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Abstract

In this report, we demonstrate the results of our system kimggproject involving the encoder of the H.264
advanced video coding(AVC) standard. The goal is to credte254/AVC video encoder model with SpecC
System Level Design Language (SLDL). First, we briefly thtoe the essential features of the H.264/AVC video
encoder algorithm and the properties of the JM reference @amcodes. We then describe the modifications
we have performed to make the JM reference C implementatiompléant for SpecC SLDL. Our model has
been separated into three major behavior blocks, which &reuus, Design, and Monitor, to reflect a proper
system design testbench. The design-under-test(DUT)amnpthen has been structured into a hierarchy of
communicating behaviors. In this work, we have identifiacessd opportunities for parallel execution in the
H.264 encoding which we have explicitly specified in theesgshodel. The report concludes with experimental
results that validate the correct functionality of our HRéncoder model by success full simulation.
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Abstract simplify the system design flow and evaluate the soft-
ware and hardware as a whole at an early design stage,
languages such as System Verilog, SystemC or SpecC
are developed to fill this gap between high level lan-
guage and HDL. SpecC [2] is one of the system level
description languages (SLDL) which models the al-
gorithm at higher levels of abstraction (than RTL). In

In this report, we demonstrate the results of our sys-
tem modeling project involving the encoder of the
H.264 advanced video coding(AVC) standard. The
goal is to create a H.264/AVC video encoder model
with SpecC System Level Design Language (SLDL).
First, we briefly introduce the essential features of the _, . :

: : this project, we use SpecC to create the system model
H.264/AVC video encoder algorithm and the proper- .
: of a H.264/AVC video encoder.
ties of the JM reference C source codes. We then de-
scribe the modifications we have performed to make The most important feature of a SpecC model is
the JM reference C implementation compliant for the separation of computation and communication.
SpecC SLDL. Our model has been separated intoTo accelerate the design of a complex System-on-
three major behavior blocks, which are Stimulus, De- Chip application, reusability of existing design such
sign, and Monitor, to reflect a proper system design as hard/soft Intellectual Properties (IPs) is a key fea-
testbench. The design-under-test(DUT) componentture to solve this problem. SpecC clearly separates
then has been structured into a hierarchy of communi- the design model of system-on-chip into two indepen-
cating behaviors. In this work, we have identified sev- dent parts: computation and communication, which
eral opportunities for parallel execution in the H.264 are encapsulated into modules/behaviors and chan-
encoding which we have explicitly specified in the sys- nels respectively. Since computation and communi-
tem model. The report concludes with experimental cation are dealt with independently, the computation
results that validate the correct functionality of our behavior blocks can still be reused without or with
H.264 encoder model by success full simulation. only minor modification even if the communication in
an existing design does not fit in the requirements of
the new project. The communication protocol can be
easily exchanged by using another channel with com-
patible interface. In the same manner, we can also
modify the computation behavior blocks to fit new
requirements without modifying the communication
channels.

1 Introduction

High level languages like C language provide us a
fast path to evaluate our algorithm. However, except
for fully sequential behavior, it cannot model system

architectures such as parallelism and pipeline struc-
ture. Hardware description languages like VHDL or ~ Another important feature of SpecC is its capabil-
Verilog can perfectly describe those structures, but to ity of modeling parallel structures. In a system con-
model the whole system of complex application and structed with multiple processing elements, pipelin-
refine it with HDL will be very time consuming. To ing or parallel structure are widely used to gain higher
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resource utility and better performance. High level 2.2 Input Video Data Format
programming languages like C language generally are
executed sequentially and do not support parallel or
pipelining structure. In SpecC, programmer can use
'par’ statement in the program to model the parallel ’ ,
structure in the implementation. In this project, these luma, and the information of color, calledhroma

two features are also used to create our system-levef’ire stored_separa'_[ely. In a YUV—formaf[ file, for ev-
model of a H.264/AVC video encoder. ery frame in the video stream, there will be one ar-

] ] ) ] ray for storing luma information and two arrays for
This report is organized as follows: In Section Il op5mga information. Because the human visual sys-
we will briefly introduce the H.264/AVC video cod- a1 is more sensitive to luma than chroma, sampling
ing standard and some features of the JM reference Cformats in which the chroma component has only one

implementation. Section Il shows the modification it or one fourth of the number of samples than luma

we performed on the JM reference C implementation component are proposed. The three major sampling
so that it can be compiled by SpecC. In Section IV we ¢).ots are listed below:

will demonstrate our SpecC model of a H.264/AVC
video encoder platform. The parallelism we have ex-
ploited in our H.264 encoder model will be described
in Section V. The simulation result is shown in Sec-
tion VI.

The input of a H.264 video encoder and output of a
H.264 video decoder are both in YUV format. In a
YUV-format file, the information of brightness, called

*4-4-4 sampling The number of chroma samples
is the same as the number of luma samples in each of
the chroma arrays.

*4-2-2 sampling The number of chroma samples
is the same as the number of luma samples in vertical
dimension, but half in the horizontal dimension.

*4-2-0 sampling The number of chroma samples
. is half of the number of luma samples in both vertical
2 H.264/AVC Video Encoder Algo- and horizontal dimensions

rithm In these three sampling formats, the precisions for
each sample are all 8-hits.

