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Abstract

H.264 video decoder is a computationally demanding appbica In resource-limited em-
bedded environment, it is desirable to exploit parallelisnorder to implement a H.264 de-
coder. After reviewing a list of technical details of H.28drglard, we have discussed several
possiblities of parallelization and developed a TLM modighyarallel slice decoders. Exten-
sive experiments are performed to demonstrate the bendfié @ur model.
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Abstract

H.264 video decoder is a computationally demanding application. In resdimited embedded
environment, it is desirable to exploit parallelism in order to implement a H@&ebder. After
reviewing a list of technical details of H.264 standard, we have discusseeral possiblities of
parallelization and developed a TLM model with parallel slice decoderterisive experiments are
performed to demonstrate the benefit of the our model.

1 Introduction

H.264/AVC video coding standard [6] is widely used in video applicationf sisdnternet stream-
ing, disc storage, and television services. H.264/AVC provides higlitguadeo at less than half
the bit rate compared to its predecessors H.263 and H.262. In multimediaeseivican be con-
sidered the best compromise between quality and size to combine H.264 vitlétp&rvideo, as
in Figure 1. However, H.264 encoding and decoding also requires namputing resources than
its predecessors. In order to implement the standard on resource-limitedidatbsystems, it is
highly desirable to exploit available parallelism in its algorithm.

The rest of the report is organized as follows: several features2§4standard is introduced
in the next section. Section 3 discusses possible parallelism that we dait &xpuild our model.
Section 4 describes the parallel H.264 decoder model, followed by someeiments and results
showing the benefit of the parallelism. Section 6 concludes the report.
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j Track(H.264 video) j

j Track(MP3 audio) j

j Track (Timed text) j

Figure 1: A typical multimedia data unit

2 H.264/AVC Standard Features

This section introduces a list of features of H.264 standard that are elagtd to our decoder
model.

2.1 YUV Color Spaceand 4:2:0 Sampling

H.264 standard represents color in a picture with YUV format. ComponewaNe@ luma) rep-

resents brightness. Components U and V (called chroma) represent Beltause human visual
system is more sensitive to brightness than color, H.264 keeps more luma sanaplehroma to

ensure both picture quality and compression rate. Especially, the most psgulpling structure in

which chroma component has one fourth of the number of luma componetieid 4:2:0 sampling.

Each sample is represented by 8 bits of data.
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4:2:0 sampling

Figure 2: 4:2:0 Sampling



2.2 Macroblocks

A macroblock is the basic encoding and decoding unit in H.264 standare manroblock covers

a fixed-size rectangular picture area o< pixels, which contains, with 4:2:0 sampling, 166

luma samples and>88 of each of the chroma samples, as illustrated in Figure 3. To decode a
macroblock, either intra prediction or inter prediction is required.
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Macroblock V
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Y  48@Yblocks :
18x8 U block
1848 V block

Figure 3: Into a Macroblock

Intra prediction constructs a macroblock by using neighboring sample$ahécfrom previ-
ously decoded macroblocks in current picture. There are three mboesagrediction. Intra 44
mode predicts a macroblock with smaller blocks of sizet4Intra 16< 16 mode predicts the whole
16x16 block and is suitable for smooth area of a picturendde simply bypasses the prediction
and transform coding of this macroblock to preserve precise video samipigure 4 shows how
Intra 4x4 prediction can be done by referring to video samples from left andeafvalvich is the
previously decoded area) the block to be predicted.
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Figure 4: Nine Intra 44 prediction modes

Inter prediction, also known as motion compensation, predicts a macrobjoodfdrring to
previously decoded pictures. A macroblock can be partitioned into sutibfor inter prediction.
The option of sub-blocks sizes arex®86, 16x8, 8x16, and &8, among which &8 block can be
further partitioned into &4, 4x8 or 4x4 blocks. Figure 5 illustrates how motion compensation is



done with two references pictures. A picture reference index and a megior are required to
perform motion compensation.
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Figure 5: Motion Compensation

2.3 Slices

A slice is a sequence of macroblocks. On the other hand, a H.264 vidae &an be split into one
or more slices. Figure 6 shows an example of a frame divided into four shime that slices can
be of very flexible shape and size with a feature of Flexible Macroblodefrg(FMO) enabled, as
shown in Figure 7, where each color represents a slice group whiotocasin one or more slices.

Slice 0

I

Slice 1

Slice 2 ’7

Slice 3

Figure 6: A H.264 video frame divided into four fixed-size slices.

Slices can be classified into three types according to their coding style. Awgtitall mac-
roblocks coded using intra prediction is calledlasiice. In addition to intra prediction, & slice
contains inter predicted macroblocks with only one reference frame pdicgion block. In addi-
tion to coding types in a P slice,Baslicecan have inter predicted macroblocks with two reference
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Figure 7: Possible Slice Patterns with FMO enabled

frames per prediction block.

