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Abstract

Emulation of CMS systems is an interesting approach to complete the validation of new digital control unit and to perform the
diagnosis tasks. However to be efficient, the emulator have to run inreal timein order to reproduce exactly the physical process
functioning.

Today, realization of this emulator is not possible using standard electronic components. Therefore, we oriented our work to the
development of new embedded systems specific to these applications of emulation.

This report describes the design of this emulator employing the system-level design methodology developed at CECSUC Irvine
(SpecC methodology). Starting from the abstract executable specification written in SpecC language, different design alternatives
concerning the system architecture (components and communications) are explored and the emulator is gradualy refined and
mapped to afinal communication model. This model can then be used with backend tools for implementation and manufacturing.
For illustration of this approach, we discuss at the end of this report the case of a DC system emulator and we describe in details
the different stages undergone.
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ABSTRACT

Emulation of CMS systems is an interesting approach to
complete the vadidation of new digita control unit and to
perform the diagnoss tasks. However to be efficient, the
emulaor have to run in red time in order to reproduce
exactly the physica process functioning.

Today, redization of this emulator is not possible usng
dandard eectronic components. Therefore, we oriented
our work to the development of new embedded systems
specific to these applications of emulation.

This report describes the desgn of this emulaor
employing the sysem-levd  desgn  methodology
devdoped a CECSUC Irvine (SpecC  methodology).
Stating from the abstract executable specification written
in  SpecC  language,  different  design  dternatives
concerning the sysem architecture (components and
communicetions) ae explored and the emulaor s
gradudly refined and mapped to a find communication
modd. This modd can then be used with backend tools
for implementation and manufacturing.

For illugtration of this gpproach, we discuss a the end of
this report the case of a DC system emulator and we
describein details the different stages undergone.

1 Introduction

In this project we propose to design a read tme emulator
for dectricd system using SpecC methodology [1,2]. This
emulator will be used with the control device either for
complete vdidation of this one a the development and
vdidation dage or for diagnoss a norma functioning
dage. In both cases, the emulaor should behave like the
physicd systemin red time.

Redization of this emulaior is essentidly faced to the
execution time condraints. Indeed the emulator has to
replace high dynamic sysems in red time So we
diginguish three approaches in which red time emulator
can be implemented: Digitd, Andog and Hybrid. These
approaches are discussed in previous publications[3,4,5].

The main difficulty in this redization is to saisfy both
specifications of red time functioning and of flexibility.

! Static Converters/ dectric Motors/ Sensors

Asociation of these characterisics imposed  uses  of
digital approaches, which guaranty user-friendliness.
On the other dde, improvements in VLS technology
have to led the wide spread use of specific processor,
which may aso be used to redlize complete system.

According to these considerations, our work is oriented to
the desgn of embedded sysems specific to the emulation
gpplication. Therefore, we study the synthesis process of
the emulation systems directly from their specification.
This approach requires the ability to synthesize specified
functions into software or hardware to meet the given
condraints. It has the mogst flexibility since software,
architecture and each component ae custom made
However, it requires a well-defined methodology with
clear steps, easy trandformations and efficient tools to
help the designer in the synthesis process.

In this project, we apply the SpecC methodology for the
design of thisred-time emulator.

In this report, we describe this new approach and we
present the cae of a DC system as an example We
present & the beginning an introduction to the emulation
principles. From this description and according to the
SpecC methodology, we deduce the specification model
of the emulator. Then, we describe te different steps and
transformations used to convet this modd to a
communication  modd  according to  the  SpecC
methodology. This modd can be then transformed to an
implementation mode reedy for manufacturing.

2 Emulator Principles

The objective of the emulation approach in the dectric
drive applications is to design an dectronic system, which
can reproduce the physica system functioning in red time
and with high precison. This sysem, cdled emulaor,
will be used for both of the new control device vaidation
and of diagnosis.

- Vdidaion of control device before using the control
device on the physicd sysem and in order to avoid
any desgn surprise  (usudly  dedtructive  and
expendve), the control device is vdidated on the
emulation step where it is connected to the emulator.
This emulator should behave exactly like the physicd



sysem, in sense to make the control device believe
that it is connected to the redl CMS system. Thereby
it hes to generate and receive information Smilarly to
the physica process it receives control sgnas and
generates information about the system date in forms
identical to those obtained by sensors. After this step,
the control device is completely vaidated and can be
switched for use with the physica process as shown
onfigure 1.
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Figure 1: Structure of the emulation application

- Diagnoss The emulator is used in padld with the
process and must receive the same control sgnds as
this process. Outputs of the emulator will be
continuoudy compared in red time and in order to
detect any dysfunction of this process. Stored results
of the emulator will be used to andyze problems and
to avoid or detect their origins.
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Figure 2: Structure of the diagnosis application

In both cases, the emulator has to reproduce accurately
the process functioning. Therefore, it has to compute the
Sysem State and to convert the obtained results in forms
identica to those obtained by sensors.

2 Converta/Motor/Sensors

For this and in order to obtain precise results, we should
use precise modes of different components used on this
process and a high performance computing system with
the lowest computing step as possible (1ns or less).

On the other hand, this emulator must be flexible, essly
configurable by the user according to her/his gpplication,
and it mug dlow the storage of results and if necessary
monitoring.

According to these previous considerations, the emulator
structure will be composed of three main modules:

- Computing module: it computes, according to the
digitized modes, the sysem date varigbles This
computing is peformed in a loop manner with a
period hor (computing step) equa to 1rs or less for
high precison applications. This module receives
digitd control sgnds and generates correponding
numeric  results representing  dtates  of  different
components on the process (converter, motor, load
and sensors).

- Emulaion sensors module it converts numeric
results on different other forms identica to those
obtained by the used sensors. Different types of
conveson will be done like numericnumeric
(solver, ...), numeic/digitd (encoder, ...) ,
numericdlandog (LEM, ...). The execution of eech
converson will be done in a periodic manner with a
period that depends on the temporad characterigtics of
the sensor and the captured magnitude. However,
these periods congraints are usudly less severe than
the computing module one.

- Monitoring module it peforms the acquistion of
new parameters and the storage of results. It can aso
pefoom some monitoring tasks. For  most
applications, the initidization task is performed only
a the begnning of the emulaor functioning.
However, for high performances gpplications, it can
be executed severd times within  the emulation
running in order to introduce variaion of system
paamaes due, for example to the variation of the
environment like the temperature... On the other
hand, the storage operation will be done in a periodic
manner with a period, Ts = x * hor, where x is an
integer configurable by the user.

3  SpecC Methodology [1,2]

With the ever increesng complexity and time-to-market
pressures in the dedgn of systems-on-chip (SOCs) or
embedded systems in generd, both industry and EDA
vendors are trying to move the desgn to higher levds of
abdraction, in order to increase productivity. At higher
levds, there is no difference between hardware and
software. An SOC is the combingtion of hardware and



software, and a the system-levd the distiplines merge.
Great productivity gains can be achieved by darting
desgn from an executeble sysem specification ingtead of
an RTL dexription a the golden reference modd,
throwing away al sysem modds developed earlier in the
process. However, we ae dill just a the beginning of
understanding the design process a the sysem level. No
tools and no wel-defined design flows are avalable from
industry or EDA vendors.

