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We present a new approach for building fault-tolerant distributed systems based on distributed

transactional memory. Current practice for developing distributed systems using message passing

requires developers to manually write code to recover from machine failures. Experience has
shown that designing fault-tolerant distributed systems using these techniques is difficult. It has

therefore largely been relegated to experts in the domain of fault-tolerant systems.
We present a new fault-tolerant distributed transactional memory system designed to simplify

the development of fault-tolerant distributed applications. Our system provides a powerful set

of building blocks that relieve the developer from the burden of implementing the failure-prone,
low-level aspects of fault-tolerance. Our approach in many cases provides fault-tolerance without

any developer effort and in other cases only requires that the developer writes the relatively

straightforward, application-specific recovery code. We have used our system to build five fault-
tolerant applications: a distributed spam filter, a distributed web crawler, a distributed file system,

a distributed multiplayer game, and a distributed computational kernel. Our results indicate that

each application effectively recovers from machine failures.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems—Distributed applications; D.1.3 [Programming Techniques]: Concurrent Program-

ming—Distributed programming; D.3.2 [Programming Languages]: Language Classifications—
Concurrent, distributed, and parallel languages; D.4.5 [Operating Systems]: Reliability—Fault-

tolerance

General Terms: Languages,Reliability

Additional Key Words and Phrases: Fault-Tolerance, Distributed Transactional Memory, Pro-

gramming Languages, Distributed Systems

1. INTRODUCTION

Developing fault-tolerant distributed systems is known to be difficult. Distributed
systems complicate the already challenging task of developing concurrent software
with the difficult task of recovering from partial failures. Developers must ensure
that machine failures do not cause a distributed system to lose important informa-
tion or leave it in an inconsistent state. Currently, such systems are often built using
low-level message passing primitives. Unfortunately, writing algorithms for repli-
cating state, detecting failures, and ensuring consistency using standard message
passing primitives is complex and is largely relegated to the domain of distributed
systems experts.

Fault-tolerant distributed transactional memory presents a promising new ap-
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proach for building fault-tolerant distributed systems. It provides developers with
powerful building blocks that eliminate many of the difficulties of recovering from
machine failures.

Our system provides developers with two powerful primitives to build fault tol-
erant applications: (1) shared, replicated objects and (2) transactions that provide
atomicity even in the presence of machine failures. The system maintains two
copies of each shared object — if a failure causes one copy to become unavailable,
the runtime automatically makes a new copy to restore redundancy. Transactions
provide a mechanism to guarantee data structure consistency even in the presence
of machine failures. In addition to the standard isolation property that software
transactional memories commonly guarantee, our transactions also guarantee dura-
bility and atomicity. The atomicity property means that even in the presence of a
machine failure, either all operations in a transaction are executed or none of them
are. The durability property means that once a transaction commits changes to
shared objects, the changes will survive machine failures. The traditional trans-
action consistency property is left to the application — if all transactions in the
application transition objects from consistent states to consistent states, the overall
system preserves consistency.

The system provides these guarantees in the presence of halting faults provided
that both the machine holding an object’s primary copy and the machine holding
an object’s backup copy do not fail in the time window that it takes to detect a
machine failure and restore redundancy. The system does not attempt to handle
Byzantine faults [Lamport et al. 1982]. The system assumes bounds on network
and processing delays such that it is possible to detect failed machines.

Our system assumes perfect failure detection — if a failure is detected, the non-
failed machines will no longer communicate with the failed machine. If the network
partitions, a partition can recover if it contains copies of all objects. If network
connectivity is restored, the machines cannot rejoin the computation without first
resetting their state.

It is possible for machines on different sides of a network partition to disagree
about whether a transaction committed. However, an application can never ob-
serve inconsistent results from a transaction commit as our system will not allow
machines on different sides of a network partition to even communicate again even
if network connectivity is restored. This weaker guarantee suffices for many appli-
cations including all of our benchmarks. It is of course possible to obtain a stronger
guarantee using the classic three phase commit algorithm [Skeen and Stonebraker
1983] at the expense of incurring additional network latency from an extra round
of communications.

In addition to fault-tolerance guarantees, our approach was designed with per-
formance in mind. Our system employs approximately coherent caching [Dash and
Demsky ] to reduce the overheads of accessing remote objects. The system uses
symbolic prefetching [Dash and Demsky ] of remote objects to hide the latency of
remote accesses.

This paper makes the following contributions:

—Fault-Tolerant Distributed Transactional Memory: It presents an ap-
proach that provides powerful programming primitives to make developing fault-
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tolerant systems straightforward. These primitives provide replicated objects for
constructing resilient data structures and transactions for updating these struc-
tures in a manner that ensures consistency even in the presence of failures.

—Library Support for Fault-Tolerant Programming Patterns: It combines
fault-tolerant distributed transactional memory for low-level recovery with a task
library that can automatically implement high-level recovery for many applica-
tion classes.

—Evaluation: It presents our experiences developing several fault-tolerant appli-
cations using our system. We evaluated the fault tolerance of these applications
by causing machines to fail. Our experience indicates that is straightforward to
develop fault-tolerant applications and that these applications tolerated machine
failures.

The remainder of this paper is structured as follows. Section 2 presents an
example. Section 3 presents the basic design of our system. Section 4 describes
how the system recovers from machine failures. Section 5 presents an evaluation on
several benchmarks. Section 6 discusses related work; we conclude in Section 7.

2. EXAMPLE

We next present a distributed web crawler example to illustrate the operation of
our system. Figure 1 presents the code for the web crawler example. The Table
class stores the set of URLs that the system has visited and a hash table that
stores the web page index. Both allocation statements in the constructor for the
Table class use the shared keyword to indicate that the objects should be shared
between machines. The system maintains replicas of all shared objects to ensure
that a single machine failure cannot cause the object to be lost. Objects that are
not declared as shared are local to the allocating thread. Our system enforces type
constraints that prevents thread-local references from leaking to remote threads.

While our system automatically ensures that failures cannot cause data in shared
objects to be lost, failures do cause all threads on the failed machine to die. Recov-
ering from the failure of these running threads is left to the application. However,
our system provides a task library that developers can use to easily write appli-
cations that automatically migrate computational tasks from failed machines to
non-failed machines.

To use this library, a developer partitions a computation into a set of tasks. A
task is implemented as a subclass of the Task class, much like threads in Java. A
task’s execute method performs the computation for that task. The WebPage class
extends the Task class. It overrides the execute method of the Task class with
code that downloads and indexes the web page.

