
Storage Binding in RTL synthesis

Pei Zhang
Daniel D. Gajski

Technical Report ICS-01-37
August 10th, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{pzhang, gajski}@ics.uci.edu

Abstract

In this report, we present the implementation of storage binding which is one key process in high-level
(RTL) synthesis. In previous related works, storage binding is based on isolated register, or use 0-1 integer
linear programming (ILP) for multiple port memories to get optimal result. In this report, we introduce two
new approaches that use graph-partitioning algorithm and grouping method to map variables into register
files and memory that are normally used in industry.

i

Contents

1 Introduction 1

2 Target architecture and five styles in RTL model 2
 2.1 Target architecture ……………………………………………………………………….. 2
 2.2 Five styles in RTL model………………………………………………………………… 2

3 Project goal 3

4 Implementation of register binding 3
 4.1 Data structure of our implementation …………………………………………………… 3

4.2 Approach one ……………………………………………………………………………. 4
4.2.1 Get variable information………………………………………………………….. 4
4.2.2 Bind arrays to memories ………………………………………………………….. 4
4.2.3 Clique-partitioning………………………………………………………………... 4
4.2.4 Group cliques to register files …………………………………………………….. 6
4.2.5 Adjustment……………………………………………………………………….. 6
4.2.6 Example ………………………………………………………………………….. 7

4.3 Approach two…………………………………………………………………………… 8
4.3.1 Split all variables into small groups……………………………………………… 9
4.3.2 Clique-Partitioning in small groups……………………………………………… 9
4.3.3 Adjustment……………………………………………………………………….. 10
4.3.4 Example …………………………………………………………………………… 10

5 Experiments 10

6 Summary 12

7 Future works 12

Reference 13

ii

List of Figures

 1 Target architecture ………………………………………………………………………… 1
 2 Synthesis tasks in RTL synthesis ………………………………………………………….. 3
 3 CDFG data structure ……………………………………………………………………… 4

4 The procedure of storage binding approach 1………………………………………………4
5 Get variable information……………………………………………………………………4
6 Graph-partitioning algorithm……………………………………………………………… 6
7 CDFG of the example ……………………………………………………………………… 7
8 Lifetimes of variables……………………………………………………………………… 8
9 Clique-partitioning result ………………………………………………………………….. 8
10 Binding result using approach 1…………………………………………………………… 8
11 The procedure of storage binding approach 2……………………………………………... 8
12 Result of sorted lifetime variables………………………………………………………… 10
13 Result of clique-partitioning in each

iL …………………………………………………… 10

14 Binding result using approach 2…………………………………………………………… 11
15 Square-root approximation………………………………………………………………… 11
16 Process of graph-partitioning……………………………………………………………… 12
17 Experiment results (Approach 1)………………………………………………………….. 12
18 Experiment results (Approach 2)………………………………………………………….. 12

List of Tables

1 Simple example of 3 cliques……………………………………………………………… 8
2 Variables Lifetime Table …………………………………………………………………. 11
3 Priority weight Table ……………………………………………………………………… 11
4 Comparison of different approaches (1)…………………………………………………… 12
5 Comparison of different approaches (2)…………………………………………………… 12

List of Algorithm

1. Approach 1 of Storage Binding Using Multiple Port Register Files …………………………… 5
2. Approach 2 of Storage Binding Using Multiple Port Register Files …………………………… 9

1

Storage Binding in RTL Synthesis

Pei Zhang, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract
In this report, we present the implementation of
storage binding which is one key task in high-
level (RTL) synthesis. In previous related works,
storage binding is based on isolated register, or
uses 0-1 integer linear programming (ILP) for
multiple port memories to get optimal result. In
this report, we introduce two new approaches
that use clique-partitioning algorithm and
grouping method to map variables into register
files and memories that are normally used in
industry.

1 Introduction

High-level (RTL) synthesis is normally divided
into four separate tasks: scheduling, storage
binding, functional unit binding and
interconnection binding. The storage binding

binds the variables to the storage units, such as
registers, register files and memories. Recently,
there is a trend for designer to use register files
other than isolated registers in the storage
binding. There are several approaches for the
storage binding using register files. But all of
them are too complicated, time-consuming and
not feasible for the large scale designs.