Managing the complexity a higher levels of abdtraction is
not posshle without having a very well defined system-
levd design flow. A wel-defined design methodology is
the bess for dl, syntheds  veification, desgn
automation, and so on. Only then can we find or cregte a
language that actudly fits the desired flow, and not vice
versa

SpecC  Sydem-levd desgn methodology and  SpecC
language are the result of decades of research done in the
area of SOC design a the Center for Embedded Computer
Sysdems (CECS) a the Universty of Irvine Cdifornia
uai).

SpecC language was developed exactly for the purpose of
supporting a system-level design flow, and it therefore

stisfies  dl the reguirements of  synthesizahility,
verifigbility, and so on. SpecC is a superset of C and adds
a minima, orthogond st of concepts needed for system
design. Itiscurrently in the process of being standardized.

The SpecC methodology is a s of modds and
tranformations on the modds (Figure 3). The modes

written in programming language (SpecC languege) ae
executebles descriptions of the same system at different

levels of abdraction in the design process. The
tranformations are a series of well-defined steps through
which the initid specification is gradudly mapped onto a
detailed implementation description ready for
meanufacturing.

The SpecC design methodology is besed on 4 wadl-
defined modds, namdy a specification modd, an
architecture modd, a communication modd, and finaly,
an implementetion modd. In the following section, we
will give a brief description of each modd and of the
refinement tasks leading from a functiond specification
modd dl the way to a cycleaccurate implementation

modd in SpecC.

Specification model: The SpecC system-levd design
methodology starts with the capture of the intended
functiondity in the form of an executable specification as
shown in figure 3. This initid gpecification modd
decribes the functiondity as wel as the peformance,
power, cost and other condraints of the intended design.

It does not make ay premaure dlusons to
implementation details.

During specification cepture the designer may reuse
exiging code sgments, functions or procedures by
instantiating them out of an algorithm library.

Specification modd is a purdy functiond modd that
abgtracts the system functiondity. It is the starting point
of system design process and the input to architecture
exploration task.
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Figure 3: SpecC methodol ogy

Architecture exploration: It refines the specification into
an architecture modd. It includes the design seps of
dlocation, partitioning of behaviors chands, and
variables, and scheduling.

Allocation determines the number and types of the system
components, such a  generd-purpose or  custom
processors, memories, and busses, which will be used to
implement the sysem behavior. Allocation includes the




reuse of intellectua property (IP), when IP components
are selected from the component library.

Behavior partitioning didributes the behaviors (or
processes) that comprise the system functionality amongst
the alocated processng eements. Variable partitioning
assigns variables to memories, and channel partitioning
assigns communication channesto busses.

Scheduling determines the order of execution of the
behaviors assigned to ethe the sandard or custom
processors after partitioning. In other words, scheduling is
used for software and hardware components.

Architecture  exploretion is an  iteraive  process
culminating with an architecture modd that represents a
refinement of the gpecification modd. Estimators evauate
eech architecture candidates satisfaction of the design
condraints, until al condraints are sdtisfied, component
and connectivity redlocation is peformed and a new
architecture with  different components, connectivity,
partitions, schedules or protocols is generaed and
evaluaed.

Architecture model: It describes the system functiondity
as well as the overdl dructure of the fina implementation
for the design. The communication in the architecture
modd is through the abgtract global channds.

Communication Synthesis: It refines the abstract
communication between behaviors in  the architecture
modd into an implementation. The task  of
communication  synthess includes the insation of
communication protocols, synthesis of intefaces and
transducers, and inlining of protocols into synthesizable
components. In  the resulting communication modd,
communication is described in terms of actud wires and
timing relationships are described by bus protocols.

Communication model: It is the fina output of the
system-level design process which describes the system
sructure as a st of components connected through the
wires of the set of buses.

Backend: Theresult of the synthesis flow is handed off to
the backend toals, as shown in the lower part of figure 3.
The software part of the hand-off model consistsof C

code for compilation and the hardware part consists of
behaviord C (VHDL) codefor high-level synthesis. The
backend toolsinclude compilersand high-level synthesis
tool. The compilers are used to compile the software C
code for the chosen processor. The high-level synthesis

tool synthesizesthe functionality assigned to custom
hardware and the functiondity of transducerswhich are
necessary for connecting different processors, memories,
and IPs.

After software compilation and hardware synthesis, the
find implementation modd is generated.

Implementation model: It represents a clock-cyde
accurate  description  of the whole sysem. This
description, in turn, then serves as the bads for
manufacturing of the system.

In each of the taks the desgner can make design
decisons manudly by using an interactive grgphica user
interface, for example, while trandformations from one
modd into ancther can be accomplished automaticaly by
folowing the refinement rules or modd gquiddines. After
eech refinement sep in the syntheds flow, a
corresponding SpecC modd of the system is generated,
which means that dedgn decisons made in esch design
task are reflected in the generated modes. Thus in the
velidation flow that is orthogond to the synthesis flow in
the SpecC methodology, one can peform dmulétion,
andyss and edimation of the SpecC modds generaed
after each task.

After each dedgn dep, the design modd is ddicdly
andyzed to edimate cetan quality merics such as
performance, cost, and power consumption. Anadysis and
edimation results are reported to the user and back-
annotated into the modd for smulation and further
synthess.

The design can be daticdly andyzed or smulated after
eech sep for vdidation of design correctness in terms of
functiondity, performance, and other condraints. A
smulation modd is compiled &fter eech sep which can
be run on the host computer to validate correctness for
smulation.

At any dage of the refinement process, a dandard
software debugger can be used to locate and fix the errors
if veification fals. Such debuggers enable one to st
bresk points anywhere in the source code and to perform
detailed state ingpection at any time.

4 Specification Model

According to the previous description, the emulator can
be desribed by a man behavior (Emul) induding
different sub-behaviors: one for the computing module,
one for sensors and one for monitoring (Figure 4).

(Emul )

Figure4: Specification model of the emulator

These behaviors are usudly composed of other sub-
behavior according to the modular gructure of the



physica system. So, we use a sub-behavior for each of the
converter, motor/load and sensor component and we add
separate  sub-behaviors for initidizetion process and for
the monitoring module (induding dorage). Thee
behaviors can dso be decomposed of child-behaviors as
we usudly do with the motor/load behavior. Indeed, this
behavior is usudly decomposed on  mechanic-child
behavior and dectric-child-behavior (Figure 5).

Computing steps used with different modules are not the
same dnce they don't have the same tempord
characterigtics. So we propose, for more flexibility, to add
to eech of the obtained child-behaviors a clock-generator
behavior thet contrals its execution. The occurrence of the
clock event is defined according to the module tempord
characterigtics.

However, we usudly use the same computing step for the
CM system (1ns) and different computing steps for esch
different type of sensor...

The obtained specification mode is shown on figure 5. It
was vaidated for the case of DC and AC systems.

