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Supporting File Operations in Transactional Memory

Brian Demsky and Navid Farri Tehrany

Abstract

Researchers have proposed transactional memory as a concurrency primi-
tive to simplify the development of multithreaded programs. In this paper
we present a new approach for supporting /O operations in the context
of transactional memory. Our approach provides isolation between the file
operations of different transactions while allowing multiple transactions to
concurrently perform I/O. To ease adoption, our approach attempts to im-
plement the traditional I/O programming interface as closely as possible. We
formalize aspects of our approach and use the formalization to reason about
the correctness of the approach.

We have implemented our approach as a Java library and have integrated
it with the DSTM2 transactional memory system. We have evaluated the
approach with several benchmarks including JCarder, TupleSoup, a financial
transaction benchmark, parallel sort benchmark, and a parallel grep bench-
mark. Our experience shows that the approach provides a straightforward
mechanism for developers to integrate I/O in a transactional memory envi-
ronment and that it performs well.

Keywords: Transactional Memory, 1/0

1. Introduction

As multi-core processors become more prevalent, parallel software devel-
opment needs to become mainstream. Traditional concurrency primitives like
locks require software developers to reason about often complex interactions
between threads. In an effort to simplify parallel programming, researchers
have developed transactional memories [1, 2, 3, 4, 5, 6, 7]. With transac-
tional memory, the developer simply declares which parts of the application
code should be executed with transactional semantics and the transactional
memory implementation handles the details of providing transactional se-
mantics. While software transactional memories do not eliminate all of the



difficulties of developing parallel applications, they do simplify many aspects
including eliminating the possibility of deadlocks. Moreover, through opti-
mistic strategies, transactional memories can often provide more paralleliza-
tion than coarse grain locking. Recently, researchers have explored a number
of approaches to allow transactions to perform I/O operations.

Researchers have developed an approach to transactional I/O called
xCalls that uses a combination of deferral and compensation to allow trans-
actions to make system calls [8]. Transactions in xCalls lock the file system
at the file granularity. Writes incur the extra overhead of reading and buffer-
ing old data to support rollback if a transaction aborts. One major weakness
of xCalls is that it serializes transactions that access the same file. The rela-
tively common practice of appending to a log file would serialize transactions.
Because xCalls detects conflicts at the file granularity, transactions that ran-
domly access disjoint portions of a file would be serialized. Our approach
can be viewed as complementary to xCalls, we focus on maximizing poten-
tial concurrency for file system operations and assume that an approach like
xCalls would be used for socket communication and other system calls. Our
approach allows multiple transactions to simultaneously update the same file
— this is critical for applications that log data to a file or applications like
databases that update disjoint parts of large files.

In this article, we present a transactional-I/O implementation that en-
ables multiple transactions to simultaneously perform file I/O operations.
Our system has been designed to be easily integrated with existing software
transactional memory implementations. Our approach enhances the capa-
bilities of transactions in general since the software developer can now mix
both I/O operations and transactions.

1.1. The Basic Approach

Our basic approach defers making changes to the actual file system until
a transaction commits. This enables our system to avoid rollbacks to the
underlying file system. Moreover, this delay enables several optimizations for
the common file append operation. Our implementation defers computing
the exact location of writes that simply append to a file until the transaction
commits, thus eliminating a potential source of transaction conflicts.

Our system maintains visible reader structures that the transaction com-
mit process uses to discover all live transactions that have read from a block
or file descriptor offset. Our implementation uses these structures to detect
and abort any conflicting transactions when a transaction commits.



Each transaction maintains a write store for each inode (i.e. file) that
records all writes that the transaction has made to that inode. Transactional
reads first check the transaction’s write buffer to see if the current transaction
has written to the location and then access the underlying file system to read
the committed changes.

We implement optimizations for two common I/O patterns: append-only
accesses and random accesses. Our approach tracks a transaction’s depen-
dence on the file offset for each file descriptor. The append-only optimization
enables multiple transactions to simultaneously log to the same file descriptor
by deferring the selection of the file offset until the transaction commits. The
random access optimization enables multiple transactions to simultaneously
read and write to disjoint parts of a file using the same file descriptor. This
optimization determines that the transaction first seeks and therefore does
not depend on the committed value of the file descriptor’s file offset.

Our implementation coordinates transaction commits with the transac-
tional memory system to guarantee transactional semantics for transactions
that combine file and memory operations. To commit a transaction, our
implementation locks the file resources that the transaction accessed to en-
sure the transaction cannot be aborted, then calls the transactional memory
system to commit the memory changes, and finally commits the file changes.

1.2. Contributions
This article makes the following contributions:

e Transactional I/O System: The article presents a transactional 1/O
approach that enables I/0 to be efficiently integrated into transactions.
Our approach bridges the gap between language-level transactional con-
structs and the underlying operating system primitives that do not
support transactions. Compared to previous work, our system allows
more transactions to simultaneously perform 1/O creating the poten-
tial for greater parallelization benefits. Our system implements strong
atomicity [9] — the developer can perform I/O operations outside of
transactions and each individual 1/O operation is treated as a transac-
tion that performs a single 1/O operation. Note that this guarantee is
made within the context of one application — no guarantees are made
regarding concurrent reads and writes to the same files from external
applications. Such guarantees would require operating system support.



e Formalizing Transactional I/O Operations: This article formal-
izes aspects of our system. It then uses the formalization to derive
a set of conditions that ensure the correctness of the implementation.
This formalization makes it easy to reason about the correctness of the
optimizations that our system implements.

e Adaptability to Various Memory System: Our implementation
has minimal dependencies on the specific software transactional mem-
ory implementation and should be easy to port to other implementa-
tions. This will enable researchers who have taken different approaches
to implementing transactional memories to easily support 1/0.

e Backwards Compatible Interface: Our library was designed to pro-
vide an API that is similar to the standard Java API. This provides
developers with the flexibility to easily port existing code to the trans-
actional model rather than rewriting the code from scratch.