Before we demonstrate our SpecC model of
H.264/Video encoder, in this section we first describe 2.3 Coding Structure of H.264/AVC Video
the algorithm [5] and the reference JM C implemen- Encoder

tation [3]. ) ) )
The basic encoding structure of H.264/AVC is shown

in Figure 1. In the following sections, we will briefly

describe the functions of these blocks.
2.1 Background In H.264/AVC video encoder, each video slice is

encoded using intra-frame or inter-frame prediction to
H.264/AVC is the video coding standard of the ITU- remove the spatial and temporal similarity in pictures.
T Video Coding Experts Group and the ISO/IEC  *Intra-Frame Prediction The spatial prediction in
Moving Picture Experts Group. The main goals of H.264 is called Intra-Frame prediction. It makes use
H.264/AVC standard is to enhance the video compres-of the characteristic that in certain areas in a picture,
sion performance and provide a 'network-friendly’ the pixels values are all the same or vary with little
video representation for both 'conversational’ appli- difference. In this case, H.264 encoder predicts the
cations (video telephony) and 'non-conversational’ pixel values in the current coded macroblock from the
(storage, broadcast, or streaming). Compared withpixel values in its neighbor macroblocks to compress
existing standards H.264/AVC has achieved a greatthe video data. The reference macroblocks are usu-
improvement in rate-distortion efficiency, and it also ally the macroblock above or to the left of the cur-
provides 17 profiles which support different feature rent coded macroblock. In H.264, encoder can alter-
sets for various applications [4] . natively select the block-size of 4x4 or 16x16 in the
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Figure 1: Basic encoding structure for H.264/AVC for ~ (b) Prediction Mode of Intra 16x16
a macroblock Listing 1: Modes of Intra-Frame Prediction

inter-frame prediction. For 16x16 and 4x4 block spa-  In H.264, two types of slices could be encoded with
tial predictions, there are four and nine different ways inter-frame prediction, which are P-slice and B-slice.
to predict the pixel value respectively. These predic- In addition to the intra-frame prediction described in

tion modes are listed in Listing 1. the previous section, macroblocks in P-slice and B-
In H.264, the slice which are coded with intra- slice can be encoded using inter-frame prediction. In
frame prediction, are called I-slice. inter-frame prediction, both P-slice and B-slice are

*Inter-Frame Prediction The temporal prediction  predicted by motion estimation toward the reference
in H.264/AVC video encoder is called Inter-Frame pictures. The major difference between P-slice and
Prediction which makes use of the temporal similar- B-slice is that unlike P-slice, in which only one mo-
ity between current coded pictures and the referencetion vector is obtained for motion compensation, in B
pictures. A continuous video is formed by a sequence slice the motion vector is the weighted average of two
of pictures, and a picture is often composed of back motion vectors to two different reference pictures.
scene and the object scene. In a continuous video, the In H.264/AVC video coding standard, the concept
back scene generally is still or varies in very limit dif- of B slices is generalized. The pixel values are bi-
ference, and the object scene moves in the continuougredicted from the weighted combination of two dif-
pictures in certain regular way (for example in cer- ferent motion compensated reference frames. Just
tain speed and direction). Encoder temporal predictslike the reference pictures in inter-frame prediction,
a picture by comparing the difference between current the reference pictures in bi-prediction can be previous
coded picture and reference pictures in the buffer andor future pictures in display order.
obtains a motion vector for motion compensation in  After spatial or temporal prediction, the differences
decoder. In prior standards, the reference pictures ardbetween input pictures and predicted pictures are
limited to the previous pictures in display order. In transformed to frequency domain by the block trans-
H.264/AVC video encoder, this limitation is removed formation function in H.264 coding algorithm. There
and the reference pictures can be previous or futureare several unique features about the block transform
pictures in display order. The inter-frame prediction selected by H.264:
performs the block-based motion estimation on every  * integer transform design
macroblock in the current coded frame, and a distinct  * specified to 8-bit input video data
motion vector is sent for each macroblock for motion  * a 4x4 transform size is supported, rather than just
compensation in H.264 decoder. 8x8 transform



While the macroblock size is still 16x16, pixels . .

.. . 1 Total number of the source files : 57
are divided into 4x4 or 8x8 blocks for transforma-, total number of the header files : 51
tion. The output coefficients are then quantized angl Number of the source code lines : 63K
scanned (in zig-zag fashion for frame coding) from# Number of functionsin sourcecode : 814
the lowest frequency coefficient toward the highest.
In this way the highest-variance coefficients are or- Listing 2: Properties of the H.264 JM Reference En-
dered first, which maximizes the number of consec- coder
utive zero-valued coefficients to gain better perfor-
mance in entropy coding. In addition to the quantized .
coefficients, information required to decode the coded properties of the |__|'264 JM13.0 ref.erenc.e encoder.
data such as encoding parameters, reference frame in- 1N H-264/AVC video codec, the video is processed
dexes, and motion vectors for motion compensation FoM one picture (frame) to another. Every frame is

are coded with entropy coding and form a compresseddivided into one or multiple slices, and every slice
video bitstream. is then divided into several macroblocks in size of

16x16 luma pixels. Each macroblock is also di-
_ _ vided into sub-macroblock partitions for intra and in-
3 Reference C implementation of  ter frame prediction. For example, the size of sub-

H .264/AV C Video Encoder macroblock partition for inter-frame prediction can
be 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4. The

SpecC SLDL is a superset of the C language andtransform for the difference between original frame
it is Comp”ant with ANSI-C. It means that every and predicted frame is either in size of 8x8 or 4x4.
ANSI-C program can be compiled well by SpecC Figure 2 shows the hierarchy of a video sequence in
compiler. To make the H.264 codec modeling eas- H.264/AVC video codec.

ier, rather than developing a H.264/AVC codec with

SpecC SDLD from the very beginning, in this project vigeo |

ixels r !
we took the JM 13.0 reference implementation [3], -16«?-1,

released by Joint Video Team of ISO/IEC MPEG & ij ? eerabicek
ITU-T VCEG, as the beginning of this project. Since &=+ _ ¢ ‘Zrame
the JM reference implementation is programmed With  sub-macroblock siee <

C language, the first step to create a SpecC model of
H.264/AVC codec in this project, is to modify some
syntax in the JM reference implementation which is
not ANSI-C or SpecC compliant.