(Emul )

rcomputing R Monitor
T | S ) e | ILI | |
Init Storage &
Converter Motor/Loac Monitoring

Figure5: Detailed Specification model of the emulator

Constraints: One of the most important constraints with
this gpplication is the computing time of the CM System
State. Indeed, this computing must be done, according to
the given modds in a periodic manner with a computing
step of s or less While this seems to be redizable using
High peformance sandard processors for the case of
smple sysem using smple models, it is not possble for
high peformance application that needs sophidticated
models and smdler computing dep. Tempord problems
of this computing, implemented into a processor, ae
related to the computing load and to the use of
interruption for the periodic functioning management.

Other condraints such as the resolution of the used DAC
devices and the resolution and precison of the used
senors (CLO, ...) will cetanly influence the design
procedure.

5 Architecture Exploration

At the architecture alocation phase, different possibilities
can be used according to the gpplication specifications
(flexibility, time, cost, precison,...). However, since we
need to dore emulator results for monitoring and sudy,
we didinguish two man dructures according to the
emulator integration on the physical system:

- Monitored emulator: with this dructure, a master

processor (PC or the micro-controller implemented
on the control device) monitors the emulator. This
mester  will initiate the emulator functioning by
sending new parameters and will be used in padld
with the emulator to store results and treatment of
these results for monitoring. Transmisson of results
isdonein aperiodic manner Ts.
In this case, the emulator will interrupt the processor
functioning a each new dorage period in order to
begin a trangmisson task. This solution imposed the
use of interruption, which can disurb the running
task peformed by the mester (case of the
microcontroller).

- Autonomous emulator: the emulator is associated to
an extend memory on which will be dored
paanaes and emulation results. The emulaor
functioning is then independent from  other
computing systems. At the starting step, it reads new
parameters from the externd memory block and then,
a each new dorage period, it will write new results
into successve regigers of this memory. Another
processor used for initidization and monitoring will
manage this memory when the emulation is off-line
in order to initidize the process parameters and to
restore emulation results. This solution is very useful
when used with the micro-controller of the control
device gsnce it will not disturb the control tasks.



However it introduces some delay in the monitoring
operation.

For esch of these dructures, different dlocations can be
sudied. These dlocations represent different possibilities
of implementetion of the emulation core EmulCore
(computing and sensors emulaion modules) between full-
software and full-hardware solutions.

In our project, tempora congraints of our system are very
svere, expecidly in the case of complex modds. So, we
chose to study the full-hardware solution.

In this case, we usudly use one ASIC for computing of
CM sysem dates and a custom hardware for each (or
some) sensors. This introduces communications  between
these different hardware blocks and the ASIC component.
In order to smplify this presentaion, we consder that al
modules ae induded in the same HW component
EmulCore.

In the following sections, we present the study of this
solution when applied to the two described emulation
structures (Monitored and Autonomous). Therefore, we
will presst for each of these dructures the different
modifications applied to the specification mode in order
to obtain the architecture modd.

5.1 Monitored Emulator

In this structure, the emulator is supervised by a software
goplication, which initiates the emulator functioning and
receives results from it. This solution is useful for
monitoring and the software can be implemented on the
control  device microcontroller. However, in this casg
cautions should be teken about the management of
communication without disturbing the control tasks (since
these tranders will be done usng interruption of the
microcontraller...).

51.1 Allocation and Behavior s Partitioning

The fird step in architecture exploraion is to alocate a
st of processng dements (PES) and to map the behaviors
of specification onto the dlocated PEs. In this structure
and according to the previous condderdions, the
emulation sysem will be composed of two PEs the
hardware component EmulCore that performs emulation
taks and the software component used for initidization
and results storage.

The obtained refined mode after behavior partitioning is
represented by figure 6. In this modd, two behaviors are
added to EmulCore-PE1 (init & storage behaviors) in
order to synchronize and establish communication with
the software component. This communication becomes
system-globd and it is moved to the top-level connecting
the PE behaviors.

(Emul

PE1 (EmulCore)

Figure 6: Architecture model after allocation and
behavior partitioning (monitored emulator)

51.2 Variable Partitioning and Scheduling

The number of exchanged vaiables between HW and SW
components is very limited (usudly less than 10), so we
chose to use locd copies for these variables in each PEs.
Therefore in the refined modd obtaned &fter varigble
partitioning, globa variadles for results and parameters
are replaced with ther respective abstract channes Gy
(for parameter Pi) and G; (for result magnitude E). Code
is inserted into behaviors to communicate variable vaues
over these channds Note that data are exchanged in a
vector type: one for parameters and onefor results.

Scheduling The next gep in the architecture exploration
process is to schedule behavior executions on the
inherently  sequential  processng  dements.  Processng
eements have a sngle threed of control only. Therefore,
behaviors mapped to the same PE can only execute
sequentidly and have to be seridized.

In this gpplication, a the darting point, the emulator is
waiting for a start order from the master. Then, it receives
new parameters of the system sent by the master and
begins its functioning tasks. At each x computing Steps
(storage period), the emulator will send results (im, Wm)
to the magter. Two functioning mode can be used with the
master;

- It can be used only for monitoring of the emulation:

initisting and receiving results. In this case dfter
snding paameters, the meder will wait for the
results.  In this  solution, implementation  of
communication will be easy, however the master
can't do any thing dse e the sametime.
In this case, behaviors are executed in a fixed and
predetermined order. The datic scheduling approach
will be applied essly by converting al concurrent
statementsinto sequentia compositions.

- The mader is dso used for other tasks such as contral
or trestment of these results for monitoring and
diagnoss Therefore, a dynamic scheduling gpproach
isrequired.




In  this case synchronization for information
exchanges will be done udng interuption. The
emulaor will send an interruption signd to the
mester esch dorege period in order to begin trandfer.
This solution is more adeguate for embedded systems
gnce it can be integrated eesily in the control device,
dlowing then both agpplication of vdidaion and
diagnosis.

In order to preserve the shared semantics of the variables
and to keep the locd copies insde PEs in
synchronization, updated data vdues ae exchanged
between the two components a the exigting
synchronization points. Therefore, these updated data
vdues ae communicated over the exiding message-
passing channds together with synchronization of the
behaviors execution among the PEs.

According to these purposes, the intermediate architecture
mode obtained after variable partitioning and scheduling
is represented by figure 7.
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Figure 7: Architecture model after variable partitioning
and scheduling (monitored emulator)

51.3 Channd Partitioning

Thegod of the channd partitioning isto group and
encapaulate dl the channd s existing between the
communicating blocksinto one bus. The busisaso atype
of channdlsin SpecC and it impliesthat the future
implementation would be wired busses.

In our application, we have only two components
communicating with each other. Therefore, only one

system bus is dlocated connecting PEL and PE2, and dl
communication channels are mapped onto that bus.
The obtained refined modd is represented by figure 8.
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Figure 8: Architecture refined model after channel
partitioning (monitored emulator)

5.2 Autonomous Emulator

A memory is added to the emulator system in order to
obtain an independent emulaion sysem. In this memory
will be dored both the sysem parameters and the
emulation results. At be beginning, the emulator darts by
reading of parameters at corresponding addresses on the
memory, and then it will Sore, & each dorage period, the
obtained results. Both the emulator and the monitor will
manage this memory.