The remainder of the article is structured as follows. Section 2 presents
the programming model for our approach to transactional 1/O. Section 3
presents usage scenarios and discusses the implications on how transactions
depend on file offsets. Section 4 presents formal properties of our approach
and reasons about a set of checks that ensure correctness of executions. Sec-
tion 5 presents our implementation. Section 6 presents our evaluation of our
implementation. Section 7 discusses related work; we conclude in Section 8.

2. Programming Model

We assume the presence of an underlying transactional memory system.
In particular, we assume that the software transactional memory system
conceptually provides the developer with two operations begin transaction
and end transaction that denote the beginning and end, respectively, of a
sequence of operations in a thread of execution that should be executed with
transactional semantics. In this context, transactional semantics mean that
the behavior of the set of operations that the transactional region of code
performs is consistent with some serialization of the transactions. We assume
that the underlying transactional memory system implements transactions
for a set of operations that include memory reads and writes.

Our transactional I/O approach extends the base transactional memory
semantics with transactional support for file operations. We preserve the

4



standard Java file API when possible. We present the core transactional file
API below. We omit a number of helper functions that are straightforward
to implement using the core API and a number of other file classes whose
functionality is a subset of the RandomAccessFile class.

e new TransactionalRandomAccessFile(path): This constructor cre-
ates a new transactional file object for the file whose location is given
by the string path.

e read(byte[] data): This method reads from the current offset of the
file object, stores the bytes in the byte array data, increments the file
offset by the number of bytes read, and returns the number of bytes
read.

o write(byte[] data): This method writes the bytes stored in the array
data to the current offset of the file object and increments the file offset
by the number of bytes written. Writes in our system always write all
of the bytes. For backwards compatibility with the standard file API,
our implementation of write returns the number of bytes that the
application requested to write.

e getFilePointer(): This method retrieves the current offset of the file
object.

e seek(int offset): This method assigns the current offset of the file
object to the value from the parameter offset.

The intention is that developers replace uses of the standard
RandomAccessFile class with the TransactionalRandomAccessFile class.
The class can be used both inside and outside of transactions. Our trans-
actional 1/O approach implements strong atomicity — if a file operation is
invoked outside of a transaction, the invocation has the behavior of a trans-
action with a single I/O operation.

3. File Offset Dependencies

In this section we discuss several common [/O usage patterns and how the
patterns introduce dependencies on a file descriptor’s file offset. We describe
these dependencies and present a finite state machine that models them.



3.1. Linear Access

We first discuss the linear file access pattern. In this pattern, multiple
transactions access a single shared file descriptor. These transactions read
and/or write from the file descriptor without performing any intermediate
seeks. Since all transactions access the file through same descriptor, they
share the same file offset. This shared file offset can introduce dependencies.
If a transaction reads from a file descriptor and a second transaction that
accessed the same file descriptor commits, the first transaction must abort
as it has read data from the wrong location in the file.

We note that if a transaction only writes to a file descriptor and a second
transaction that accessed the same file descriptor commits, it is still possible
to commit the first transaction. This is possible because the first transaction
has no dependence on the current file offset — this strategy delays computing
the location of the write until the transaction commits and therefore elim-
inates the transaction’s dependence on the current file location. This is a
common usage pattern that appears in applications that log data to files.

3.2. Random Access

We next discuss the random access pattern. In this pattern, an applica-
tion executes transactions on a single shared file descriptor. These transac-
tions first seek to set the file offset and then execute reads and/or writes to
or from the file descriptor. Since the transactions first set the current file
offset, they do not depend on the current committed file offset.

3.3. Dependencies

We next describe how our approach tracks a transaction’s dependence on
the file offset associated with a file descriptor. We describe a transaction’s
dependence on the offset of a file descriptor using the following 4 states:

e No Access: This is the initial state for all file descriptors in a transac-
tion and is changed as soon as the transaction performs a file operation
on the file descriptor.

e No Dependence: This state indicates that the transaction does not
depend on the initial value of the file descriptor’s file offset.

e Write Dependence: This state indicates that although the transac-
tion depends on the initial value of the file descriptor’s file offset, this
dependence can be resolved during the commit process.



No Access

write(fd) seek(fd)

Write Dependence 3> write(fd)

Any access to the same inode through another file, seek(fd), or getFilePointer(fd)

Read Dependence I anything

No Dependence 2 > anything

read(fd) or getFilePointer(fd)

Figure 1: State Machine for Offset Dependence States

e Read Dependence: This state indicates that the transaction depends
on the file descriptor’s offset and that the transaction must be aborted
if the offset is changed by any subsequent transaction commits.

Figure 1 presents a finite state machine that describes how file descriptors
accessed by a transaction transition through the dependence states. At the
beginning of a transaction, all file descriptors start in the No Access state.

If the first access to a file descriptor is a seek, then the descriptor tran-
sitions into the No Dependence state. This indicates that after the seek
operation sets the file offset, all subsequent operations in the transaction on
the same descriptor use the offset value from the seek. Therefore, the subse-
quent operations do not depend on the initial file offset and the transaction
does not depend on the initial file offset for that descriptor.

