
Parity Checker Implementations in SpecC

Qiang Xie and Daniel Gajski

CECS Technical Report 02-06
January 27, 2002

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

�qxie,gajski�@ics.uci.edu

1

Parity Checker Implementations in SpecC

Qiang Xie and Daniel Gajski

CECS Technical Report 02-06
January 27, 2002

Center for Embedded Computer Systems
Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425,USA

(949) 824-8059

�qxie,gajski�@ics.uci.edu

Abstract

In this report we discuss an example where we synthesize a multiple implementations of a design with our RTL synthesis
tool. We use different resource allocation combinations to obtain multiple implementations and perform synthesis on them.
The initial part of this report introduces a Parity Checker, including its FSMD and implementation model. Then we further
develop into different implementations of One’s Counter. We do different combinations of allocation of different resources
to the design and perform the synthesis on these implementations with our tool. We then analyze the performance of these
implementations on the basis of synthesis results and show how the user has the choice to make the ultimate decision about
the design with due considerations to all involved tradeoffs.

2

Contents

1. Introduction 1

2. FSMD Models 1

3. Implementation 4

4. Experimental Results 4
4.1 Design 1: 1 ALU, 1 Shifter, 1 RF, 3 buses 5
4.2 Design 2: 1 ALU, 1 Shifter, 4 registers, 3 buses. 5
4.3 Design 3: 2 ALUs, 1 Shifter, 4 registers, 5 buses. 7
4.4 Design 4: 1 pipelined ALU, 1 pipelined Shifter, 1 RF, 3 buses 7
4.5 Design 5: 2 pipelined ALU, 1 pipelined Shifter, 4 registers, 5 buses .. 9

5. Conclusion and Future Works 11

A. Parity Checker in RTL style 1 12
A.1 RTL component Library .. 12

A.1.1 ALU . 12
A.1.2 Shifter . 13
A.1.3 Register File 13
A.1.4 Register . .. 13
A.1.5 Bus . 14

A.2 Parity Checker 14
A.2.1 Even Checker 15
A.2.2 One’s Counter . .. 16

A.3 Test Bench . 17
A.3.1 Input/Output 18
A.3.2 Clock Generator .. 19

B. Output: One’s Counter in Style 4 - Design 1 20

C. Output: One’s Counter in Style 4 - Design 2 23

D. Output: One’s Counter in Style 4 - Design 3 26

E. Output: One’s Counter in Style 4 - Design 4 29

F. Output: One’s Counter in Style 4 - Design 5 33

i

List of Figures

1 Block Diagram of Parity Checker 1
2 FSMD model for Even Checker 2
3 FSMD model for One’s Counter 2
4 RTL structure model for Parity Checker. 3
5 Design 1: 1 ALU, 1 Shifter, 1 RF, 3 buses 6
6 Design 2: 1 ALU, 1 Shifter, 4 registers, 3 buses. 6
7 Design 3: 2 ALUs, 1 Shifter, 4 registers, 5 buses. 8
8 Design 4: 1 pipelined ALU, 1 pipelined Shifter, 1 RF, 3 buses 8
9 Design 5: 2 pipelined ALU, 1 pipelined Shifter, 4 registers, 5 buses .. 10

ii

Parity Checker Implementations in SpecC

Qiang Xie and Daniel Gajski
Center for Embedded Computer Systems

Information and Computer Science
University of California, Irvine

Abstract

In this report we discuss an example where we synthe-
size a multiple implementations of a design with our RTL
synthesis tool. We use different resource allocation com-
binations to obtain multiple implementations and perform
synthesis on them. The initial part of this report introduces
a Parity Checker, including its FSMD and implementation
model. Then we further develop into different implemen-
tations of One’s Counter. We do different combinations of
allocation of different resources to the design and perform
the synthesis on these implementations with our tool. We
then analyze the performance of these implementations on
the basis of synthesis results and show how the user has the
choice to make the ultimate decision about the design with
due considerations to all involved tradeoffs.

1. Introduction

The Parity Checker is used to check whether the number
of ’1’ in a given data is odd or even. If it is odd, it will
output ’1’, otherwise it should be ’0’.

The Parity Checker incorporates 2 behaviors, One’s
Counter and Even Checker. One’s Counter calculates the
number of ’1’s in a data while Even Checker checks whether
that number is odd or even. This setup is perfect to illustrate
the working of a composition of FSMDs which are commu-
nicating with each other.

Figure 1 shows the block diagram of the Parity Checker.
Inport is the input port for input data andOutport is the
output port for output result. The portStart is a control
port which is used to signal Parity Checker to start calcu-
lation and the portDone is a status port which is used to
indicate the completion of the calculation. Inside the Par-
ity Checker,idata is the data bus used to send data from
Even Checker to One’s Counter, andiocount is a 5 bit
data bus used to send computed data from One’s Counter
to Even Checker.Istart is an internal control signal
which is used to initiate the operation of One’s Counter
andack istart is an internal control signal from One’s

Counter to Even Checker. Signalidone is used to no-
tify the Even Checker once the computations are over in
One’s Counter andack idone is an 0 signal from the
Even Checker to the One’s Counter. The Even Checker and
One’s Counter use a handshaking protocol to communicate
with each other. As shown in Figure 1, we use two pairs of
signals, namely,istart andack istart, idone and
ack idone, to implement the handshaking protocol de-
scribed in the FSMD models in Section 2.

Even
Checker

One’s
Counter

Inport

Outport

Start

Done

idata

iocount

istart
ack _istart

ack _idone

idone

Parity Checker

32

32

32

5

Figure 1. Block Diagram of Parity Checker

The rest of this report is organized as follows: Section 2
describes the FSMD models for both Even Checker and
One’s Counter. Section 3 gives an insight into the RTL im-
plementations for these two components. Section 4 analy-
ses the experimental results after performing the synthesis
on different implementations of One’s Counter using our
RTL synthesis tool. Section 5 concludes this report with a
brief summary and future works.

2. FSMD Models

A finite-state machine with datapath (FSMD) is one of
the most popular design models in high-level synthesis and
design of hardware systems. In this section, we will discuss
the FSMD models for the Even Checker and One’s Counter
to illustrate their concomitant working as a Parity Checker.

1

S0

S1

S3

S4

Start=0

Start=1

ack_istart=0

idone=0

idone=1

idone=0

Done=0
istart=0
ack_idone=0

mask=1
data=Inport

istart=0
ocount=iocount

Outport=ocount
&mask
ack_idone =1
Done =1

S2

ack_istart=1

idone=1

idata=data
istart=1

Figure 2. FSMD model for Even Checker

Figure 2 shows the FSMD of the Even Checker. The
FSMD begins at stateS0 and evolves as follows:

� In the initial state S0, Done, istart and
ack idone are set to 0, and the state machine waits
for portStart to become 1 before making transition
to the next state,S1.

� In stateS1, the variablemask is set to 1. Further data
is read from the input portInport and written to vari-
abledata. State machine make a transition to the next
state,S2.