Notably, Slices arendependenbf each other, in the sense that decoding one slice will not
require any data from the other slices in the current video frame. Haweveorrectly decode a
frame, reference frames are needed if the frame contains P slicesfa@amagtion from other slices
are still needed when deblocking filter works across slice boundaries.

2.4 H.264 Decoding Algorithm

Our study is based on H.264/AVC JM reference software[4]. This seddido introduce the al-
gorithm of H.264 decoder as implemented in JM version 13.0. JM 13.0 relie@fiyhea global
storage depicted in parallelograms in Figure 8) in the decoding proceseradllg, it accesses all
input image parameter in structureg, temporary output data in structuecpictureand decoded
frames in decoded picture buffdph

As shown in Figure 8, decoding starts on parsing incoming NAL units, whieHagjical data
packet containing H.264 syntax structures. It carries both coded diateoand information indi-
cating the method to decode the data. After parsing, coded residual datejsyedecoded, inverse
quantized, reordered, inverse transformed and result in the decesiedal data stored in array
m7, which will later build part of a decoded macroblock. On the other handgegainformation
on MB_typesand prediction mode infas used to construct the current macroblock by predicting
its content. Depending on how the macroblock is encoded in the first plitvey; imtra prediction
or motion compensation will apply to acquired the predicted data, the resuhiohvs stored in
an arraymprin JM 13.0. At this point, the macroblock has all necessary data decodecbarbe
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Figure 8: Block Diagram of H.264 Decoder in JM 13.0

constructed by adding transformed residual data and predicted dathetog®n finish decoding
one macroblock, the decoder proceeds to next macroblock in cutiembs next slice. After an

entire frame is decoded, deblocking filter is applied to remove the blockingastiin a frame. The
output of the deblocking filter is stored in a decoded picture buffer wheels the buffered frames
as reference to decode future frames.

3 Parallelism Exploitation

Various possible parallelisms exist in H.264 standard.

On frame level, decoding a frame can depend on reference framesydfeséble position and
number with inter prediction applied. Although part of the frames can be iné@digied only, it is
still very difficult to exploit parallelism on frame level.

On macroblock level, we firstly review how a macroblock is constructed in 3M. lllustrated
by Figure 9, the decoder firstly acquires the predicted daa)(by refer

As for the deblocking filter, although it operates across boundaries ofalacks and slices,
deblocking a macroblock only depends on its neighbor macroblocks singedtds to remove
block edges. Therefore, it is possible to filter a frame in parallel, though garallelism is not easy
to exploit.

Due to the nature of slices, it is most promising to exploit parallelism on slice [&eldevel-
oped a SpecC model with four parallel slice decoders, which is expecbedhmst efficiency when
incoming stream has 4 balanced slices per frame.
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Figure 9: Construction of a macroblock in JM 13.0 H.264 decoder

4 A SpecC Model with Parallel Slice Decoders

decode_one_frame()

P

read _new

_slice()
i y

decode_sli — Slice
ce() decoder 0
Ceosr >

Y

exit_pictur

e()

Synchronizer

Figure 10: Recoding From JM Reference to SpecC model

An initial system-level model with Simulator, DUT and Monitor structure is degigng5].
Now after identifying parallelism at slice level, we have extended the exisyistg®-level model



by further recoding JM reference code. The decoding proceduddliis done by functiorde-
codeoneframe which contains subfunctionsead newslice, decodeslice and exit picture, as
shown in Figure 10. After recodingead.newsliceis recoded intslice reader decodeslice into
four slice decoderandexit pictureinto Synchronizer

With any input video stream encoded with four slices per frame, Slice Readds out four
slices every running cycle and dispatch them to Slice Decoders via dhatamtace. Each slice de-
coder internally consists of the regular H.264 decoder functions, suehteopy decoding, inverse
guantization and transformation, motion compensation, and intra-predictjgon &ach Slice De-
coder finishing its work in parallel, Synchronizer completes the decodirapplying a deblocking
filter to the decoded frame.

Up to date, this model can be manually adjusted to decode video stream witlemliffeimber
of slices.

5 Experiment and Results

We use the System-on-Chip Environment (SCE) [2] for synthesis andatialidof our H.264 de-
coder model. SCE is arefinement-based framework for heterogend@te@®Adesign. It starts with
a system specification model described in the SpecC language [3] and impdeartep-down ESL
design flow based on the specify-explore-refine methodology.

We partition our parallel H.264 decoder model as follows: the four slicedlsrs are mapped
onto four custom hardware units; the synchronizer is mapped onto an7/ARMI processor at
100MHz which also implements the overall control tasks and cooperation vatisutrounding
testbench. We choose Round-Robin scheduling for tasks in the poocess allocate an AMBA
AHB for communication between the processor and the hardware unitsg S€l&, we generate
the transaction level models (TLM) of our parallel H.264 decoder dedigliffarent abstraction
levels. They arespecfor the specification modehrch for the architecture mapped model with
different kinds of processing elements (P&hedfor the model with scheduling decisions made for
operation systems on mapped processwmHpr the model with network connectivities among PEs,
tIm for transaction level model with communication protocols, anchmfor pin-cycle accurate
model with communication details.