In this section, we briefly describe some features of
the JM reference implementation and the modifica-

tion we did toward the reference implementation for  In the reference C implementation, we can also see
simplicity and SpecC compliant reason. the same hierarchy in the source code. A simplified

flow chart of the program execution is shown in Fig-

3.1 Propertiesof H.264/AVC Video Encoder ure 3. Frgmes in the video stream are read out from
IM 13.0 Reference Software the YUV file one by one t_)y &_QeadOneFramﬁJnc-

tion call and then every slice in the frame is encoded
The JM reference software of H.264/AVC codec con- by aencodeoneslice function call in a while loop.
sists of both encoder (itencoddirectory) and de-  The slice is further divided into 16x16-pixel mac-
coder (inlencoddirectory). In this project, we only  roblocks and every macroblock is then encoded by
focus our work on the modeling of H.264 encoder, a encodeonemacroblockfunction call. The coding
and use decoder part of the JM reference implementa-tools such as inter or intra prediction and spatial trans-
tion for consistency verification. Listing 2 shows the form are all executed in thencodeone macroblock

Figure 2: Hierarchy of Video Stream

4



function. model because they are not hardware-synthesizable.
Notes that in this JM reference implementation, the  In this section, we list the modifications we per-
picture frames do not have to be encoded in the dis-formed on the reference C implementation for creat-
play order. According to the JM Reference Software ing our SpecC model of H.264 encoder.
Manual, user can decide the order by modifying the 1. Encoding Parameters Initialization: In the orig-
HierarchicalCoding setting in the encoding param- 4| reference C implementation, major encoding pa-
eter. Two examples of changing coding order are yameters such frame rate, frame mode selection, and
shown in Figure 4. In the first example, the coding search algorithm selection for motion estimation, are
order for nine consecutive frames is frame 0, 8, 4, 2, jnjtjalized at the beginning of video encoding. During
6, 1, 3, 5, and frame 7; in the second example, thejnjtalization, a configuration file calleencoder.cfgs
coding order for nine consecutive frames is frame 0, opened by a function cabpenand a structure named

8,2,4,6,1,3,5,and frame 7. InputParameterswhich stores the encoding param-
T E— 5 5 NambasBFLaneesT eters is initialized with the content iancoder.cfg
= g;:;;;:g;;;;ggggz s SO Sincefopenis not hardware-synthesizable, we either
wBiELsEiSesorencesss move it out of the H.264 SpecC model or just hard

&»\IL—D\«\ /HD«\‘\ code the parameters in the H.264 SpecC model. To

simplify the communication between teBmulusbe-

0 Bl B2 B3 B4  BS BG B7 P8 havior (in charge of providing test patterns to the
Coding Order: I0-> P8-> B4-> B2-> B6-> Bl-> B3-> B5-> B7 . . . . . .
(A) Hierarchical Coding = 2 sign behavior) andlesignbehavior (in charge of im-
plementing the major function the target algorithm)
encod.exe -p " < ‘J. -P L fa.mes: W I - I
R e . e here we simply hard-coded the parameters indée
o COERERCess) p SHCH I e sign behavior. More details about these two behav-

-p BListlReferences=1

ior and the communication between them will be de-

scribed in the next section.
vk - -
L )

N = s = e a7 The_ same situation also happenegl in quantization
Coding Order: I0-> P8-> B2-> B4-> B6-> Bl-> B3-> B5-> B7 table initialization. Instead of reading the quanti-
(B) Hierarchical Coding = 1 . .. . . . .
zation coefficients from configuration filg.it ma-
trix.cfg and g_offset.cfg we hard-coded the coeffi-
cients into the tables idesignbehavior.

2. Variables Initialization: This part can be sep-
arated into local variables initialization and global
variables initialization. Unlike C program, in which
variables can be initialized to the result of certain

In this project, we took JM13 version of H.264 video arithmetic or logical operations, at declaration the
encoder as reference C implementation, and con-variables can only be initialized to a constant values
verted it to a hierarchical SpecC model so that we canin SpecC SLDL. In local variable initialization, we
conduct further design space exploration using SCE can fix this difference by simply manually separating
[1]. However, the JM reference implementation is not the variable declaration and initialization. For global
fully ANSI-C compliant and some syntax in the ref- variables, since assigning values to variables outside
erence C codes will lead to errors when the referenceof function scope is not SpecC compliant, we cre-
source codes are compiled with SpecC. The first stepated two functions calledeiinit and post2ctxinitto

we have to accomplish is to make some modification fix this problem. At the beginning of encoding pro-
to the reference C implementation so that it can be cedure, these two functions will be called to initialize
compiled by SpecC compiler. Besides, some function global variables. Listing|3 shows in general how we
calls, such asopenor fwrite are ANSI-C compliant, =~ modified the variable initialization.

though, they are not adequate to be used in the SpecC 3. Function Pointer Elimination: In C language,

/D\D/D‘\D/’D‘\D/’D‘\

Figure 4: Example of Coding Order

3.2 SpecC compliant reference implementa-
tion

5



Read and Set Parameter

Configure()
v I
Calculate Params
Initiglization CalculateQuanParam()
init_Qmatrix() CalculateOffsetParam()
init_QOffsetMatrix() Read Frame Data
init_img() init_frame()
: ReadOneFrame()
l PaddAutoCropBorders() encode one_slica()
Frame Encode ¢ slart MBy -r#mph
Frame Encode rou
Encode a Eraime Loop encode_one_MB() “ g
Loop init_frame_params() Through erte'_one_MB() ity
Through encode_one_frame() Frame_Picture() A Teminate. ons B blo(;k
All encode_enhancement_layer() writeout_Picture() Slices
Frames . i
l i 7 DeblockFrame()
- Encode Terminate
Encode Terminate _ Loop
terminat fos_shos.led) set loopiilter params | Through
erminate_sequence() store_picture_in_dpb() plIAer B Al
flush_dpb() free_storable_picture() deblockMB() liscres:
clear_motion_search() . bloik