� In stateS2, Thedata is sent to portidata and the
signalistart is set to 1 which is received by One’s
Counter unit. One’s Counter in turn sets the signal
ack istart to 1 in order to acknowledge the request
to start computation. The state machine waits for port
ack istart to become 1 before making a transition
to the next state,S3.

� In stateS3, data is read from the portiocount and
written to variableocount, and the signalistart is

S0

S1

S2

S3

istart=1

istart=0

idone = 0;
ack_istart = 0;

ack_istart = 1;
data = idata;
ocount = 0;
mask = 1;

temp = data& mask;
ocount = ocount +
temp;
data = data>>1;

data!=0

ack_idone=0

ack_idone=1
iocount=ocount
idone=1

data=0

Figure 3. FSMD model for One’s Counter

reset to 0. The state machine then waits untilidone
is set to 1 before making transition to next state,S4.

� Finally, in stateS4, the signalsack idone andDone
are set to 1. The Even Checker computes the logical
’AND’ of ocount andmask, and the result is written
to portOutport. The state machine then waits until
it receives the signalidone reset to 0. After which it
makes a transition to the initial stateS0.

Figure 3 shows the FSMD model for the One’s Counter.
One’s Counter starts at stateS0 and evolves as follows:

� In stateS0,idone,ack istart are set to 0, and the
state machine waits untilistart becomes 1 before
making a transition to next state,S1.

� In stateS1, ack istart and mask are set to 1,
ocount is set to 0, and the input data is written to
data from portidata. Then the sate machine makes
a transition to stateS2.

� In S2, One’s Counter complete the following arith-
metic operations.

– Computing the logical operation ’AND’ ofdata
and mask and writing the result to variable
temp;

– Computing the sum ofocount andtemp and
writing the result toocount;

– Shiftingdata right by a bit;

2

&

RF

idone ack_istart

istart ack_idone

iocount

Outport

ocount

mask

data

Parity Checker

MUX

SR

Next
State
Logic

Output
Logic .

.

.

32
32

5

32

32

32

32

Controller Datapath

InportStart

Done idata

32

32

32

(a) RTL structure model for Even Checker

istart ack_idone

idone ack_istart

idata

iocount

One's Counter

SR

Next
State
Logic

Output
Logic .

.

.

32 32

32

32
32

32

32

32

Controller Datapath

>>
5

data mask temp ocount

32
32

1

32

32

& +

32

0

(b) Architecture model for One’s Counter

Figure 4. RTL structure model for Parity Checker
3

– Comparing the resulting value ofdata, if data
equals to 0, the state machine will make a transi-
tion to stateS3.

� Finally, in stateS3, the dataocount is written to port
iocount, andidone is set to 1. Then the state ma-
chines waits until it receives the signalack idone set
to 1 before making a transition to the initial stateS0.

The Even Checker and One’s Counter work in concur-
rent fashion and they follow a handshaking protocol for
their inter-communication. With the aid of this protocol,
it is possible to interleave their execution in multiple clock
speeds.

3. Implementation

Now we examine the implementations of the Even
Checker and One’s Counter. In an RTL structure view, each
implementation has a controller and a datapath. The dat-
apath consists of sequential storage units and combinato-
rial units which are used for computation of the behavior.
The controller dictates the operations of the datapath by
assigning proper values to the control signals. The con-
troller is a Finite State Machine(FSM), which is used to
control the flow on the datapath and output the control sig-
nals. It can be divided into three parts, theSR(state regis-
ter) which stores the state information, theNext State
Logic which generates the next state information, and the
Output Logic which controls the operation of the data-
path.

Figure 4(a) explicates the implementation of the Even
Checker. The inputs to the controller are the portStart,
and the internal signalidone, ack istart from One’s
Counter. The outputs of the controller are the output port
Done, andistart and ack idone which are sent to
One’s Counter. The datapath of Even Checker sends data
to One’s Counter and receives the result of computation
from it, which it uses to check whether the result is even
or odd. The datapath consists of a register file which is used
to store variablesdata, mask andocount, and an ALU
unit for the logical ’AND’ operation. The inputs to the dat-
apath include the data portInport andiocount from
the One’s Counter. The outputs of the datapath include port
Outport, andidata which is sent to One’s Counter.

Figure 4(b) explicates the implementation of One’s
Counter. The inputs for the controller areistart and
ack idone from Even Checker. The outputs of the con-
troller are signalsidone andack istartwhich are sent
to Even Checker. The controller checks the status of the
data in the datapath through a wire connection. The datap-
ath performs all the arithmetic operations, such as addition,
AND or comparison. It includes of 4 registers, 3 functional
units, and 6 buses. One’s Counter uses the registers to store

the variablesdata, mask, temp andocount. The func-
tional units perform perform the AND, addition, compari-
son and shift operations separately. There is also a NOR
gate which is used to check whether thedata is 0. The
input to this datapath is theidata from the Even Checker
and the output is theiocount which in turn is sent to the
Even Checker.

The above implementations are optimal in the sense they
are designed with maximum performance. This although
maximum the performance, the cost is very high due to
so many resources used here. If we allocate less resources
the cost may be lowered but the performance decreases. In
the following section, we discuss different implementations
of the Parity Checker with different resource allocations at
their disposal. We use our RTL synthesis tool to synthe-
size various such implementations and make a comparative
study of their performances which finally leads us to a good
design decision.

4. Experimental Results

Our tool synthesize a design from a RTL behavior de-
scription in style 1 to style 4 [ZSY�00]. This tool performs
four different tasks: scheduling, storage unit binding, func-
tional unit binding and bus binding. The scheduling takes
place first followed by the different binding. Here we use re-
source constraint binding algorithms in which the type and
the number of of resources to be used can be specified. The
tool synthesizes different implementations with varying re-
source allocation combinations. The central idea is that a
user specifies the resources, such as register files, functional
units and buses, the tool synthesizes the design into an im-
plementation that makes complete utilization of these allo-
cated resources and at the same time minimize the cost of
the interconnections, such as multiplexer and bus driver. So
with our tool user does a comparative performance analy-
sis of different implementations according to the synthesis
result and finally determines the most apt implementation
with consideration to the cost-performance tradeoff.

Considering the two components in Parity Checker, the
Even Checker is relatively simple and involves little explo-
ration compared to that in the One’s Counter. Therefore
we concentrate on various possible implementations of the
One’s Counter.

The input to the tool is a behavior description of the
One’s Counter in RTL style 1(Appendix A.2.2). In the
input source code, we explicitly define the FSMD states
in a declaration and use a case statement in awhile()
loop to move from state to state. The behaviors in each
state are triggered on aclk event, which is implemented
aswait(clk) in the beginning of the loop. There are 4
variables (data, temp, mask, ocount) and 4 operations
(��, +, &, ��). We make allocations of different types or

4

Resource Unit Operations Delays(ns)

ALU add, sub, negate, 3.02
and, or, not

ALU add, sub, negate, 3.02
(pipelined) and, or, not 1.5

Shifter shl, shr 2.25
Register File storage unit 1.46

Register File(setup) storage unit 1.20
Reg32 storage unit 0.75

Reg32(setup) storage unit 0.59
Control Unit control logic 1.4

Table 1. RTL components delays

number of register files, ALUs, and buses and obtain differ-
ent implementations.