In Line 21 of the example, the execute method calls the makeLocal method on
the URL string to create a thread local copy of the string. The previous line uses the
atomic keyword to declare that this method call is executed inside of a transaction.
Our system only allows shared objects to be accessed from inside of transactions.
This constraint encourages developers to update shared data structures in a fashion
in which transactions transition shared data structures from one consistent state to
another consistent state. This style of programming together with the transactional
properties guarantee that machine failures do not leave data structures in inconsis-
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1 public c lass Table ( ) {
2 Hashtable index ;
3 HashSet u r l ;
4 public Table ( ) {
5 index=new shared Hashtable ( ) ;
6 u r l=new shared HashSet ( ) ;
7 }
8 }
9

10 public c lass WebPage extends Task {
11 St r ing u r l ;
12 Table t ab l e ;
13 int depth ;
14 public void WebPage( St r ing ur l , Table table ,
15 int depth ) {
16 this . u r l=u r l ; this . t ab l e=tab l e ; this . depth=depth ;
17 }
18

19 public void execute ( ) {
20 atomic {
21 St r ing l o c a l s t r i n g=ur l . makeLocal ( ) ;
22 }
23 St r ing page=downloadwebpage ( l o c a l s t r i n g ) ;
24 atomic {
25 parsewebpage ( page ) ;
26 dequeueTask ( ) ;
27 }
28 }
29

30 public parsewebpage ( St r ing page ) {
31 for ( int i =0; i<page . l ength ( ) ; i++) {
32 i f ( depth<10 && isURLAt ( page , i )&&
33 ! t ab l e . u r l . conta in s (getURLAt( page , i ) ) ) {
34 t ab l e . u r l . add (getURLAt( page , i ) ) ;
35 enqueueTask (new shared WebPage(
36 getURLAt( page , i ) , tab le , depth +1)) ;
37 }
38 i f ( isKeyWordAt ( page , i ) ) {
39 i f ( ! t ab l e . index . containsKey (
40 keyWordAt( page , i ) ) )
41 t ab l e . index . put (keyWordAt( page , i ) ,
42 new shared HashSet ( ) ) ;
43 t ab l e . index . get (keyWordAt( page , i ) ) . add ( u r l ) ;
44 }
45 }
46 }
47 . . .
48 }

Fig. 1. Web Crawler Classes

tent states. We note that unlike software transactional memory implementations
for shared memory systems, transactions in our system typically serve to reduce
the overhead of accessing remote objects. The intuition is that transactions allow
the system to speculate that cached copies of objects are coherent and then to roll-
back any misspeculations rather than incur the large network latencies necessary
to rigorously guarantee consistency.

The method then calls the downloadwebpage method to download the web page
from the remote web server. It executes the final transaction to commit the results
of the computation. Our example web crawler limits the depth that it crawls the
web from the starting page. If the depth of a web page is less than 10 from the
starting point, the transaction searches the web page for URLs and creates a new
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WebPage task for each URL in the web page. It then calls the enqueueTask method
on each WebPage task to enqueue it. Then the transaction searches the downloaded
page for keywords and adds a link from the keyword to the URL. Finally, the
transaction calls the task’s dequeueTask method to mark that the task has been
completed. With the exception of this final transaction, the task should not execute
any transactions that modify shared objects that have escaped the task 1.

2.1 Normal Execution

As the example web crawler executes, it starts worker threads on all machines. It
then generates an initial WebPage task to lookup the first URL and places the task
in a work queue of tasks to process. The worker threads execute transactions that
scan the work queue for task objects to execute. If such a task object is found,
they transition the task object from the work queue to the worker thread’s working
task entry. The worker thread then calls the WebPage task’s execute method. The
WebPage task downloads the web page. It then executes a final transaction that
extracts the links from the page, updates the web crawler’s shared web page index
table, and removes the task from the worker thread’s working task entry. The
worker thread then looks for a new task to execute and repeats the process for that
task.

2.2 Recovery

Supposed that a machine fails during the web crawler’s execution. The machine
failure will be detected when either it fails to respond to another machine’s request
within the time bounds or it fails to respond to a heartbeat ping. At this point,
a leader election algorithm chooses a leader with high probability (if it chooses
multiple leaders, we may lose liveness but not safety). The leader first contacts
all machines to determine which machines are live and which transactions are in
the process of committing. Upon contact from the leader, these machines halt
all transactions. Then the leader commits or aborts all transactions that were in
the process of committing. Then it directs the remaining machines to restore the
redundant copies of all shared objects. Finally, it updates all machines with the
current list of live machines and restarts all machines.

At this point, all shared objects are in consistent states and there is a redundant
copy of each object. However, the worker thread on the failed machine has not been
restored and therefore its current task has halted. When the work queue empties,
the remaining worker threads will scan all other threads looking for dead threads
that did not complete their task. When such a thread is found, a worker thread will
execute a transaction that will transition the task from the dead thread’s working
task entry to its own working task entry. In this manner, the task library ensures
that all tasks are completed even in the presence of machine failures.

3. SYSTEM OVERVIEW

Our distributed transactional memory is object-based — data is accessed and com-
mitted at the granularity of objects. When a shared object is allocated, it is assigned
a globally unique object identifier. The object identifier is then used to reference

1Escaped in this context means that another task can acquire a reference to the shared object.
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and access the object. We statically partition the object identifiers between nodes
so that each node can assign unique identifiers. The runtime system determines
the location of an object directly from its object identifier.

Our system implements optimistic concurrency control using a version-based
strategy. Each shared object contains a version number — the version number
is incremented when a transaction commits a write to the object. The imple-
mentation uses the version numbers to determine whether it is safe to commit a
transaction. If a transaction accesses an old version of any object, the transaction
must be aborted. The commit protocol has two phases: the first phase verifies that
the transaction operated on the latest versions of all objects and the second phase
commits the changes.

The implementation maintains the following types of object copies:

—Primary and Backup Authoritative Copies: The primary and backup au-
thoritative copies contain all updates that have been committed to the object.
Each object has exactly one primary authoritative copy and one backup author-
itative copy. The location of an object’s authoritative copies can be computed
from its object identifier together with the list of live machines. If a machine
hosting an authoritative copy of an object fails, that copy is migrated to another
machine using the other copy.

—Cached Copy: Cached copies are used to hide the latency of remote object
accesses. When a transaction accesses a cached copy of an object, the runtime
makes a transaction local copy of the object for that transaction. The cached
copy can be stale — if a transaction accesses a stale object, the transaction will
abort.