This solution can be used ether done or with a software
component (as on the control device. The man
advantage is the portability and the autonomy of this
emulator snce it will not interrupt the software
component. This last can a each time ask memory for
information. The start/stop of the emulator can be done by
the SW component.

To samplify the gpplication, we assumed that the monitor
manages this memory only when the emulator is stopped.
So, the€s no management of trandfer conflicts to
perform. However, synchronization between Hardware
and Software components must be done a the beginning
and a the end of the emulation procedure.

521 Allocation and Behavior s Partitioning

As gpecified before, the architecture target will be
composed of three components. the EmulCore hardwere




component, the software component (processor) and the
memory block. This memory, shared by the two active
components, is used for dorege of parameters and
emulation results.

However, locd copies ae added, especidly, to the
emulator component in order to perform its computing as
fast as possble without asking the memory a esch
computing step for data These local copies correspond to
the used parameters and to the results obtained in the last
computing sep (or in the n last computing <teps
according to the used method for digitizing).

The obtained refined mode after behavior partitioning is
represented by figure 9. In this modd, two behaviors are
added to EmulCore (init & <Storage behaviors) in order to
gynchronize and establish  communication  with  the
software and memory components.

This communication becomes sysgem-globd and it is
moved to the top-levd connecting the PE behaviors
Synchronizetion is done a the beginning and the end of
the emulation procedure by using two events Start and
End. The processor generates the Start event dfter
computing the new system parameters according to the
user configuration. It signds to the init behavior in the
EmulCore component that parameters are ready. Then,
the emulator sarts its computing and storage procedures.
At the end of its functioning, it sends the End event to the
software  component  Sgnding that emulaion is stopped
and that data are ready in the memory block.

PE3 B
MEM

(" Emul

Figure9: architecture model after allocation and
behavior partitioning (autonomous emulator)

5.2.2 Variable Partitioning and Scheduling

In this case and according to the previous specifications,
synchronization between HW and SW components are
performed by using of two events Start and End.

The Start event can be associated to the parameters
vaidbles P and encgpsulaed into a Message-Passing
channd that modes the abdract communication
smantics  of  blocking, unbuffered  message-passing
between any two client-behaviors.

On the other hand, the End evert will be connected to a
processor interrupt input. The interruption program is

ued to st a flag F_end when this interruption is
activatled. When the ooftware progran  needs the
emulaion results for monitoring, it tests this flag. If it is
set, it peforms the data read segquences from memory,
otherwiseit waits for the interruption activation.

The obtained refined modd dfter vaiable partitioning and
scheduling is shown on figure 10.
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Figure 10: architecture model after variable partitioning
and scheduling (autonomous emulator)

Note that, the emulation can generae the digitd dgnd
F_end ingtead of the event End. And then, no interruption
isrequired for the synchronization.

523 Channd Partitioning

The obtained architecture target is composed of two
active PEs (PE1 and PE2) that share a memory block
(PE3). Therefore, only one bus is used into which al the
globd chands and ther  implementation ae

encapsulated (figure 11).
5.3 Remarks

These dructures can  be decomposed into others
components according to the complexity of the sudied
system. This bursting will usualy concern the distribution
of sensors on others hardware components as shown on
figure 12,

We can dso didribute a complex child behavior like the
Motor/Load behavior on severad components. However
this will introduce communication protocols and then
cautions must be taken in order to obtain the best
compromise “peformance/cost”. These didributions have
to be gdudied in more deals with edimetion tools
according to the defined application.
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Figure 11: Architecture refined model after channel
partitioning (autonomous emulator)
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Figure 12: Decomposed architecture of the emulator

6 Communication Synthesis

In the SpecC achitecture mode, obtaned from
architecture  exploraion, the communication between
components is gill modded on a high levd through
abgract channels. The channels were obtained by smple
encapaulaion of globad varidbles and their corresponding
synchronization.  Although the channds represent the
grouping according to the mapping onto busses, they do
not yet contan any information about the actua
implementation  of the  communication  primitive's
semantics  (send(), receive(),...). The communicaion
gynthesis, therefore, is to gradudly refine the channes in
the sysem modd down to an actuad implementation with
data transfers over wires. This comprises the seps of
protocol insertion, transducer synthess and protocol
inlining [6].

In our application, the software component is usualy
chosen from sandard  processors  (IP components).
Therefore, PE2 will be replaced a the communication
synthesis by this predesigned processor chosen from the

component  library. This processor has  predefined
functiondity —and  fixed extend intefaces and
communication protocols.

In the process of protocol insertion, the SW component
will then be replaced with a modd of the IP component
that includes the IP component behavior and the protocol
wrapper (Figure 13). The wrapper provides the abstract
canonicd  inteface  for  communication  with  the
environment.

Note that in case of protocol incompatibilities, transducers
components will have to be inserted between the IP
component and the bus to trand ate between the protocols.

meﬂe élg

Figure 13: I P component insertion into the architecture
model

For the illugtration of our application we will use the
DSP56600 (Motorold) as the chosen IP component for
implementing the software behaviors[7].

6.1 Monitored Emulator

6.1.1 Protocol I nsertion

Figure 14 shows the emulator modd after insation of a
bus protocol for the system bus, and after the processor
behavior has been replaced with a modd of the red
processor with awrapper.

Application

Protocol
layer

ayer

Figure 14: | ntermediate communication model after
protocol insertion (monitored emulator)

In this case, we propose to use the processor protocol as
the system protocol. Then the transducer will be removed
during inlining, snce processor and bus protocol ae
identical. However, transducer will be added, if needed,
between hardware protocol and the system bus protocol.
This transducer will be later syntheszed with the
hardware component.

Usudly, no protocol is defined for the hardware part, so
we need to andyze the HW datgpath to generate the 1/0
protocol and then insert the transducer component.

Note that in order to smplify this illustration, we suppose
that the hardware component has the same protocol as the
system bus (DSP56600 protocol). Then, the transducer is
not required.



The protocol channd in the system bus and the wrapped
processor model describe and implement  the  processor
bus protocol according to its timing diagram, shown in
figure 15. The protocol layer provides primitives for
performing read/write transfers and for raisSng interrupts
over the processor bus.

On top of the protocol layer, the application layer created
during protocol insertion implements the semantics of the
abstract communication of the bus channd, usng the
primitives provided by the encapsulated protocol channdl.

On the software sSde, the communication primitives of the
gpplication layer are customized 1/O routines inside the
processor that become pat of the generated RTOS. The
I/O routines together with customized interrupt handlers
perform the necessary handsheking and data conversions
to implement the semantics of the communicetion
primitives using the processor’s I/O instructions.

On the hardware Sde the communication primitives are
part of the system bus application layer. They will later be
inlined into hardware and redized as additiond FSMDs
that implement the low-levd bus protocol and the high
level handshaking and data conversions.
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Figure 15: Protocols of the DSP56600 external bus

In the monitored emulator of the emulator example and
after protocol insertion, the DSP is the central component
and the magter of the system bus. The software on the
DSP initistes dl data transfers on the system bus between
software and hardware  components.  However, this
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software is associated to a DSP  interrupt, which is
triggered by the hardware by using asynchronous events.