For our first experiment, we use the same stream "Harbour” of 299 \iideees, each with
4 slices of equal size. As shown in [1], 68.4% of the total computation time ist $pehe slice
decoding, which we have parallelized in our decoder model.

As a reference point, we ci’;llculate the maximum possible performance dalioas:

MaxSpeedup- ,
paralelPart | SerialPart

For 4 parallel cores, the maximum speedup is

MaxSpeedup= =2.05
08844 (1-0.684)

The maximum speedup for 2 cores is accordinggxSpeedup= 1.52 .

Table 1 lists the simulation results for several TLMs generated with SCE wdieg aur multi-
core simulator on a Fedora core 12 host PC with a 4-core CPU (Intel(R)(Td)2 Quad) at
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3.0 GHz, compiled with optimization (-O2) enabled. We compare the elapsed simuletie
against the single-core reference simulator (the table also includes théo@®Weported by the
Linux OS). Although simulation performances decrease when issuing aelyparallel thread due
to additional mutexes for safe synchronization in each channel and tieelider, our multi-core
parallel simulation is very effective in reducing the simulation time for all the magleé multiple
cores in the simulation host are used.

Table 1: Simulation results of H.264 Decoder ("Harbour”, 299 frames éskach, 30 fps).

Simulator Reference Multi-Core
Par. issued threadsd: n/a 1 2 4 #delta cycles| #threads
sim. time sim. time speedup sim. time speedup sim. time speedup

spec 20.80s (99%)| 21.12s(99%)| 0.98 14.57s (146%)| 1.43 11.96s (193%)| 1.74 76280 15

arch 21.27s (97%)| 21.50s (97%)| 0.99 14.90s (142%)| 1.43 12.05s (188%)| 1.76 76280 15

models | sched | 21.43s(97%)| 21.72s (97%)| 0.99 15.26s (141%)| 1.40 12.98s (182%)| 1.65 82431 16

net 21.37s(97%)| 21.49s (99%)| 0.99 15.58s (138%)| 1.37 13.04s (181%)| 1.64 82713 16

tim 21.64s (98%)| 22.12s (98%)| 0.98 16.06s (137%)| 1.35 13.99s (175%)| 1.55 115564 63

comm | 26.32s (96%)| 26.25s (97%)| 1.00 19.50s (133%)| 1.35 25.57s (138%)| 1.03 205010 75

maximum speedup 1.00 1.00 1.52 2.05 n/a n/a

Table 1 also lists the measured speedup and the maximum theoretical speethgrodels
that we have created following the SCE design flow. The more threadssaedigh each schedul-
ing step, the more speedup we gain. Huelta cycleolumn shows the total number of delta
cycles executed when simulating each model. This number increases whaestge is refined
and is the reason why we gain less speedup at lower abstraction levebs cbfomunication over-
head is introduced and the increasing need for scheduling reduce rtdikelm. However, the
measured speedups are somewhat lower than the maximum, which is réasyvei the over-
head introduced due to parallelizing and synchronizing the slice decddeomparatively lower
performance gain for theommmodel in simulation with 4 threads can be explained due to the

inefficient cache utilization in our Intel(R) Core(TM)2 Quad machine

Using a video stream with 4 slices in each frame is ideal for our model withdilzeie decoders.
However, we even achieve simulation speedup for less ideal casds|ZTsitiows the results when
the test stream contains different number of slices. We also create tr¢ast ile with 4 slices per
frame but the size of the slices are imbalanced (percentage of MBs inlezxis 81%, 31%, 31%,
7%). Here, the speedup of our multi-core simulator versus the refemreés 098 for issuing
1 thread, 128 for 2 threads, and.d8 for 4 threads. As expected, the speedup decreases when
available parallel work load is imbalanced.

6 Conclusion

In this work, we have discussed options of parallelism in H.264 decodidglaveloped a SpecC
model with four parallel slice decoders. We have refined the model usikgdgsign flow and per-

IThe Intel(R) Core(TM)2 Quad implements a two-pairs-of-two-corehitecture and Intel Advanced Smart Cache
technology for each core pair (http://www.intel.com/products/procéss@2quad/pradbrief.pdf)



Table 2: Simulation speedup with different h264 streams (spec model).

Simulator Reference Multi-Core

Par. issued threads: n/a 1 2 4
1 1.00 0.98| 0.98| 0.95
2 1.00 0.98| 1.40| 1.35
3 1.00 0.99| 1.26| 1.72

slices 4 1.00 0.98| 1.43| 1.74

frame 5 1.00 0.99| 1.27| 1.53
6 1.00 0.99| 1.41| 1.68
7 1.00 0.98| 1.30| 1.55
8 1.00 0.98| 1.39| 1.59

formed extensive experiments with our multi-core simulator. The results shtisfestory speedup
in our parallel decoder model.
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