Figure 3: Code Structure

function pointer is very useful for program simplicity only accepts source files witlsc postfix, 53 source
and maintenance, which can greatly reduce the usefiles are renamed with same name and postfixshy

of if or case-switch statements. However, due to its  After these modifications, the reference implemen-
ambiguity for high-level synthesis, function pointers tation is SpecC compliant. Since the encoding param-
are not adequate in SpecC. In the JM H.264 refer- eters are hard coded in the program already, except for
ence software, the function pointer syntax is widely YUV file, no other input file is needed.

used due to various encoding options implemented

in the JM reference implementation. To eliminate

the function pointers in the program, we either re- 4 M odeling of H.264/AVC Video En-
moved the encoding options or replaced them with a coder Platform

switch statement (even though it makes the program

look more complex). When function pointers are used 0 important feature of SpecC is the separation of

for encoding option selection, for simplicity, we only o mpytation and communication, which increases the
kept one encoding option and eliminated the others. o ,sapility of existing software and hardware imple-
Listing |5 and Listing 6 shows how we replaced the ,antation. In this section, we also describe our SpecC
function pointers with case-switch statement. List- ,54el of H.264 video encoder in these two views.
ing|4 shows the existing function pointers in the JM First, we will describe the functions of three major

reference implementation. behaviors at the topmost level in every SpecC model:
4. Source files renaming: Since SpecC compiler stimulus design monitor. Then, in the second sub-

6
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var_type globalvarl = globalvarl_init ;
var_type globalvar2 = globalvar2_init ;
return.var_type functionname (inputvars)
{
var_type localvarl = localvarl_init;
var_type localvar2 = localvar2.init;
(funciton description)
}

(a) Before Variables Initialization Modification

© 00 ~NO O WNE
—~

var_type globalvarl ;
var_type globalvar2 ;

void global_var_init ()

global_varl
global_var2

globalvarl_init ;
globalvarl_init

}
return var_type main (inputvars)
{

local variable declaratoin

global_var_init ()

(function description)

}

return_var_type functionname (inputvars)

{

var_type localvarl ;
var_type localvar2 ;

localLvarl_init ;
localLvar2_init ;

local_-varl =
local_var2 =
(funciton description)

}

(b) After Variables Initialization Modification

Listing 3: Variables Initialization Modification

© 000N O WNPR
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void
void
void
void
void
void
void
void

(xwriteMB_typelnfo)
(xwritelntraPredMode)
(xwriteB8_typelnfo)
(xwriteRefFrame [6])
(xwriteMVD)

(xwriteCBP)
(xwriteDquant)
(xwriteCIPredMode)

void (xwriteFieldModelnfo)

void (xwriteMB_transformsize)
int («WriteNALU)

inté4 (xgetDistortion)

extern imgpel x(xget_line [2])
extern imgpel x(xget.linel[2])
extern imgpel x(xget_.line2[2])
extern imgpel x(xget.crline [2])
extern imgpel x(xget_.crlinel [2])
extern imgpel x(xget_crline2[2])
extern int (xcomputeUniPred[6])
extern int (xcomputeBiPred)
extern int (xcomputeBiPredl1[3])
extern int (xcomputeBiPred2[3])
void (xgetNeighbour)

void (xget.mb_block_pos)

Listing 4: List of function pointers in JM reference
encoder

section, we will describe the communication between
stimulus& designanddesign& monitor.

4.1 Major Behaviors :
Monitor

Stimulus, Design,

In HDL implementation, to verify the correctness of
an implementation, a testbench environment includ-
ing the function of providing test pattern and function
of output comparison is necessary. This concept is
also applicable to SpecC modeling. At the topmost
level of a SpecC model, two behaviors nansgidhu-
lusandmonitorare created to implement the function
of the testbench, and the application we want to model
with SpecC is encapsulated in a behavior named
sign These three behaviors usually are executed in
parallel, and the communication between them are
implemented to guarantee the necessary synchroniza-
tion among these three behaviors.

In the following paragraphs, we describe the func-
tions of these three behaviors and the roles they play
in our SpecC model of H.264/AVC video encoder.
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return_type xfp(input vars) ;

return_.type funcl(input vars)

{
}

return_.type func2(input vars)

{
}

void fp_init (init_condition)

{

switch (condition
condition_.1:
fp = func_.1 ; break ;
condition.2:
fp = func.2 ; break ;
default:

}
}

return_.type fp_call_1(input vars)

{ .
fé()
} .

return_type fp_call_2 (input vars)

{

fr}() :

Listing 5: Before Function Pointer Elimination

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

return_type funcl(input vars)

{
}

return_type func2(input vars)

{
}

return_type fp_call_1(input vars)

{

switch (condition {
condition_1:
func_1(input vars); break ;
condition_2:
func_2 (input vars); break
default:

}
}

return_type fp_call_2(input vars)

{

switch (condition
condition_1:
func_1(input vars); break ;
condition.2:
func_2 (input vars); break ;
default:

}

Listing 6: After Function Pointer Elimination



Note that in the JM reference implementation the
frame coding order does not have to be the same
as the display order. TherefolgrameNumberinFile
variable indicating the next picture frame to be en-
coded, is necessary. In our model, tBeémulusbe-
havior is implemented based on tReadOneFrame
function. At the beginning of the encoding process
in our SpecC modektimulusbehavior will open raw
file test.yuvfor read with functionfopen After the
YUV file is opened, Stimulusbehavior will notify
Design behavior of the beginning of video encod-
ing. Stimulusbehavior then enters a state of waiting
for FrameNumberlInfilzipdating fromDesignbehav-
ior. OnceStimulusbehavior receiveframeNumber-
Infile, it reads the corresponding picture frame from
file test.yuvand sends frame data esignbehav-
ior over the communication channels. In this project,
for simplicity, we have fixed the sampling format to
YUV420 and the frame size at 176x144 for Y frame
and 88x72 for U and V frames.

hs_finish
hs_frm_no
hs_nlength
hs_nreceived
queued_nbyte

* BehaviorDesign under test (DUT)