The DSP is the communication mader, the required
blocking, synchronous message pesing semanttics ae
redized as follows the ASIC dgnds its reedy date by
rasng an interrupt whenever it reaches a communication
point (at the beginning of each new Ts period). The
software on the DSP peforming the task of control or of
monitoring will be interrupted in order to execute the
tranfer program. So, it begins by trandferring the daa
one word a a time by repeatedly executing ingtructions
that initiate read or write cycles on the externa bus.

The hardware has a dedicated address that corresponds to
a location in the DSP memory space. Once software and
hardware a both ends are synchronized, the DSP as the
master on the bus initiates and controls data transfers by
reading from or writing to the memory location with the
address of the cusom hardware. The ASIC, on the other
hand, detects its own address and answers DSP requests
by supplying or storing the requested data from and to
their local registers or memories.

On top of the actud low-leve transfers, synchronizaion
and handshaking between hardware and  Software  is
handled by sending and receiving events on both dSdes
On the processor Side, the operating system sends events
to the cusom hardware by writing to the externd bus
address assgned to it. Than, dgnding an event is

implemented by initiating a daa transfer over the
processor bus and to the hardware component and

therefore both can be combined. The hardware component
ligening on the bus receives the transfer request event and
supplies or stores the data. On the other hand, the Custom
hardware PEs sends event to the software by interrupting
the processor. Indeed, the hadware dgnds the
availability of new computation results to the processor
by raising an interrupt line.

Note that the interrupt assigred to the hardware
component should be with the highest priority in order to
perform emulaionin red time.

6.1.2 Protocal Inlining

Findly, inlining of the wrapper functiondity into
hardware components is peformed (Figure 16): the
resulting SFSMDs  for  interrupt  generation, address
decoding and bus protocol handling functiondity are
combined with the SFSMD executing the behavior
origindly assigned to the custom hardware coprocessor.
Both parts will then be synthesized together to generate
the fina custom hardware. After inlining, the actua ports
and connections are exposed and visble resulting in the
find system modd as actualy seen after implementation.
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Figure 16: Communication model after protocol
inlining (monitored emulator)

In the cae of the ASIC emulator system, communication
primitives are inlined into the init and storage behaviors
tha have been crested during patitioning for
synchronization and communication between the ASIC
and the processor. Both the applications and protocol
layers of the communications primitives that had been
cregted during protocol insertion ae inlined into the
custom hardware behaviors.

The application layer performs synchronization with the
DSP and converts the complex data dructures into bus
trandfers. The protocol layer performs the actud bus
transfers according to the protocol shown in figure 15.

The Init SFSMD synchronizes with the software on the
DSP, receives the process parameters over the processor
bus, and darts the emulator computing. At esch new
dorage period (Ts=Xs cydes), the dorage SFSMD
synchronizes with the DSP (by generating an interruption)
in order to transfer the emulation results back to the
processor. For their bus transfers, the SFSMDs (figure 17)
implement the bus protocol according to the timing
diagram shown in figure 15.

The Init SFSMD waits for a faling edge of the chip sdect
signd MCS and samples the bus address in date S1 until
a trandfer with the address of the ASIC is recognized. In
state 2, the WR control sgnd is sampled until a faling
edge has been detected that signds the beginning of a bus
write cycle. In gate 3, the Init SFSMD waits for the rising
edge of sgnd WR before latching the data bus contents
into 1/0 regider, writing the data from the 1/0O reg into
locd memory Mem, and incrementing the address register
Addr in superstate 4. Findly, it increments and checks
the loop counter in gate S5, and branches back to wait for
the start of the next word transfer until al data tems have
been recaved. Then it will activae the emulator

computing.

The dorage SFSMD synchronizes with the DSP by
rasing the processor’'s interrupt line IRQC in its first state
S1. Then it waits for a fdling edge of the chip sdect
dgnd MCS and samples the bus address in state S2 until
a trandfer with the address of the ASIC is recognized. In
date S3, the RD control signd is sampled until a faling
edge has been datected that sgnds the beginning of a bus
reed cycle In superstate $4, the storage SFSMID reads the
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data word from the custom hardware memory Mem into
the 1/O reg, increments the loca address register Addr,
and enables 1/O reg on the data bus. It then waits for the
risng edge of RD in date S5. Findly, it increments and
checks the loop counter in state S5, and branches back to
wait for the dtart of the next word transfer until all deta
items have been trangmitted.

Load | /Oreg=l§

Addr=&y;
rw=0; //write i

ddr=Addr+1:

) Addr=y;
rw=1; /read
; load_|/Oreg=1,

Addr=Addr+%;

S complete=1
(b) Storage SFSMD

Figure 17: HW communication SFSMDs

In case of this gpplication, we assume that the synthesized
hardware for the Init and Storage SFSMDs will be fast
enough to handle bursts of successve trandfers initiated
by the magter processor a the maxima processor bus
speed (2 processor cycles per bus transfer). Therefore, the
delay of the loops in the SFSMDs has to be less than 2
processor cycles. Otherwise, wait states have to be added
to the bursts of bus transfers on the processor sde, or



more daborate handsheking scheme (eg. DMA  or
interrupt-based  acknowledgment  of  dngle  trandfers)
would become necessary.

Figure 18 shows the implementation of the interface
between hardware and software after find inlining.

Local Flag [Adar] [Mem
memory —> | | DI[23:0] y+n
x+: N > RD 1/0r y
L
5' 8 5 WR >
DSP56600 (&) E[_MCs Controller
Processor | <|a| S| A[15:0 Datapatt
7
IRQC | HW
K ]
Figure 18: HW/SW interfacing model (monitored
emulator)

The sequence for trandferring data and control from the
DSPtothe ASICis:

1- Under the assumption that the coprocessor is ready
whenever the software on the DSP wants to initiate
the emulator parameters, the DSP dats writing
these parameters onto the DSP bus. The processor
successively  writes the block of daa for the
hardware onto the bus one word a a time by
initiating a sequence of bus write cycles with the
address assigned to the coprocessor.

2- The Init SFSMD of the HW component is triggered
by an address match, receives the data word over
the bus, latches it in its 1/0O reg and findly stores
the laiched data in the locad memory of the ASIC
as described previoudy.

3 When the lagt data has been received, control in the
ASIC modd is trandferred from the Init SFSMD to
the SFSMD corresponding to the emulator-
computing behavior.

4- The emulaior computing SFSMD reads the process
parameters from the locd memory and darts the
emulator computing process.

The transfer of emulator results to the DSP is handled in a
dmilar manner:

1- The emulator computing SFSMD writes the
obtained results back into the memory. At the
beginning of each Ts period, control is transferred
to the Storage SFSMD in the hardware component.

2- The Storage SFSMD interrupts the processor and
then waitsfor the start of the bus data transfer.

3 The interrupt program on the DSP darts the
communication software. The processor reads the
data from the hardware component I/O reg over the
bus one word a a time by initiating a sequence of
successve bus read cycles. The data is read one

word a a time usng the address assgned to the I/O
reginthe ASIC.

4- The dorage SFSMD in the ASIC decodes the bus
address, reads the results from the locd memory,
and puts the requested data on the bus.