In order to synthesize this design, we create RTL models
for different resources as shown in Appendix A.1. These
RTL models include:

� Storage units:register, register file;

� Function units: ALU, Shifter;

� Interconnection: bus

The allocation of these resources is made from the com-
ponent library. The delays of these RTL components are
shown in Table 4.1.

We now discuss the performance of different implemen-
tations in detail.

4.1 Design 1: 1 ALU, 1 Shifter, 1 RF, 3 buses

This implementation has a register file(RF), 1 ALU, 1
Shifter and 3 buses. It utilizes the minimum number of re-
source and has the least cost among all the implementations.

Appendix B shows the output result in RTL style 4 after
synthesizing this design. We can see that since there is lim-
ited resource available, the tool splits the original stateS1
in the input to 3 states, stateS1 and two extra statesX0 and
X1. We use initial ’X’ to represent the extra states generated
by our tool. In stateS1, the tool also splits it to 4 states,S2,
X2, X3 andX4. So the total number of states in the output
FSMD increases from 4 to 9 with 5 extra states generated.

Figure 5 shows the RTL structure model of the One’s
Counter. The operations ’+’, ’&’ and comparison are
mapped to theALU and shift operation is mapped to
SHIFTER. And the 4 variablesdata, mask, temp and
ocount are mapped to the register fileRF. Since we do
not consider multiplexer and bus driver in our tool, they are
not generated in our result. Following is a estimation of the
performance of this implementation.

The clock cycle of this implementation can be deter-
mined as the maximum of the critical path candidates as
follows:

� Delay of path p1, computing the next state of the FSM

∆�p1� � delay�SR��delay�OL��delay�RF�
�delay�ALU��delay�NL�� setup�SR�
� 0�75�1�4�1�46�3�02�1�4�0�59
� 8�62ns

� Delay of datapath, performing the arithmetic opera-
tions
∆�p2� � delay�SR��delay�OL��delay�RF�

delay�ALU�� setup�RF�
� 0�75�1�4�1�46�3�02�1�20
� 7�83ns

Heredelay(SR) is the delay lapsed in reading state
registerSR which is the same as theReg32 in Table 4.1,
delay(OL) is the delay of output logic which equals
the delay ofControl Unit, delay(ALU) is the de-
lay of the ALU,delay(RF) is the delay of reading data
from the register fileRF, delay(NL) is the delay of the
next state logic which equals to the delay ofControl
Unit,setup(RF) is the setup time of the register fileRF,
setup(SR) is the setup time of theSR register. Hence, the
minimum clock cycle is:

Clock cycle � max�∆�p1��∆�p2�� � 8�62ns

As we mention above, the number of the states in the
output is 9. And there are 4 states in the loop from state
S2 back toS2. Therefore, given an input data with 32 bits
of ’1’, the One’s Counter needs 4�31�9� 133 cycles to
finish the computation. The estimated execution time for
this implementation is:

Execution time � num cycles � clock cycle
� 133 � 8�62
� 1�15µs

4.2 Design 2: 1 ALU, 1 Shifter, 4 registers, 3 buses

This implementation uses a ALU, a Shifter, three buses
and four registers to implement the One’s Counter. These 4
registers are used as special storage units to store the vari-
abledata, temp, mask andocount respectively.

Appendix C shows the output result in style 4 RTL after
synthesizing this design. Comparing to the input, the origi-
nal stateS2 is split up to 4 states,S2, X0, X1 andX2 due to
only aALU available in each control step. The total number
of states in the output FSMD increases from 4 to 7 with 3
extra states generated.

5

ALU

RF

istart ack_idone

idone ack_istart

idata

iocount

ocount
temp

mask

data

One's Counter

SR

Next
State
Logic

Output
Logic

0

..

.

32
32

32

3232

32

32

32

Controller Datapath

SHIFTER
5

p2

p1

Figure 5. Design 1: 1 ALU, 1 Shifter, 1 RF, 3 buses

ALU

istart ack_idone

idone ack_istart

idata

iocount

One's Counter

SR

Next
State
Logic

Output
Logic

0

.

.

.

32 32

32

3232

32

32

32

Controller Datapath

SHIFTER
5

p1

p2
data mask temp ocount

32 32

1 0

Figure 6. Design 2: 1 ALU, 1 Shifter, 4 registers, 3 buses

6

Here we observe a bug in the storage unit binding from
the output result. Though the four variables are supposed to
be mapped to the 4 allocated registers after binding, this
mapping is not reflected in the output code. In the out-
put result(Appendix C), the variables are still used in the
FSMD description instead of using special registers to re-
place them.

Figure 6 depicts the RTL structure model for this imple-
mentation. Since the numbers of functional units and buses
are the same as in Design 4.1, the critical path is almost the
same. Again, there are two candidates for the critical path:

� Delay of path p1, computing the next state of the FSM

∆�p1� � delay�SR��delay�OL��delay�Reg32�
�delay�ALU��delay�NL�� setup�SR�
� 0�75�1�4�0�75�3�02�1�4�0�59
� 7�91ns

� Delay of datapath, performing the arithmetic opera-
tions

∆�p2� � delay�SR��delay�OL��delay�Reg32�
�delay�ALU�� setup�Reg32�
� 0�75�1�4�0�75�3�02�0�59
� 6�51ns

Hence, the minimum clock cycle is:

Clock cycle � max�∆�p1��∆�p2�� � 7�91ns

The number of the states in the output FSMD is 7. Also
there are 4 states in the loop from stateS2 back toS2.
Given an input data with 32 bits of ’1’, the One’s Counter
needs 4� 31� 7 � 131 cycles to finish the computation.
The estimated execution time for this implementation is:

Execution time � num cycles � clock cycle
� 131 � 7�91
� 1�04µs

which is only about 9.5% faster than Design 4.1. We
see that there is not much improvement compared to De-
sign 4.1. The only difference from the previous implemen-
tation is that special registers are used in place of the register
file. To further improve the performance, we need to allo-
cate more functional units and buses to the design so that
different operations in datapath can run in parallel in the
same control step.

4.3 Design 3: 2 ALUs, 1 Shifter, 4 registers, 5
buses

We allocate two ALUs, a Shifter, four registers and five
buses in this implementation. So that the ALU and the

Shifter can run in parallel thereby reducing the number of
execution cycles required for the computation to take place.

Appendix D shows the output result in style 4 RTL after
performing synthesis on it. There is only one extra state
X0 split up from the original stateS2. The total number of
states in the output FSMD is 5. And the variables are still
not mapped as depicted in Design 4.2.

