For a behavior with locality attribute, the instance has
larger probability of having dependent relations with
instances close to it than instances not close to it. The
closeness between two instances is equal to the
number of instances between them during the
execution of original sequential behavior. Attribute
locality exists in most designs. In this report, when
the closeness of two instances is no more than 4, we
called them close instances. For Ex7, Ex8, and Ex10,
each instance can depend on any close instances, but
can depend on only one un-close instance.

Table 4 shows that the average Added dependency
for the constructive algorithm is 70%, while for ASAP
algorithm is 128%. Although Added dependency of
constructive algorithm is much better than ASAP
algorithm, they are much worse than the results for 10
instance behaviors. It is reasonable because later
executed instances will add more dependencies than
the previous ones. On the other hand, the average
Reduced CP for the constructive algorithm is 61%,
while for ASAP algorithm is 67%, both of which are
similar. Obviously, Reduced CPs of 20 instance
behaviors are greater than the results of 10 instance
behaviors.

Table 4: Results for 20-30 instance examples

 Ex. 6 Ex. 7 Ex. 8 Ex. 9 Ex. 10

Original
Atrribute random locality locality random locality
Num. Instantiation 20 20 21 30 30
Num. Dependency 98 95 79 193 109
Length. CP 20 20 21 30 30

Constructive Algorithm
Num. Depedency 158 135 126 328 239
Length. CP 11 8 7 12 7
Added Dependency (%) 61.22% 42.11% 59.49% 69.95% 119.27%

Reduced CP (%) 45.00% 60.00% 66.67% 60.00% 76.67%

ASAP Algorithm
Num. Depedency 169 173 185 400 375
Length. CP 7 8 7 10 7
Added Dependency (%) 72.45% 82.11% 134.18% 107.25% 244.04%

Reduced CP (%) 65.00% 60.00% 66.67% 66.67% 76.67%

Furthermore, we do more research on example 7, 8,
and 10 for behaviors with locality attribute. We find
that the Reduced CPs of constructive algorithm and
ASAP algorithm are the same for these examples.
Because of this and the analysis on the constructive
algorithm, we conclude that the probability of having
similar length of critical path of the results of ASAP
and constructive algorithm for behaviors with locality
attribute is larger than the probability for behaviors
without locality attribute. Therefore, constructive
algorithm is more suitable for behaviors with locality
attribute.

2.4.4 Real Project Examples
We use the spec profiler and the spec optimizer on

JPEG project[6] and Vocoder project[7]. Although
designers have implemented the parallelization
optimization manually for the projects, the tools still
found parallelization instances existing in four
sequential behaviors shown in Table 5. We updated
the specification based on the produced hierarchical
parallel structures and had the same simulation results
with the original specifications. It proves that using
the tools are more reliable than implementing
parallelization optimization manually.

Table 5: Results for JPEG and Vocode Project
Examples

11

JPEG_Init

(Jpeg)

Pre_
process

(vocoder)

Ex_syn_
upd_sh

(vocoder)

Lp_
Analysis
(vocoder)

Original
Num. Instantiation 3 3 5 9
Num. Dependency 2 2 8 30
Length. CP 3 3 5 9

Constructive Algorithm
Num. Depedency 2 2 8 30
Length. CP 2 2 3 6
Added Dependency (%) 0.00% 0.00% 0.00% 0.00%

Reduced CP (%) 33.33% 33.33% 40.00% 33.33%

ASAP Algorithm
Num. Depedency 2 2 8 32
Length. CP 2 2 3 6
Added Dependency (%) 0.00% 0.00% 0.00% 6.67%

Reduced CP (%) 33.33% 33.33% 40.00% 33.33%

In addition to sequential behaviors shown in Table
5, the tools also found that sequential behavior
Coder_12k2 of Vocoder contained behavior instances
executed in parallel. However, the simulation result of
updated specification according to the tools is
different from the simulation result of the original
specification. The reason for this difference is that an
address of a Coder_12k2’s port is assigned as a value
to an address of another Coder_12k2’s port. Since the
task dependency analysis could not treat read/write
access of the second port as the read/write access of
the first port, the tools produced a wrong result. To
prevent this from happening, designers need to avoid
address transfer between ports in the specification.

