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Abstract

This report describes the modeling style for estimation of communication in busses in Trans-
action Level Models. We present the general structure of our functional bus model, followed
by a survey of the most important features present in current bus protocols. We next show how
the three basic components of a transaction: arbitration, synchronization, and data transfer
phases are modeled and estimated, and how our tool estimates the timing for each one of them.
Our experimental results show that a mp3 decoder platform estimation can be improved if the
communication estimation tool is used alongside the computation estimation.
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1 Introduction
This technical report presents the bus modeling style used for the Embedded Systems Environment
(ESE) for communication estimation for Transaction Level Models (TLM). TLMs in SystemC has
emerged as a new paradigm for system modeling, due to the rise of complexity, size and hetero-
geneity of current embedded systems.

Since the level of abstraction has risen above RTL, simulation speeds have decreased, but at
the expense of decreasing its accuracy. For maximum accuracy, Bus Functional Models are com-
monly used, but its detailed signal information may not be needed at the Transaction Level and its
simulation speed may be too slow.

Communication behavior is commonly unpredictable due to the dynamic bus requests of the
processes running inside Processing Elements. Other factors also increase this unpredictability,
such as bus contention, preemption by other masters, split transactions by slow slaves, and so on.
All these reasons make the simulation-based approach for estimation inevitable.

In order to have an estimation which runs rapidly and produces accurate estimation, an optimal
bus model should be defined. Starting from the Universal Bus Channel [1] used in our TLM, we
propose a modeling style to accurately produce timing information depending on a chosen protocol,
such as ARM’s Advanced High Performance Bus, IBM’s On-Chip Peripheral Bus or any other bus
protocol.

Related work Estimation of communication in Embedded Systems has been tackled with several
different approaches. In [10] the authors statically calculate the maximum length of time it takes
for a given transaction to take place. This approach suffers the drawback that they only consider
the timing after bus arbitration has been done, and if a system has few busses and several Process-
ing Elements running a communication-intesive task (as multimedia applications), the estimated
communication time would not be accurate enough to be valuable for the system architect.
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In [7], communication estimation is made considering arbitration time, but memory trace data
must be obtained first, through either instruction set simulators or hardware design language simula-
tors. Afterwards, trace driven simulation is performed with a candidate communication architecture.

Other approaches are based on libraries, such as [2], in which a selection or communication
protocols is made. These libraries must be constructed beforehand so that the simulation can take
place.

Finally, [11] calculates timing delays using the worst-case execution time for the whole system.
This may prove useful for making decisions based on worst-case scenarios, and obviously do not
contribute to do design exploration and achieve the optimal case.

Our approach does not suffer from these drawbacks, since no separate simulation is needed and
arbitration and other bus-related activities are taken into account while quickly producing accurate
communication information. We do need however, to construct a bus delay database beforehand.

Our communication estimation does depend on the estimation done in the computation compo-
nents, since the bus congestion at any given time depends on the assumption that some processes
have finished computation and entered in a communication phase. We will not discuss estimation at
the computation level in this report.

This report will describe in Section 2 the Transaction Level Models of our bus. In Section 3
we will describe how we model our TLM bus in order to simulate the most common bus protocol
features. Finally, Section 4 presents Experimental Results and Section 5 presents the Conclusions
and future work.

2 Transaction Level Modeling Style
Our model abstracts the system bus as a single unit of communication. It provides the basic commu-
nication services of synchronization, arbitration and data transfer that are part of a transaction. At
the transaction level, we are do not distinguish between different bus protocols. The bus is modeled
as a sc channel, implementing a sc interface which provides 5 public bus communication functions:

1. Send/Recv for synchronized communication between 2 different processes.

2. Read/Write for processes accessing an external memory.

3. MemoryAccess for exposing memory space to the bus.

There are also 2 private functions, used by the above functions:

1. ArbiterRequest/ArbiterRelease for mutual exclusion.

2. Synchronize for synchronization of processes.

In the present model, UBCs can only be connected to Processing Elements and transducers.

2
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Figure 1: Flag-based synchronization between processes

2.1 Synchronization
Synchronization is required for two processes to exchange data reliably. A sender process must wait
until the receiver process is ready, and vice versa. A Synchronization Table in the UBC keeps the
flags and events (indexed by process ids) that are used by a process to notify its transaction partner
process that it is ready. Synchronization between two processes takes place by one process setting
the flag and the other process checking and resetting the flag. Once the flag has been reset, the
transacting processes are said to be synchronized. We will refer to the process setting the flag as
the initiator and the process resetting the flag as resetter. The initiator and resetter processes for a
given transaction are determined at compile time. In Figure 1 , assume P1 is the initiator process
and P2 as the resetter process. Hence, P1 sets the synchronization flag. If P2 is ready before P1, it
must keep reading the flag until P1 sets it. P1 notifies this event when it sets the synchronization
flag. Once P2 reads the flag as set, it recognizes that P1 is ready and resets the flag.

2.1.1 Implementation

The UBC model will have one flag and one sc event for each pair of communicating processes. The
synchronization by the two processes using Send/Recv functions is achieved by both calling the
Synchronize function, which does one of two things, depending if the calling process is the initiator
or the resetter (see Listing 1).