Figure 7 shows the RTL structure model for this imple-
mentation. There are two critical path candidates:

� Delay of path p1, computing the next state of the FSM

∆�p1� � delay�SR��delay�OL��delay�Reg32�
�delay�ALU��delay�NL�� setup�SR�
� 0�75�1�4�0�75�3�02�1�4�0�59
� 7�91ns

� Delay of datapath, performing the arithmetic opera-
tions
∆�p2� � delay�SR��delay�OL��delay�Reg32�

�delay�ALU�� setup�Reg32�
� 0�75�1�4�0�75�3�02�0�59
� 6�51ns

Hence, the minimum clock cycle is:

Clock cycle � max�∆�p1��∆�p2�� � 7�91ns

The number of states in the output FSMD is 5 and there
are 2 states in the loop from stateS2 back toS2. The total
cycles need to complete the computation for input data with
32 bits of ’1’ is 31�2�5� 67, which is a drastic improve-
ment compared to that for Design 4.1 and Design 4.2. The
estimated execution time here is:

Execution time � num cycles � clock cycle
� 67 � 7�91
� 0�53µs

which shows a significantly decrease compared to that
in Design 4.1 and Design 4.2. We observe that the greater
the number of resources at our disposal, the more efficient
performance we obtain.

However, this implementation also reflects some limita-
tions. Though we allocate 5 buses to the design, only four
are put to use. Also the binding of storage units is not re-
flected in the output.

4.4 Design 4: 1 pipelined ALU, 1 pipelined Shifter,
1 RF, 3 buses

In this design we attempt a pipelined implementation
with a limited number of resources for further improvement
in the performance. We allocate a pipelined ALU and a
pipelined Shifter, other resources being the same as in De-
sign 4.1.

7

ALU

istart ack_idone

idone ack_istart

idata

iocount

One's Counter

SR

Next
State
Logic

Output
Logic

0

.

.

.

32 32

32

3232

32

32

32

Controller Datapath

SHIFTER
5

p1

p2
data mask temp ocount

32
32

1

ALU

32

32

0

Figure 7. Design 3: 2 ALUs, 1 Shifter, 4 registers, 5 buses

RF

istart ack_idone

idone ack_istart

idata

iocount

ocount
temp

mask
data

One's Counter

SR

Next
State
Logic

Output
Logic

0

.

.

.

32
32

32

3232

32

32

32

Controller Datapath

5

p2

p3

���ALU� ���
SHIFTER

�
p1

1 0

Figure 8. Design 4: 1 pipelined ALU, 1 pipelined Shifter, 1 RF, 3 buses

8

Appendix E shows output result after synthesis has been
performed on this design. To enable pipelining, the tool
splits the original states into more states comparing to that
in design 4.1. First, the tool splits the original stateS1 to
3 states, stateS1 and two extra statesX0 andX1. Then for
original stateS2, the tool splits it to 5 states,S2, X2, X3,
X4 andS5. The total number of states in the output FSMD
increases to 10 with 6 extra states generated.

Figure 8 depicts the RTL structure model for this imple-
mentation. Since a different combination of units is being
used in the design, the critical path candidates change sig-
nificantly compared to the earlier implementations. There
are three candidates for the critical path here:

� Delay of path p1, from the state register(SR) in the
controller to the pipelined ALU in the datapath:

∆�p1� � delay�SR��delay�OL��delay�RF�
�pipe�ALU�
� 0�75�1�4�1�46�1�5
� 5�11ns

� Delay of path p2, fromALU toSR to finish the compu-
tation for the next state of FSM:
∆�p2� � pipe�ALU��delay�NL�� setup�SR�

� 1�5�1�4�0�59
� 3�49ns

� Delay of path p3, fromALU to RF finish the computa-
tion of the arithmetic operations:

∆�p3� � pipe�ALU���setup�RF�
� 1�5�1�2
� 2�7ns

Pipe(ALU) is the delay of the pipelinedALU and is a
half of a normal ALU delay as in Table 4.1. Since p1 has the
largest delay among all the three candidates, the minimum
clock cycle is:

Clock cycle � max�∆�p1��∆�p2��∆�p3�� � 5�11ns

It is much faster than the earlier implementations. How-
ever, there is a payoff involved as we split the FSMD into
further more states in order to incorporate pipelining in the
design. The number of states in the output FSMD of One’s
Counter blows up to 10 and the total execution cycles for an
input data with 32 bits of ’1’ 1 is 31�5�10� 165. Hence,
the estimated execution time is:

Execution time � num cycles � clock cycle
� 165 � 5�11
� 0�84µs

1 of the growth in the number of states, the current design
is still 27while the cost is more or less same for both of

them. Similarly the idea of pipelined implementations can
be further extended to other units such as storage units to
obtain substantial improvement in the design performance.

4.5 Design 5: 2 pipelined ALU, 1 pipelined Shifter,
4 registers, 5 buses

In this design we employ larger number of resources with
pipelined functional units. We allocate two pipelined ALUs
and one pipelined Shifter, four special registers, and five
buses. This combination subsumes both the Design 4.3 and
Design 4.4.

Appendix F shows the output result in style 4 RTL after
perform synthesis on this design. There are only 3 extra
states (X0, X1 andX2) generated from the original state
S2. The total number of states in the output FSMD is 7.
And the variables are not mapped to registers as depicted in
Design 4.2.

Figure 9 shows the RTL structure model for this imple-
mentation. Again, there are three candidates for the critical
path in this design:

� Delay of path p1, from the state register(SR) in the
controller to the pipelinedALU in the datapath:

∆�p1� � delay�SR��delay�OL��delay�Reg32�
�pipe�ALU�
� 0�75�1�4�0�75�1�5
� 4�4ns

� Delay of path p2, from pipelinedALU to SR to finish
the computation of the next state of FSM:

∆�p2� � pipe�ALU��delay�NL�� setup�SR�
� 1�5�1�4�0�75
� 3�65ns

� Delay of path p3, from pipelinedALU to register to
finish the computation of the arithmetic operations:

∆�p3� � pipe�ALU�� setup�Reg32�
� 1�5�0�59
� 2�09ns

Hence, the minimum clock cycle is:

Clock cycle � max�∆�p1��∆�p2��∆�p3�� � 4�4ns

The number of states in the FSMD of One’s Counter is
7(4 states in the loop from stateS2 to S2) and the total
execution cycles for an input data with 32 bits of ’1’ is 31�
4�7� 131. Hence, the estimated execution time is:

Execution time � num cycles � clock cycle
� 131 � 4�4
� 0�58µs

9

istart ack_idone

idone ack_istart

idata

iocount

One's Counter

SR

Next
State
Logic

Output
Logic

0

.

.

.

