
Center for Embedded Computer Systems
University of California, Irvine
__

Locality-Aware Many-Core Garbage Collection

Jin Zhou and Brian Demsky

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

{jzhou1,	 bdemsky}@uci.edu

CECS Technical Report 10-08
August 24, 2010

Locality-Aware Many-Core Garbage Collection

Jin Zhou
University of California, Irvine

jzhou1@uci.edu

Brian Demsky
University of California, Irvine

bdemsky@uci.edu

ABSTRACT
The wide-scale deployment of multi-core and many-core pro-
cessors will necessitate fundamental changes to garbage col-
lectors. Highly parallel garbage collection is critical to the
performance of these systems — today’s garbage collectors
can quickly become the bottleneck for parallel programs.
These processors will present additional new challenges —
many contain non-uniform memory architectures in which
some cores have faster access to certain regions of memory
than other regions.

This paper presents a new cache-aware approach to
garbage collection. Our collector balances the competing
concerns of data locality and heap utilization to improve
performance. We have implemented our garbage collector
and present results on a 64-core TILEPro64 processor. Our
cache-aware parallel collector speeds up garbage collection
by up to 46.7×.

1. INTRODUCTION
With the wide-scale deployment of multi-core processors

and the impending arrival of many-core processors, paral-
lel garbage collection is becoming increasingly important to
overall system performance. A simple application of Am-
dahl’s law reveals that sequential collectors will become per-
formance bottlenecks as the number of cores increases. Par-
allel garbage collectors have the potential to reduce garbage
collection time, improve the scalability of applications, and
improve overall performance.

Many parallel and concurrent garbage collection algo-
rithms have been proposed [13, 10, 11, 8, 3, 18, 12]. This ear-
lier work on parallel garbage collection was largely targeted
towards symmetric multiprocessing systems in which all pro-
cessors have uniform access to memory. Early many-core
processors hint that the memory systems of future many-
core processors will be significantly more complex than the
SMP model and will require careful attention to memory
management to maximize performance.

1.1 Microprocessor Trends
Researchers and microprocessor manufacturers have re-

cently developed several many-core processors. Tilera ships
the 64-core TILEPro64 microprocessor and recently an-
nounced a 100-core Tile-Gx processor [22]. Intel recently
announced the experimental 48-core Single-chip Cloud Com-
puter(SCC) processor [14] and has been developing the
Larrabee processor [20]. Examining aspects of these early
many-core processors provides useful insights into the de-
signs of future mainstream many-core processors.

Processors will likely have memory systems that are in-
creasingly non-uniform. As evidence, we consider an exist-
ing commercial many-core processor, the Tilera TilePro64

64-core processor. The TilePro64 has four memory con-
trollers that are connected to the grid of cores through
an on-chip network and a distributed caching implemen-
tation. Achieving optimal performance requires balancing
memory accesses across the memory controllers and atten-
tion to caching strategies.

Mainstream processors have also already diverged from
the uniform memory architectures provided by previous
generations of processors. Both Intel Nehalem and AMD
Opteron processors have integrated memory controllers —
a consequence of this design is that a processor in a mul-
tiprocessor system has faster access to the memory banks
connected to its local controller. The recent AMD Opteron
Magny Cour processor has two memory controllers — cores
have faster access to the memory banks connected to their
local memory controller.

Moreover, as the number of cores increases we expect to
see a transition away from today’s broadcast-based cache co-
herence protocols towards distributed cache coherence pro-
tocols. Indeed, the TilePro64 processor includes a dis-
tributed cache coherence protocol. Each cache line in the
TilePro64 processor has a home core which manages its co-
herence. An implication of this architecture is that writes to
memory that is homed on the same core are less expensive
than writes to remotely-homed memory locations.

It is likely that future processors will provide additional
communication mechanisms beyond just cache-coherent
shared memory. Both the TilePro64 and the SCC have a
2D-mesh network that connects the tiles. Both processors
contain hardware support for low-latency message passing
between cores.

1.2 Basic Approach
This paper presents a cache-aware, many-core parallel

garbage collector. The collector is architected as a mas-
ter/slave distributed system with a master core coordinating
the actions of all other cores.

We have designed our collector to maximize memory lo-
cality. The underlying design principle is to have each core
independently manage its own memory in the common case.
Each core only garbage collects memory that is local to that
core. On modern architectures this both eliminates extra
inter-cache traffic and can leverage improved performance
that is available through the local memory controller on
some processors.

Modern commercial garbage collectors combine many
techniques to optimize performance including generational
garbage collection, mark-sweep collection, and mark-
compact collection. This paper focuses on mark-compact
collection as this component of a modern collector proves
challenging for both preserving locality and parallelization.

1

The marking approach used in this paper can easily be
extended to support parallel mark-sweep collection. Our
cache-aware garbage collector can be used to optimize the
collection of the old generation in generational collectors.

We expect that future many-core processors will provide
low-latency communication mechanisms and our collector
makes use of such mechanisms for coordinating the collection
process and during the mark phase. However, the basic
collector design does not rely upon these mechanisms and
they can be replaced with queue structures for the mark
phase and shared memory structures for coordination.

1.3 Contributions
This paper makes the following contributions:

• Independent Collection: It presents a garbage col-
lector in which all cores independently mark and com-
pact and only communicate when there is a reference
from the memory collected by one core to the memory
collected by another core.

• Local Allocation: When possible, our collector allo-
cates memory that is local to the current core or its
neighboring cores. This typically improves the perfor-
mance of the application because the memory will be
both locally cached and accessed through the nearest
memory controller. Moreover, it minimizes inter-core
communications during garbage collection.

• Memory Organization: It presents a new heap or-
ganization approach partitions the heap to support
independent collection and manages heap fragmenta-
tion to support huge objects including objects that are
larger than a heap partition.