—Transaction Local Copy: When a transaction accesses a shared object, a
transaction local copy is made for that transaction. The transaction performs
reads and writes on this local copy. When the transaction commits, any updates
to the local copy are copied to the authoritative copy. It is possible for the local
copy to be stale in which case the transaction will abort.
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3.1 Memory Architecture

We next discuss the memory architecture of our system. The expanded processing
node in Figure 2 presents the major components in our distributed transactional
memory system. Each processing node contains the following state:

—Local Distributed Heap: The shared memory is partitioned across all pro-
cessing nodes. Each node stores a disjoint subset of the authoritative copies of
distributed objects in its local distributed heap. The local distributed heap stores
the most recent committed state for each shared object whose authoritative copy
resides on the local machine. Each local distributed heap contains a hash table
that maps object identifiers to the object’s location in the local distributed heap.

—Thread Local Heap: In addition to shared objects, objects can be allocated in
thread local heaps. There is one thread local heap for each application thread.
Thread local objects can be accessed at any time during the computation by the
thread that owns the object.

—Transaction Heap: There is a transaction heap for each transaction. The
transaction heap stores the transaction local copy of any shared object that it
has accessed. Each transaction heap contains a hash table that maps the object
identifiers that the transaction has accessed to the location of the transaction
local copy in the transaction heap.

—Object Cache: Each processing node has an object cache that is used to cache
objects and to store prefetched objects. Each object cache contains a hash table
that maps the object identifiers of the objects in the cache to the object’s location
in the cache.

3.2 Accessing Objects

Our system uses a partitioned global address space (PGAS) programming model [Yelick
et al. 1998; Chamberlain et al. 2007; Allen et al. 2006]. Recall that our system con-
tains two classes of objects: local objects and shared objects. Accessing a local
object outside of a transaction and reading a local object inside a transaction only
requires a simple pointer dereference. Writing to a local object inside a transaction
requires a write barrier that ensures that a backup copy of the object exists. If the
transaction is aborted, the object is restored from the backup copy.

Shared objects can only be accessed inside of a transaction. When code inside a
transaction attempts to lookup an object identifier to obtain a pointer to a trans-
action local copy of the object, the runtime system attempts to locate the object
in the following places:

(1) The system first checks to see if the object is already in the transaction heap.
(2) If the object is located on the local machine, the system looks up the object in

the local distributed heap.
(3) If the object is located on a remote machine, the system next checks the object

cache on the local machine.
(4) Otherwise, the system sends a request for the object to the remote machine.

Note that primitive field or primitive array element accesses do not incur these
extra overheads as the code already has a reference to the transaction local copy of
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the object. We expect that for most applications, the majority of accesses to refer-
ence fields or reference array elements will access objects that the transaction has
already read. This code is inlined and the common case of locating the transaction
local copy of an object involves approximately ten x86 instructions.

The compiler generates write barriers that mark shared objects as dirty when
they are written to2. The runtime uses a shared object’s dirty status to determine
whether the commit must update the authoritative copy of the object.

3.3 Object Management

Each shared object has a unique identifier associated with it. The identifier is
assigned when the object is allocated. The identifier space is partitioned in a
ring-like manner across the machines in the system to enable machines to assign
object identifiers without requiring communications. Figure 3 presents the object
partitioning scheme — each machine is assigned a position in the ring. The machine
hosts the primary copies of the objects located between the machine’s position and
its clockwise neighbor in the ring. The machine hosts the backup copies of objects
located between the machine’s position and its counterclockwise neighbor in the
ring.

The ring is partitioned into a large, fixed number of partitions. Machines can
be located at the boundaries of these partitions. Each machine has two machine
lookup tables — one for the primary copies of objects and one for the backup copies.
Each table has an entry for each partition that gives the machine that hosts the
objects in that partition. The lookup table is keyed with the high-order bits of the
object identifier.

3.4 Commit Process

We next overview the basic operation of the transaction commit procedure. Sec-
tion 4 presents extensions to this algorithm that are necessary to coordinate with
the recovery process. When a transaction has completed execution, it calls the

2Each object contains a dirty flag, and the write barrier marks the object as dirty by setting the

object’s dirty flag.
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transaction commit method. The commit method begins by sorting shared objects
in the transaction heap into groups based on the machine that holds the authorita-
tive copy of the object. For each machine, the commit method groups the shared
objects based upon whether they have been written to or simply read from. The
commit operates in two phases: the first phase verifies that the transaction operated
only on the latest versions of objects and the second phase commits the changes.
We next describe how the algorithm processes each category of shared object:

—Clean Objects: For clean objects, the transaction commit verifies that the
transaction read the latest version. The transaction coordinator sends the ob-
ject’s version number to one of the machines hosting either the primary or backup
authoritative copy. That machine acquires a read lock on the object and com-
pares versions. If the versions do not match the machine releases the object locks
and votes to abort the transaction.

—Dirty Objects: The transaction commit must copy the updates made by the
transaction from the dirty objects to the authoritative copies of those objects.
The system transfers a copy of the dirty object along with its version number
to the machine hosting the primary authoritative copy and the machine hosting
the backup authoritative copy. The remote machine then acquires a write lock
on the authoritative copy and compares versions. If the versions do not match,
it votes to abort the transaction. If the transaction coordinator responds with a
commit command, the changes are copied from the dirty copy to the authoritative
copy and the object lock is released. If the coordinator responds with an abort
command, the lock is simply released without changing the authoritative copies.

If all authoritative machines respond that all version numbers match, the trans-
action coordinator will decide to commit the transaction and transmit commit
commands to all participants. If any authoritative machine responds with an abort
request, the transaction coordinator will decide to abort and transmit abort com-
mands to all participants. If any authoritative machine cannot immediately lock an
object, the coordinator will abort the commit process to avoid deadlock and retry
the commit process.

Code inside a transaction can also modify thread local objects and local variables.
When a transaction begins, it executes compiler-inserted code that makes a copy
of all live local variables. Whenever a transaction writes to a local object, the
compiler-inserted code first checks if there is a copy of the object’s state and then
makes a copy if necessary. If the transaction is aborted, the generated code restores
the local variables and uses the local object copies to revert the thread local objects
back to their states at the beginning of the transaction.