5 After each read, the ASIC loads the I/O reg with
the next data word until the complete complex data
issent tothe DSP.

Note that for each message, the processor transfers the
data items sequentiadly over the bus one word a a time in
a predefined, fixed order. Hence, a each dep in the
sequence of data trandfers it is implicitly defined which
word of which data item is currently being transferred.
The custom hardware and the DSP keep track of the
sequence of data trandfers, and according to their interna
Sides determine how to process the trandferred item.

The interrupt priority assigned to the ASIC must be with
high priority in order to not interrupt the transfer between
the emulator and the DSP. This dlows a red time
functioning of the emulation system.

6.2 Autonomous Emulator
6.2.1 Protocol Insertion

Figure 19 shows the emulator modd after the insertion of
the DSP bus protocol as the system bus protocol, and after
the processor behavior has been replaced with a mode of
the rea processor with a wrapper. Transducer will be
added, if needed, between hardware protocol and the
system bus protocol. On the other hand, memory must be
able to respond to the read and write requests from DSP
and ASIC. This again reguires desgn of a bus inteface
for memory to respond to bus readwrite requests. The
behaviors and complexity of such interfaces depends on
the time-congtrained behavior of these components a
their ports. So, we must discuss the timing behavior of
these components and then anayze these interfaces [§].

PE3
Mem |

Figure 19: Communication model after protocol
insertion (autonomous emulator)

Note that in order to simplify this illustration, we assume
that the hardware component has the same protocol as the
system bus (DSP56600 protocol).

On the other hand, we experimented with Samsung
memory KM68257C [9], which is a CMOS daic RAM



and has 8 common input and output lines. The different
pins and the memory specification for read and write
cyclesare shown in figure 20.
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Figure 20: Memory bus protocol (KM68257C)

According to these specifications, this memory is fast
enough and will be used directly without any additiond
interface according to the schema of figure 21. Therefore,
no interfaces are required with this architecture mode.

DSP/ A A MEM

Asic P D
/IMCS /ICS
/RD /OE
/WR IWE

Figure 21: Interfacing with memory block

Parameters and results are stored in the memory a precise
corresponding  locations  with  precise  addresses  that
correspond to free locations in the DSP and ASIC

memory Spaces.

According to this dructure architecture modd, we
diginguish two magters sharing the same bus and the
same memory component:

- DSP: it writes a the beginning parameters vaues to
their corresponding locations in the memory block,
and reads resultstables;

- ASIC: it reads & the beginning parameters from ther
corresponding locations, and writes results a each
execution of the storage behavior (Ts period).

téken in order to avoid
Two <olutions can  be

So, cadtions must be
communication  conflicts.
consdered:
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- Without manegement of the bus The DSP initiates
the emulator functioning after initidization of the
memory with new parameters. Indeed, it sends to the
emulator the dat event to dSat the emulator
functioning. At the reception of this sgnd, the
emulaior, begins by reading parameters from the
corresponding memory locations and then darts the
computing process. According to the previous
specifications, the emulator writes results to the
memory a each Ts period. These results are written
in a table. Along this time, the DSP can peform
others tasks, however it is not alowed to do transfer
on its externa bus while the emulator is running.
When the emulation process is finished, the hardware
informs the DSP by sending an extend event that
can be wused with interruption that sets a
corresponding flag or by seting a Sgnd connected to
a processor digita input. So the DSP, when it is
reedy for results acquidtion will test this flag, and
then perform the acquisition of the result table for
andyss. The two man advantages of this solution
are tha the required management of the bus is very
smple and the monitoring processor performs other
tasks while running emulaor. However, the DSP has
some functioning restrictions (forbidden access to the
extend bus during emuldion) and canot read
results before the end of the emulator computing.

- With managemett of the bus The beginning of
operation is done like the previous solution: the DSP
initidize the memory then initiate the emulation
functioning. Then, both the DSP and the ASIC can
access to the memory for readiwrite  Specific
primitives in the gpplication layer will manage
conflicts and priority is given to the ASIC. The main
advantage of this solution is to dlow the access of the
DSP to the memory to change parameters or read
results in order to perform the monitoring operations.
However, this solution requires a sophiticated
protocol to manage conflicts. This solution can be
used for high performance gpplication indeed it can
introduce, for example, in red time paameters
vaidions due to the temperature variation and to
asynchronous events and it can perform monitoring
in red time dnce it has not to wait the end of the
emulation and the DSP can a each time read results
from the memory.

As described in previous sections, the application layer,
used in the components (ASIC and DSP), wrgps around
the protocol layer and implements the abdract
communication semantics required by the behaviors in the
application over the primitives supported by the protocol.
In this Structure of the emulator system, this layer has to
perform tasks like synchronization, arbitration, addressing



of data on the bus, dicing of abstract data types into bus
words.

In this project, we implement the case of the first slution
(without management of the bus), which represents a
smple bus management protocol.

In this case the reguired synchronous passng semantics
ae redized a follows The DSP determines new
parameters and it stores them in their locations indde the
memory block. Then, it sgnds by an asynchronous event
to the emulator that data ae ready and it continue
execution of other tasks without using its externa bus.
The emulator waiting for the dat dgna from the DSP,
recaves this event and then execute the init behavior
before beginning emulator computing. At each Ts period,
the emulator increments the memory address and dore
new results in a table. At the end of its computing, the
ASIC dgnds by an asynchronous event to the DSP that
results are ready in the memory. This event will interrupt
the DSP program and st a flag. The DSP, tests this flag
when results are required in order to peform new
acquisition.

6.2.2 Protocal Inlining

The communicstion modd obtaned after inlinig is
represented by figure 22. As detailed in the previous
section, the applications and protocol layers are inlined
into the init and storage behaviors that have been created
during partitioning for synchronization and
communication between the ASIC and the processor. The
application layer peforms synchronization with the DSP
and converts the complex data dructures into bus
trandfers. The protocol layer performs the actud bus
transfers according to the protocol shown in figure 15.
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Figure 22: Communication model after protocol inlinig
(autonomous emulator)

The Init SFSMD synchronizes with the software on the
DSP, it receives the gart sgnd from it. Then, it reads the
process parameters over the processor bus from the
memory, and darts the emulator computing. At esch new
dorage period (Ts=x haor), the Storage SFSMD writes
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emulation results into the memory table When finished,
the ASIC send an event to the DSP sgnding theat data are
ready in the memory and that bus is “freg’. For the bus
tranfers, the SFSMDs  implement the bus protocol
according to the timing diagram shown in figure 23,
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......................... En_l/Oreg=1;
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S complete=1

(b) Storage SFSMD

Figure 23: HW communication SFSMDs (Autonomous
emulator)

The Init SFSMD waits for a fdling edge of a sgnd start
generated by the DSP. Then it begins the parameters read
from the memory: it begin by endbling the address



regiger on the address bus and fdling the sgnd MCS for
the memory sdection (S1). Then, it fals the sgnd RD in
stae 2 for sgnding the beginning of a bus read cyde In
the superdate S3, it latches the data bus contents into the
I/O reg and writes the data from the 1/O reg into loca
memory Mem and increments the address reg Addr. In
date $4, it ends the read cyde by raisng the RD and the
MCS dgnds (S5). Findly, it increments and checks the
loop counter in state S6, and branches back to dart the
next word read cyde until dl daa items have been
received. Then it will activate the emulaor computing. In
this transfer, parameters have same address in both the
memory block and ASIC locd memory.