• Cache-Aware Garbage Collection: It presents a
garbage collector design that optimizes both memory
usage and garbage collection for non-uniform memory
architectures.

• Network-Based Design: It presents a garbage col-
lector design that leverages the low-latency, on-chip
networks of modern many-core processors for the mark
phase of the garbage collector.

• Evaluation: It presents an evaluation of the garbage
collector on a 64-core TilePro64 microprocessor for
several benchmarks. The TilePro64 is a commercially
available, many-core processor and likely representa-
tive of the many-core microprocessors that will become
commonplace in the future.

The remainder of the paper is structured as follows. Sec-
tion 2 presents a simple parallel garbage collection algo-
rithm. Section 3 presents our cache-aware extension to the
simple collector. Section 4 presents our extensions to sup-
port huge objects. Section 5 presents our evaluation of the
approach on several benchmark applications. Section 6 dis-
cusses related work; we conclude in Section 7.

2. A SIMPLE PARALLEL COLLECTOR
We begin our presentation of our many-core garbage col-

lector by describing a simple parallel garbage collector which
is designed to scale well on many-core processors. We later

extend this algorithm with a number of enhancements that
make it practical for real applications.

The simple collector partitions the shared heap into dis-
joint partitions of equal size — there is one partition for
each core. The core to which a shared heap partition is as-
signed is the host core for that shared heap partition. Each
core only allocates memory from its own partition. When a
partition runs out of free memory, garbage collection is trig-
gered. The execution of all application threads (mutators)
on all cores is halted.

Each core is also responsible for garbage collecting its own
heap partition. It marks only objects in this partition and
compacts the live objects within this partition — objects in
the simple collector never leave the allocating core’s heap
partition.

Our collectors have a master/slave architecture. One core
is statically designated as the master — it coordinates the
phases of the collector and distributes large (megabytes)
blocks of memory to the allocators on the individual cores.
In our implementation, in addition to its coordination ac-
tivities the master participates as any other core.

The collector is designed such that the coordination over-
head is not significant. We have not observed any scaling
issues in our experiments using the collector on a 64-core
TilePro64 processor. We note that in these experiments, one
core serves as both the master and a participant in the com-
putation. If processors should ever become available with a
sufficient number of cores to cause the master workload to
become significant, dedicating a core to serve as the master
is a simple way to further scale the implementation.

When a core does not have sufficient space in its local par-
tition of the heap to process an allocation request, it sends
a request to the master core to garbage collect the heap.
The master core notifies all cores that garbage collection
has been requested. The master core waits until all cores
have acknowledged the receipt of the request and sends a
message that they have reached a garbage collection safe
point. The master then sends out a garbage collection start
message to each slave core.

The algorithm follows the standard high-level phases for
a mark-compact garbage collector:

1. Mark Live Objects: The collector marks the live
objects.

2. Compact Objects: The collector next compacts the
live objects into contiguous memory blocks.

3. Update References: The collector finally updates
references to point to the new object locations.

Recall that our implementation uses low-latency messages
on the on-chip network to coordinate the garbage collection
process. Figure 1 presents a time line of all messages for
reference. There is a line in the graph for the master core and
two lines for slave cores. Arrows between the lines indicate
messages. The symbol ∗ indicates that the given message
can be sent repeatedly in the same garbage collection, the
symbol ˆ indicates that only the simple garbage collector
uses the given message, and the symbol # indicates that only
the cache-aware garbage collector uses the given message.

We next describe the garbage collection process in detail.
When the master core receives notification that one core is
out of memory, it sends a stop message to all cores. When it
receives an ack message back from all cores indicating that

2

master slave second slave
stop

ack

startmark

mark

finished

verify

verifyresponse

compact

finishedlocal

resumecompacting

finishedlocal

update

completed

resume

ptrquery

response

completed

Stop World

Mark Phase

Termination
Detection for
Mark Phase

Compaction
Phase

Second Subphase of
Compaction
Phase

Reference Update
Phase

Resume Execution

*

*
*
*

*

*

*
*

#

#

#

#
^

Figure 1: Messages Sent During Garbage Collection

all application threads have stopped, it sends a startmark

message to all cores to begin the mark phase of garbage
collection.

2.1 Mark Phase
Each core in the simple garbage collector marks the ob-

jects in its own heap partition. Each core runs its own col-
lector, which maintains its own local mark queue of objects
to mark. After a core receives the startmark message, the
collector on the core begins the mark phase by scanning its
local heap roots. When the core processes a reference, it
checks whether the referenced object is located in the core’s
heap partition. If the referenced object resides in the local
heap partition and it has not already been discovered, it is
placed in the mark queue. References can of course span
heap partitions; our collector uses the low latency on-chip
network to communicate such references to the core that col-
lects the partition containing the referenced object. If the
object is located in another core’s heap partition, the collec-
tor sends a mark message with the reference to the core that
owns the partition that contains the object. When a core re-
ceives a mark message from another core, it checks whether
the object has been marked. If not, it adds the object to the
mark queue and records the mark request in a separate list.
This list serves to track cross core references that must be
updated. The list is only used to improve efficiency when
updating references. We therefore fix the maximum size of
the list; mark requests beyond this size are not recorded.

Each core executes a loop that dequeues a reference to
an object from the mark queue, and then scans all of the
references in that object. When the mark queue is empty,
the collector on the core sends a finished message to the

master. We next discuss the algorithm for detecting the
completion of the mark phase.

2.1.1 Detecting Termination of Mark Phase
Determining that the mark phase has completed is non-

trivial. The complication is that even after a core has com-
pleted scanning all live objects that it knows about, a mark

message that contains the address of another live object in
its partition can arrive. This problem is similar to the well-
known problem of detecting termination of distributed algo-
rithms [7]. We use the following algorithm to detect when
the mark phase has terminated:

1. Each core sends a finished message to the master
whenever it has completed scanning all known live ob-
jects. The message includes the number of mark mes-
sages it has sent and the number it has received. Note
that a core can send multiple finished messages to
the master.