3 Hierarchy Reducing

3.1 Introduction
Another task of specification tuning is hierarchy

reducing, which combines the parent and child
behaviors that have the same type. SpecC language
defines five different types of behavior according to
different execution types[2][3]. Among them,
sequential behavior contains a set of sequential
executing behavior instances. Parallel behavior
contains a set of parallel executing behavior instances.
Pipeline behavior contains a set of behavior instances
executing in the pipeline fashion. FSM behavior is
composed of behavior instances based on the finite
state machine. Finally, Leaf behavior contains a set of
statements without any behavior instantiations. In this

report we focus on the hierarchy reducing for
sequential behavior and parallel behavior.

A CB

Execution time of behaviors on the
PE

60

30
20

0

20

40

60

80

A B C
Behavior name

Ti
m

e(
m

s)

(a) Original behavior
specification

(c) Execution time of
behaviors on the PE

A

B

C

A
B

C

(d) Behavior binding
without hierarchy reducing

(e) Behavior binding with
hierarchy reducing

90ms 60ms

PE1 PE2 PE1 PE2

A CB

(b) Behavior specification
after hierarchy reducing

AB

Figure 10: Example of behavior binding with and
without hierarchy reducing

Hierarchy reducing reduces the hierarchy depth
and the number of behaviors in the specification,
which makes later design steps simpler. For example,
Figure 10 illustrates the behavior binding with and
without hierarchy reducing. The original design
specification shown in Figure 10(a) contains parallel
executing behavior instances AB and C, while
behavior AB contains parallel executing behavior
instances A and B. After hierarchy reducing, the
specification contains parallel executing behavior
instances A, B, and C shown in Figure 10(b). During
PE allocation, designers select two PE of the same
type. The execution time of behaviors on the PEs is
displayed in Figure 10(c). The solution of behavior
binding based on Figure 10(a) is shown in Figure
10(d). Since behavior instances A and B are at the
same hierarchy level, designers group these instances

12

and map them to PE1 and map behavior instance C to
PE2. For the specification after hierarchy reducing
shown in Figure 10(b), during behavior binding,
designers can group any two of the behavior instances
A, B, or C because they are at the same hierarchy
level. As a result, after behavior binding, the
performance of the design with hierarchy reducing is
30ms faster than the performance without it.

In addition to introduce the hierarchy reducing, we
use spec optimizer to implement hierarchy reducing
automatically.

3.2 Implementation
There are two tasks of hierarchy reducing:

behavior-pair detection and specification updating.

3.2.1 Behavior-Pair Detection
Behavior-pair detection traverses the specification

and finds all the parent and child behavior pairs that
have the same type. Since the behavior type is
specified explicitly in the SpecC immediate
representation, behavior-pair detection is a
straightforward task. In this report behavior-pair
detection applies only on sequential and parallel types
of behaviors.

3.2.2 Specification Updating
Specification updating combines the behavior-pairs

found by behavior-pair detection in the specification.
For example, after behavior-pair detection find that
behavior A and B in Figure 11 can be combined,
specification updating then updates the specification in
Figure 11. The newly specification is displayed in
Figure 12.

Specification updating consists of four steps:

1. Variables/channels inserting.
It inserts variables/channels into the parent

behavior of the behavior pair to represent the
variables/channels in the child behavior of the
behavior pair. For example, variable _b_varB
shown in Figure 12 is inserted to behavior A to
represent varB in behavior B shown in Figure
11.

behavior B(int portB){
 int varB;
 D1 d1(portB);
 D2 d2(varB);
 void main(){
 d1.main();
 d2.main();
 }
};

behavior A(int portA){
 B b(portA);
 C c(portA);
 void main(){
 c.main();
 b.main();
 }
};

Figure 11: The specification before hierarchy
reducing

2. Behavior instances updating.
First, It inserts behavior instances into the

parent behavior to represent the behavior
instances in the child behavior. For example,
behavior instances D1 _b_d1 and D1 _b_d2
shown in Figure 12 are inserted to behavior A
to represent D1 d1 and D1 d2 in behavior B
shown in Figure 11.

Second, It updates the argument of behavior
instances. The argument portB of d1 and varB
of d2 in behavior B in Figure 11 are replaced by
portA of _b_d1 and _b_varB of _b_d2 , which
are inserted into behavior A in Figure 12.

Finally, the behavior instance representing
the child behavior in the parent behavior is
deleted. In Figure 12, B b(portA) is deleted
from behavior A.

3. Calling statement updating.
First, the execution sequence of behavior

instances in the child behavior is recorded. In
Figure 11, behavior instance d1 is executed
before d2.

According to this execution sequence, the
calling statements of behavior instances inserted
in step 2 are then inserted to the main function
of the parent behavior. In Figure 12, the
statements _b_d1.main() and _b_d2.main() are
inserted into behavior A while keeping
_b_d1.main() before _b_d2.main()

13

Finally, the calling statement of the child
behavior instances is removed from the main
function of the parent behavior. In Figure 12,
b.main() is removed from behavior A.