3.5 Commit Optimizations

The commit process only needs to verify an object in the transaction’s read set
against one of the authoritative copies of the object. In general, the time taken
by the commit process depends on the number of machines that are contacted
even though all machines are contacted in parallel. We next describe our heuristic
optimizations that select which machines to use to verify the read set in order to
minimize the number of remote machines that must be contacted.
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When the commit process selects a machine to verify an object in the read set,
it first checks a list to see if the transaction already involves either the machine
with the primary or backup authoritative copy of the object. If so, it just adds the
object to the group for the existing machine.

Otherwise, we partition the machines in the ring into an even group of machines
and an odd group of machines depending on their position in the ring. Machines in
the each group will preferentially contact machines in the same group for validating
the read set. This enables our system to commit any read-only transaction by
contacting a maximum of dn

2 e − 1 remote machines where n is the current number
of machines in the system. We note that if there is an odd number of machines,
machines in the odd set will have to select an even machine at the point that the
two ends of the ring join.

3.6 Sandboxing

During a transaction, the execution can potentially read inconsistent versions of
objects. While such executions will eventually abort during the commit process,
reading inconsistent values can cause even correct code to potentially loop, throw
an error, or run out of memory before the transaction aborts. Therefore, if the
execution of a transaction throws an exception, the runtime system verifies that the
transaction read consistent versions of the objects before propagating the exception.
If an exception occurs, our system checks that the transaction has only accessed
the latest versions of objects. If the transaction has accessed stale objects, the
transaction is aborted. If the transaction has only accessed the most recent versions
of objects, the exception is propagated. Similarly, there is the potential for looping
due to reading inconsistent values. To prevent looping, our system periodically
validates the read sets. If the object versions are consistent, the execution will
continue, otherwise the transaction is aborted. Our system also validates the read
set after a transaction’s allocations have exceeded a threshold. We use an adaptive
strategy that lowers the validation limits if a given transaction has failed a previous
validation.

4. RECOVERY

The recovery algorithm returns the system to a consistent state in which all shared
objects are duplicated and all partially executed transactions are either committed
or aborted. Local objects can be ignored because the objects are not accessible to
other machines.

Our failure model assumes that both primary and backup machines hosting a
given object do not fail within an interval that is shorter than the time taken to
recover from a machine failure.

4.1 Detecting Failures

Reliable detection of machine failures is a key component of our system. Prompt
detection of machine failures is necessary to restore redundancy before additional
failures occur and possibly cause objects to be permanently lost.

A machine failure can be detected in a number of ways. The simplest is when
a remote machine does not respond within the expected time to a request. For
example, machine failures can be detected when a remote machine fails to respond
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to a request to open an object, when a remote machine fails to respond to a request
to commit changes to objects, or when a transaction coordinator fails to complete
committing a transaction. As soon as the system detects an unresponsive machine,
it assumes that the unresponsive machine may have failed and invokes the recovery
algorithm.

It is also possible that a failed machine may not be detected during the process
of normal execution if it is not involved in ongoing transactions for a period of
time. Therefore, each machine periodically pings the machine that holds the backup
copies of the machine’s primary objects and the machine that holds the primary
copies of the machine’s backup objects. If a machine fails to respond to an active
probe, the recovery algorithm is invoked.

4.1.1 Failures Detected During Object Opens. An open operation on a shared
object that misses in the local cache has three phases: (1) find the machine that
the requested object is located on, (2) request a copy of the object from the remote
machine, and (3) make a transaction local copy of the object. If the remote machine
does not respond within the expected time interval, the local machine will suspect
that the remote machine has failed. When a machine suspects a remote failure, it
calls the recovery procedure.

4.1.2 Failures Detected When Committing a Transaction. The transaction co-
ordinator begins the commit procedure by grouping objects based on the machines
that host the primary or backup authoritative copy of the object. For each group
of objects, the coordinator sends a message to the corresponding machines to check
if the objects are the latest version. The coordinator then collects the responses
and finally sends the final decision to all of the participants.

Either a participant machine or a coordinator machine can fail during the com-
mit procedure. We first discuss how the algorithm recovers from the failure of a
participant. If a participant fails before the coordinator has made a decision, the
coordinator calls the recovery procedure. If a participant fails after the coordinator
has made a decision, the coordinator will not detect the failure and simply sends its
decision to all remaining participants. The failed machine will either be detected
when it fails to respond to a future request or by periodic polling.

Failure of the transaction coordinator is detected by a participant when the
coordinator fails to receive a request in a timely manner. If the coordinator has
not responded within a time bound, the participant polls the coordinator to check
if the transaction is simply slow to commit. If the coordinator fails to respond
to the poll request within a time bound, the participant then calls the recovery
procedure. Recovery of the transaction is managed by the machine that leads the
recovery process. Section 4.2 discusses this process in detail.

4.1.3 Periodic Polling. Failures can happen to machines during periods in which
other machines do not make requests from them. Failures of frequently accessed
machine are easily detected when they fail to respond to a remote request, but
failures of machines that are not currently serving remote requests are more difficult
to detect. In order to detect failures of such machines, it is necessary to periodically
ping them. Periodic pinging is complementary to the previous failure detectors. To
detect such failures, each machine runs a background thread that periodically pings
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the machine that host the primary copies of its backup objects and the machine
that host the back copies of its primary objects. We note that this pinging strategy
will detect all recoverable failures and scales as the number of machines increases.

4.2 Recovering from Failures

The goal of failure recovery is to return the system to a consistent state in which all
transactions have either aborted or committed and all shared objects are replicated.
We next describe the recovery algorithm.

(1) Generate a new recovery epoch and select a leader: The algorithm
begins with a leader selection algorithm that probabilistically selects a leader.
The leader then selects a unique recovery epoch number (a counter that in-
creases for each recovery attempt). The recovery epoch numbers are statically
partitioned across all machines to guarantee that two machines will always
select unique recovery epoch numbers.
If more than one leader is selected, progress in the recovery algorithm is not
guaranteed but safety is guaranteed. The leader will append the recovery epoch
to all messages it sends. The client machine will store the largest recovery epoch
it has seen, if a client machine later receives a message with a smaller recovery
epoch it will ignore that message.

(2) Ping Machines: The leader pings all machines. If the leader’s recovery epoch
is older than the client’s current recovery epoch, the client machine ignores the
message. Otherwise, when a machine receives such a ping it halts committing
and aborting transactions. To halt the computation it uses the halt algorithm
from Figure 6. After the computation is halted, the machine responds to the
leader’s query. Halting the computation is necessary to ensure that the leader
has an up-to-date view of the system’s state.