At each new dorage period, the storage SFSMD performs
the writing process into the memory of the emulator
computing results It begins by enabling the address reg
on the address bus and fdling the sgnd MCS for the
memory sdection (S1). Then, it fdls the sgnd WR in
dae R for sgnding the beginning of a bus write cycle
In the supersate S3, the storage SFSMD reads the data
word from the custom hardware memory Mem into the
I/O reg, increments the loca address regiger Addr, and
endbles /O reg on the data bus. In dae $4, it ends the
write cyce by rasng the WR sgnd and then it disables
the memory sdection by raisng the MCS sgnd (S5). In
date S6, it increments and checks the loop counter in ae
4, and branches to sate S7 until dl deta items have been
received. In dae S7, it increments the address
corresponding to the next register to write in the externd
memory block. At the end of this trandfer sequences, the
Storage SFSMD gives control to the emulator computing
SFSMD in order to continue the emulation process.

Note that in the SFSMDs description in figure 23 we
omitted the tempora synchronization representetion in
order to smplify the schema This synchronization is
done according to the protocol diagram of figure 15.

Figure 24 shows the implementation of the
interconnection between the three used components after
find inlining.
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Figure 24: DSP/Memory i nterfacing model

The sequence for trandferring data and control  between
the DSP and the memory is:
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1- When the software on the DSP wants to initiate the
emulator parameters in the memory, the DSP garts
writing these parameters onto the DSP bus. The
processor successvely writes the block of data
onto the bus one word a a time by initiging a
seguence  of bus write cycles with the
corresponding  addresses assigned to the parameters
registersin the memory block.

2- Then, it sends an event to the ASIC sgnding that
new paamges ae dready dored in the memory
and begins another task without using the externd
bus.

3 Once the software on the DSP is ready to receive
the reaults, it performs an operating system cal that
checks the interrupt flag. If the flag is set, the
RTOS cdl returns immediatdly. Otherwise, the
RTOS waits until the interrupt has been received
before returning to the cdler. In both cases, the
RTOS resats the flag before returning.

4- The DSP reads the daa from the memory block
over the bus one word a a time by initiaing a
sequence of successive hus read cycles. The daa is
reed one word a a time using the address assgned
to the correponding regiger in the memory
component.

The seguence for trandferring data and control  between
the ASIC and thememory is

1- The emulator computing SFSMD waits for the
darting signd generates by the DSP then contral is
given to the Init SFSMD.

2- The Init SFSMD peforms read of parameters from
the externd memory then it gives control to the
emulation computing behavior.

At each Ts period, the Storage SFSMD is activated
in order to perform writing of new results.

4- At the end of the emulation procedure, the
emulator sends an event to the DSP sgnding that
results are ready in the memory block.

Note that for each message, the processor transfers the
data items sequentidly over the bus one word a a time in
a predefined, fixed order. Hence, a each dep in the
sequence of data trandfers it is implicitly defined which
word of which data item is currently being transferred.
The custom hardware and the DSP keep track of the
sequence of data trandfers, and according to their interna
sides determine how to process the transferred item.

6.2.3 Results

A find dmulation of these communication modds
including interrupt handling, externd data trandfers, and
0 on, was done. As described before, the communicetion
modd is a bus functiond modd. The behaviors in the



component are smulated on a functionad level in native C
language annotated with estimated delays. On the other
hand, communication between components is modded
accurately over actua wires of the processor bus.

In the backend, these models will be synthesized into a
dructurd  view of dl components in the system
architecture. The functiondlity of each component will be
implenented on top of the components RTL or
ingtruction-sst  micro-architecture. In the process, timing
will be refined down to the levd of individud cock
cycles based on each component’s clock period.

7 Exampleof aDC System

To vdidate this new gpproach of emulator design, based
on SpecC methodology, we describe in this section the
cae of a DC sygem emulator. This sysem is composed
of a DC motor fed by a four-quadrant chopper and
associated to a Hall sensor for the current capture and to
an Optical Incremental Encoder for the speed capture.

For the computing of this system dae, we use smple
models for the chopper and the dectricd motor. These
modds ae digitized usng Runge-Kutta 2 and obtained
equations are asfollows:

- Motor/load

Vi (k+2) =ai, (k) + bW, (k) +gV, (K)
[

| @
LW (K +2) =1 (K) + MW, (k) +nisign(Wi, ()

a, b, g I, mad n ae obtained from sysem
parameters and computing step hor.
- Chopper

Vi =(Co - Cy)Ve @
V, is the input voltage, V, the output voltage and C,,
C, control Sgnds.

The Hal sensor output is a voltage magnitude thet
represents the current value. This output voltage depends
on the Hal sensor characterigtics and the current vadue. In
our cae this dependency is represented by a smple
modd as described by equationl: Vout=im*5/15 volts. A
more sophisticated modd (including influence of noises,
temperature, wear,...) can be pecified in this behavior in
order to reproduce more precisdy the Hall sensor outpt.

The optical incrementa encoder generates two quedrature
uare wave dgnds (S0 and Sl1) with the same frequency
(proportiond to the motor frequency) as represented by
the figure 25.
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Figure 25: EIO sensor specifications

In our project we studied two solutions according to the
used data format. The first one used Hoating-point format
(floating emulator) and the second one used integer
format (integer emulator).

For the integer emulator, models eguations used for
computing ae converted into integer form.  This
tranddion is made according to two man congderaions
in order to have the best computing precision:

- We take the same precison levd of the system
parameterswhen coding them in integer form (1€);
- Weusd Di,, and Dw,, ingead of I, and W,,, which

represent variationsof i and W, where:

i 1
'I'Imz_lm
i 1024
1
W, =——W,_
T 1024
Thisalows obtaining agood precision of computing.
According to these condderations, we obtan
following equations.
i b W (K)
11280 (k+1)=a'im(k)+ 81 g,(Co(K) - Cy(K))
oo 1024 1024 vio i (

'r
FDW, (k+1) =i, (k)+mw,, (k)+ nsignéw,.(k))

3
where:
}a=128.1024.(a - 1)
{ b=1024.1024b
g, =1024.128gV,
and:

11=1024.10241

i m=1024.1024.( m- 1)

I'n=1024.1024n

1 DW,, (k +1) =1024.1024Dw ,(k +1)
a, b, gy, I, mand n will be the new paameters of this
system.
The man advantage of the integer form is to smplify the
computing unit.



7.1 Specification Model

According to the previous description, the specification
modd of the emulator can be represented as shown on
figure 26.

DC_Emul

S Sensors parameters / G, Computing parameters

Figure 26: Emulator specification (case of a DC system)

The execution of these different behaviors is  wel
scheduled by using different clock behaviors. Note that
for dmplification reason, cock generator behaviors are
not represented in this figure (Figure 26).

The init behavior is executed only one time a the
beginning of this modd execution. It peforms the
computing of different parameters and the initidization of
intermediate  variables. Paametlers ae obtaned, as
specified in previous equations, according to the system
characterigtics, to the digitizing method and to the
retained computing step.