In this report, we describe some news
approaches of storage binding using register files
in high-level (RTL) synthesis.

The rest of the report is organized as follows:
section 2 shows the 5 levels in RTL description;
Section 3 gives the goal of this project; Section 4
describes implementation, algorithm, data
structure and of the RTL storage binding.
Finally, experiment results for our algorithms are
given in section 5. Section 6 makes a conclusion
and section 7 gives some directions of future

Register
File 1

Register
File 2 Memory

Bus 1
Bus 2

mux

ALU

Register Register

Register

* /

Register Register

Register

Bus 3

mux

Bus 4
Datapath

Output

control
signals from
control unit

Datapath
Input

Figure 1: Target architecture

2

works.

2 Target architecture and five
styles in RTL model

2.1 Target architecture

Our architecture is shown in figure 1. Since the
RTL synthesis is focus on data-path, we only
show the data-path part of a general design,
which will be controlled by the control signals
from control unit. It is composed with register
files, memories, busses, functional units and
multiplexers. Register files and memories get
data from inputs and internal busses, send data to
other internal busses. Then the data from busses
is the input of functional units. After functional
units finish their tasks, they send data to busses
for Register files and memories' input, or for
data-path outputs.

Here, instead of isolated register, our design is
based on register files and memories as storage
units because register files and memories can be
more structured, modular and dense, and requires
less chip area because of its regular layout
structure. The registers above and below the
functional units, as well as latch between the
functional units, are for the purpose of pipeline.

2.2 Five styles in RTL model

We use Finite State Machine with Data (FSMD)
to describe the RTL model. FSMD is an FSM
with assignment statement added to each state.

The RTL model has two views: a behavioral
RTL view and a structural RTL view. The
behavioral RTL view specifies the operations
performed in each clock cycle with explicitly
modeling the units in the component's data-path
and is obtained by scheduling the operations in
the C code into clock cycles. The structural RTL
view explicitly models the scheduling of register
transfers into clock cycles the allocation and
binding of operations, variables and
interconnections to functional units, register
files/memories and internal busses respectively.
From behavior RTL view to structural RTL
view, it includes the three tasks of high-level
synthesis: storage binding, functional unit
binding and interconnection binding.

In [GAJS00], the RTL model is divided into 5
well-defined styles to represent the refinement
steps like scheduling, storage binding, functional
unit binding and interconnection binding from
behavioral RTL view (style 1) to structural RTL
view (style 5)

• Style 1: Behavioral RTL (unmapped RTL).
Behavioral RTL only specifies the change of
values for some variables in each state.
States, transitions and assignment statements
are in no way related to any implementation.
Scheduling task focuses on this style.

• Style 2: Storage-mapped RTL. The variables
in style 1 can be of two types. One type is
variables whose value is used in the same
state in which that value is assigned. These
variables will be implemented as wires or
busses in the final implementation. The
other type is variables whose values are
assigned in one state and used in other state.
The states between the value assignment and
its last usage define the lifetime of each
variable. These variables must be mapped to
storage units such as register, register files,
and memories in the final implementation.
Thus style 2 represents RTL description in
which the second type of variables with non-
overlapping lifetimes are grouped and
assigned to storage units . Storage binding
task will implement the transfer from style 1
to style 2.

• Style 3: Function-mapped RTL. In style 3,
the operators and/or functions with non-
overlapping lifetimes are grouped into
functional units, and a control encoding is
assigned to each operation in the functional
unit. Functional unit binding task will
implement the transfer from style 2 to style
3.

• Style 4: Connection-mapped RTL. Similarly
to style 2, the variables, with non-
overlapping life times, that represent wires
as well as inputs and outputs to storage
elements and functional units are grouped
and assigned to busses. Syntactically, there
is no difference between wires and buses.
Interconnection binding task will implement
the transfer from style 3 to style 4.

• Style 5: Exposed-control (structural) RTL.
In style 5, the FSMD implementation is

3

described in two parts: netlist of data-path
components and a control unit that control
the data-path components using control
signals in each state.