(3) Response to Leader: Each live machine responds to the leader’s ping with
(1) a list of all transactions that are in the process of committing, (2) its current
list of live machines, and (3) its current range of backup and primary objects.

(4) Compute Live Machine List: The leader then computes a list of all live
machines by computing the intersection of the set of machines that responded
to its ping and the lists of live machines that they sent. If any machine in this
list fails to respond to the leader at any point after the computation of the list,
the leader will restart the recovery process. If any part of the object range has
neither a backup or primary machine, recovery is not possible.

(5) Send Live Machine List and Transaction Queries: The leader then sends
the live machine list to all machines and queries for the status of all live trans-
actions. The leader waits for a response from each live machine to determine
the status of all live transactions.

(6) Resolve Transactions: If any machine has committed a transaction, the
leader instructs all participants to commit the transaction. Otherwise, the
leader instructs all participants abort the transaction.

(7) Restore Redundancy: The leader then examines the live machine list to
compute the range of objects that each machine should host. It compares
this range with the range the machine reported. It then sends commands to
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the machines to copy objects as necessary to restore redundancy. After the
machines process the commands, they update their live ranges.

(8) Resume Computation: After restoring redundancy, the leader sends resume
commands to all machines. The machines then resume the computation.

The algorithm is designed such that if a machine fails during the recovery process,
the recovery process can be safely restarted by the same leader or any other leader.
We note that if such a failure causes both copies of a shared object to be lost, the
system cannot recover.

We note that recovery epoch numbers serve a similar role as the proposal numbers
in Paxos [Lamport 1998] — they ensure that the leader knows about all recovery
actions taken by previous leaders and that delayed messages from previous leaders
will be safely ignored. Our system places identical restrictions on the leader selec-
tion algorithm as Paxos — we guarantee liveness only when one leader is selected
and safety under all conditions. Sending the live machine list to all live machines
and waiting for acknowledgments serves the same function as sending values to a
majority of acceptors in Paxos.

4.3 Transaction Commit Process

We next describe how we adapted the standard two phase commit protocol to inter-
act safely with the recovery process. Starting recovery halts the normal execution
of transactions on machines. Figures 4 and 5 give pseudocode for the commit pro-
cedure for the coordinator and participants. We have optimized this interaction
between the recovery procedure and commit procedure to minimize the overhead
during the normal commit process. A key invariant of the recovery process is that
any locks acquired during a commit attempt during a previous recovery epoch are
released when recovery completes for a new epoch. If messages from earlier epochs
are delayed on the network or in buffers, the epoch checks ensure that they will not
be processed.

Figure 6 presents the pseudocode for the procedure that the recovery system
uses to halt all transactions on a given machine. After recovery completes, the
system uses the restart code presented in Figure 7 to restart the normal execution
of transactions.

It is possible that recovery messages may be delayed or for a machine to mistak-
enly believe it is the leader of the recovery process and continue issuing commands.
Our system uses the procedure in Figure 8 to validate recovery commands before
executing them. This procedure ensures that the execution of a command is com-
pleted before any other recovery commands are processed.

4.4 Adding New Machines

It may desirable to allow machines to join the system during execution. Adding
machines can conceptually be implemented in the same manner as failure recovery.
A leader is selected, the leader halts the entire computation, the leader then updates
the machine list to include the new machine, issues commands to migrate the
objects, and finally restarts the system. A failure before the machine lists are all
updated will result in the new machine not being added to system. If the process
fails at any point after all lists are updated, the standard failure recovery mechanism
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1: Inputs: Transaction t to try to commit
2: Record current epoch
3: Send object lists along with current epoch to all participants
4: Wait for responses, if the epoch changes restart
5: if all responses are commit then
6: Set t.transactioncommitting flag
7: if !recoveryinprogress and epoch has not changed then
8: Record transaction as committing in machine’s transaction commit record
9: Send commit messages along with epoch

10: Commit local objects
11: Clear t.transactioncommitting
12: Exit committing
13: else
14: Clear t.transactioncommitting
15: if current epoch equal to recorded epoch then
16: Yield clock slice
17: Goto 6
18: else
19: Retry transaction
20: end if
21: end if
22: end if

Fig. 4. Coordinator Commit Algorithm

1: Inputs: Transaction to commit t
2: Receive commit message along with epoch
3: Set t.transactioncommitting flag
4: if !recoveryinprogress then
5: if commit message epoch is current then
6: Record transaction as committing in machine’s transaction commit record
7: Commit changes to objects
8: end if
9: else

10: Clear t.transactioncommitting flag
11: Yield clock slice
12: Goto 3
13: end if
14: Clear t.transactioncommitting flag

Fig. 5. Participant Commit Algorithm

will complete the migration of the objects.

4.5 Application-Level Recovery

Our system ensures the durability of shared objects and provides both atomicity
and isolation for transactions. While these are powerful guarantees, they are not
sufficient for all applications — failures terminate all threads located on the failed
machine and the application is responsible for recovering from the thread failures.

Our system includes a task library that automatically provides recovery from
thread failures for applications that follow a specific design pattern. Applications
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1: Input: Start recovery command from leader with epoch e
2: Grab recovery lock
3: Read current epoch ecurr

4: if ecurr < e then
5: Set recoveryinprogress flag
6: Set current epoch to e
7: Release recovery lock
8: for all t in list of current transactions do
9: while t.transactioncommitting do

10: Yield clock slice
11: end while
12: end for
13: Respond to the leader with a list of the current transactions and local live machine

list
14: else
15: Release recovery lock
16: end if

Fig. 6. Machine Halt Algorithm

1: Input: Resume command with epoch e
2: Grab recovery lock
3: if current epoch is e then
4: Clear recoveryinprogress flag
5: end if
6: Release recovery lock

Fig. 7. Machine Restart Algorithm

1: Grab recovery lock
2: if machine’s current epoch matches command’s epoch then
3: Run command
4: end if
5: Release recovery lock

Fig. 8. Guard Mechanism for Recovery Commands

built on the task library must structure the parts of their computations that need
to be fault tolerant as tasks. Application tasks inherit from the Task class. The
execute method of a Task object performs the task’s computation. The execute
method can use transactions to read global state, but should not make its changes
visible until the final transaction. The final transaction commits the results of
the task’s computation and calls the dequeueTask method that marks the task
as completed. The combination of atomicity and the task programming pattern
ensures that a task either completes all of its computation or does not change
reachable shared objects.