2. When the master has completed scanning all known
live objects in its partition, it checks a necessary con-
dition for termination: that it has received finished

messages from all slave cores and that the total num-
ber of mark messages sent matches the total number
received. This condition alone is not sufficient to en-
sure termination, as the collected information does not
necessarily represent a snapshot of the system’s state.
The master stores the send message and received mes-
sage counts and then sends a verify message to all
slaves.

3. When a slave core receives a verify message, it re-
sponds to the master with a verifyresponse message
that includes (1) whether the core has completed scan-
ning all known live objects and (2) the number of mark
messages it has sent and number it has received.

4. Once the master has received all responses, it checks
that (1) all cores report that they have completed scan-
ning all objects and (2) that the total sent and received
message counts match the previously stored totals. If
both conditions are satisfied, the mark phase has ter-
minated. Otherwise, the master restarts the algorithm
whenever it receives a new finished message.

The correctness of this algorithm is straightforward. We
note that a core that has finished scanning all of its known
live objects can only become active upon receipt of a mark

message. Verifying that the total number of received mark

messages is the same ensures that each core remained in-
active during the time period from when it sent its final
finished message until it sent its verifyresponse mes-
sage. Because the master receives all finished messages
before sending the first verify message, the collected in-
formation represents a valid snapshot of the system during
the instant between receiving the last finished message and
before sending the first verify message.

2.1.2 Reference Caching
If an object is referenced by many other objects, the core

hosting the partition that contains the object can potentially
receive a large number of mark messages for the object. Each
core therefore implements a fixed-size hashtable that caches

3

recently sent object references. If a reference to a remote ob-
ject hits in this cache, a mark message has already been sent
for this object and the core elides sending a mark message
for the reference.

2.2 Compaction Phase
When the master collector detects that the mark phase

has completed, it sends all slave cores a compact message to
inform them to start compacting the heap.

When a core receives the compact message, it linearly tra-
verses its local heap partition and slides objects forward to
compact the heap. When it moves an object, it records the
object’s new location in a table.

After a core completes compacting its heap, it builds a
hash table from the old locations to the new locations for
the objects for which it received mark messages using the
stored list. This table is stored in shared memory and made
available to other cores. Finally, the core sends a completed

message to the master core to indicate that it has completed
the compaction phase.

2.3 Reference Update Phase
When the master has received completed messages from

all cores and has finished compacting its local heap, it sends
an update message to all cores. When a core receives this
message, it begins to update the object references in its heap
partition.

Each core begins by updating the object references in its
runtime data structures and then updates the object ref-
erences in its partition of the heap. When it finishes the
update phase, it sends a completed message to the master
core.

Each core checks if a reference is to its local heap par-
tition, and if so computes the updated reference using its
local table. If a reference is to a remote heap partition, the
core looks up the reference in the remote cores shared ta-
ble. If the reference is not in that table, the core sends a
ptrquery message along with the old location to the remote
core which responds with a response message and the new
location.

An alternative implementation is to store all tables in
shared memory. We used local memory for these tables,
because we want to make nearly all of the 32-bit address
space available for use for the shared heap. An alternative
approach for 64-bit processors is to simply use a 64-bit ad-
dress space.

When the master has received completed messages from
all cores and has finished updating its references, it sends
a resume message to all cores. When a core receives this
message, it resumes execution of the application thread.

3. CACHE-AWARE COLLECTOR
The simple parallel collector is designed to scale well

on many-core processors. However, the heap partitioning
scheme poses problems for many applications. The parti-
tioning scheme fragments the heap into many small pieces,
and therefore may make it impossible to allocate huge ob-
jects even after garbage collection. Moreover, the scheme
has a problem for applications with imbalanced allocation
rates across cores. If one core allocates significantly more
memory than the other cores, it can run out of memory
even when plenty of memory exists in the heap. This can
cause excessive garbage collection or even cause the program

to effectively run out of memory. In this section, we describe
how we extend the simple collector to support a wide range
of workloads while preserving parallelism.

The presentation of the cache-aware collector is organized
as follows. Section 3.1 describes how the collector parti-
tions the heap and maps partitions to cores. Section 3.2
presents the basic collection algorithm. Section 3.3 describes
the how the collector manages fragmentation across cores.
Section 3.4 presents the allocation algorithm.

3.1 Heap Mapping
We partition the heap into N partitions, where N is sig-

nificantly larger than the number of cores C. The reason for
creating many more partitions of the heap than the num-
ber of cores is to provide the allocator with the flexibility to
allocate memory where it is needed while still maintaining
locality. The cache-aware collector allows heap partitions to
vary in size with the constraint that they must be an integer
number of pages.

Each partition has a host core. In general the partition
is mapped to a host core according to memory locality con-
cerns for the given processor. In our implementation, mem-
ory partitions are mapped such that the cache lines for the
memory partition are homed on the partition’s host core and
that the physical addresses correspond to the closest mem-
ory controller. The host core is responsible for marking and
compacting the partition. While our collector preferentially
allocates objects into the local partition, it will allow cores
to allocate objects into other partitions when necessary to
balance heap usage or to support huge objects.

core (0,0) core (0,1) core (0,2)

core (1,0) core (1,1) core (1,2)

core (2,0) core (2,1) core (2,2)

P-0 P-1 P-2 ... P-24 P-25 P-26

P-0

P-17

P-18

P-5

P-12

P-23

P-1

P-16

P-19

P-4

P-13

P-22

P-2

P-15

P-20

P-3

P-14

P-21

P-6

P-11

P-24

P-7

P-10

P-25

P-8

P-9

P-26

Virtual Address Space

Figure 2: Heap Mapping

We next discuss how the heap’s partitions are mapped
onto cores. Figure 2 presents a mapping of the shared heap
partitions to the cores of a 3×3 2-D mesh multi-core pro-
cessor with N = 27 partitions. The mapping stripes the ad-
dress space across the cores. The mapping ensures that par-
titions that are adjacent in virtual address space are hosted
on nearby cores.