3 Project goal
Due to the 5 styles in RTL, we divide the high-
level (RTL) synthesis into several separate tasks,
which include scheduling, storage binding,
functional unit binding and interconnection
binding (as shown in figure 2). The sequences of
storage binding, functional unit binding and
interconnection binding can be any order of these
three tasks to make the whole synthesis task
more freely.

From RTL style 1 to RTL Style 2, variables with
non-overlapping lifetimes need to be grouped
and assigned to storage units, such as register,
register files and memory. Since the storage units
usually occupy a substantial silicon area in a
microchip, we generally try to reduce the number
of storage units by merging several variables into
a storage unit, which will lead to smaller area.

Scheduling

Storage Binding

Function Binding

Connection Binding

FSMD/
CDFG

RTL Description
(style 1~4)

C++/HDL
Compiler

Library

RTL Code
Generator

RTL Description
(style 1~5)

Figure 2: Synthesis tasks in RTL synthesis

Traditional storage bindings use isolated
registers, which is not efficient. Here we use
multi-port register files and memories as storage
units.

Generally, the goal of storage binding when
using register files is to design procedures to
enable fast automatic variables to storage units
binding. After storage binding, each variable
with non-overlapping lifetimes will assign to the
minimum register file modules and minimum

number of register in each register file, as well as
the minimum cost of interconnection.

[AHCH92] uses 0-1 integer linear programming
(ILP) to group variables into multi-port
memories, which is very difficult and time-
consuming when the design size is in large scale.
Here we introduce another two approaches,
which use clique-partitioning and grouping to
make the whole task much easier and to get the
similar results.

In our implementation, the number of register
files and memory is fixed before the storage
binding task, that is so-called resource constraint
storage binding. So the quality metrics is not the
minimum number of register files. We can use
the following metrics to compare the results:
1. The number of registers in each register files

and the total number of registers in all
register files;

2. The ports usage in every register files;

After the storage binding, we can give users the
feedback of binding results. Users then can
add/remove the number of register files or
change the size of register files to have higher
usage of resources.

In our implementations, we have the following
assumptions:
1. All variables have the same type;
2. All given register files are the same;
3. The number of given register files are

sufficient for storage binding, so we don't
consider to minimize the number of the
register files.

4 Implementation of storage
binding

Instead of ILP, we have two approaches for the
storage binding using register files. The two
approaches are all based on clique-partitioning
and grouping method. They are similar except
that they have difference orders of step in each
procedure.

4.1 Data structure of our
implementations

In order to perform our works, we use CDFG as
our basic data structure, which is also used in

4

other parts in high-level synthesis . Figure 3 give
the class data structure of our CDFG.

Figure 3: CDFG data structure

The detail of the CDFG data structure can be
found in [DOGA01].

4.2 Approach one - Grouping after
clique-partitioning

The procedure of the storage binding approach
one is described by the figure 4. The algorithm
related to register files is shown in algorithm 1.

Get Storage Info from
HLS_FSMD

Find arrays and map
them to MEM

Input:
1.The scheduled states;
2.Binded or unbinded

function nodes

Clique-partitioning on
left variables

Group cliques to the
number of given

register files

Output: The binded storage
nodes

Are ports and
registers in all register

file's available?

Adjust the cliques in
register files

Y

N

Figure 4: The procedure of storage binding
approach 1

There are five major steps in this approach:
1. Get variables information which will be

used in the following steps;
2. Bind arrays to memory;
3. Clique-partitioning the variables;
4. Group the cliques to the register files;
5. Adjustment;

4.2.1 Get variable information

First, we will get all variables information from
class HLS_FSMD The procedure of getting
variable information is explain in figure 5.

last node in
subgraph?

get suggraph in
current state/node

Start

End

last state?

No

nodetype = control
Yes

nodetype = storage

No

add node info. into
VAR_LIST

Yes

next node

next state

No

Yes

No

Figure 5: Get variable information

4.2.2 Bind arrays to memories
Since the structure of memories is very suitable
for the arrays, we find the arrays in all variables
and assign them to the given me mories.

4.2.3 Clique-partitioning

5

The following steps are for the left variables that
will be assigned to register files.

Let L be the set of all variables needed to be
binded:

L={ 1v 2v ... mv } m: the number of variables

The procedure of clique-partitioning algorithm
[GAJS97] is described as figure 6.