If the first access to a file descriptor is a read, then the file descriptor
transitions into the Read Dependence state. This indicates that the read
operation depends on the initial value of file descriptor’s file offset. Therefore,
the transaction depends on the file descriptor’s file offset.

If the first access to a file descriptor is a write, then the file descriptor
transitions into the Write Dependence state. This indicates that although
the transaction conceptually depends on the initial offset, this dependence
can be resolved during the commit process by delaying computing the exact
offset of the write.

If a transaction reads from the same underlying file as a file descriptor in
the Write Dependence state, then both file descriptors transition into the
Read Dependence state. This indicates that the location of the previous
writes must be computed to determine if the previous writes overlap with
the read operation.

If a transaction performs an operation that accesses the file pointer of a
file descriptor or seeks in the No Access or Write Dependence states, then
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the file descriptor transitions into the Read Dependence state. This indicates
that the transaction now depends on the initial value of the file descriptor’s
file offset.

3.4. Translating 1/0O Operations into Primitives

We next describe how the API level file operations are translated into low-
level primitives. This process makes the dependencies on file offsets explicit.
This dependence is represented with a special readoffset primitive. The
variable fd denotes the value for the file descriptor.

e startTransaction(): This operation starts a new transaction and sets
the state of all file descriptors to No Access.

e seek(fd): This operation is translated into a seek primitive. It also
transitions the state of the file descriptor as shown in Figure 1.

e write(fd, data): This operation is translated into a write primitive.
It also transitions the state of file descriptor as show in Figure 1.

e getFilePointer(fd): This operation is translated into a readoffset
primitive if the fd is in the No Access or Write Dependence states.

e read(fd): Read operations require the location of all writes to the
same file in the same transaction to be resolved. Formally, Vfd' # fd
such that inode(fd’) = inode(fd) and £d’ is in the Write Dependence
state, the operation inserts a readoffset primitive for fd'.

A read operation is translated into a combination of a readoffset
primitive and a read primitive if the £d is in the No Access or Write
Dependence states. A read operation is translated into a read prim-
itive if the fd is in the No Dependence or Read Dependence states.
This operation transitions the state of the file descriptor as shown in
Figure 1.

e endTransaction(): This operation initiates the transaction commit.

4. Formal Model

In this section we formalize aspects of our approach. The section begins
by presenting the semantics for each 1/O operation. We then derive a set of
runtime checks that guarantee that 1/O operations in a transaction conform
to these semantics.



4.1. Formal Programming Model

Each program execution contains a set of transactions {71, ..., T,,}. Each
transaction 7" consists of a sequence of operations ®r = @r1;...; 87y, A pro-
gram execution @ ccution consists of a totally ordered sequence of operations
OT, j1; -+ 0T, j,- We supposed that individual operations are atomic, we dis-
cuss this issue in more detail in Section 4.4. We use the standard correctness
definition for transactions which we formalize below in Definition 4.1.

Definition 4.1 (Execution Correctness). A program execution @y ecution =
OT;, ji5 -3 0T, j, 18 correct if there exists a totally order sequence Ty,;...; T,
that includes all of the transactions in the program such that the correspond-
ing sequence of operations @ ccution has the same observable behavior as the

sequence @Tk113 . @TklnTkl e QTkml; . ¢TkmnTkm'

4.2. Primitive Operations
In this section, we discuss the set of primitive operations. Our system
contains the following primitive operations:

4.2.1. Write Primitive
The write(fd, buffer, length) primitive writes length bytes from

the array buffer to the file descriptor £d. Our formalization assumes that the
write statement writes to the transaction’s local buffer and has no externally
visible effects until the transaction commits. The effects of a write are visible
immediately to reads in the same transaction and only after this transaction
commits to reads from other threads.

4.2.2. Read Primitive
The read(fd, buffer, length) primitive returns the data read from

the file descriptor £d. The read begins starting at the transaction local file
offset for the given file descriptor, reads the specified number of bytes, and
then updates the local file offset. The read operation observes data written in
the same transaction to the same file (through this or other file descriptors)
and data written by committed transactions. Our formalization assumes that
the read operation first checks to see if the current transaction’s local buffer
contains the data and if not reads the committed data from the file system.

4.2.8. Seek Primitive
The seek primitive updates the transaction’s local offset for the file de-

scriptor to the specified offset. Our formalization assumes that the seek
primitive has no externally visible effects until the transaction commits. This



offset can be observed by subsequent transaction local file operations to the
same descriptor, and is used to update the committed offset for the file de-
scriptor when the transaction commits.

4.2.4. Readoffset Primitive
The primitive operation readoffset (fd) reads the committed file offset

for the file descriptor and returns this value. This introduces a dependence of
the transaction on the currently committed offset of the file descriptor. If the
transaction has already performed write operations that append to the file
descriptor, this operation has the effect of forcing the transaction to choose
an absolute offset for those write operations.

4.2.5. Commit Primitive
A transaction commits when it invokes the commit primitive. After the

transaction commits, the values of any writes it made become visible to other
threads and it updates the committed file offsets with the transaction local
offsets. Our formalization does not make transaction aborts explicit, aborted
transactions simply do not include a commit primitive.

4.8. Commutativity of Operations
We next derive checks that guarantee our implementation’s correctness.
We begin with several lemmas on the commutativity of primitive operations.

Lemma 4.1 (Commutivity of File Primitives). Let ®@uiecutea =
B15 -3 035 Oig1; -3 Ony Perived = 015 -5 Bit1; 045 -5 Oy, 05 € P, and 9,41 €
Or,. If k # | and both ¢; and ¢;;; are taken from the set of operations
{read,write, readoffset, seek} then P ccutea and Pyeriveq have the same
observable behavior.