4. Unused behavior deleting.
If the child behavior is not used by any other

behavior, then the child behavior is deleted. In
Figure 12, behavior B is deleted.

behavior A(int portA){
 int _b_varB;
 D1 _b_d1(portA);
 D2 _b_d2(_b_varB);
 C c(portA);

 void main(){
 c.main();
 _b_d1.main();
 _b_d2.main();
 }
};

Figure 12: The specification after hierarchy
reducing

3.3 Experimental Result

3.3.1 Automatic vs. Manual Hierarchy Reducing

We randomly generate 3 examples, each of which
contains no more than 10 behaviors. Table 6 shows
design time of the manual hierarchy reducing and
automatic reducing using spec optimizer.

Table 6: Design time of the hierarchy reducing

Ex. 1 Ex. 2 Ex. 3

Number of
behavior

8 8 7

Number of
combined
behavior-pair

11 8 5

Hierarchy depth 5 4 3
Manual time 660s 480s 240s
Automatic time 2 s 2 s 2 s

4
The manual hierarchy reducing took 460 seconds

on a average, while using spec optimizer took only 2
seconds, which is 230 times faster than the manual
one. Manual reducing is time-consuming mainly
because of the behavior hierarchy. For example,
assume each hierarchy level contains only one
behavior and the behavior in the level i contains two
behavior instantiations of the behavior in the level i+1
(level 1 is the top hierarchy level). In this case, if the

hierarchy depth is n, then the total amount of behavior
instances in the specification is 2×(n-1) before
hierarchy reducing, but is 2(n-1) after before hierarchy
reducing. Therefore manual hierarchy reducing took a
long time.

3.3.2 JPEG Design Example
We also use the spec optimizer on the JPEG

project[6]. Three behavior pairs for hierarchy
reducing are found. After updating the specification
by the spec optimizer, the simulation result is the same
with the original specification.

4 Conclusion
This report presents the specification tuning.

Specification tuning changes the specification
representing the design’s functionality in the system
level thus making the specification suitable for
architectural exploration. It contains two tasks:
parallelization optimization and hierarchy reducing.

Parallelization optimization exploits maximal
parallelism among functional blocks. By using spec
profiler and spec optimizer to implement
parallelization optimization automatically, we achieve
three goals.

First, it shortens the design time. The automatic
parallelization is 200 times faster than the manual
parallelization for 10-instance behaviors, 700 times
faster for 20-instance behaviors. As the complexity of
a design increases, the automatic parallelization can
save more time.

Second, it generates required hierarchical parallel
structures. ASAP algorithm produces the optimal
structures in terms of the length of the critical path.
Constructive algorithm produces the structures that
have the similar length of the critical path as that of
the ASAP algorithm and have the much smaller
number of added dependencies among behavior
instances than that of ASAP algorithm.

Third, it optimizes every possible parallelism in the
design.

We also find that with the increase in the number
of instances of behaviors, or with the loss of
behavior’s locality attribute, it is impossible to keep
both the length of the critical path and the amount of
the added dependencies to a minimum for generated
structures. This is due to the nature of the problem
rather than the limitation of the tools.

14

In addition to parallelization optimization,
hierarchy reducing reduces the hierarchy depth and
the number of behaviors in the specification while
keeping all the parallelism. Automatic hierarchy
reducing using spec optimizer is 230 times faster than
manual hierarchy reducing, for the random generated
examples.

Reference
[1] D. Gajski “Silicon compilers”, Addison-Wesley, 1987
[2] D. Gajski, J. Zhu et al. “SpecC: Specification lanugaeg and

Design methodology” Kluwer Academic Publishers, 2000
[3] A. Gerstlauer, R. Domer, et al. System Design: a practical

guide of with SpecC. Kluwer Academic Publishers 2001
[4] www.systemc.org
[5] Lukai Cai, Dan Gajski, Introduction of Design-Oriented

Profiler of SpecC Language, University of California, Irvine,
Technical Report ICS-00-47, June 2001

[6] Lukai Cai, Junyu Peng et al. Design of a JPEG Encoding
System, University of California, Irvine, Technical Report
ICS-99-54, Nov. 1999.

[7] Andreas Gerstlauer, Shuqing Zhao et al. Design of a GSM
Vocoder using SpeccC Methodology, University of California,
Irvine, Technique report ICS-99-11, Feb 1999.