Here we have to give the definition of the
lifetime of a variable. It is defined as the set of
states in which that variable is alive. The alive
states includes the state following that state in
which it is assigned a new value (write state),
every state in which it is used on the right-hand
side of a assignment statement (read state), and
all states on each path between the write state
and a read state.

for all v ∈ L do // Get lifetimes of variables
Start(v);
End(v);

endfor

C = CliquePartitioning(L); // Clique-Partitioning first for all variables

for all r ∈ C do // Get lifetimes of cliques (registers)
Start(r);
End (r);

endfor
SORT(C); // sort the cliques (registers) in C in ascending order with
their

// start times, Start(r), as the primary key and end times,
// End(r), as the secondary key

n = NumofRF(RF);
Set NumofRinRF(i) = number of registers in each iRF ; // i= 1,2..n
Set Availableport(i) = number of ports in each

iRF ; // i= 1,2..n

nCCC ..., 21
= Φ ;

reg_index(i)=0;
while C Φ≠ do //Divide C into nCCC ..., 21 , n= Number of Register Files

for i=1; i++; i<=n do
temp_reg = first r in C;
ADD(iC ,temp_reg);
reg_index(i)++;
C=DELETE(C, temp_reg);
if C =Φ then

break;
endif

endfor
endwhile

// Check Register number and port number
While any NumofRinRF(i) ≤ reg_index(i) or Availableport(i) ≤port(i) do

if NumofRinRF(i) ≤ reg_index(i) or Availableport(i) ≤port(i) then
MOVE(

iC ,
jC ,oneRegin

iC); //
jC has the least number of cliques (registers)

endif
endwhile

Algorithm 1: Approach 1 of Storage Binding Using Multiple Port Register Files

6

Then the compatibility graph will be generated.
The compatibility graph consists of nodes and
edges, in which each node represents a variable
and each edge between two nodes represents
compatibility (priority edge) or incompatibility
(incompatibility edge) in merging variables
represented by these two nodes.

The incompatibility edge indicates variables with
overlapping lifetimes, while the priority edge
indicates variables with non-overlapping
lifetimes. Each priority has a weight w that can
be represented as:

w= s+d (1)

s: The number of different functional units that
use both nodes as left or right operands;
d: The number of different functional units that
generate results for both nodes.

No

Create compatibility
graph

Merge highest priority
nodes

Upgrade compatibility
graph

All nodes
incompatible? Stop

Start

Yes

Figure 6: Clique-partitioning algorithm

Here we should consider two conditions when
we calculate w: before functional units binding
and after functional units binding. If before
functional units binding, we can think the every
operation as different functional units if they
have different symbolic description, for
examples, + and /. But if after functional units
binding, the same symbolic operation
descriptions may be mapped to different
functional units, so they can also be thought as
different functional units.

Using clique-partitioning algorithm, we can get
the minimum number of required number of
registers.

After graph partitioning, the variables are
grouped into different cliques, which form the
set C. Every clique has its own lifetime that is
equal the total of the lifetimes of the variables in
the clique. The lifetime in the clique may be not
continuous states. For examples, clique 1 have
two variables whose lifetime are state 1~3 and
state 5~7 respectively, then the lifetime of this
clique is the state 1~3 and 5~7. The lifetime of
cliques will be used in the following step.

4.2.4 Group cliques to register files

Register file includes several register and
multiples in/out port. Since the number of
register files is user-given and fixed, we should
find a method to assign the cliques to the register
files and make all register files do not have
registers and ports conflicts.

Suppose the number of give register files is n.

Here we use sorted cliques lifetime to distribute
the cliques. We have the following steps to
distribute the cliques:

1. We sort the cliques (registers) in C in
ascending order with their start times,
Start(r) , as the primary key and end times,
End(r) , as the secondary key;

2. We use n as the module, split C into small
groups,

nCCC ..., 21
. The first clique in C is

assign to
1C , the second one goes to

2C ...

then the n+1th clique to
1C again. Repeat

this process until all cliques in C are used.

nCCC ..., 21
 will correspond to register file 1,

register file2...register file n respectively.