Proof Sketch: This lemma follows from the observation that operations
other than commit only update state that is local to the given transaction
and access state that is either local to the transaction or global. Therefore,
primitive operations other than commit commute with primitive operations
other than commute from other transactions.

Lemma 4.2 (Commutivity of write and commit primitives). Let ®epecuted =
B1; -5 Bi; Dit1s -+ Ony Paderived = 015 -+ Big1; 045 -5 O, 0 € Py, and 0541 € Py
If £ # [ and both ¢; and @¢;,; are write and commit, respectively, then
D, recuted ANA P yerinea have the same observable behavior.
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Proof Sketch: This follows from the observation that because write does
not return a value (that depends on its state), its behavior is not changed
by a commit primitive from a different transaction. Since the action of the
write operation affects only transaction local state until the corresponding
commit, it cannot affect the commit operation in the other thread.

Lemma 4.3 (Commutivity of seek and commit primitives). Let ®epecutea =
B15 o5 B33 Bit1s -5 Ony Perived = 015 -3 Big1; B -..) O,y 0 € Py, and 9,41 € Py
If k£ # [ and both ¢; and @, are seek and commit, respectively, then @ ccureq
and D geriveq have the same observable behavior.

Proof Sketch: This follows from the observation that because seek does
not return a value and only updates the transaction local offset (until the
corresponding commit), its behavior is not changed by a commit operation
in a different transaction.

Lemma 4.4 (Commutivity of read and commit primitives for non—

conflicting transactions). Let @epecutea = 0155 0:; 0it1; - 0ny Pderiveda =
@15 03 Big1; Bis oy O, 03 € Py, and @iy € Py If
1. k#1,

2. ¢; and ¢, are read and commit operations, respectively, and
3. the blocks read from the committed copy of the file by the read oper-
ation are disjoint from blocks written by the committed transaction,

then ®.pecuteqd ad Pyerived have the same observable behavior.

Proof Sketch: The only shared state accessed by a read operation are
the blocks it reads from the committed copy of the file. If the committed
transaction does not update any of the same blocks, the read operation must
have the same behavior in both ®. ecuted aNd Pyerived-

Lemma 4.5 (Commutivity of readoffset and commit primitives). Let
(I)executed = @15 ...;8s; ¢i+1; N (I)de'rived = 01; .3 @i+1; Biy ey P,y 05 € q)Tky and
Biy1 € Opy. If

1. k#1,

2. ¢; and 9,1 are readoffset and commit operations, respectively, and

3. the committed transaction does not contain any read (fd), write(£fd),
or seek(fd) primitive operations for the same file descriptor fd ac-
cessed by the readoffset (fd) primitive,

then O, rccuted aNd Pgeriveq have the same observable behavior.
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Proof Sketch: By inspection of the behavior of the primitive operations,
a transaction that does not contain any read(fd), write(fd), or seek(fd)
primitive operations for the file descriptor £d does not modify the committed
file offset for £d. The readoffset (fd) primitive only accesses the committed
offset for the requested file descriptor £d and does not update any committed
state. Therefore, a commit operation for a transaction that does not contain
any read(fd), write(fd), or seek(fd) primitive operations for the same
file descriptor £d commutes with the readoffset (£d) primitive.

4.3.1. Commit Checks
We next derive from the previous lemmas a set of conditions under which

if a transaction always aborts guarantees the correctness of the execution.
A transaction abort prevents a transaction from updating the committed
program state or from being visible to other transactions. Note that aborted
transactions do not successfully complete a commit primitive operation.

Lemma 4.6 (Transaction Aborts). Let ®.pecureq be an execution in which
transaction T; aborts. Let ®' be the sequence @ ccureq With the operations
in &7, removed. Then @y eeuteq and &’ have the same observable behavior.

Proof Sketch: As T; has been aborted, it does not include a commit op-
eration. Therefore, the operations in ®7, do not change state that can be
accessed by any of the operations in transactions other than 7} and therefore
can be removed without changing the observable behavior.

Theorem 4.7 (Correctness of Committed Transactions). If the commit prim-
itive aborts all uncommitted transactions 7" in which

1. the execution sequence ®7 contains a read(fd) operation that reads
the a block from the committed copy of a file written to by a transaction
that commits after the read (fd) operation but before T” finishes

2. the execution sequence P71 contains a readoffset(fd) operation
on a file descriptor fd that a transaction which commits after
the readoffset(fd) but before 7" finishes performed a read(fd),
write(fd), or seek(fd) on

then any execution sequence Py eeureq 1S correct.

Proof Sketch: By Lemma 4.6, we can construct ®' that has same behav-
ior as P.pecuted but contains only operations from committed transactions.
Let Tj,;...;1y,, be the order that the transactions in @ ecuteq committed.
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Let ®gequential = BT, 15 3 DTy mpy, 5 o5 BTy, 1 ...;@ThmnThm. By Lemma 4.1,
file primitives from different transactions commute. By Lemmas 4.2 and
4.3, write and seek primitives commute with commit primitives from dif-
ferent transactions. By Lemma 4.4 and condition 1, read primitives com-
mute with commit primitives from different transactions. By Lemma 4.5 and
condition 2, readoffset primitives commute with commit primitives from
different transactions. In summary, all pairs of primitive operations (except
a pair of commit operations) from different transactions commute. As the
commit operations appear in the same order in both & and @ quentiar and
the operations in a given transaction appear in the same relative order, the
commutativity properties above allow the operations in & to commuted to
the order in ®g.quentia Without changing the execution’s behavior.