The ubiquitous use of virtual memory systems in mod-
ern processors means that the memory controller associated
with a heap partition is orthogonal to the heap partition’s
virtual address. Our garbage collector ensures that each

4

heap partition has physical memory addresses that corre-
spond to the nearest memory controller. This serves to both
reduce traffic on the on-chip network and to balance load
across all memory controllers.

3.2 Garbage Collection
We next discuss the cache-aware garbage collection al-

gorithm. Traditional mark-compact collectors globally com-
pact objects towards the bottom of the heap. Therefore, the
compaction phase in traditional mark-compact collectors is
inherently sequential and must be modified for paralleliza-
tion. One challenge is that the compaction phase reads from
locations that it later overwrites; Li et al present a parallel
compacting algorithm that manages these dependences to
safely compact the heap [15].

A more fundamental problem is that the standard ap-
proach to heap compaction is poorly suited for the memory
systems of many-core processors. Traditional compaction
moves objects to new memory locations that are potentially
located on different memory controllers and whose cache
lines are homed on other cores. This means that thread-
local data is likely to be migrated to memory that is not
on the closest memory controller nor whose caches lines are
homed on the local core. This will likely both increase the
garbage collection time and slow down the execution of the
actual program code. An additional downside is that this
migration makes the copy operations more expensive during
garbage collection.

Our garbage collector takes a fundamentally different ap-
proach. The basic idea is that each core compacts the heap
within the heap partitions that are hosted locally on core
when possible. The arrows in Figure 3 shows the strategy
for the example heap mapping. The strategy preserves lo-
cality while still generating large contiguous free blocks of
memory that are suitable for huge objects at the top of the
heap.

core (0,0)

P-0

P-17

P-18

Figure 3: Garbage Collection Strategy

3.3 Managing Fragmentation Across Cores
Our locality-preserving garbage strategy can lead to frag-

mentation at the heap partition granularity in the shared
heap. Figure 4 presents an example fragmented heap. The
problem is that some cores may have more live objects and
as a result fill their highest partitions while other cores have
space left in their lower partitions. The resulting heap then
does not have large contiguous free blocks of memory avail-
able for huge objects. Additionally, some cores are left with
no free space in their local heap partitions to allocate new
objects.

Our collector uses a partition balancing algorithm in the

core (0,0) core (0,1) core (0,2)

core (1,0) core (1,1) core (1,2)

core (2,0) core (2,1) core (2,2)

P-0 P-1 P-2 ... P-24 P-25 P-26

P-0

P-17

P-18

P-5

P-12

P-23

P-1

P-16

P-19

P-4

P-13

P-22

P-2

P-15

P-20

P-3

P-14

P-21

P-6

P-11

P-24

P-7

P-10

P-25

P-8

P-9

P-26

Virtual Address Space

Figure 4: Fragmentation Problem

compaction phase to minimize cross-core fragmentation and
to ensure that all cores have some free memory in their local
heap partitions. During the mark phase, each core computes
the total size of the live objects in its heap partitions and
sends this information to the master collector. When the
mark phase completes, the master collector uses these sizes
to estimate the average number of heap partitions each core
will fill during the compaction phase.

A core can locally compact its heap partitions up to this
average number of heap partition limit without introducing
fragmentation. We therefore use this average as an initial
upper bound on each core’s local compacting. We concep-
tually split the compaction phase into two subphases: the
local compaction subphase and the balancing subphase. We
note that this split is not global — while an individual core
must be in one of the two subphases, different cores can
simultaneously be in different subphases.

We first describe the local compaction subphase. After the
mark phase has completed, the master collector in the cache-
aware garbage collector sends each core a compact message
that contains the initial upper bound on the compaction
phase. Upon receiving this message, each core compacts its
local heap until it either finishes or the newly compacted
portion hits the initial upper bound. At this point each core
responds to the master with a finishedlocal message that
includes either (1) the total size of the objects remaining to
be compacted if it did not finish compacting or (2) the top
of its locally compacted heap if it finished compacting.

When the master core receives a finishedlocal message
from a core that finished compacting, it records the top of
the heap in the table. When it receives a finishedlocal

message from a core that ran out space, it searches this

5

table to find space. It begins by first searching the table
entries for neighboring cores for space. If space is not avail-
able from the neighboring core’s heap partitions, it performs
a global search in the table. When it locates space it sends
a resumecompacting message along with the address of the
destination partition and the number of free bytes remaining
in the partition. The core then resumes compacting. When
it finishes compacting, it sends another finishedlocal mes-
sage as in the first subphase.

We note that in general, cores that respond in the first
subphase with a finishedlocal message that they have ex-
tra space will typically complete compacting first as they
have less work to do. Therefore, we expect that finished-

local messages that request more space will typically arrive
later, when space is already available. If a finishedlocal

message requesting more space arrives before space is avail-
able and some cores have not responded to the first sub-
phase, the master simply waits for other cores to respond to
provide extra space. If space is still unavailable even after
the other cores respond, the master will send a resumecom-

pacting message along with a pointer to the first free block
of memory in the heap.