All the other behaviors are executed in a periodic manner
with different periods. These periods are specified in the
clock generator behaviors by usng the ingtruction
waitfor (Time_delay). When the Time_delay is reeched,
the clock behavior generates an event that will activae
corresponding computing behavior.

Note that a this stage, there is not any notion of time.
Therefore, vdues (Time delay) used with these cdlock
behaviors sarve only to the scheduling of behaviors
execution. Execution procedure is supposed to be done
with Otime _delay.

These behaviors execution is scheduled as following:

- The dorage behavior is used, in our example, only
for the capture of emulator results (no monitoring
task is employed). Therefore it is executed a eech
Ts=Xs.hor period (Xs= 10).

- The computing core of the system date (chopper &
motor/load) is executed & esch Tc=hor period. It
performs the computing of the needed System State
magnitudes, which are in our case i, (current) and
W (speed).

- The LEM behavior is used to emulae the LEM
running, which generates a voltage corresponding to
the current magnitude This behavior will be
associated with a DAC component. So, it generates
the corresponding integer N;, according to the
obtained current value im and to the resolution of the

17

used DAC. According to the high dynamic of the
eectricd mode, the execution period of this behavior
must be fast enough to cover the current variation
with high precison. However, it is limited by the
temporal characteristics of the DAC (time needed for
converson). In our cae we use a dday equd to 5
(Xi:5).

- The OIE behavior is used to generate two digita
signas identical to those obtained by the OIE sensor
and according to the speed vdue W, Since the
vaiaion of the speed magnitude is very dow, we
usudly use an important dday time for the execution
of thismodule. In our case we used %,=1000.

The obtained specification mode is vaidated by
simulation. Figure 27 represents the obtained resultsfor
the current magnitudeim.

Specificanion Mode] Besube = Cise of Motion Coneral

Curreni (A}
o o

B (3]

Speed Cradis)

i nia 0l 0.3 4 1]
gime (5]

Figure 27: Specification model results

Note: The gspecification mode represent different modules
in padld like the physcd sysgem. However, the
exeoution is donein asequential manner !

7.2 Architecture Modd

The Architecture exploration has been done following the
described  steps  and  transformations  of  section 5.
Therefore, two refined architecture models are retained
and vdidated for each of the floaing emulator and the
integer emulator.

7.3 Communication Modd

The two sudied dructures, described in section 6, are
applied to the case of the DC system. So for each of the
floating emulator and integer emulator, we designed a
communication modd for the monitored sructure and
another for the autonomous structure.
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Figure 28: Architecture refined model of the monitored
emulator (case of DC system)
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Figure 29: Architecture model of the autonomous
emulator (case of DC system)

For this desgn, we used the DSPS6600 as a sSoftware
component and for the autonomous dructure we add a

block of High Speed Static RAM (32Kx8 hit) type
KM68257C (Samsung). The communication exploration
is done according the transformations described in section
6.

In this example, we used the DSP externd bus protocol as
the system bus protocol and we suppose that the hardware
and software protocols are compatible. The memory, as
specified in section 6, is fast enough and it doesn’t require
any other inteface. Theefore, we didn't include
transducersin the communication mode (figure 30).
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Figure 30: Communication refined model (a-monitored
emulator, b- autonomous emulator)

However, actudly we should determine the HW SFSMD
in order to study accurately the compatibility with the
sysem bus protocol. Otherwise, transducer must be
included and synthesized.

Communication and synchronization ae specified as
mentioned in section 6. the Data transfer is performed in a
vector type by the application layer. This layer performs
sverd tasks like synchronization, addressng of data on
the bus, dicing of abstract datatypesinto buswords...

Especidly, in our example and in the case of the floating
emulator, this application layer peforms the conversion
of floating data to words in order to transfer them from a
component to another over the sysem bus. This
converson is done according to the DSP56600 C
compiler specifications and to the floating format
implemented on the hadware. In this example we



suppose that the hardware use the same format as
described on the DSPS6600 C compiler.

In DSP56600, the C data float and double ae both
implemented as single precison in a format different to
the IEEE SID 754-1985 dandard format for binary
flogtingpoint arithmetic. Figure 31 represents some
specifications of this format. For more detals, refer to
Motorolatechnica books.

Floating-Point Data__y, Exponent | addr
Mantissa | addr+1
Characteristic DSP56KCC |EEE Format
Format

Mantissa 23 hits 24 bits

precision

Hidden leading | No Yes

One

Mantissa Format | 24 bit Two's 23 hit Unsigned
Complement Magnitude
Fraction Fraction

Exponent Width | 16 bits (14 bits 8 bits/ 11bits
used)

Format Width 48 bits 32 hits/ 64 hits

Figure 31: Specifications of the C compiler floating-
point format (DSP56600)

The obtained communication modes including interrupt
handling are vdidated by simulation. Therefore they ae
ready for synthesis in the backend process. A long this
process, these modds will be transformed into cycde
accurate  implementation models  according  to  the
following tasks:

- HW component will be synthesized into a netlist of
register-transfer level (RTL) components;

- SW will be converted into a C program, compiled
into the processor's indruction set and possibly
linked againgt an RTOS;

- The application and protocol layer functiondity will
be syntheszed into a cycle-accurae implementetion
of the bus protocols on each component. This
requires generation of bus interface FSMDs on the
hadware sde and generdtion of assembly code for
the bus drivers on the software side.

The implementation modd will
future,

be syntheszed in the

8 Conclusion

In this report, we present a new design approach of power
dectronic and dectric drive emulaors, based on the
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SpecC methodology. According to this methodology and
during the synthess process three modds ae
condructed: the gpecification modd, the architecture
modd and the communication modd. For esch of them
we discussed the mechanism of refinement and we
proceeded to a vaidation by smulation. The correct
output demongtrates the correctness of our models.

In this approach, we developed two sructures of the
emulator nonitored and autonomous) that differ by their
functioning  condraints. The  monitored  structure
represents  an emulator  useful  only  with  another
computing system that performs initidization and storage
of results for monitoring. While the autonomous emulator
is deveoped with a shared memory and can be usd
independently of any other sysem. For each of these
dructures we  discussed  different Steps and
trandformations undergone in order to obtan the best
results.

An agpplication to the case of DC sysem is done and
demongrates the efficiency of this methodology. The
devdopment of this emulator is peformed very essly
using the defined agpproach and the previous study of the
emulator structures.

The used SpecC methodology presents a  smplified
desgn process based on wel-defined, cdear and structured
modds a each exploration Sep. This enables quick
exploration and synthesis.

The modular dructure of the SpecC programs and the
cler sgpaation of communication and computetion
facilitate reuse of system components and enables easy
integration of IP. This will give the SpecC methodology a
powerful posshilities of extenson using libraries of
electronic components (memories, processors,
communication protocols, ...) and of process modules
(motor, converter, sensors, ...).

Usng these libraries with specific tools for dep
automation will facilitate the design process and reduce
further more the timeto-market. The user will be ade in
the near future to design her/his emulator and implement
it (usng for example FPGA circuits) in few hours without
the need of any high qudification.

Devdopment of these tools and libraries represent our
main objectives for the future works.
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