4.4. Atomicity of Operations

The formalization assumes that individual operations are atomic. An im-
plementation must take care to ensure that read, readoffset, and commit
primitive operations are atomic with respect to each other. Our implemen-
tation uses locks to ensure this property. Individual primitives other than
commit are trivially atomic with respect to each other because they operate
on disjoint state (they only modify transaction local state).

5. Implementation

In this section we describe the approach taken by our transactional 1/O
implementation. Our implementation uses a wvisible-reader based approach.
For each file block, our implementation maintains a list of the transactions
that have read that block. When a transaction commits changes to a set of file
blocks, it must first abort all transactions that have read from those blocks.
Similarly, our implementation maintains a list of transactions that have read
the file offset from a file descriptor. When a transaction commits changes to
the offsets of a set of file descriptors, it must first abort all transactions that
have read those file offsets.

5.1. State
We next describe the state maintained by our implementation. For each
block of each inode, our implementation maintains a visible reader structure.
Our implementation also maintains a visible reader structure for the file
descriptor. Visible reader structures contain a lock and a list of readers.
Our implementation maintains a transaction store for each transaction.
The transaction store tracks the state for each file descriptor the transaction
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accesses as described in Section 3.3. The transaction store maintains a buffer
for each inode that contains a list of the writes that the transaction has
performed on that inode. Each write in the list contains the array of bytes
written and an offset. The offset can either be an absolute location in a file
or a relative offset to the current committed offset.

5.2. Operations
We next describe the implementation of each operation:

e write operation: The write operation writes to the transaction write
buffer of the underlying inode. Our implementation has two cases —
one for writes to an absolute location and one for writes to a relative
location. The implementation performs an absolute write if the file
descriptor is in the Read Dependence or No Dependence states. If
the file descriptor is in any other state, the implementation performs
a relative write. The write operation copies the data to the write
buffer. The write buffer is organized as a tree. If a write overlaps with
data previously written by the same transaction, the implementation
combines the writes.

e readoffset operation: The readoffset operation first locks the file
descriptor. It next adds the transaction to the reader list for the file
descriptor, reads the current offset value, and unlocks the file descriptor.
It then scans the transaction’s buffer of uncommitted writes for this file
descriptor and sets their offsets using the current committed offsets.
Finally, it stores the transaction’s current offset for the file.

e read operation: The read operation obtains the current file descrip-
tor offset from the transaction’s current offset for the file. For each
byte, it then checks to see if the data is available in the transaction’s
write buffer. Note that the translation step that generates readoffset
operations to ensure that all writes in the write buffer are absolute
before a read primitive. If a byte is not available in the transaction’s
write buffer, the read operation reads it from the file. When the read
operation accesses a new block in the file, it locks that block’s visible
reader structure, adds the current transaction as a reader, and finally
unlocks the structure and issues a read call to the operating system.

e commit operation: The commit operation begins by locking the visible
reader structures for all the file descriptors that the transaction read,
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wrote, or seeked. It next computes the absolute offsets for all writes it
performed and locks the visible reader structures for all the file blocks
that the transaction accessed. At this point the transaction cannot be
aborted by the I/O of another transaction. The commit operation for
the transactional memory system is then called. If the transactional
memory system aborts, our library releases all of the locks and aborts
the transaction. Otherwise, our library commits the I/O operations
by writing the contents of all the write buffers to the corresponding
files. The transaction then removes itself from all visible reader lists
and aborts all other transactions that appear in a visible reader list for
any block the transaction writes to or any file descriptor it modifies.
Finally, the transaction releases all of the locks.

5.8. Correctness

The correctness of our implementation follows from Theorem 4.7. Note
from Section 5.2 that when a transaction commit writes to a block, it first
acquires a lock on the visible reader structure for that block. Any uncommit-
ted transaction that has already read from that block would appear in the
list of readers, and therefore would be aborted by the transaction commit.
Therefore, the implementation satisfies condition 1 of the theorem.

Similarly, when a transaction that performed a read, write, or seek
to a file descriptor commits, it locks the visible reader structure for that
descriptor. As all uncommitted transactions that performed a readoffset
to that descriptor will appear in its visible reader list, they will be aborted
when the first transaction commits. The implementation satisfies condition 2
of the theorem and, therefore, the implementation guarantees serializability.

5.4. Consistency of Aborted Transactions

A second concern is whether transactions that will eventually abort can
observe values that are inconsistent. Our approach ensures that all trans-
actions observe consistent values at all times. The combination of visible
readers with commit operations that abort all transactions that have read
or updated data ensure that transactions are aborted before they can read
values that are inconsistent.

5.5. Discussion
The designs of transactional memory are still evolving. One of the pri-
mary goals of this project is to develop a transactional 1/O library that can
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easily be adapted for use by a wide range of transactional memory imple-
mentations. An important constraint on our design is that both the memory
component and the file accesses of a transaction must serialize at the same
time. Some transactional memory implementation approach commit a trans-
action with a single instruction — we have to ensure that the file operations
serialize at the same instance.

A simple approach to supporting the wide range of possible transactional
memory implementation strategies is to split the I/O commit operation into
two components: the first acquires locks to ensure that the transaction’s 1/0
component can safely commit at any point in the future and the second then
commits the I/O component. The memory transaction is committed between
the execution of these two components.

This strategy requires acquiring a read lock on all file data that a trans-
action reads. This largely negates the benefits of invisible readers, and there-
fore we chose to make readers visible so that contention management code
can make better decisions. One additional benefit of this decision is that it
makes it trivial to guarantee that transactions never read inconsistent values
from a file (transactions that read inconsistent values are often called zombie
transactions in the literature).