3.4 Two-Level Memory Allocator
The challenge for the allocator is to manage both data

locality and heap fragmentation. While the allocator for
the simple parallel collector manages locality well, it frag-
ments the heap preventing the allocation of huge objects
and it poorly utilizes the heap potentially causing programs
to unnecessarily run out of memory. While a traditional
mark-compact allocator avoids fragmentation and heap uti-
lization problems, it ignores memory locality concerns that
are critical for performance on many-core processors.

Our allocator uses a two-level design: the top-level al-
locator manages the competing concerns of data locality
and heap utilization when allocating large blocks of mem-
ory while the second-level allocator efficiently allocates small
blocks of memory at minimal overhead.

Each core has its own second-level allocator. The second-
level allocator uses a modified version of the standard
pointer increment allocator. One issue that becomes im-
portant with a large number of cores is clearing memory —
it is better to clear memory when it is used and thereby
spread the required data transfer over a longer time pe-
riod. Moreover, many modern processors contain instruc-
tions that clear an entire cache line without reading from
main memory. The second-level allocator uses these instruc-
tions to clear memory on demand in tunable size blocks —
we found that blocks of 4,096 bytes yielded optimal perfor-
mance. This both spreads memory clearing over a longer
time period thereby lowering our use of off-chip memory
bandwidth and avoids cache misses on newly allocated ob-
jects. The second-level allocator requests memory in large
blocks from the top-level allocator by sending messages. The
second-level allocator maintains up to two large blocks of
memory that it allocates into to ensure that a huge object
allocation does not cause the allocator to leave a large part
of the previous block of memory unused.

There is a single top-level allocator that executes on the
master core. The master core maintains a table that tracks
all heap partitions in the system. It uses this table to al-
locate space to the second-level allocators. This top-level
allocator uses the following allocation strategy to manage

both locality and heap utilization concerns:

2

2

2 1 2

1 X 1 2

2 1 2

2

Figure 5: Neighbors

1. Local Search: The top-level allocator first attempts
to give the second-level collector a block of memory
from the local core’s heap partitions. If the local core
runs out of heap space, the collector falls back to the
neighboring core search.

2. Neighboring Core Search: The top-level allocator
next attempts to give the second-level collector a block
of memory from one of the neighboring core’s parti-
tions. Figure 5 illustrates this strategy. The X marks
the core that needs memory. The top-level allocator
first searches for a free memory partition on one of the
four nearest neighbors marked 1. Within this group of
partitions, it chooses the partition that is lowest in the
heap. If no heap partition is found, it expands it search
to include the next eight closest neighbors marked 2.
Within this group of partitions, it chooses the parti-
tion that is lowest in the heap. If the neighboring core
search fails it falls back to the global search.

3. Global Search: The global search is designed for ap-
plications in which a handful of cores allocate nearly
all of the memory in the program. The global search
uses a heuristic to detect if the allocation rate is evenly
distributed across all cores, and in which case it simply
triggers a garbage collection. The heuristic checks if
less than a tunable threshold of the heap has been allo-
cated, and if so sets a flag to denote that global search
should be used. If the flag is set, the global search
returns the first free block of memory. If the flag is
not set, the top-level allocator triggers a garbage col-
lection event. Once set, the flag remains set until the
next garbage collection event.

4. SUPPORTING HUGE OBJECTS
Our presentation of the cache-aware collector thus far has

assumed that programs only allocate objects that are smaller
than a heap partition. In this section, we discuss how our
collector supports objects that are larger than a heap parti-
tion. We call such objects huge objects.

4.1 Data Structures for Huge Objects

6

Each core collector maintains a local huge object list to
track its local huge objects and the master collector main-
tains a global list to track all huge objects in the system.
This list is always relatively short as the total number of
huge objects must be fewer than the number of heap parti-
tions in the system by definition.

During the compaction phase, a core collector scans its
local heap partitions to compact all its live objects to the
bottom of its heap partitions. The possibility arises that the
beginning of a heap partition may contain the end or middle
of a huge object that began in another heap partition. The
compactor must recognize such heap partitions to skip over
the space taken by huge objects.

Therefore, the cache-aware garbage collector maintains a
partition-head table. This partition-head table tracks which
blocks huge objects use. Each entry in the table specifies
the start of the first normal object in the heap partition. If
a heap partition is completely used by a huge object, the
corresponding table entry is set to -1. Both the top-level al-
locator and the garbage collector update the partition-head
table.

4.2 Additional Processes for Huge Objects
We next discuss how our collector handles huge objects

during the compaction phase. One option is to simply leave
the huge objects in place and compact the heap around
them. However, our collector also supports compacting huge
objects when necessary to eliminate heap fragmentation.
The compacting algorithm performs the following steps:

1. Huge objects are marked as normal during the mark
phase.

2. Huge objects are first cached at the top of the heap so
that the space used by them can be used for compact-
ing other live objects.

3. After all normal objects have been compacted, the
huge objects are compacted from the top of the heap
at the end of the compaction phase.

Compacting huge objects requires extra space at the top
of the heap. The top-level allocator keeps track of the total
size of all huge objects and triggers garbage collection if an
allocation request would cause the free space in the heap to
drop below the size of the existing huge objects.

Alternatively, huge objects could be left in place during
the normal compaction phase and a final sequential com-
paction phase for huge objects could be used to eliminate
the need for the extra free space. For some heap config-
urations, it is possible to parallelize this serial compaction
phase.

4.3 Allocator Modifications
We make minor modifications to the previous allocation

strategy. Huge objects require at least two contiguous heap
partitions. The master core uses the same basic search strat-
egy, but for each heap partition it examines it must also
check whether enough contiguous heap blocks are free. If
the allocator fails to find a large enough contiguous heap
block, it forces a garbage collection event in which huge ob-
jects are compacted.