32 32

32

3232

32

32

32

Controller Datapath

5

p2

p3
data mask temp ocount

32
32

1

32

32
���ALU ��SHIFTER ���ALU� � �

p1

0

32

Figure 9. Design 5: 2 pipelined ALU, 1 pipelined Shifter, 4 registers, 5 buses

Design Clock Cycles(ns) Number of States in FSMD Execution Cycles Execution Time(µs)

Design 1 14.32 9 133 1.15
Design 2 13.61 7 131 1.04
Design 3 12.81 5 67 0.53
Design 4 8.36 10 165 0.84
Design 5 7.65 7 131 0.58

Table 2. Experimental Result for One’s Counter(input data is 32 bit of ’1’)

10

The execution time is faster then that of Design 4.4 but
not as fast as that of Design 4.3. It is due to the fact that the
FSMD has to be split up into more states in order to allow
pipelined implementation. Therefore, the total number of
execution cycles of Design 4.5 is much more than that of
Design 4.3 thereby making its execution sluggish.

Table 4.5 shows a summary of the above different im-
plementations. Design 4.1 has the lowest cost but with the
penalty of slowest execution. Design 4.3 has the fastest per-
formance but with a high cost. These results clearly demon-
strate that our tool synthesizes different implementations of
a design, with different resources allocations. Hence gives
the user the 1 to determine the final implementation on the
basis of performance-cost tradeoff after estimating the per-
formance of different implementations.

Also, we notice that there are two ways to improve the
design performance, increasing the number of resources
used in the design or introducing pipelined units in the De-
sign. Employing more resources in the design can reduce
the number of states in the FSMD of the behavior with little
change in the critical path. Introduction of pipelined units
in the design causes a drastic reduction in clock cycle but
at the same time the FSMD of the behavior has to split up
to generate more states and the total number of execution
cycles increases, which leads to a poorer performance.

5. Conclusion and Future Works

We demonstrated the different implementations of the
Parity Checker, mainly the One’s Counter with different al-
location of resources from the component library. Our RTL
synthesis tool was used to do comparative analysis of the
performance of these different implementations. These al-
low the end user to decide upon the final implementation
which strikes out an optimal balance between the cost and
the performance.

However, there are still some impending modifications
in the tool. Firstly, the result of bus binding is not optimal,
the resources are not fully utilized in bus binding as can be
observed in Design 4.3, where out of five allocated buses
only four are mapped. Secondly, when we allocate registers
for all the variables in the FSMD, the binding result doesn’t
reflect the binding of the registers. Finally, our approach
introduces storage units like register file and memory in the
component library mapping of whose ports is not supported
in the current binding algorithm. The future extension to our
work is proposing a binding algorithm which considers the
mapping of ports of the storage units. We expect to release
the improvised version in the future.

References

[ZSY�00] P. Zhang, D. Shin, H. Yu, Q. Xie, and D. Gajski.
SpecC RTL Design Methodology. Technical
Report ICS-TR-00-44, University of California,
Irvine, December 2000.

11

A. Parity Checker in RTL style 1

A.1 RTL component Library

A.1.1 ALU

bit[31:0] alu(bit[31:0] a, bit[31:0] b, int ctrl)
{

note alu.library = "1";
note alu.a="data";

5 note alu.b="data";
note alu.sum="data";
note alu.ctrl="control";

note alu.type="rca";
10 note alu.width="472";

note alu.height="920";
note alu.cost="100";
note alu.pipelined = "1";
note alu.delay="2";

15 note alu.bits="32";
note alu.operation="+,-,<,<=,>,>=,!=,==,&,+:,-:,+=,-=";
bit[31:0] sum;

switch(ctrl) {
20 case 000b: // +

sum = a+b;
break;

case 001b: // -
sum = a-b;

25 break;
case 010b: // <

sum = (a<b)? 0x0001:0x0000;
break;

case 011b: // <=
30 sum = (a<=b)? 0x0001:0x0000;

break;
case 100b: // >

sum = (a>b)? 0x0001:0x0000;
break;

35 case 101b: // >=
sum = (a>=b)? 0x0001:0x0000;
break;

case 110b: // !=
sum = (a!=b)? 0x0001:0x0000;

40 break;
case 111b: // ==

sum = (a==b)? 0x0001:0x0000;
break;

case 1000b: // &
45 sum = a&b;

break;
}
return sum;

12

}

A.1.2 Shifter

bit[31:0] shift(bit[31:0] si, bit[31:0] amount, int ctrl)
{

note shift.library = "1";
note shift.si = "data";

5 note shift.amount = "data";
note shift.so = "data";
note shift.ctrl = "control";

note shift.type = "shifta";
10 note shift.width = "272";

note shift.height = "420";
note shift.cost = "60";
note shift.pipelined = "1";
note shift.delay = "2";

15 note shift.bits = "32";
note shift.operation = ">>,<<";

bit[31:0] so;
switch(ctrl) {

20 case 0b:
so = si >> amount;
break;

case 1b:
so = si << amount;

25 break;
}
return so;

}

A.1.3 Register File

void RF(event clk, bit[0:0] rst, bit[31:0] inp,
bit[1:0] raA, bit[1:0] raB, bit[0:0] reA, bit[0:0] reB,
bit[1:0] wa, bit[0:0] we, bit[31:0] outA, bit[31:0] outB)

{
5 note RF.library = "1";

note RF.type = "RF";
note RF.size = "4";
note RF.width = "272";
note RF.height = "420";

10 note RF.cost = "60";
note RF.pipelined = "0";
note RF.delay = "0";
note RF.num_inports= "1";
note RF.num_outports = "2";

15 note RF.bits = "32";
}

A.1.4 Register

void Reg32(event clk, bit[0:0] rst, bit[31:0] input,
bit[0:0] read,
bit[0:0] write, bit[31:0] output)

13

{
5 note Reg32.library = "1";

note Reg32.type = "reg";
note Reg32.size = "1";
note Reg32.width = "72";
note Reg32.height = "100";

10 note Reg32.cost = "10";
note Reg32.pipelined = "0";
note Reg32.delay = "0";
note Reg32.num_rports= "1";
note Reg32.num_wports = "1";

15 note Reg32.bits = "32";
}

A.1.5 Bus

void bus(bit[31:0] outp, bit[31:0] inp)
{

note bus.library = "1";
note bus.type = "bus";

5 note bus.width = "1";
note bus.height = "1";
note bus.cost = "60";
note bus.delay = "0";
note bus.bits = "32";

10 }

A.2 Parity Checker

/**
* Title: parity.sc
* Author: Dongwan Shin
* Date: 12/03/2000

5 * Description: top behavior for parity checker
**/

import "ones";
import "even";

10

behavior parity(in event clk1, in event clk2, in unsigned bit[0:0] rst,
in unsigned bit[31:0] Inport, out unsigned bit[31:0] Outport,
in unsigned bit[0:0] Start, out unsigned bit[0:0] Done)

{
15 unsigned bit[31:0] data;

unsigned bit[4:0] ocount;
unsigned bit[0:0] istart, idone;
unsigned bit[0:0] ack_istart, ack_idone;