We do note that using our implementation with transactional memories
like TL2 [10] that rely on consistent snapshots to avoid reading inconsistent
values would require an additional check to verify its read set after each file
read is performed as a file read could access data that is inconsistent with the
(stale) memory snapshot. Our approach can be extended to assign a version
number to the file system, the check can then be elided if the version number
indicates that no transaction has committed a change to the file system since
the transaction’s last validation of its read set. We expect that file operations
are performed less frequently than memory operations and therefore visible
readers for files are likely to scale to a much larger number of cores than they
do for memory operations.

Our implementation has focused on the correct behavior for normal file
accesses. It is possible that a delayed write operation could fail because of
insufficient permissions or lack of disk space. Our current implementation
does not support error handling. However, it is straightforward to check
write permissions and to reserve sufficient space on the disk when the write
operation is buffered.
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6. Evaluation

We next discuss our evaluation of our implementation on several mi-
crobenchmarks and five benchmarks: TupleSoup, a database; JCarder, a
deadlock detector; a financial benchmark; a parallel sort; and a parallel grep.

6.1. Methodology

We implemented a fully transactional file library for Java. It is available
for download at http://demsky.eecs.uci.edu/software.php. We have
extended DSTM2 to support our transactional file library. As a reference for
our system we have developed an inevitable implementation, referred to as
inevit in graphs, that uses inevitable transactions [11]. In this approach the
system allows a single transaction to be designated as inevitable. Inevitable
transactions are guaranteed to commit — if a conflict is detected between
an inevitable transaction and a second transaction, the contention manager
resolves it by aborting the second transaction. This approach allows a single
transaction to invoke I/O operations and any other transaction that attempts
[/O must wait for the first transaction to commit.

We executed the benchmarks on a machine with two quad-core 2.2 GHz
Xeon E5520 (Nehalem) processors. The machine runs the 64-bit version of
the Debian Linux distribution running kernel version 2.6.32rc8 and the Sun
Java HotSpot 64 bit Server VM version 1.6.0_17.

6.2. Microbenchmarks

We present results for several microbenchmarks that only perform I/0 to
explore the overheads of our transactional 1/O implementation. We present
numbers for four versions of the microbenchmarks: trans, a version that uses
our transactional I/O implementation; inevit, a version that uses Inevitable
I/O; and lock, a version that protects I/O with a global lock. We include for
comparison an unsafe version that simply eliminates all concurrency control
primitives and as it name suggests would be unsafe.

In the first microbenchmark, each thread uses its own file descriptor to
seek to a disjoint location in a file, execute 300 transactions that each perform
a single write operation, and then repeats this process until it has executed
its share of the 900,000 transactions that the benchmark executes. Figure 2
presents results for this microbench. We see that the Transactional 1/O
version scales well to 4 cores and is faster than the inevitable version for
2 or more cores. The Transactional version is faster than the lock version
for 4 cores. After 4 cores, the transactional version slows down. The unsafe
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version shows a similar behavior — increasing the number of cores from 4 to 8
also slows down this version revealing that the underlying cause is inside the
Linux kernel. Further investigation reveals that Linux protects the mapping
between files and pages at the file granularity — therefore writes to the file
by multiple threads can cause conflicts inside the kernel.

We next modify the write-only, single-file microbenchmark to have each
thread write to its own file. Figure 3 presents the results for this microbench-
mark. With separate files the Transactional I/O scales to 8 threads. For this
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microbenchmark, we present results for an xcall version of the benchmark.
This version is designed to simulate the behavior of the xCall approach to
transactional I/0O. Before writing, the xCall version first reads the data that
will be overwritten in order to support rollback in case of a transaction abort.
This simulation is lighter weight than a real xCall implementation would be
— it does not actually acquire locks on files. We note that the transactional
[/O version is significantly faster than the xcall version because the trans-
actional I/O version does not need to perform read system calls to support
rollback. Note that we omit the xCall comparison for other benchmarks as
the threads in those benchmarks access the same files and therefore an xCall
would serialize those transactions.

The reader may note that the multi-threaded transactional 1/O version
for the single-file write microbenchmark does not exceed the performance of
the unsafe single-threaded version and the separate file version of the multi-
threaded transactional I/O version is only approximately the same perfor-
mance. It is important to note that the transactional I/O implementation
enables more than one transactions to execute simultaneously. If like nearly
all real workloads the transactions perform other operations in addition to
/O operations, then the transactional I/O can easily exceed the performance
of the one-threaded version.

Real applications will execute transactions that mix computation with
[/O. We next modify the write-only, single-file microbenchmark so that each
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Figure 4: Times for Write-Only with Computation Microbenchmark

19



transaction performs a write and then computes the first 5,000 numbers
in the Fibonacci sequence. This microbenchmark is designed to model a
more realistic workload in which transactions mix computation with 1/0
operations. Figure 4 presents results for this microbenchmark. Both the
inevitable and global lock versions are only able to execute one transaction at
a time and therefore scale poorly. The unsafe version and the transactional
[/O version are both able to execute multiple transactions simultaneously
and achieve significantly better performance.
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Transactions in many real applications are likely to perform more than
one write operation to the output file. We next modify the write-only, single-
file microbenchmark so that each transaction performs 5 write operations
to consecutive locations in the file. Figure 5 presents results for this mi-
crobenchmark. The transactional 1/O version is significantly faster than the
other versions. The reason is that transactional I/O version makes fewer
write system calls than the other versions.