5. EVALUATION
We have implemented our garbage collector in our Java

compiler and runtime system, which contains approximately
130,000 lines of Java and C code. The compiler gen-
erates C code that runs on the TILEPro64 processor.
The TILEPro64 processor contains 64 cores interconnected
through an on-chip network. The source code for our bench-
marks and compiler is available on the web. We executed
our benchmarks on a 700MHz TILEPro64 processor. We
only used 62 of the 64 cores as 2 cores are dedicated to the
PCI bus.

5.1 Benchmarks
Most of the benchmarks traditionally used to evaluate

garbage collectors are sequential and generate relatively low
allocation rates for a parallel collector. We therefore se-
lected several sequential garbage collection benchmarks that
were relatively straightforward to modify to present a highly-
parallel, allocation-intensive workload. We parallelized the
computation of the MonteCarlo benchmark; we modified the
other benchmarks to simply execute multiple copies of the
same computation. We have evaluated our garbage collector
on the following eight benchmarks:

• GCBench: GCBench builds an initial set of long-
lived data structures including a tree and an array and
then builds several short-lived trees of various sizes.
GCBench was originally written by John Ellis and Pete
Kovac and then later modified by Hans Boehm [5].
GCBench is single-threaded, we modified GCBench to
execute 62 threads each of which execute the origi-
nal benchmark. We set the heap size for GCBench at
992 MB and modified the benchmark to maintain ap-
proximately the same heap utilization as the original
sequential version.

• Tree: Tree continuously adds and removes nodes to
and from a persistent binary search tree. We set the
heap size for Tree at 310 MB.

• FibHeaps: FibHeaps performs insertions and re-
movals on a Fibonacci heap. FibHeaps was ported
from the Haskell version in nobench [1]. We set the
heap size for FibHeaps at 310 MB.

• LCSS: LCSS implements Hirschberg’s algorithm for
finding the Longest Common SubSequence. LCSS was
ported from the Haskell version in the nofib benchmark
suite [19]. We set the heap size for LCSS at 310 MB.

• MonteCarlo: MonteCarlo performs a MonteCarlo
simulation. MonteCarlo was taken from the Java
Grande benchmark suite [21]. We set the heap size
for MonteCarlo at 310 MB.

• Voronoi: Voronoi computes the Voronoi diagram of
the two subtrees and merges them. Voronoi was taken
from the JOlden benchmark suite [6]. We set the heap
size for Voronoi at 1240MB.

• BarnesHut: BarnesHut performs a n-body simula-
tion. BarnesHut was taken from the JOlden bench-
mark suite [6]. We set the heap size for BarnesHut at
310MB.

7

• TSP: TSP solves the traveling salesman problem.
TSP was taken from the JOlden benchmark suite [6].
We set the heap size for Voronoi at 62MB.

We report results for the following garbage collection im-
plementations:

• base: The base collector is a single-threaded mark-
compact collector. Cache lines are homed on cores
based on lower-order bits to evenly distributed memory
requests.

• dispar: The dispar collector is a parallelized mark-
compact collector. Cache lines are homed on cores
based on lower-order bits to evenly distributed memory
requests.

• cacheaware: The cacheaware collector is a locality-
aware, parallelized mark-compact collector. Cache
lines for each heap partition are homed on the core
that hosts the heap partition.

5.2 Performance
Figure 6 presents speedups for our benchmarks. The

speedups are given as the number of times faster than a
single-core, sequential version of the benchmark. Figure 7
presents the percentage of execution time each benchmark
spends collecting garbage. Our benchmarks were selected
as they are very allocation intensive; therefore a large per-
centage of the work in our benchmarks is garbage collection.
We expect that more typical applications will present a small
garbage collection workload.

The base versions of the Tree, GCBench, FibHeaps, LCSS,
Voronoi, and BarnesHut benchmarks do not scale. Closer
examination reveals the reason is that the base versions of
these benchmarks spend the vast majority of their execution
time in the single-threaded garbage collector.

The dispar versions achieved a 5.2× speedup for Tree, a
15.0× speedup for GCBench, a 15.7× speedup for FibHeaps,
a 27.6× speedup for LCSS, a 33.4× speedup for Monte-
Carlo, a 19.2× speedup for Voronoi, a 46.3× speedup for
BarnesHut, and a 36.5× speedup for TSP. Figure 7 reveals
the reason for the speedups — the dispar versions of our
benchmarks spend a significantly smaller percentage of their
execution time collecting garbage.

The cacheaware versions achieved a 46.0× speedup for
Tree, a 27.9× speedup for GCBench, a 27.4× speedup for
FibHeaps, a 39.1× speedup for LCSS, a 35.2× speedup for
MonteCarlo, a 29.8× speedup for Voronoi, a 60.2× speedup
for BarnesHut, and a 56.5× speedup for TSP. Figure 7 re-
veals that the cacheaware versions typically spend a smaller
percentage of their execution collecting garbage with the ex-
ception of GCBench and Voronoi. The cacheaware version
of GCBench and Voronoi spends a larger percentage in the
garbage collector because the cacheaware version collector
generates locality improvements that speed up the applica-
tion threads by even more than the collector.

Figure 8 presents the speedup of the garbage collector.
These numbers are presented as speedups relative to the base
version’s garbage collector. We omit comparison here to the
sequential version of the benchmark because the garbage
collection workload for the parallel and sequential bench-
marks are not comparable — the set of live objects is much
(62×) larger for the parallel versions of most benchmarks.