The task library uses a number of worker threads to execute tasks. A worker
thread selects a task from a queue of tasks to be executed. It uses a transaction to
acquire a task from this queue and points its workingtask field at the task. It then
executes the task. When the task completes, it atomically commits its results and
removes itself from the worker thread’s workingtask field. The worker thread then
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1 public c lass Worker extends Thread {
2 TaskSet ta sks ;
3 Task workingtask ;
4 int mid ;
5 . . .
6 public run ( ) {
7 boolean done=fa l se ;
8 while ( ! done ) {
9 Task t=null ;

10 atomic {
11 i f ( ! t a sk s . todo . isEmpty ( ) ) {
12 //grab segment from todo l i s t
13 t=workingtask=tasks . todo . getTask ( ) ;
14 t . setWorker ( this ) ;
15 } else {
16 // s t e a l work from dead threads
17 Vector threads=tasks . threads ;
18 boolean workex i s t s=fa l se ;
19 for ( int i =0; i<threads . s i z e ( ) ; i++) {
20 Worker w=(Worker ) threads . get ( i ) ;
21 i f (w. workingtask !=null )
22 workex i s t s=true ;
23 i f (w. hasFa i l ed ()&&w. workingtask !=null ) {
24 // s t e a l work from th i s thread
25 t=workingtask=w. workingtask ;
26 t . setWorker ( this ) ;
27 w. workingtask=null ;
28 break ;
29 }
30 }
31 i f ( ! workex i s t s )
32 done=true ; //No work l e f t in the system
33 }
34 }
35 i f ( t !=null )
36 t . execute ( ) ;
37 else
38 s l e ep ( ) ;
39 }
40 }
41 . . .
42 }
43

44 public c lass TaskSet {
45 //Tasks to be executed
46 Queue todo ;
47 //Vector of worker threads
48 Vector threads ;
49 . . .
50 }
51

52 public c lass Task {
53 //Current worker thread
54 Worker w;
55 public void execute ( ) ;
56 public void setWorker (Worker w) {
57 this .w = w;
58 }
59 public void dequeueTask ( ) {
60 w. workingtask=null ;
61 }
62 }

Fig. 9. Task Library Code

repeats the process. If the todo queue is empty, a worker thread searches the list
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of worker threads to check if they are dead and their workingtask field references
a task object. If so, the worker thread executes a transaction that moves the task
from the dead thread to itself. The worker thread then executes the task.

Due to atomicity, a task can only be in one three states: (1) in the todo queue, (2)
referenced by the workingtask field of a worker thread, or (3) completed having
committed its changes. Failures can only effect tasks in the “referenced by the
workingtask field of a worker thread” state. However, the system will eventually
detect the machine failure and when a worker thread is available the task will be
atomically transferred to the new worker thread.

5. EXPERIENCE

We next discuss our experience using our system to develop several robust applica-
tions: a spam filter, a web crawler, a distributed file system, a distributed matrix
multiplication, and a multiplayer game.

5.1 Methodology

We implemented the fault-tolerant distributed transactional memory. The source
code for our system and benchmark applications are available at http://demsky.
eecs.uci.edu/compiler.php.

We ran each of our benchmarks on a cluster of 8 identical 3.06 GHz Intel Xeon
servers running Linux version 2.6.25 and connected through gigabit Ethernet. Our
evaluation has two components: the first component measures the application’s
performance during normal execution and the second component measures the ap-
plication’s ability to tolerate simulated machine failures.

5.2 Benchmarks

We next describe our benchmarks and report results of an experimental study aimed
at evaluating performance as well as the effects of recovery for each benchmark.

5.2.1 Spam Filter. The distributed spam filter is a collaborative spam filter that
identifies spam through user feedback. The benchmark is based on the Spamato
spam filter project and contains 2,639 lines of code [Albrecht et al. 2005]. In the
original version, a collection of spam filters communicates information to a central-
ized server. Our implementation replaces the centralized server with distributed
data structures. Each machine in our system runs a spam filter for an independent
email server and uses the distributed data structures to share information used to
identify spam.

When the spam filter receives an email, it calculates a set of MD5 hash signatures
for that message. It generates Ephemeral hash-based signatures for the text parts
of a message and Whiplash URL-based signatures for the URLs in the message. It
then looks up those signatures in a distributed hash table that maps a signature to
the associated spam statistics. The spam statistics are generated from collaborative
user feedback. The spam filter uses those statistics to estimate whether an email
is spam. If the user corrects the spam filter’s categorization of an email, it updates
the spam statistics for all of the signatures in that email.

Our workload emails are automatically generated from a large corpus that in-
cludes spam words. Each email in the automatically generated set is pre-identified
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as spam or legitimate based on whether it includes text from the spam corpus.
Our workload presents each spam filter client with 5,000 emails to simulate real
deployments. In each iteration, the synthetic workload randomly picks an email
and presents it to the spam filter. The workload then corrects the spam filter using
the email’s pre-identified categorization.

As we introduce failures, we expect individual machines in the distributed spam
filter will continue to reliably identify spam. However, because machine failures
result in less information for the collaborative filtering mechanism, failures may
result in individual emails being classified differently.

5.2.2 Web Crawler. The web crawler takes an initial URL as input, visits the
web page referenced by the URL, extracts the hyperlinks in the page, and then
repeats this process to visit all of the URLs transitively reachable from the initial
URL. Our web crawler crawls a workload of synthetic URLs created by us and
hosted on a machine connected over network. We crawl up to a maximum depth
of 10 in a breadth-first manner.

The web crawler is built on the task library. The recovery version of the web
crawler implements the QueryTask class that extends the Task class. Each instance
of a QueryTask class looks up a web page, parses that web page, and then generates
additional instances of the QueryTask class to process pages reachable from the
web page. If any machine fails, the task library ensures that its work is completed
automatically by another machine.

5.2.3 Distributed File System. The distributed file system benchmark provides
an in-memory, object-based, distributed storage service. The system uses a shared
distributed map to locate files. Transactions can then read, write, and modify the
files in the system.

The file system benchmark begins by creating a file system object to keep track
of the current status of the file system, and a root directory object to keep the
root directory of the file system. The workload for each thread randomly generates
inputs to either read or write files. We generate inputs that consist of 90% read
commands and 10% write commands. The writes executed by one machine are
visible to all other machines in the system.

We evaluated the efficiency of the file services for looking up contents of files and
directories as well as robustness of the file system by injecting machine failures,
resetting network connection, and shutting down a machine. As we introduced
failures we expected the file system services to continue to be available despite the
machine failures. Our fault tolerant approach successfully recovers the shared dis-
tributed hash tables, shared files, and directories to enable accessing their contents.