20 even U00(clk1, rst, Inport, Outport, Start, Done, data, ocount, istart,
idone, ack_istart, ack_idone);

ones U01(clk2, rst, data, ocount, istart, idone, ack_istart, ack_idone);

void main (void)
25 {

par {
U00.main();

14

U01.main();
}

30 }
};

A.2.1 Even Checker

/**
* Title: even.sc
* Author: Qiang Xie
* Date: 10/01/2001

5 * Description: Behavioral RTL model for even parity checker
**/
import "io";
behavior even(in event clk, in unsigned bit[0:0] rst,

in unsigned bit[31:0] Inport, out unsigned bit[31:0] Outport,
10 in unsigned bit[0:0] Start, out unsigned bit[0:0] Done,

out unsigned bit[31:0] idata, in unsigned bit[4:0] iocount,
out unsigned bit[0:0] istart, in unsigned bit[0:0] idone,
in unsigned bit[0:0] ack_istart, out unsigned bit[0:0] ack_idone)

{
15 void main(void) {

unsigned bit[31:0] ocount;
unsigned bit[31:0] data, mask;
enum state { S0, S1, S2, S3, S4 } state;

20 state = S0;

while (1) {
wait(clk);
if (rst == 1b) {

25 state = S0;
}
switch (state) {

case S0:
Done = 0b;

30 istart = 0b;
ack_idone = 0b;
if (Start == 1b)

state = S1;
else

35 state = S0;
break;

case S1:
mask = 0x0001;
data = Inport;

40 state = S2;
break;

case S2:
idata = data;
istart = 1b;

45 if (ack_istart == 1b)
state = S3;

else
state = S2;

15

break;
50 case S3:

istart = 0;
ocount = iocount;
if (idone == 1)

state = S4;
55 else

state = S3;
break;

case S4:
Outport = ocount & mask; // even parity checker

60 ack_idone = 1;
Done = 1;
if (idone == 0)

state = S0;
else

65 state = S4;
break;

}
}

}
70 };

A.2.2 One’s Counter

/**
* Title: ones.sc
* Author: Qiang Xie
* Date: 02/11/2002

5 * Description: Behavioral RTL model for Ones’Counter
**/
import "lib";
behavior ones(in event clk, in unsigned bit [0:0] rst, in unsigned bit[31:0] idata,

out unsigned bit[4:0] iocount, in unsigned bit[0:0] istart,
10 out unsigned bit[0:0] idone,

out unsigned bit[0:0] ack_istart, in unsigned bit[0:0] ack_idone)
{

note ones.scheduled = "0";
note ones.fubind = "0";

15 note ones.regbind = "0";
note ones.busbind = "0";

note ones.clk = "clk";
note ones.rst = "rst";

20 note ones.idata = "data";
note ones.iocount = "data";
note ones.istart = "ctrl";
note ones.idone = "ctrl";
note ones.ack_istart = "ctrl";

25 note ones.ack_idone = "ctrl";

void main(void) {
unsigned bit[31:0] data;
unsigned bit[31:0] ocount;

30 unsigned bit[31:0] mask;

16

unsigned bit[31:0] temp;

enum state { S0, S1, S2, S3 } state;

35 state = S0;

while (1) {
wait(clk);
if (rst) {

40 iocount = 0x0000;
state = S0;

}
switch (state) {

case S0 :
45 idone = 0;

ack_istart = 0;
if (istart != 0)

state = S1;
else

50 state = S0;
break;

case S1:
ack_istart = 1;

data = idata;
55 ocount = 0;

mask = 1;
state = S2;
break;

case S2:
60 temp = data & mask;

ocount = ocount + temp;
data = data >> mask;

if (data == 0)
65 state = S3;

else
state = S2;

break;
case S3:

70 iocount = ocount;
idone = 1;
if (ack_idone == 1b)

state = S0;
else

75 state = S3;
break;

}
}

}
80 };

A.3 Test Bench

/**

17

* Title: tb.sc
* Author: Dongwan Shin
* Date: 12/03/2000

5 * Description: testbench for partiy checker
**/

import "io";
import "clkgen";

10 import "ones";
import "parity";

behavior Main
{

15 unsigned bit[31:0] inport, outport;
unsigned bit[0:0] rst;
event clk1, clk2;
unsigned bit[0:0] start, done;

20 clkgen U00(clk1, 5);
clkgen U01(clk2, 4);
IO U02(clk1, rst, inport, outport, start, done);
parity U03(clk1, clk2, rst, inport, outport, start, done);

25 int main (void)
{

par {
U00.main();
U01.main();

30 U02.main();
U03.main();

}
return 0;

}
35 };

A.3.1 Input/Output

/**
* Title: io.sc
* Author: Dongwan Shin
* Date: 11/15/2000

5 * Description: input/output for testbench
**/

// I/O for testbench
#include <stdio.h>

10 #include <stdlib.h>

behavior IO(in event clk, out unsigned bit[0:0] rst,
out unsigned bit[31:0] Inport, out unsigned bit[31:0] Outport,
out unsigned bit[0:0] Start, in unsigned bit[0:0] Done)

15 {
void main(void) {

char buf[16];

18

rst = 1b;
20 Start = 0b;

wait(clk);
wait(clk);

rst = 0b; // deassign reset
25

while (1) {
printf("Input for one’s counter: ");
gets(buf);
Inport = atoi(buf);

30

Start = 1b;
wait(clk);
while (Done != 1b) {

wait(clk);
35 }

printf("parity checker output(%s) = %u\n", buf,
(unsigned int)Outport);

Start = 0b;
waitfor(100);

40 }
}

};

A.3.2 Clock Generator

/**
* Title: clkgen.sc
* Author: Dongwan Shin
* Date: 11/15/2000

5 * Description: clock generator
**/

behavior clkgen(out event clk, in int clk_period)
{

10 void main(void) {
while (1) {

waitfor(clk_period);
notify(clk);

}
15 }

};

19

B. Output: One’s Counter in Style 4 - Design 1

/***
* SpecC code generated by ’genc’
* Date: Thu Mar 28 12:53:15 2002
* User: qxie

5 ***/
import "lib";
behavior ones(in event clk, in bit[0:0] rst, in bit[31:0] Inport, out bit[31:0] Outport, in bi
{

10 note ones.scheduled = "1";
note ones.fubind = "1";
note ones.regbind = "1";
note ones.busbind = "1";
note ones.Inport = "data";

15 note ones.Outport = "data";
note ones.clk = "clk";
note ones.done = "ctrl";
note ones.rst = "rst";
note ones.start = "ctrl";

20

bit[31:0] shift0(bit[31:0] si, bit[31:0] amount, int ctrl)
{

return shift(si, amount, ctrl);
}

25

bit[31:0] alu0(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

30

void main(void)
{

bit[31:0] Data;
bit[31:0] Mask;