4.2.5 Adjustment

We should consider not only number of registers
in each register file, but also the ports of each
register file.

The cliques number in each
iC maybe more than

the number of registers in register files. The ports
of register files also could have conflicts. When
we assign the different cliques to the registers in
register files, these cliques can have overlapping
lifetimes. It will work fine if in every state, the
number of lifetime overlapping cliques which

7

include this state do not exceed the number of
ports in the target register files.

For examples, if there are three cliques whose
life times are showed in table 1.

S1 S2 S3 S4 S5
Clique 1 X X X
Clique 2 X X
Clique 3 X X X

Table 1: Simple example of 3 cliques

In state 3, we can see all 3 cliques have
overlapping lifetimes. So if given a register file
having two ports, only two of these three can be
assigned to this register file.

Besides lifetime, we also should consider in
ports of the register file that is corresponding to
the write state of the variables.

So in this step, we will make some adjustment of
the cliques in each register file.
1. Find the

iC that have registers or ports

conflicts;
2. Find the

jC which has the least number of

register and least number of ports usage;
3. Move clique that cause conflict in

iC to
jC ,

check if any conflict in both
iC and

jC ; If

so, go to 1 again.

4.2.6 Example
Here we use an example to explain the approach
1. Figure 7 gives the CDFG of the example.

The lifetimes of each variable are given in figure
8. Here L={ 1v 2v 3v … 13v }.

1v 2v 3v 4v 5v 6v 7v 8v 9v 10v 11v 12v 13v

1S

2S

3S

4S

Figure 8: Lifetimes of variables

Then we do clique-partition and get the results
shown in figure 9. We group all variables into 5
cliques. We let C={ 1r 2r 3r 4r 5r }.

+

x +

/ + +

& |

1v 2v

3v 4v

5v

6v

7v

8v 9v

10v

11v

12v 13v

3v = 1v + 2v

7v = 3v - 4v

5v = 3v * 6v

11v = 10v / 5v

8v = 5v + 3v

9v = 1v + 7v

12v = 8v & 11v

13v = 8v | 9v

1S

2S

3S

4S

Figure 7: CDFG of the example

8

1S

2S

3S

4S

1r 2r 3r 4r 5r

1v

8v

12v

10v

9v

13v

4v

5v

11v

6v

7v

2v

3v

Figure 9: Clique-partitioning result

Three register files with one inport, two outports
and four registers are give as storage units. So
we should divide C into

321 ,, CCC using the

method in 4.2.4. We get

1C ={ 1r 4r },
2C ={ 2r 5r }

3C ={ 3r }

Since there are no conflicts in all register files,
the final binding result is shown in figure 10.

4.3 Approach two - Clique-
partitioning after grouping

Besides approach one, we have another approach
for the storage binding. The procedure is shown
in figure 11. The algorithm related to register
files is shown in algorithm 2.

Get Storage Info from
HLS_FSMD

Find arrays and map
them to MEM

Input:
1.The scheduled states;
2.Binded or unbinded

function nodes

Group variables to
small groups. The
number of small
groups equal to

givennumber of given
register files

clique-partition in
each small group

Output: The binded storage
nodes

Are ports and
registers in all register

file's available?

Adjust the variables
in small groups

Y

N

Figure 11: The procedure of storage binding
approach 2

There are also five major steps in this approach:
1. Get variables information which will be

used in the following steps;
2. Bind arrays to memory;
3. Split all variables into small groups. The

Number of small groups equals to the
number of given register files;

4. Clique-partitioning the variables in each
groups;

5. Adjustment;

The first two steps are the same as approach one.

spare

spare

1v 8v 12v

6v 7v

spare

spare

9v 10v 13v

2v 3v

spare

spare

spare

4v 5v 11v

RF1 RF2 RF3

Figure 10: Binding results using approach 1

9

4.3.1 Split all variables into small groups
Instead of doing clique-partitioning first in
approach one, we split variables first. We let L
be the set of all variables needed to be binded:

L={ 1v 2v ... mv } m: the number of variables

Suppose the number of give register files is n.
Then we will split L into

nLLL ..., 21
.