5.2.4 Distributed Multiplayer Game. The multiplayer game benchmark is an
interactive game where players take the roles of tree planters and lumberjacks. The
base version contains 1,416 lines of code. Each client connects to the server hosting
the shared game map. A player can either be a planter or a lumberjack. The
planters are responsible for planting trees in a block of map while lumberjacks cut
trees. Both the planters and lumberjack choose a location in the map to either
plant a tree or cut one down while taking the shortest path to the destination. The
clients use the A* graph search algorithm to plan routes. The game is played in



Distributed Transactional Memory for Fault-Tolerant Systems · 19

rounds and in each round, the player either plants a tree, cuts a tree, or moves one
step on the map. There is contention in this benchmark: players change the map
by planting or removing trees. If a player accessed the part of the map updated by
another player, the transactional version aborts the transaction surrounding that
move. The reference Java version only recomputes a player’s move if a change made
by a second player makes the first player’s move illegal. The game is played on a
map of size 400×100 for 200 rounds.

We use barriers to synchronize after each round of play for each player. We
modified the barrier such that the barrier only requires that all non-failed threads
have made a move before continuing to the next round.

As we introduce failures we expect the distributed multiplayer benchmark to
maintain consistency between the machines in order to provide a satisfactory ex-
perience to a game player. This implies that the machines alive at any stage of
execution should continue to successfully update players with events consistent to
their moves in their zone of visibility. Our fault tolerant approach is able to recover
the shared game map and thus guarantee the continuation of the gaming experience
for each player who is still connected to a live machine.

5.2.5 Distributed Matrix Multiplication. The distributed matrix multiplication
implements a standard matrix multiplication algorithm for matrix A and matrix
B to compute the product matrix C. The entire computation is partitioned into
several tasks, where each task computes the matrix multiplication of a particular
block of the product matrix C. Each block of the product matrix C is pushed into
the global work queue. The worker thread starts executing tasks from the task set.
If the task set is empty and the thread has processed its segment, the thread steals
work segments from any machines that may have failed.

Our benchmark computes a matrix-multiplication of eighty 2048× 2048 product
matrices. We primarily used this benchmark to explore the effectiveness of the
fault-tolerance library.

5.3 Performance of Fault-Tolerant System

We present performance results for our five benchmark applications. We report
results for: 1J, single-threaded non-transactional Java implementations compiled
into C code, and distributed versions for 1, 2, 4, and 8 nodes with 1 thread per
node.

Figure 10 presents the execution times for the benchmarks. The Web Crawler
and Matrix Multiply benchmarks scale well in our system. Our workload for the
Spam Filter benchmarks holds the work per client machine constant. As a result
the total amount of work increases as we add more clients and perfect scaling occurs
when the times remain constant. We observe a slight increase in execution time as
shown in Figure 10. There are two primary causes of this increase: (1) the hash
table is more likely to contain the hash signature and therefore lookups access more
objects and (2) a larger percentage of the objects are remote. Our workload for
the File System benchmark holds the number of transactions per client constant.
We note that time increases slightly as the thread objects are all allocated on one
machine and the thread objects are in the read set for all transactions and therefore
all transactions must involve either the primary or backup machine for the thread
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objects. In the Game benchmark we also hold work constant per client machine
causing an increase in the total amount of work as we add more clients. We note
that the complexity of game map increases as the number of players increases.

Spam Filter Web Crawler File System Game Matrix Multiply

1J 7.60s 44.00s 11.81s 1.68s 47.80s
1 10.00s 48.00s 25.95s 2.00s 48.63s

2 13.50s 24.00s 54.83s 4.00s 24.00s
4 16.00s 14.00s 61.28s 9.00s 13.00s

8 19.00s 9.00s 67.03s 15.00s 9.00s

Fig. 10. Failure-Free Execution Times

5.4 Evaluating Fault Tolerance

Our evaluation simulates failures that result in machines halting. In this section,
we evaluate the fault tolerance of our implementation and discuss the effects of
failure. We next describe the experiments carried out on our system and present
measurements that validate the robustness of each application in the presence of
failures.

5.4.1 Single Machine Failure. Our first experiment simulates the failure of a
single machine. We simulate this failure by killing a random machine in the network
of eight machines. We ran 10 trials of this experiment, and report average times
taken to recover and number of bytes transferred. Figure 11 reports the results for
this experiment.

The SpamFilter benchmark took on average 0.53 seconds to recover from a failure
and transferred 3.04 MB of data to backup objects. We checked that each live
machine in the SpamFilter successfully completed processing all of its 5,000 emails.

The Web Crawler benchmark took on average 0.16 seconds to recover from a
failure and transferred 5.74 MB of data to backup objects. We verified that the
benchmark crawled all of the web pages up to a depth of 10 even in the presence
of failures.

The FileSystem benchmark took on average 1.13 seconds to recover from a failure
and transferred 32.34 MB of data to backup objects. We verified that each live
machine successfully completed processing its 40,000 file operations.

The Game benchmark took on average 0.39 seconds to recover from a failure
and transferred 1.15 MB of data to backup objects. We verified that the non-failed
players successfully completed all 200 rounds of play.

The MatrixMultiply benchmark took on average 1.78 seconds to recover from a
failure and transferred 134.51 MB of data to backup objects. We verified that all
product matrices were computed and verified the results.

SpamFilter WebCrawler FileSystem Game Matrix Multiply

MB Time(s) MB Time(s) MB Time(s) MB Time(s) MB Time(s)

3.04 0.53 5.74 0.16 32.34 1.13 1.15 0.39 134.51 1.78

Fig. 11. Recovery Statistics for Single Machine Failure
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5.4.2 Sequential Failure of 6 Different Machines. To simulate sequential failures
of many machines, we used a script that randomly killed machines until only two
machines remained. We introduce these failures with a delay to allow the system
to detect and recover from the previous failure. The final survivor set holds the
primary and backup copies of all the objects involved in the computation. We
repeated this experiment 10 times. We found that all of the benchmarks successfully
recovered from the injected failures.

5.4.3 Simultaneous Failure of 4 Machines. To simulate simultaneous failures of
many machines, we used a script the simultaneously kills half of the live machines.
The script is designed to kill either even or odd numbered machines to ensure
the existence of either a backup or primary copy of all objects. We found that
our distributed transactional system successfully recovered from all of the injected
simultaneous machine failures.