In our SpecC model, this behavior is in charge of
the implementation of target design, and it is also the
behavior in which we will perform the design space
exploration in the future.Designbehavior receives
input data fromStimulusbehavior, performs the ap-
plication or algorithm on the received data and then

* BehaviorStimulus: generates output results for validation. The content of

In a SpecC model, this behavior is in charge of pro- Designbehavior depends on our design goal: we can
viding input data foDesignbehavior. It can be con-  implement a specific part of the target application or
sidered as the test pattern generator for design ver-algorithm, such as temporal/spatial prediction or spa-

Figure 5: Top level of H.264 Encoder Model

ification. Depending on the implementation Dé- tial transform, and only evaluate the execution of this
signbehavior Stimulusbehavior sometimes is also in  specific part; we can also implement the whole tar-
charge of providing configuration information fDe- get application or algorithm iDesignbehavior and

signbehavior. Since the encoding parameters and theevaluate the execution of the whole algorithm.
quantization coefficients for H.264 video encoder are  |n our project, Design behavior implements the
hard-coded in oubesignbehavior,Stimulusbehav-  \whole H.264/AVC video encoding algorithm. For
ior does not have to read parameters and coefficientsevery frame,Designbehavior generates a nefa-
from the configuration file. meNumberlinfileand send it taStimulusbehavior to
Inthe original JM reference implementation, avari- request a new set of frame data, and then enters a state
able namedrrameNumberinFilewhich indicates the  of waiting for corresponding frame data. Once cor-
next frame to be encoded, will be updated for each responding Y, U, and V frame data are all received,
frame encoding and a function nanfedadOneFrame  Design behavior performs the spatial/temporal pre-
is called. diction, spatial transform and quantization, and en-
This function will read the corresponding picture tropy coding over the received frame data. The en-
frame from a opened video raw file namex$t.yuv coded data is then sentkdonitor behavior over com-



munication channels in the form of byte-sequence for
generating a H.264-format file namaekt.264 The
transmission of the encoding data is performed on
frame basis, i.e., for every framBgsignsends a se-
guence of bytes tdonitor behavior. Note that be-
cause of the different characteristics between picture
frames, the length of the byte-sequence for encoded
data varies. Sinc#lonitor behavior is independent
of the execution of H.264 video encoding, it does
not have the information about how long the byte se-
guence is. Therefore, except for the encoded data,
Designbehavior also has to send the corresponding
length of byte sequence tdonitor behavior for ev-

ery encoded frame. Once every picture frame in the
input raw file is encoded)esignissues a natification

to Monitor behavior so thaMonitor behavior knows
when to terminate the encoding.

In our Design behavior there are two sub-
behaviors namedh264encoder and h264writer
working in parallel to achieve the task described
above:h264 encodelis the behavior in charge of the
implementation of H.264 video encoding algorithm,
andh264 writer deals with the transmission of length
of byte-sequence tblonitor behavior. When the en-
coding of a frame is finishet264 encodemwill send
the byte-sequence tdlonitor through a byte-queue
and the corresponding length of byte-sequence is sen
to h264 writer through a integer-sequence. Once ev-
ery frame in the YUV file is encoded264 encoder
will send out a length of byte-sequence with zero
value toh264 writer. The function ofh264 writer is
to read the length of byte-sequence from the integer-
gueue and send the value konitor. h264 writer
also detects the zero value of the length. When a
length of byte-sequence with zero value is detected,
h264.writer will notify the monitor of the end of en-
coding. Figure 6 shows the block diagram @é-
sign under Tesgenerated by System-on-Chip Envi-
ronment (SCE).

* Behavior Monitor :

The main function of this module is to generate
output file(s) for verification. Depending on the im-
plementation ofDesignbehavior, the content of the
output files varies. IfDesignbehavior implements
one specific part of the target implementation or al- Figure 6: Design under Test Behavior
gorithm, then the content of the output files should
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4.2 Communication between top-level be-
haviors

be the output of this specific part; ifesignbehavior
implements the whole application or algorithm, the
content of the output file is the output of the applica-
tion or algorithm. According to the implementation of * communication between Stimulus and Design
Designbehavior, golden sample(s) are pre-generated The communication between stimulus and design
and compared with the output file(s) for consistency. modules is implemented with two double handshake
In this projectDesignbehavior implement the whole channels and three frame queues. The first hand-
H.264/AVC video encoding algorithm, which makes shake channel is used to send encoding initiation sig-
the generation of gold sample(s) easier: we simply hal from Stimulusto Designto start the encoding; the
use the encoded video stream generated by JM refersecond double handshake channel is used to transfer

ence software as golden sample.

In original reference C implementation of H.264
encoder, when a frame encoding is finished, a func-
tion calledWriteNALU will be called. In this func-
tion the encoded data bytes will lbarite to a out-
put file test.264 In SpecC modelfwrite operation
is moved out fromDesignto Monitor behavior be-
causefwrite function is not hardware-synthesizable.
The main function oMonitor behavior in our SpecC
model is to receive byte-sequence fraesignbe-
havior and write those bytes to output filest.264
Another function implemented ionitor is to termi-
nate the encoding program wigxit(0); which is not
hardware-synthesizable either.

variable FrameNumberInFildrom Designto Stimu-
lus to request frame data. On&imulusreceives
the FrameNumberInFilevariable fromDesign it will
read the corresponding frame and send therDde
sign through frame queue channels. The Y, U, and
V frames are transmitted separately through different
frame queue channel. For simplicity, the size of the
frame in our encoder is fixed to 176x144 pixels per
frame. Therefore, the size of frame queue channel is
176x144 bytes for Y-frame queue, 88x72 bytes for U
and V frame. For now, in frame encoding, the depth
of these three queues are all setto 1.

Figure 7 shows the comparison between JM refer-
ence software and SpecC model, and the communica-
tion betweerStimulusand Designbehaviors as well.