0 X

10 X

20 X

30 X

40 X

50 X

60 X

70 X

Tree
GCBench

FibHeaps

LCSS
M

onteCarlo

Voronoi

BarnesHut

TSP

T
im

es
 S

pe
ed

up

base dispar cacheaware

Figure 6: Overall Speedup

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Tree
GCBench

FibHeaps

LCSS
M

onteCarlo

Voronoi

BarnesHut

TSP

Pe
rc

en
t

base dispar cacheaware

Figure 7: Percentage of Time Spent in GC

0 X

10 X

20 X

30 X

40 X

50 X

60 X

Tree
GCBench

FibHeaps

LCSS
M

onteCarlo

Voronoi

BarnesHut

TSP

T
im

es
 S

pe
ed

up

base dispar cacheaware

Figure 8: GC Speedup

This means that the garbage collector must do more work to
free less space. The garbage collection times reveal that the

8

cacheaware garbage collector achieved significant speedups
relative to the base collector for all benchmarks. Closer
examination of the results for the dispar collector reveals
that parallelism is responsible for significant fraction of the
speedups. Comparing the results for the dispar collector
with the results for the cacheaware collector reveals that
homing cache lines on the core collecting the garbage signif-
icantly further improves performance.

Figure 9 presents the speedup of the mutator (the fraction
of time spent in application code) relative to the sequential
version. We note that cache effects can result in superlinear
speedups; shared data can be cached by other cores in the
62-core version effectively increasing the size of the cache.
The base versions and dispar versions of the benchmarks
show similar speedups. The cacheaware versions show rela-
tively larger speedups — the cache-aware collector allocates
memory to ensure that most memory accesses are to mem-
ory whose cache lines are homed on the local core. This
reduces cache coherence traffic and reduces the number of
times cache lines must be copied from a remote core’s cache.
It can also effectively increase the size of the L2 cache as it
reduces the number of cache lines that are only present to
home data accessed by a remote core.

0 X
10 X
20 X
30 X
40 X
50 X
60 X
70 X
80 X
90 X

100 X

Tree
GCBench

FibHeaps

LCSS
M

onteCarlo

Voronoi

BarnesHut

TSP

T
im

es
 S

pe
ed

up

base dispar cacheaware

Figure 9: Mutator Speedup

Figure 10 breaks down how time is spent in the garbage
collector. The time spent in the collector is approximately
evenly split between marking objects, compacting the heap,
and updating object references. Applications that manipu-
late a few, relatively large primitive arrays will spend more
time in the compact phase as the marking phase and update
phase become relatively inexpensive.

Figure 11 shows how much free space was left in the heap
on average after collection. Figure 12 shows how much free
space was left in the heap after each garbage collection round
for each benchmark. These figures verify that we selected
reasonable heap sizes relative to our workloads. We did not
tune the heap size to hit an exact utilization ratio because we
selected relatively large memory page sizes such that most
heap partitions contain exactly one memory page to improve
the TLB hit percentage and the processor only supports
certain page sizes.

6. RELATED WORK

 0
 20
 40
 60
 80

 100

Treebase
Treedispar

Treecacheaware

GCBenchbase

GCBenchdispar

GCBenchcacheaware

FibHeapsbase

FibHeapsdispar

FibHeapscacheaware

LCSSbase

LCSSdispar

LCSScacheaware

M
onteCarlobase

M
onteCarlodispar

M
onteCarlocacheaware

Voronoibase

Voronoidispar

Voronoicacheaware

BarnesHutbase

BarnesHutdispar

BarnesHutcacheaware

TSPbase
TSPdispar

TSPcacheaware

Pe
rc

en
t T

im
e

mark
compact

update
other

Figure 10: Breakdown of Time Spent in Collector

 0

 20

 40

 60

 80

 100

Treebase
Treedispar

Treecacheaware

GCBenchbase

GCBenchdispar

GCBenchcacheaware

FibHeapsbase

FibHeapsdispar

FibHeapscacheaware

LCSSbase

LCSSdispar

LCSScacheaware

M
onteCarlobase

M
onteCarlodispar

M
onteCarlocacheaware

Voronoibase

Voronoidispar

Voronoicacheaware

BarnesHutbase

BarnesHutdispar

BarnesHutcacheaware

TSPbase
TSPdispar

TSPcacheaware

Pe
rc

en
t S

pa
ce

AveLiveSpace AveFreeSpace

Figure 11: Average Free Space after Garbage Col-
lection

The Multilisp collector was an early example of a paral-
lel garbage collector [12]. Each processor has its own local
semi-space heap that is collected using a copying collector.
This approach is conceptually similar to the simple collector
presented earlier in this paper and has the same problem
with processors locally running out of memory when plenty
of memory is globally available.

Flood et al. [11] employed dynamic per-object work steal-
ing in their mark-compact copying collector and semi-space
collector. Their approach fragments the heap into many
pieces and cannot generate large contiguous blocks of free
memory. Imai and Tick proposed a work stealing parallel
copying collector [13]. Attanasio et al. [3] explored sev-
eral parallel garbage collection algorithms including both
generational and non-generational versions of copying and
mark-and-sweep collectors. Cheng and Blelloch [8] devel-
oped a real-time GC, in which load balancing is achieved
by employing a single shared stack among all threads. Os-
sia et al. [18] developed a parallel, incremental, and mostly
concurrent garbage collector. Their load balancing mech-

9

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

GCBench

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

Tree

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

FibHeaps

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35
Pe

rc
en

ta
ge

 L
iv

e
H

ea
p

Garbage Collection Round

LCSS

 0

 20

 40

 60

 80

 100

 0 1 2 3

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

MonteCarlo

 0

 20

 40

 60

 80

 100

-1 0 1

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

Voronoi

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

BarnesHut

 0

 20

 40

 60

 80

 100

 0 1

Pe
rc

en
ta

ge
 L

iv
e

H
ea

p

Garbage Collection Round

TSP

base dispar cacheaware
Figure 12: Free Space after Each Garbage Collection Round

10

anism called work packet management is similar to Imai’s
work pools. But their garbage collector partitions the global
pool into sub-pools to reduce the atomic operations. All of
these approaches do not address the memory locality con-
cerns that have become important with recent processors.