Each thread in the next microbenchmark uses its own file descriptor to
repeatedly seek to a disjoint location in the same file and then performs
300 transactions that each execute a single read operation. The benchmark
performs a total of 900,000 transactions. Figure 6 presents results for this
microbenchmark. The Transactional I/O scales well for this benchmark and
is faster than all versions except the unsafe version.

Figure 7 presents results for a version of the read-only microbenchmark in
which each thread accesses a separate file. Unlike the write microbenchmarks,
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the results are nearly identical to the shared-file read benchmark. Linux
kernels after version 2.6.27 implement a lockless page cache that eliminates
locks for file read operations.

Figure 8 presents results for a version of the read-only microbenchmark
that performs a read followed by a Fibonnacci computation. Both the in-
evitable and global lock versions are only able to execute one transaction at
a time and therefore scale poorly. The unsafe version and the transactional
I/O version are both able to execute multiple transactions simultaneously
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and achieve significantly better performance.
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Transactions in many real applications are likely to perform more than
one read operation from an input file. We next modify the microbenchmark
so that each transaction performs 5 read operations. Figure 9 presents results
for the multiple read microbenchmark. The general behavior is similar to the
single-read microbenchmark.
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Figure 9: Times for Read-Only with 5 Reads
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6.3. Benchmarks
We next evaluate our implementation on several benchmarks. We report

numbers for trans, our transactional I/O implementation, and inevit, the
inevitable implementation. When available, we report numbers for lock,
lock-based implementations. These benchmarks require locking to execute
and therefore unsafe versions are unavailable.

6.3.1. TupleSoup
TupleSoup is a Java framework for storing and retrieving simple hashes.

The original source code is available at http://tuplesoup.sourceforge.
net/. We ported the benchmark to the DSTM2 transactional memory sys-
tem. We made modifications to eliminate transactional conflicts including
changing the hash table implementation to avoid conflicts on the size field
and table array.

The system uses an index file and multiple data files. Insertions into
the table are appended to one of the data files. The tuples are randomly
distributed between the data files. The index files keeps track of the offset
in the record file that each tuple is stored.

Our workload for TupleSoup first constructs a table with 500 tuples with
identifiers in the range of 0 to 500. The workload then performs 400,000
operations. Each operation randomly selects an identifier between 0 and
500. The operation looks up the identifier and then updates it.
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Figure 10: Times for TupleSoup

Figure 10 presents results for our implementation, the original TupleSoup
implementation (lock, and the inevitable implementation for 1, 2, 4, and
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8 threads. Inevitability serializes all transactions and therefore limits the
amount of parallelism. The transactional I/O version performs significantly
better than the original version of TupleSoup. Part of the reason is that the
transactional I/O implementation performs fewer write system calls.

We observe that the transition from 4 to 8 threads reveals a scalability
limitation for the transaction version. We measured the abort rates and found
that less than 1% of the transactions aborted. To understand the source of
this slowdown, we then instrumented the executable to record how much time
was spent in transactions. We determined that much of the execution time
was used by DSTM2 to allocate transactional objects. Figure 11 presents
the results of this experiment.

1 thread | 2 threads | 4 threads | 8 threads
Object Allocation | 23.7s 17.1s 17.0s 20.0s

Figure 11: Time spent Allocating Objects in TupleSoup

6.3.2. JCarder
JCarder is an open source tool designed to help developers find po-

tential deadlocks in multi-threaded Java applications. JCarder operates
by instrumenting bytecode dynamically and then looks for cycles in the
graph of acquired locks. The original source code is available at http:
//www.jcarder.org/.

For the workload, we chose the dining philosophers benchmark that is
distributed with JCarder. When threads in the workload application enter
a synchronized block, the rewritten code invokes methods in JCarder. The
code instrumented by JCarder records information about the locks to shared
data structures and files. The data written in the files is later postprocessed
by a separate phase of JCarder. After recording information about the run,
the user runs the second phase of JCarder to discover information about
possible deadlocks in the workload application.

Figure 12 presents execution times for JCarder. Note that the workload
per thread is held constant and therefore perfect scalability occurs when the
time remains constant as the number of threads is increased. The transac-
tional I/O version matches the performance of the inevitable version for fewer
than 4 cores and exceeds the performance of the 8 core inevitable version.

6.3.3. Financial Transaction
The financial transaction benchmark simulates a trading system. The

benchmark maintains trading account records in a file. Each account record
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maintains an inventory of stock holdings and cash. The input for the bench-
mark is a list of financial trades. Each trade consists of the names of the
parties involved, the stock, the number of shares exchanged, and the price.

Each thread processes its own list of stock trades. For each trade, the
benchmark modifies the account records for the two parties to the trade. The
system also maintains a record of the last five financial transactions for each
stock in a shared memory data structure.

Each thread uses a different file descriptor to read in the list of trades and
therefore there is no contention on the list of trades. However, two trades do
conflict if they both attempt to access the same block in the trading record
file. We note that trades can also conflict if they both attempt to update the
in-memory record of the last five trades for a stock. Figure 13 presents the
results for both versions. For more than 1 core, the transaction I/O version
is the fastest. Its relative performance improves with the transition from 2
to 4 cores.

The transition from 4 to 8 threads reveals a scalability limitation for the
transaction version. We discovered that transaction aborts play a role in
limiting the scalability of this benchmark. To quantify this limitation, we
measured the abort rates of the transactional I/O version. Figure 14 presents
these results.
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1 thread | 2 threads | 4 threads | 8 threads
Abort % | N/A 3% 9% 52%

Figure 14: Abort Percentages for Financial

6.3.4. Parallel Sort
The sort benchmark is designed to measure I/O performance. This bench-

mark accesses a list of words as input and sorts the words into files based on
their first letter. This benchmark performs file reads outside of the transac-
tions and the transactions write the output. Our transactional I/O imple-
mentation allows transactions to append to the same file without conflicting.