To satisfy the requirements described above, there

are two separate sub-behaviors namemhitor write
and monitorfinish which work in parallel inMoni-
tor behavior. Thanonitorwrite behavior is in charge

of the byte-sequence reading and writing the bytes to

the output filetest.264 the monitor_finishbehavior is

in charge of the termination of the whole application.
After the initialization of the H.264 video encoding
in our SpecC model, these two behaviors are both in
waiting state and wait for the length of byte-sequence
and end of encoding notification, respectivatyoni-
tor_write behavior has to receive the length of next en-
coded byte-sequence froBesignbehavior through

a doublehandshake channel, before it fetches corre-

sponding number of bytes from a byte queue between

DesignandMonitor behavior andwrite the bytes into
test.264 During the video encodinmonitorwrite is
always in waiting state. When it receives the end of
encoding notification fronbesignbehavior, it closes
the output file and usesxit(0) to terminate the pro-
gram.

11

*communication between Design and Monitor

The communication between design and monitor is
implemented with one handshake channel, two dou-
ble_handshake channels, and one byte-queue chan-
nel. The two doubléhandshake channels are used
to synchronize the update of length of byte-sequence
in h264.writer and bytes writing operation imon-
itor_writer. To update the length of byte-sequence
h264writer in it Design behavior will read one in-
teger from the integer queue betwee?64 encoder
and h264 writer. If the length of byte-sequence is
zero,h264 writer will notify the Monitor of the end of
encoding through the handshake channel, Isioh-
itor will terminate the encoding program immedi-
ately; if the length of byte-sequence is not zero,
h264 writer will send the value tdMonitor through a
doublehandshake channel HSLENGTH. After the
transmissionh264 writer will enter a waiting state
and wait for the reply fromMonitor through another
doublehandshake channel named NRECEIVED.



WhenMonitor finishes the writing operation, it sends1 behavior B_par

an acknowledge through HSRECEIVED to notify { )
h264.writer of the accomplishment of writing oper-s B b1, b2, b3:
ation. After receiving the acknowledgk264 writer 4

continues the update of length of byte-sequence. >  Void main(void)

Figure 8 shows the comparison between JM refet- t par {

ence software and SpecC model, and the communica- b1.main ();

tion betweerDesignand Monitor behaviors as well. 9 b2.main ();
10 b3.main ();
11 }
12}
13 };

5 Exploiting parallelism in H.264

Video Encoder Listing 7: Concurrent Execution with par statement

H.264 video codec is a very complex algorithm with e 5gipie:  intra-prediction of a macroblock requires
heavy a computational load. For some applications, he pixel values from the left, up, and up-left mac-
such as video camera which has to encode input video,gp|ocks, and inter-prediction of a macroblock uses

in real-time, we might have to add parallel structure in e macroblocks in the previous reconstructed frames
the implementation to accelerate the encoding. After o¢ roferences to compute the motion vectors.

inspecting the reference JM source code of H.264 en- 134 possible opportunities for parallelism we have
coder, we have found some possible parallelism in the g are concurrent encoding of multiple slices, and
encoder. _ parallel execution of encoding procedure inside one
In this section, we have two parallel structures im- acroblock. In this report, for now we only focus
plemented in our H.264 encoder model. _on the parallelism inside macroblock encoding. The
~ One important feature of SpecC SLDL is its abil- o occurrences of parallelism, which we have im-
ity to simulate parallel structure. Parallel structure is plemented in our H.264 encoder model, are (1) Lumi-
very common in hardware description language like nance/Chrominance residual coding and reconstruc-

Verilog, but for high level languages like C, itis quite  tion, and (2) Motion vector search for multiple refer-
difficult to simulate parallel structure since programs gnce frames.

are usually executed in sequential way. In SpecC,
par statement is used when concurrent execution is
required.

One simple instance of concurrent execution with
par statement is shown in Listing 7. With this fea- The first potential for parallelism we found in the
ture, designer can explore parallelism in the target ap-H.264 encoder is the residual coding of Luma(Y) and
plication and verify the functionality without actually Chrominance(U/V) pixels in a macroblock. In intra-
implementing it with hardware description language. and inter-prediction encoding, the difference between

Dependency between codes implies sequential ex-predicted macroblock and original macroblock, called
ecution order, and in most cases disturbing this or- residual, will be transformed with DCT and then
der leads to functionality error. Therefore, we have to quantized to reduce the size of data. Then the trans-
make sure that there is no dependency between thdormed and quantized residual will be written into
variables used in the code before executing two or output file. Since the quantization in H.264 codec is
more sections of code, which was running sequen-lossy quantization, to make sure the reference frames
tially originally, in concurrent way. Due to the pre- in the encoder are identical to the reference frame
diction mechanism in the H.264 video encoder, paral- in the decoder, the quantized residual in the encoder
lelism across frames and macroblocks might not be has to be inverse-quantized and inverse-transformed

5.1 Luminance/Chrominance residual cod-
ing and reconstruction
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so that the residual in the encoder and decoder end
are identical. The predicted macroblock then will

be combined with inverse-quantized and transformed ;,,c rRDCostfor Macroblocks )
residual to reconstruct the decoded picture. The de- {

coded picture will be put in decoded picture buffer for3
future reference in inter-prediction. During the resid-*
ual coding and reconstruction, luminance pixels an
chrominance pixels are processed separately. In origj-
nal RDCostfor_macroblockdunction, the luma pixel 8
coding and chroma pixel coding are executed sequef-
tially. In our H.264 SpecC model, we managed tﬁ)
combine the luma and chroma residual coding and rg-
construction in inter-prediction coding and execute i3
concurrently. 14
The code before and after modification are shovxirg
in Listing 8. In the original source code, we;y
can see that functiof€hromaResidualCodingvill 18
be called after luma residual coding except fof?
IPCM mode. Now we have created a new be-
havior LumaChromaResidualCodidghvr to concur-
rently execute luma and chroma residual coding it
inter-prediction encoding. In the future, we will 2
add luma residual coding in intra-prediction encod-?1
ing(mode==116MB and I8MB) into the concurrent g
execution as well. Another potential for parallelismé
in this part is that the U and V chroma pixel resid-’
ual coding can be further separated and executed ﬁ"l