We also use sorted variables life to distribute
variables.
1. We sort the cliques (registers) in L in

ascending order with their start times,
Start(v), as the primary key and end times,
End(v) , as the secondary key;

2. We use n as the module, split C into small

groups,
nLLL ..., 21
. The first clique in C is

assign to
1L , the second one goes to

2L ...
then the n+1th clique to

1L again. Repeat
this process until all cliques in C are used.

nLLL ..., 21
 will correspond to register file 1,

register file2...register file n respectively.

Using this method, we can spread the variables
by their lifetimes, which will be helpful in the
following steps.

4.3.2 Clique-Partitioning in small groups
Then in each small group, we do clique-

for all v ∈ L do // Get lifetimes of variables
Start(v);
End (v);

endfor

SORT(L); // sort the variables in L in ascending order with their start
// times, Start(v), as the primary key and end times, End(v), as
// the secondary key

n = NumofRF(RF);
Set NumofRinRF(i) = number of registers in each iRF ; // i= 1,2..n

nLLL ..., 21 = Φ ;

while L Φ≠ do //Divide L into
nLLL ..., 21
, n= Number of Register Files

for i=1; i++; i<=n do
temp_var = first v in L;
ADD(iL ,temp_var);
L=DELETE(L, temp_var);
if C = Φ then

break;
endif

endfor
endwhile

for i=1; i++; i≤ n do // Clique Partitioning in every
iL

Clique(i) = CliquePartitioning(iL);// Get number of cliuqes in each iL
endfor

While any NumofRinRF(i) ≤ Clique(i) do
if NumofRinRF(i) ≤ Clique(i) then

MOVE(
iL ,

jL ,oneVarin
iL); //

jL has the least number of cliques (registers)

Clique(i) = CliquePartitioning(iL);

Clique(j) = CliquePartitioning(jL);

endif
endwhile

Algorithm 2: Approach 2 of Storage Binding Using Multiple Port Register Files

10

partitioning algorithm that is described in 4.2.3.

4.3.3 Adjustment
We also need some adjustments, which is similar
as 4.2.5, in this approach to deal with registers
and ports conflicts. The differences between
them are that here we move variable other than
clique and we need to do clique-partitioning
again after variable movement.

4.3.4 Example
We also use the same example as approach one
and given three register files with one inport, two
outports and four registers.

First we get the lifetime of all variables L and
sort them. The result is shown in figure 12.

1v 10v 4v 6v 2v 3v 5v 7v 8v 9v 11v 12v 13v

1S

2S

3S

4S

Figure 12: Result of sorted lifetime variables

Then using 4.3.1 method, we get:

1L ={ 1v 4v 7v 10v 13v }

2L ={ 2v 5v 8v 11v }

3L ={ 3v 6v 9v 12v }

The results of clique-partitioning in each
iL are

shown in figure 13.

1S

2S

3S

4S

11r 12r 21r 22r 31r 32r

1v

8v

12v

10v

9v

13v

4v

5v

11v

6v

7v

2v

3v

RF1 RF3RF2
Figure 13:Results of clique-partitioning in

iL

Last, We get the binding result in figure 14

5 Experiment

To test our implementation, we use square-root
approximation (SRA) as our example.

)),5.0875.0max((22 xyxba +≈+ (2)

 where x=max(|a|,|b|) and y=min(|a|,|b|)

The procedure of SRA is described in figure 15
that has 8 states.

11

a = In1
b = In2

Start

Done = 1
Out = t7

t6 = t4 + t5

t5 = x - t3

t3 = x >> 3
t4 = y >> 1

t7 = max(t6, x)

x = max(t1,t2)
y = min(t1,t2)

t1 = |a|
t2 = |b|

t3 = 0.125x
t4 = 0.5x

t5 = 0.875x

s0

0

1
s1

s2

s3

s4

s5

s6

s7

Figure 15: Square-root approximation

Table 2 and table 3 give the variables lifetime
and priority weight respectively.

S0 S1 S2 S3 S4 S5 S6 S7
a X
b X
t1 X
t2 X
x X X X X
y X
t4 X X
t3 X
t5 X
t6 X
t7 X

 Table 2: Variables Lifetime Table

a b t1 t2 x y t4 t3 t5 t6 t7
a -
b -
t1 - 1 1
t2 - 1 1
x 1 1 - 1
y - 1
t4 -
t3 - 1
t5 1 - 1
t6 1 1 1 -
t7 1 1 -

Table 3: Priority weight Table

For the approach one, figure 16 give the clique-
partitioning of the SRA.