Our workload is an unsorted dictionary file. Threads seek to non-
overlapping regions of the input file and start reading the words until they
have read the predefined number of bytes. Each thread executes 10 transac-
tions and each transaction reads 1,000 words from the input file and writes
them to the corresponding output files. The thread finishes when it has
read the predetermined number of bytes. Figure 15 presents execution times
for the benchmarks. The transactional 1/O version scales nearly perfectly
for this benchmark. The other two versions are unable to execute trans-
actions in parallel and therefore do not improve performance beyond the
single-threaded version.

6.3.5. Parallel Grep
The grep benchmark searches an input file for a set of words and then

logs the offsets of any appearances of the words in the output file. For each
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of these words, it keeps a counter that tracks the number of occurrences of
that word in the text. The threads seek to disjoint regions of the input file
and start searching for the search terms. Upon finding a search term, the
thread logs the success and increments the corresponding counter.

There is a conflict on the memory data structure whenever two transac-
tions find the same word. The output file is an example of a logging pattern
and the I/O operations never cause a transaction to abort. This is because
the transactions only read from the input file and only append to the out-
put file. For the input file each thread uses a different descriptor and hence
there is no contention over the offset. Figure 16 presents results for the three
versions of the grep benchmark. The transactional I/O version scales nearly
perfectly for this benchmark. The other two versions are unable to execute
transactions in parallel and therefore do not improve performance beyond
the single core version.

7. Related Work

We survey related work in databases, transactional file systems, transac-
tional I/O, and transactional memory.

7.1. Filesystems and Databases

Historically, database researchers have pioneered transactions [12]. Due
to different requirements [13], techniques used for databases differ in many
aspects from those of transactional memory. Software transactional memory
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systems largely ignore durability, while interactions with non-transactional
code is not a challenge in databases or transactional file systems [14, 15, 16,
17]. Many distributed transactional file systems maintain multiple copies for
files [18, 15]. While transactional file systems can provide rich and powerful
primitives, operating system support for such file systems is rare.

7.2. Integration of 1/0 into TMs

The simplest approach is to prohibit I/O inside a transactional block
(19, 20, 2, 21]. Obviously, this approach avoids the issue and leaves software
developers with few good options if multiple threads share an 1/O resource.

Another strategy is to make a transaction inevitable or irrevocable as soon
as it calls an I/O system call, meaning the transaction will not be aborted by
other transactions. The system can be implemented in hardware [22, 5, 23]
or software [11, 3, 24].

The major drawback of these systems is the severe limitations they impose
on the degree of concurrency. Some versions of the technique do not allow
committing any transactions while an inevitable transaction is in progress,
even if these transaction have no conflicts with the inevitable transaction.
22, 25, 2].

Note that file accesses turn the transaction into an inevitable transaction
and forces all transactions that attempt I/O operations to either block or
abort even if they access completely disjoint files. A second approach allows
non-I/O transactions that have no conflicts with the inevitable transaction
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that is in progress [3, 5, 11, 26] to proceed. Transactions with side-effects (i.e.
those with I/O operations within them) have to be serialized with respect to
each other regardless of whether they actually conflict. This limits scalability.
Moreover, the notion of inevitable transaction precludes using constructs
such as "retry” in transactional programming languages and systems [27, 22].

Another approach is to provide programmers with the ability to regis-
ter commit and abort handlers that define what sort of actions should be
taken in case of an abort or a successful validation (i.e. the transaction is
ready to commit) [28, 29, 30]. This approach demands that the developer
reasons about the flow of the program and hence introduces a new source for
bugs in the transactional application [26] and violates the benefits of implicit
transactional programming.

Another strategy is to defer I/O [31]. The idea is to buffer the output
and reflect the changes at commit and invoke the read system call during
the execution and re-buffer the input in case of abort. This approach largely
ignores the possibility of conflicts on I/O operations. This approach may be
difficult to program as a transaction cannot see the changes it makes to the
underlying file system.

Our approach differs from existing methods in that it guarantees serial-
izability of both memory and file operations. To our knowledge no system
provides strong atomicity for 1/O operations. We provide strong atomicity
that can avoid potential errors [32] and eases the job of the programmer.

Our approach is related to both transaction boosting [33]. Like boosting,
our transactional I/O implementation leverages higher-level semantics to al-
low transactions that are conceptually linearizable but that might conflict at
a low-level to commit. Similarly, multi-level concurrency control leverages
semantic properties to improve concurrency [34].

8. Conclusion

Input and output has been largely overlooked by transactional memory
research. We present a new fully transactional approach to I/O for transac-
tional memory. We have formalized our approach, proved correctness proper-
ties, implemented the approach, and evaluated the approach on several Java
applications. In many cases, the performance of our benchmarks was lim-
ited by current operating system bottlenecks. As operating systems evolve
to better support many-core processors, many of these bottlenecks will be
resolved and the performance of our approach will narturally improve.
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Previous approaches either serialize all transactions that perform I/O or
serialize all transactions that output to the same file and therefore ultimately
limit the scalability of the application. Fully transactional 1/O allows trans-
actions to freely perform I/O operations, and our evaluation suggest that
it will perform better than either of the previous approaches, xCalls and
inevitable transactions, for real world applications.
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