parallel. 10
11

12

5.2 Motion vector searchingfor multipleref- 13
erence frames 1;‘

In H.264 encoder, the reference pictures are storediﬁl
two decoded picture buffers namédbtO and Listl. 15
The predicted macroblock in inter-prediction is obz9
tained by comparing the current macroblock with the?
macroblock in the reference frame and searching @
the reference macroblock with minimal error. Inters;
prediction will search reference pictures in decoded
picture buffer and find out the motion vector betwee#p
original macroblock and best-matching reference pi§§3
ture. For P frame encoding, all reference pictures in
ListOwill be searched for inter prediction; for B frame
encoding, both decoded picture bufféstO andListl
will be searched.

The parallelism we exploited in inter prediction is

13

—~

if (mode<P8x8)
LumaResidualCoding (currMB);
else if (mode==P8x8)
SetCoeffAndReconstruction8x8 (currMB);
else if (mode==I116MB)
Intraléx16 Mode_Decision (currMB);
else if (mode==I8MB)
Intra8x8Macroblock (currMB);
else if (mode==IPCM)

i f (mode!=IPCM)
ChromaResidualCoding (currMB);

(a) Original sequential Luma/Chroma Residual Coding

behavior

{

+s

behavior

{

LumaChromaResidualCodinghvr (..)

par {

i_LumaResidualCodingohvr.main ();
i_ChromaResidualCodindghvr.main ();

}

RDCostfor_Macroblockbhvr (..)

if (mode<P8x8)
i_LumaChromaResidualCodinghvr.main ();

else if (mode==P8x8)
SetCoeffAndReconstruction8x8 (currMB);

else if (mode==I116MB)
Intral6x16Mode_Decision (currMB);

else if (mode==I8MB)
Intra8x8Macroblock (currMB);

else if (mode==IPCM)

if ((mode!=IPCM)&(mode-=P8x8))
i_ChromaResidualCodindhvr.main ();

(b) Luma/Chroma Residual Coding in Parallel
Listing 8: Residual Coding Parallelization



in the function calledPartitionMotionSearch This
function in the original C code calculates the minimal
error and finds out the best motion vector for each
reference picture. In our H.264 encoder model, we
create a parallel behavior to execute the motion vector
search for all reference pictures in the decoded picture

buffer. Since the number of reference pictures is user-

behavior

defined and we set this number to five, there will be a$ ¢

most five parallel motion vector searches for P frame
encoding and ten parallel motion vector searches fo“r
B frame encoding in our H.264 model.

PartitionMotionSearchbhvr (..)

for (list=0; list < num_lists; list++)

for (ref=0; ref < num.ref; ref++)

The codes before and after modification are showa { .
in Listing|9. Note that the behavidRefFrameMo- 8 i_RefFrameMotionSearclbhvr.main ()
tionSearchbhvr in parallel model is not identical to ° '
the behavior in the sequential model. In parallel vei-(l) ) }
sion of motion vector search, eveRefFrameMotion- ;5
Searchbhvr will be assigned a list number and ref43 } ;
erence picture number. Before executing the mo-
tion search, these two numbers will be compared (a) Sequential Motion Vector Searching
with variablesnumlist and numref to determine if 1 pehavior ParalleLRefFrameMotionSearctbhvr (.
the motion vector search in the corresponding referz {
ence picture and list is required. We did this modi-3
fication to prevent motion vector search from bein_g;1 pa;:{RefFrameMmionSearmhw_oo main (
executed when the reference picture does not exisj. i_RefFrameMotionSearclbhvr 01 . main ()
For example, if there are only two reference pictures i_RefFrameMotionSearclbhvr_02 . main ()
in the decoded picture buffer and the current framé ﬁfEeIEfamemotiongearmﬂvtgi -main ()
s a P frame, onbRefFrameMlotionSearcbvr 00 0| ReIameNoensearetiur 04 e
and only RefFrameMotionSearchhvr 01 will exe- i_RefFrameMotionSearchbhvr.11.main ()
cute the motion vector search, and the r&sf- 12 i_RefFrameMotionSearclbhvr_12 . main ()
FrameMotionSearchhvr will be idle. 13 i_RefFrameMotionSearctbhvr_13 . main ()
14 i_RefFrameMotionSearcibhvr_14 . main ()
15}
6 Experimentsand Results ot
18 behavior PartitionMotionSearchbhvr (..)

In this project, we validate our H.264 SpecC modab {

by comparing the output video file generated by oap
model with the output file generated by reference &

i_ParalleLRefFrameMotionSearcibhvr.main ();

code. We also calculate the run time of the encodirié b

process of our H.264 model. A simulation report of

the H.264 video encoding for a 19-frame video clip
with our H.264 SpecC model is shown in Figure 9.