A common theme in all of these collectors is load balanc-
ing between parallel threads. Many of these algorithms incur
synchronization overheads to ensure load balancing. Our ap-
proach avoids the need for dynamic load balancing during
collection (and its synchronization overhead) as our collec-
tion and allocation strategy inherently balances the work.

Endo et al. [10] developed a parallel mark-and-sweep col-
lector based on work stealing. Their work does not address
memory fragmentation.

Oancea et al. [17] presented a parallel tracing algorithm
which associates the worklist to the memory space. Similarly
to our approach, it also partitions the heap into regions.
However, it does not statically map heap partitions to cores
or processors. Instead, it binds worklists to heap partitions
and lets the processors steal worklists. This work ignores
fragmentation over the shared heap, which makes it difficult
to support larger objects.

Cell GC [9] extends the Boehm-Demers-Weiser mark-
sweep garbage collector to the Cell processor. It offloads
the mark-phase to the synergistic co-processor so that the
host processor can work on other computations.

Marlow et al present a block-based, parallel copying col-
lector [16]. This collector copies objects first and then uses
blocks to structure parallelization of scanning objects. This
collector does not attempt to keep objects in the memory
that is local to the allocating core and has to use separately
allocated memory for objects larger than the block size. Im-
mix is a region-based, parallel collector that uses defragmen-
tation to defragment space within a region [4]. Unlike our
collector, it is not designed to support objects that are larger
than a region. Anderson explores the use of private nurseries
to limit cache-coherence traffic over the bus [2]. They find
that bus traffic become problematic with as few as 4 cores.

7. CONCLUSION
Garbage collectors will need to both manage locality and

provide massively parallel collection to maximize perfor-
mance on future many-core systems. We have implemented
a garbage collector that balances data locality concerns with
heap utilization and fragmentation concerns to achieve good
performance while maintaining the abstraction of a single
large heap. Our experience with several benchmarks indi-
cates that the approach can achieve significant performance
improvements due to both improved locality and parallelism.
Our collector promises to provide the needed performance
for future many-core processors, enabling applications in
managed languages to scale to many-core processors.

8. REFERENCES
[1] nobench. http://www.cs.york.ac.uk/fp/nobench/,

December 2007.

[2] T. A. Anderson. Optimizations in a private
nursery-based garbage collector. In Proceedings of the
2010 International Symposium on Memory
Management, pages 21–30, 2010.

[3] C. Attanasio, D. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collector

implementations, 2001.

[4] S. M. Blackburn and K. S. McKinley. Immix: A
mark-region garbage collector with space efficiency,
fast collection, and tutator performance. In
Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, pages 22–32, 2008.

[5] H. Boehm. Gcbench. http://www.hpl.hp.com/
personal/Hans_Boehm/gc/gc_bench.html, 1997.

[6] B. Cahoon and K. S. McKinley. Data flow analysis for
software prefetching linked data structures in Java. In
Proceedings of the 10th International Conference on
Parallel Architectures and Compilation Techniques,
2001.

[7] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Transactions on Computing Systems, 3(1):63–75, 1985.

[8] P. Cheng and G. E. Blelloch. A parallel, real-time
garbage collector. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming
Language Design and Implementation, 2001.

[9] C.-Y. Cher and M. Gschwind. Cell GC: Using the Cell
synergistic processor as a garbage collection
coprocessor. In Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 141–150, 2008.

[10] T. Endo, K. Taura, and A. Yonezawa. A scalable
mark-sweep garbage collector on large-scale
shared-memory machines. In Proceedings of the 1997
ACM/IEEE Conference on Supercomputing, pages
1–14, 1997.

[11] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang.
Parallel garbage collection for shared memory
multiprocessors. In Proceedings of the 2001
Symposium on JavaTM Virtual Machine Research and
Technology Symposium, pages 21–21, Berkeley, CA,
USA, 2001. USENIX Association.

[12] R. H. Halstead, Jr. Multilisp: A language for
concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems,
7(4):501–538, 1985.

[13] A. Imai and E. Tick. Evaluation of parallel copying
garbage collection on a shared-memory
multiprocessor. IEEE Transactions on Parallel and
Distributed Systems, 4(9):1030–1040, 1993.

[14] Single-chip cloud computer.
http://techresearch.intel.com/UserFiles/en-us/

File/SCC_Sympossium_Mar16%2010_GML_final.pdf,
July 2010.

[15] X.-F. Li, L. Wang, and C. Yang. A fully parallel
LISP2 compactor with preservation of the sliding
properties. In Proceedings of the 21st International
Workshop on Languages and Compilers for Parallel
Computing, 2008.

[16] S. Marlow, T. Harris, R. P. James, and
S. Peyton Jones. Parallel generational-copying garbage
collection with a block-structured heap. In Proceedings
of the 7th International Symposium on Memory
Management, pages 11–20, 2008.

[17] C. E. Oancea, A. Mycroft, and S. M. Watt. A new
approach to parallelising tracing algorithms. In
Proceedings of the 2009 International Symposium on

11

Memory Management, pages 10–19, New York, NY,
USA, 2009. ACM.

[18] Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner,
V. Leikehman, and A. Owshanko. A parallel,
incremental and concurrent GC for servers. In
Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and
Implementation, pages 129–140, New York, NY, USA,
2002. ACM.

[19] W. Partain. The nofib benchmark suite of haskell
programs. In Proceedings of the 1992 Glasgow
Workshop on Functional Programming, pages 195–202,
London, UK, 1993. Springer-Verlag.

[20] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: A many-core
x86 architecture for visual computing. In Proceedings
of the International Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH), 2008.

[21] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel
Java Grande benchmark suite. In Proceedings of
SC2001, 2001.

[22] Tilera. http://www.tilera.com/.

12