After clique-partitioning, we got three cliques:
Clique 1(t4), lifetime:s4~s5
Clique 2(b,t1,x,t7), lifetime: s1~s7
Clique 3 (a,t2,t3,t5,t6,y), lifetime:s1~s6.

Then we sort the lifetimes of these cliques, we
got a squence of Clique 2, Clique 3, Clique 1 .

The given resources are two register files with
two out ports and one in port. So we group
Clique 2 and Clique 1 to register file 1, and
Clique 3 to register file 2. After checking the
registers and ports conflicts, we found they are
all feasible.

From another angle of views, we can see, all
cliques' lifetimes include state s4 and s5. That is
the s4 and s5 have overlapping 3 times. So, these
three cliques can not assign to the same register
file. Also, clique 1 and clique 3, clique 2 and
clique 3 can not be assigned into the same
register file since there write state are
overlapped.

spare

spare

spare

spare

spare

spare

1v 9v 13v

5v 6v
10v 11v

2v 7v
4v 8v

3v 12v
RF1 RF2 RF3

Figure 14: Binding results using approach 2

12

a

b xt2

t1 y t4

t6t3 t5

t7

1

1 1

1 1

1

1
1

⇓
a

b xt2

t1 y t4

t6t3 t5

t7

1

1 1

1 1 1

⇓
a

b xt2 t1

y t4

t6t3 t5

t7

1

⇓
a

b x

t2

t 1

y

t4

t 6t3 t5

t7

⇓

a

b x

t2

t1

y

t4

t6t3 t5

t7

Figure 16: Process of clique-partitioning

After consider these issues, the final binding
results is showed in figure 17.

t4

spare

spare

b,t1,x,t7

a,t2,t3,t5,t6,y

spare

spare

spare

Figure 17: Experiment Results (Approach 1)

If we use approach 2, we can get the following
results (figure 18):

a, t1, x, t4, t7

spare

spare

t5

b, t2, y, t3, t6

spare

spare

spare

Figure 18: Experiment Results (Approach 2)

Table 4 and 5 give the comparison of different
approaches.

Total
number of
registers

Register
usage in

RF1

Register
usage in

RF2
Approach 1 3 50% 25%
Approach 2 3 50% 25%

Table 4: Comparison of different approaches (1)

Inport
usage

in RF1

Outport
usage

in RF1

Inport
usage

in RF2

Outport
usage

in RF2
Approach 1 62.5% 43.75% 75% 37.5%
Approach 2 75% 43.75% 62.5% 37.5%

Table 5: Comparison of different approaches (2)

6 Summary

In this report, we use register files in the storage
binding in the high-level (RTL) synthesis. In the
implementation, the clique-partitioning
algorithm and grouping method are used to get
the minimum number of register and assign these
registers in different register files. Different
approaches have similar results. Results show
that using our implementation, we can get decent
results.

7 Future works
Here, we also give some directions on the future
works. First, we can use different types of
variables and register files to do storage binding,
which is general in real designs. Second, we can
consider the interconnection cost when do
storage binding. Third, We should decide which
ports of register file should be used for which
register in each state (port binding). These works
should be combined with scheduling and
interconnection binding works.

13

References
 [GAJS00] D. Gajski: RTL Design and
Methodology, University of California, Irvine,
Technical Report ICS-00-35, November 2000
[GWDL92]D. Gajski et al. : High level synthesis:
Introduction to Chip and System Design,
Kluwer Academic Publishers, 1992
[AHCH92] I. Ahmad, C. Y. R. Chen: Grouping
Variables into Multiport memories for ASIC
Data Path Synthesis, ASIC Conference and
Exhibit, 1992.
[DOGA01] Dongwan Shin et al.: CDFG
Representation for SpecC RTL, University of
California, Irvine, Technical Report ICS-01-50,
June, 2001
[GAJS97] D. Gajski: Principles of Digital
Design, Prentice-Hall, Inc, 1997