In the simulation report, some parameters of this
encoder model are shown: the input video format is
YUV420, the frame size is 176x144, the number of
reference frames is 5, and so on. We can also see that
the encoding order is different from displaying order
in this simulation report. The encoding order in this

14

(b) Parallel Motion Vector Searching

Listing 9: Motion Vector Searching Parallelization

-)



simulation is 10, P2, B1, P4, B3, P6, B5, P8, B7, P10, sible. Therefore, the global variables have to be re-
B9, P12, B11, P14, B13, B16, B15, P18, and then placed by local variables and corresponding commu-
B17. The run time of this simulation is also shown nications in the SpecC model. Right now the commu-
after the encoding is finished. nication between the three major behaviors is totally
H.264 video encoder might be the most compli- global-variables free, but we still have to eliminate the
cated application we have ever modeled with SpecC.global variables irDesignbehavior in the future.
In this simulation, there are 19 frames been encoded: 2. Memory allocation elimination : In an embed-
one for I-frame and nine for P-frame and B-frame in- ded system where memory space is fixed and limited,
dividually. Since the frame rate of this video clip is memory allocation functions such as malloc are not
30 frames per second, the total length of the encodedhardware-synthesizable. Therefore, it is better to re-
video is about 2/3 second. To encode such a shortplace memory allocation functions with explicit array
video clip, it took about 90 seconds to complete the declarations in the SpecC model.
process with our H.264 model. 3. Explore more parallelism iDesignbehavior:
We have found two opportunities for parallelism and
implemented them in our H.264 model. There might
be more parallelism to be exploited in the encoder.
For example, since both intra-frame and inter-frame
prediction are used in P-slice encoding, we could look

7 Conclusion and Future Work

In this project, we have implemented a system model
3\]; af.H't264/§‘VC video enCOdd?fr W;f[h S‘?e‘;ﬁ ?JIII/IDL.f into this part to find out if it is possible to run these

e nrs m?twe ne(t:essarly(/ rr;;) ”C? lons inthe rec-j two predictions in parallel. Another potential par-
erence software 1o maxe Ihe relerence source codg,qjism we can explore is to add pipeline structure
SpecC compliant. After the reference code is fully

SpecC lant ted the ref imol in our SpecC model. Since the encoding of a mac-
pect. compliant, we separated Ine relerence IMples.,p qcy js processed in the order of temporal/spatial
mentation into three major behavio&imulus De-

: o _ rediction, transform and quantization, and then en-
sign, Monitor in our SpecC model, and assigned P d

h Is for th ication betw h tropy coding, maybe it is possible to execute these
{or::)epeelroghz\r:ir(mﬁss or the communication between esesteps in pipeline structure.

We h I loited t wunities f 4. Design space exploration on System-on-Chip
I I_e ave asoH GZXGZOI N (;NO opp()jorl.unl IeTI ﬂ Par - Epvironment (SCE) : System-on-Chip Environment
allelism in our H.254 encoder modet. parafiel iumi- (SCE) is a system developing tool in which we can as-
nance and chrominance pixel residual coding, and

liel moti ¢ h f ltiole ref sign different combinations of processor(s) and hard-
Es:rtirZsmo lon vector search for mulliple reference ware(s) to implement the H.264 encoder and estimate

i . . . the execution time for those different resource as-
At this point, our H.264 SpecC model is still

f f ‘ hesizable SpecC model signments and operating frequencies. After we cre-
ar away from a per ect synthesizable pect. MOUeL 4te a "clean” SpecC model in which all global vari-
There is still lots of work to do to make it perfect.

S li N lan for the fut listed ables are eliminated and all functions are hardware-
beel\(l)e\}/\r/? Improvements we pian forthe future are fiste synthesizable, we plan to explore the design space of

. L ) H.264 video encoder with SCE for different require-
1. Global variables elimination: Global variables

) ments and applications.
are very convenient for C language programmer and
also makes C programs look concise. Every func-
tion in the C program can access the global variablesAcknowIedgment
without explicit variable transmission. However, it
is not appropriate to use global variables in SpecC This work has been supported in part by funding
because of the lack of explicit communication. To from the National Science Foundation (NSF) under
let System-on-Chip Environment (SCE) estimate the research grant NSF Award #0747523. The authors
communication cost in design exploration, we should thank the NSF for the valuable support. Any opin-
keep every variable transmission as explicit as pos-ions, findings, and conclusions or recommendations
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H.264 SpecC Model

Input YUV file : test.yuv
Output H.264 bitstream : test.264
Output YUV file : test_rec.yuv
YUV Format 1 YUV 4:2:0
Frames to be encoded I-P/B :10/9

Freq. for encoded bitstream 115
Piclnterlace / Mblinterlace 1 0/0
Transform8x8Mode 1

ME Metric for Refinement Level 0 : SAD

ME Metric for Refinement Level 1
ME Metric for Refinement Level 2
Mode Decision Metric

: Hadamard SAD
: Hadamard SAD
: Hadamard SAD

Motion Estimation for components 'Y

Image format 1 176x144

Error robustness : Off

Search range 132

Total number of references 05

References for P slices :5

ListO references for B slices 05

List1 references for B slices 15

Sequence type : I-B-P-B-P (QP: 1 28, P 28, B 30)
Entropy coding method : CABAC
Profile/Level IDC 1 (100,40)

Motion Estimation Scheme : Fast Full Search
Search range restrictions > none
RD-optimized mode decision : used

Data Partitioning Mode : 1 partition

Output File Format

: H.264 Bit Stream File Format

Encoding. Please Wait.

FrameNumberInFile =
= FrameNumberlInFile =
FrameNumberInFile =

FrameNumberInFile =

0, Type = I_SLICE
2, Type = P_SLICE =
1, Type = B_SLICE

7, Type = B_SLICE
= FrameNumberlInFile = 10, Type = P_SLICE =
= FrameNumberInFile = 9, Type = B_SLICE =

= FrameNumberlInFile = 4, Type =
= FrameNumberInFile = 3, Type =B_
========= FrameNumberInFile = 6, Type = P_SLICE ===============
= FrameNumberlInFile = 5, Type =
= FrameNumberlInFile = 8, Type =

= FrameNumberinFile = 12, Type = P_SLICE =
= FrameNumberInFile = 11, Type = B_SLICE =
= FrameNumberInFile = 14, Type = P_SLICE =
= FrameNumberlInFile = 13, Type = B_SLICE =
= FrameNumberInFile = 16, Type = P_SLICE =
= FrameNumberlInFile = 15, Type = B_SLICE =
= FrameNumberInFile = 18, Type = P_SLICE =

H264 Encoding Process has finished
Total Run Time: 90.000 seconds
Files test.264 and test.264.gold are identical

Figure 9: Simulation report
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