6. RELATED WORK

We survey related work in distributed algorithms, distributed systems, and dis-
tributed transactional memory.

6.1 Classic Distributed Algorithms

Paxos [Lamport 1998] is a classic distributed algorithm for reaching consensus in
the presence of halting failures. Our recovery algorithm’s use of recovery epochs is
similar to Paxos’s use of proposal numbers.

Our use of ring structures for partitioning object identifier may appear similar
to consistent hashing strategies used in distributed systems such as Chord [Stoica
et al. 2001]. One of the primary differences is that distributed systems like Chord
must consider attacks by hostile systems in the ring and therefore must ensure that
those systems cannot choose their location in the ring. We consider systems of
trusted members and therefore can allow the systems to choose their location in
the ring.

Other well known fault-tolerant schemes include Byzantine fault-tolerance through
state machine replication using the BFT library [Castro and Liskov 2002] that re-
quires all operations be deterministic. Base [Castro et al. 2003] is an extension
to BFT which allows heterogeneous replicas. These algorithms require a factor of
three replication to ensure fault tolerance, but can tolerate Byzantine faults. Our
work does not require duplicating computations, but provides weaker fault tolerance
guarantees.

6.2 Distributed Systems

Thor [Liskov et al. 1999] implements a distributed object-oriented database. Thor
is designed for different assumptions: it does not optimize for latency as much as
our approach and it imposes scalability limitations beyond those inherent in the
application. Thor uses centralized replicated logs to implement recovery and these
logs pose a scalability limitation. Thor uses the primary copy replication technique
in which the primary object repository propagates updates to the backup repository.
The primary replication technique incurs an extra round trip of network latency
beyond our technique.
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AutoFetch [Ibrahim and Cook 2006] prefetches objects in object persistent ar-
chitectures using traversal profiling. Their prefetching approach relies on profile
information while ours uses static analysis of the application’s source code.

OceanStore [Kubiatowicz et al. 2000] is designed to provide continuous access to
persistent data. It uses redundancy to protect data and caching to improve perfor-
mance. OceanStore is primarily optimized for file system operations on an Internet
scale network of machines and not for programming fault tolerant applications.
Relative to our approach, their approach for locating objects incurs large latencies
from searching through a distributed hash table and their approach for reading and
writing data incurs the large overhead of using erasure encodings.

6.3 Distributed Transactional Memory

Researchers have explored distributed transactional memory as a mechanism to
provide stronger consistency properties. Bodorik et al. developed a hardware-
assisted lock-based approach, in which transactions must hold a lock on a memory
location before accessing that location [Bodorik et al. 1992]. Hastings extended
the Camelot distributed shared memory system to support transactions through a
lock-based approach [Hastings 1990]. Ahn et al. developed a lock-based distributed
transactional memory system [Ahn et al. 1995]. LOTEC is a lock-based distributed
transactional memory [Graham and Sui 1999]. All of these implementations incur
network latencies when the application code accesses a remote object because the
machine must first communicate to a remote node to acquire a lock.

DiSTM is a distributed transactional memory system [Kotselidis et al. 2008].
DiSTM focuses on providing transactional memory for clustered computing and
makes no attempt to provide recovery from machine failures. Manassiev et al. in-
troduced a version-based distributed transactional memory that replicates all pro-
gram state on all machines [Manassiev et al. 2006]. Their approach is likely to have
problems scaling to a large number of machines even if the underlying computation
is highly parallel because all writes must be sent to all nodes and all nodes must
agree to all transaction commits. Anaconda is a distributed transactional memory
system that uses distributed commit algorithm [Kotselidis et al. 2010]. It uses a
three phase commit protocol in which locks are first acquired, the transaction is val-
idated against running transactions on other nodes, and finally updates the objects.
While both approaches use caching, Anaconda ensures that all cached copies are
coherent while our implementation avoids the overhead of updating cached copies
and may allow cached objects to become stale. Neither DiSTM nor Anaconda
provide fault tolerance.

Sinfonia is a system that allows machines to share data in a fault-tolerant, scal-
able, and consistent manner. This service uses mini-transactions to manage dis-
tributed state [Aguilera et al. 2007]. Mini-transactions piggyback all transaction
communications on the commit message. Mini-transactions trade off expressive-
ness for reduced communication overhead — for example, a single mini-transaction
cannot read a value and then write that value to a different location. Our system
provides a more general programming model — transactions can immediately use
the values they read and can perform sequences of operations that require more
than one round of communications. Sinfonia does not provide support for caching
or prefetching, but is able to commit the restricted mini-transactions using only
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one round of communications.
Bocchino et al. have developed a word-based software transaction memory sys-

tem [Bocchino et al. 2008]. Herlihy and Sun proposed a distributed transaction
memory for metric-space networks [Herlihy and Sun 2005]. Their design requires
moving objects to the local node before writing to the object. Because these ap-
proaches do not contain mechanisms to cache or prefetch remote objects, latency
may be an issue. Neither of these designs provide fault tolerance.

D2STM [Couceiro et al. 2009] is another fault-tolerant distributed transactional
memory library that supports multi-version concurrency control. It is a non-voting
based transactional memory approach that uses atomic broadcast to ensure that all
nodes see the transaction commit requests in the same order. It leverages replication
to enforce strong consistency during transaction commit. However it suffers from
replica coordination overhead and scalability concerns. It is also likely to have
performance issues with network round trips unlike our system that uses prefetching
schemes to hide network latency.

Previous work by Dash and Demsky uses symbolic prefetching along with ap-
proximate caching to hide latency of accessing remote objects [Dash and Demsky
]. The previous work did not provide fault tolerance; this paper extends that work
to provide fault tolerance. The position paper [Dash et al. ] advocates the use of
distributed transactional memory for building fault-tolerant distributed systems.
It however does not explain how to implement a fault tolerant distributed transac-
tional memory and presents a limited evaluation of the approach.

7. CONCLUSION

Over the past several years, the increasing role of distributed computation in com-
merce and infrastructure has made the need for fault-tolerant distributed systems
commonplace. Our system provides powerful, high-level constructs that make de-
veloping such systems relatively straightforward. We implement several optimiza-
tions behind the scenes to improve performance. Our experience indicates that our
system is able to deliver fault tolerance with little to no extra developer effort for
our benchmarks. As the need for fault-tolerance distributed systems continues to
become more commonplace, approaches such as our system promise to move their
development from the exclusive domain of experts to average developers.
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