35 bit[31:0] Ocount;
bit[31:0] RF0[4];
bit[31:0] Temp;
bit[0:0] _ctrl_;
bit[31:0] bus0;

40 bit[31:0] bus1;
bit[31:0] bus2;
enum state { S0, S1, S2, S3, X0, X1, X2, X3, X4 } state;
while (1)
{

45 wait(clk);
if (rst)
{

state = S0;
}

50 switch (state)
{

20

case S0 :
{

done = 0;
55 if (start!=0)

{
state = S1;

}
else

60 {
state = S0;

}
break;

}
65 case S1 :

{
RF0[0] = Inport;
state = X0;
break;

70 }
case X0 :
{

RF0[1] = 0;
state = X1;

75 break;
}
case X1 :
{

RF0[2] = 1;
80 state = S2;

break;
}
case S2 :
{

85 bus0 = RF0[0];
bus1 = RF0[2];
bus2 = alu0(bus0, bus1, 8);
RF0[3] = bus2;
state = X2;

90 break;
}
case X2 :
{

bus0 = RF0[1];
95 bus1 = RF0[3];

bus2 = alu0(bus0, bus1, 0);
RF0[1] = bus2;
state = X3;
break;

100 }
case X3 :
{

bus0 = RF0[0];
bus1 = RF0[2];

21

105 bus2 = shift0(bus0, bus1, 0);
RF0[0] = bus2;
state = X4;
break;

}
110 case X4 :

{
bus0 = RF0[0];
if (alu0(bus0, 0, 7))
{

115 state = S3;
}
else
{

state = S2;
120 }

break;
}
case S3 :
{

125 done = 1;
bus1 = RF0[1];
Outport = bus1;
state = S0;
break;

130 }
}

}
}

135 };

22

C. Output: One’s Counter in Style 4 - Design 2

/***
* SpecC code generated by ’genc’
* Date: Tue Feb 12 23:23:01 2002
* User: qxie

5 ***/
import "lib";

10 behavior ones(in event clk, in unsigned bit[0:0] rst, in unsigned bit[31:0] idata,
out unsigned bit[31:0] iocount, in unsigned bit[0:0] start,
out unsigned bit[0:0] done, out unsigned bit[0:0] ack_istart,
in unsigned bit[0:0] ack_idone)

{
15

note ones.scheduled = "1";
note ones.fubind = "1";
note ones.regbind = "1";
note ones.busbind = "1";

20 note ones.ack_idone = "ctrl";
note ones.ack_istart = "ctrl";
note ones.clk = "clk";
note ones.done = "ctrl";
note ones.idata = "data";

25 note ones.iocount = "data";
note ones.rst = "rst";
note ones.start = "ctrl";

30 bit[31:0] shift0(bit[31:0] si, bit[31:0] amount, int ctrl)
{

return shift(si, amount, ctrl);
}

35 bit[31:0] alu0(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

40 void main(void)
{

bit[31:0] Reg320;
bit[31:0] Reg321;
bit[31:0] Reg322;

45 bit[31:0] Reg323;
bit[0:0] _ctrl_;
unsigned bit[31:0] data;
unsigned bit[31:0] mask;
unsigned bit[31:0] ocount;

50 unsigned bit[31:0] temp;
bit[31:0] bus0;

23

bit[31:0] bus1;
bit[31:0] bus2;
enum state { S0, S1, S2, S3, X0, X1, X2 } state;

55 while (1)
{

wait(clk);
if (rst)
{

60 state = S0;
}
switch (state)
{

case S0 :
65 {

ack_istart = 0;
done = 0;
if (start!=0)
{

70 state = S1;
}
else
{

state = S0;
75 }

break;
}
case S1 :
{

80 mask = 1;
ocount = 0;
data = idata;
ack_istart = 1;
state = S2;

85 break;
}
case S2 :
{

bus0 = data;
90 bus1 = mask;

bus2 = alu0(bus0, bus1, 8);
temp = bus2;
state = X0;
break;

95 }
case X0 :
{

bus0 = ocount;
bus1 = temp;

100 bus2 = alu0(bus0, bus1, 0);
ocount = bus2;
state = X1;
break;

}

24

105 case X1 :
{

bus0 = data;
bus1 = mask;
bus2 = shift0(bus0, bus1, 0);

110 data = bus2;
state = X2;
break;

}
case X2 :

115 {
bus0 = data;
if (alu0(bus0, 0, 7))
{

state = S3;
120 }

else
{

state = S2;
}

125 break;
}
case S3 :
{

done = 1;
130 bus0 = ocount;

iocount = bus0;
if (ack_idone==1)
{

state = S0;
135 }

else
{

state = S3;
}

140 break;
}

}
}

}
145 };

25

D. Output: One’s Counter in Style 4 - Design 3

/***
* SpecC code generated by ’genc’
* Date: Tue Feb 12 23:29:28 2002
* User: qxie

5 ***/
import "lib";

10 behavior ones(in event clk, in unsigned bit[0:0] rst, in unsigned bit[31:0] idata,
out unsigned bit[31:0] iocount, in unsigned bit[0:0] start,
out unsigned bit[0:0] done, out unsigned bit[0:0] ack_istart,
in unsigned bit[0:0] ack_idone)

{
15

note ones.scheduled = "1";
note ones.fubind = "1";
note ones.regbind = "1";
note ones.busbind = "1";

20 note ones.ack_idone = "ctrl";
note ones.ack_istart = "ctrl";
note ones.clk = "clk";
note ones.done = "ctrl";
note ones.idata = "data";

25 note ones.iocount = "data";
note ones.rst = "rst";
note ones.start = "ctrl";

30 bit[31:0] shift0(bit[31:0] si, bit[31:0] amount, int ctrl)
{

return shift(si, amount, ctrl);
}

35 bit[31:0] alu0(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

40 bit[31:0] alu1(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

45 void main(void)
{

bit[31:0] Reg320;
bit[31:0] Reg321;
bit[31:0] Reg322;

50 bit[31:0] Reg323;
bit[0:0] _ctrl_;

26

unsigned bit[31:0] data;
unsigned bit[31:0] mask;
unsigned bit[31:0] ocount;

55 unsigned bit[31:0] temp;
bit[31:0] bus0;
bit[31:0] bus1;
bit[31:0] bus2;
bit[31:0] bus3;

60 bit[31:0] bus4;
enum state { S0, S1, S2, S3, X0 } state;
while (1)
{

wait(clk);
65 if (rst)

{
state = S0;

}
switch (state)

70 {
case S0 :
{

ack_istart = 0;
done = 0;

75 if (start!=0)
{

state = S1;
}
else

80 {
state = S0;

}
break;

}
85 case S1 :

{
mask = 1;
ocount = 0;
data = idata;

90 ack_istart = 1;
state = S2;
break;

}
case S2 :

95 {
bus0 = data;
bus1 = mask;
bus3 = alu0(bus0, bus1, 8);
temp = bus3;

100 bus2 = shift0(bus0, bus1, 0);
data = bus2;
state = X0;
break;

}

27

105 case X0 :
{

bus2 = ocount;
bus1 = temp;
bus3 = alu0(bus2, bus1, 0);

110 ocount = bus3;
bus0 = data;
if (alu1(bus0, 0, 7))
{

state = S3;
115 }

else
{

state = S2;
}

120 break;
}
case S3 :
{

done = 1;
125 bus2 = ocount;

iocount = bus2;
if (ack_idone==1)
{

state = S0;
130 }

else
{

state = S3;
}

135 break;
}

}
}

}
140 };

28

E. Output: One’s Counter in Style 4 - Design 4

/***
* SpecC code generated by ’genc’
* Date: Thu Feb 21 22:11:32 2002
* User: qxie

5 ***/
import "lib";

10 behavior ones(in event clk, in unsigned bit[0:0] rst, in unsigned bit[31:0] idata,
out unsigned bit[31:0] iocount, in unsigned bit[0:0] start,
out unsigned bit[0:0] done, out unsigned bit[0:0] ack_istart,
in unsigned bit[0:0] ack_idone)

{
15

note ones.scheduled = "1";
note ones.fubind = "1";
note ones.regbind = "1";
note ones.busbind = "1";

20 note ones.ack_idone = "ctrl";
note ones.ack_istart = "ctrl";
note ones.clk = "clk";
note ones.done = "ctrl";
note ones.idata = "data";

25 note ones.iocount = "data";
note ones.rst = "rst";
note ones.start = "ctrl";

30 bit[31:0] shift0(bit[31:0] si, bit[31:0] amount, int ctrl)
{

return shift(si, amount, ctrl);
}

35 bit[31:0] alu0(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

40 void main(void)
{

bit[31:0] RF0[4];
bit[0:0] _ctrl_;
unsigned bit[31:0] data;

45 unsigned bit[31:0] mask;
unsigned bit[31:0] ocount;
unsigned bit[31:0] temp;
bit[31:0] bus0;
bit[31:0] bus1;

50 bit[31:0] bus2;
enum state { S0, S1, S2, S3, X0, X1, X2, X3, X4, X5 } state;

29

while (1)
{

wait(clk);
55 if (rst)

{
state = S0;

}
switch (state)

60 {
case S0 :
{

ack_istart = 0;
done = 0;

65 if (start!=0)
{

state = S1;
}
else

70 {
state = S0;

}
break;

}
75 case S1 :

{
ack_istart = 1;
RF0[0] = idata;
state = X0;

80 break;
}
case X0 :
{

RF0[1] = 0;
85 state = X1;

break;
}
case X1 :
{

90 RF0[2] = 1;
state = S2;
break;

}
case S2 :

95 {
bus0 = RF0[0];
bus1 = RF0[2];
bus2 = alu0(bus0, bus1, 8);
RF0[3] = bus2;

100 state = X2;
break;

}
case X2 :
{

30

105 bus0 = RF0[0];
bus1 = RF0[2];
bus2 = shift0(bus0, bus1, 0);
RF0[0] = bus2;
state = X3;

110 break;
}
case X3 :
{

bus0 = RF0[1];
115 bus1 = RF0[3];

bus2 = alu0(bus0, bus1, 0);
RF0[1] = bus2;
state = X4;
break;

120 }
case X4 :
{

bus0 = RF0[0];
ctrl = alu0(bus0, 0, 7);

125 state = X5;
break;

}
case X5 :
{

130 if (_ctrl_)
{

state = S3;
}
else

135 {
state = S2;

}
break;

}
140 case S3 :

{
done = 1;
if (ack_idone==1)
{

145 state = S0;
}
else
{

state = S3;
150 }

bus0 = RF0[1];
iocount = bus0;
break;

}
155 }

}
}

31

};

32

F. Output: One’s Counter in Style 4 - Design 5

/***
* SpecC code generated by ’genc’
* Date: Thu Feb 21 22:19:05 2002
* User: qxie

5 ***/
import "lib";

10 behavior ones(in event clk, in unsigned bit[0:0] rst, in unsigned bit[31:0] idata,
out unsigned bit[31:0] iocount, in unsigned bit[0:0] start,
out unsigned bit[0:0] done, out unsigned bit[0:0] ack_istart,
in unsigned bit[0:0] ack_idone)

{
15

note ones.scheduled = "1";
note ones.fubind = "1";
note ones.regbind = "1";
note ones.busbind = "1";

20 note ones.ack_idone = "ctrl";
note ones.ack_istart = "ctrl";
note ones.clk = "clk";
note ones.done = "ctrl";
note ones.idata = "data";

25 note ones.iocount = "data";
note ones.rst = "rst";
note ones.start = "ctrl";

30 bit[31:0] shift0(bit[31:0] si, bit[31:0] amount, int ctrl)
{

return shift(si, amount, ctrl);
}

35 bit[31:0] alu0(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

40 bit[31:0] alu1(bit[31:0] a, bit[31:0] b, int ctrl)
{

return alu(a, b, ctrl);
}

45 void main(void)
{

bit[31:0] Reg320;
bit[31:0] Reg321;
bit[31:0] Reg322;

50 bit[31:0] Reg323;
bit[0:0] _ctrl_;

33

unsigned bit[31:0] data;
unsigned bit[31:0] mask;
unsigned bit[31:0] ocount;

55 unsigned bit[31:0] temp;
bit[31:0] bus0;
bit[31:0] bus1;
bit[31:0] bus2;
bit[31:0] bus3;

60 bit[31:0] bus4;
enum state { S0, S1, S2, S3, X0, X1, X2 } state;
while (1)
{

wait(clk);
65 if (rst)

{
state = S0;

}
switch (state)

70 {
case S0 :
{

ack_istart = 0;
done = 0;

75 if (start!=0)
{

state = S1;
}
else

80 {
state = S0;

}
break;

}
85 case S1 :

{
ack_istart = 1;
ocount = 0;
mask = 1;

90 data = idata;
state = S2;
break;

}
case S2 :

95 {
bus0 = data;
bus1 = mask;
bus2 = alu0(bus0, bus1, 8);
temp = bus2;

100 bus3 = shift0(bus0, bus1, 0);
data = bus3;
state = X0;
break;

}

34

105 case X0 :
{

state = X1;
break;

}
110 case X1 :

{
bus0 = data;
ctrl = alu0(bus0, 0, 7);
bus1 = ocount;

115 bus2 = temp;
bus4 = alu1(bus1, bus2, 0);
ocount = bus4;
state = X2;
break;

120 }
case X2 :
{

if (_ctrl_)
{

125 state = S3;
}
else
{

state = S2;
130 }

break;
}
case S3 :
{

135 done = 1;
if (ack_idone==1)
{

state = S0;
}

140 else
{

state = S3;
}
bus1 = ocount;

145 iocount = bus1;
break;

}
}

}
150 }

};

35