2.2 Arbitration
After synchronization, the resetter process will attempt to reserve the bus for data transfer. This is
necessary since the bus is a shared resource and multiple transactions attempted at the same time
must be ordered sequentially. The resetter process will request an arbitration to the bus, and if the
UBC model is exclusive for functional verification, the arbiter is modeled as a mutex (which is a
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Listing 1: Synchorize function
1 unsigned int Synchronize(unsigned int MyID, unsigned int PartnerID,
2 unsigned int MyMode) {
3 if (MyMode==UBC_INITIATOR && MyID==P_ID_Tx2
4 && PartnerID==P_ID_Intra) {
5 sync_Tx2_Intra =1;
6 ev_sync_Tx2_Intra.notify();
7 return UBC_INITIATOR;
8 }
9 if (MyMode==UBC_RESETTER && PartnerID==P_ID_Tx2

10 && MyID==P_ID_Intra) {
11 while(sync_Tx2_Intra != 1){
12 wait(ev_sync_Tx2_Intra);
13 }
14 sync_Tx2_Intra=0;
15 return UBC_RESETTER;
16 }
17 ...

sc mutex in SystemC. An arbitration request corresponds to a mutex lock operation and once the
transaction is complete, the process will release the arbitration with a mutex unlock operation.

2.3 Addressing and data transfer
In order to do addressing and data transfer, the UBC uses the following variables and events:

1. Variable BusAddress that stores the starting address of the active transaction;

2. Event AddrSet that is notified when TxAddress is set (it is implemented as a sc event);

3. Variable DataPtr that keeps the pointer to the transacted data;

4. Variable DataSize that keeps the size in bytes of the transacted data;

5. Variable RdWr that identifies if a transaction is read or write (for Read/Write functions).

For synchronized communication, the resetter process sets BusAddress to the appropriate value from
the bus address table. This is done by checking the process IDs and assigning the corresponding
bus address (see Listing 2).

For memory transactions, the reader or write process sets BusAddress. This is followed by the
notification of event AddrSet that wakes up the other process or memory controller that is snooping
the address bus (see Listing 3). In case of memory transaction, the memory controller reads the
address BusAddress to check if the address falls in its range and computes the offset. If it is a read
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Listing 2: Bus Addressing
1 if(MyProcID==P_ID_Intra && SendProcID==P_ID_Tx2)
2 BusAddress=ADDR_DH_Tx2_Intra;
3 else if(MyProcID==P_ID_Trans && SendProcID==P_ID_Tx2)
4 BusAddress=ADDR_DH_Tx2_Trans;

Listing 3: Waiting for Bus Address
1 if(MyProcID==P_ID_Tx2 && SendProcID==P_ID_Intra){
2 while(BusAddress!=ADDR_DH_Intra_Tx2){
3 wait(AddrSet);
4 }
5 }

it sets DataPtr to the right address in the local memory according to computed offset, and if it’s a
write, it will proceed with the memory copy (see Listing 4).

3 Estimation of Communication
3.1 Types of Communication
We can classify communication among components into two types: implicit and explicit communi-
cation. We will address both communication types, but mainly the explicit one.

Explicit communication We call explicit all the communication that is produced by the user-
defined communication channels, such as the application reading data from a memory or sending
data to a transducer. This kind of communication can be directly controlled by the user (data size,
sequence, frequency) in his/her application code.

Implicit communication Consists of the embedded processor fetching instruction from the in-
struction memory (when there is a Instruction Cache miss) and of reading and writting program
data to the data memory. The user can only indirectly control this traffic by changes on the plat-
form: changing the sizes of the instruction and data caches, or connecting the instruction bus port
of the processor to a separate bus.

3.2 Timing Analysis
Estimation can be defined as the calculated approximation of a result which is usable even if input
data may be incomplete or uncertain. To do estimation, there are basically two approaches: static
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Listing 4: Memory Controller
1 void MemoryAccess(unsigned int MEM_LOW,
2 unsigned int MEM_HIGH,unsigned char *local_mem){
3 while (1) { // memory is always servicing
4 while (BusAddress < MEM_LOW || BusAddress > MEM_HIGH) {
5 wait (AddrSet); // every time some address is set
6 }
7 if (RdWr == UBC_READ) { // I am addressed for read operation
8 DataPtr = local_mem + (BusAddress - MEM_LOW); // base + offset
9 wait (SETUP_DELAY, SC_NS); // only for simulation

10 wait (HOLD_DELAY+1, SC_NS); // only for simulation
11 }
12 else if (RdWr == UBC_WRITE){ // I am addressed for write operation
13 memcpy (local_mem + (BusAddress - MEM_LOW),DataPtr, DataSize);
14 wait (HOLD_DELAY+1, SC_NS); // only for simulation
15 }
16 } // elihw (1)
17 } // end of MemoryAccess method

and dynamic analyses [3].

Static Timing Analysis (STA) This method computes the expected timing without requiring sim-
ulation. This analysis may use abstract models to take into account all possible behaviors that may
arise over time. The obvious advantage is speed: not having to run a lengthy simulation speeds
up the design process, but the disadvantage and challege is to develop a good abstraction function,
since the model must be sound no matter what inputs or what environment the model is run. Due to
the complexity of an embedded system, doing a STA on the entire model is not feasible.

Dynamic Timing Analysis (DTA) Operates by executing a program and observing the execu-
tions. Testing and profiling are standard dynamic analyses. The advantage is that it can be very
precise, showing the actual execution time. The disadvantage is that its results may not generalize
to future executions. There is no guarantee that the test suite over which the model was run is char-
acteristic of all possible program executions. Therefore, the challenge is choosing a representative
set of test cases. In our case, embedded systems by definition is a system tailored to a specific set of
inputs and a specific set of applications. This eases on the disadvantages of using DTA.

3.3 Timing annotation and estimation
In order to have timing information in our model, we need to add it to the code explicitly. This
is known as Timing Annotation. Formally, timing annotation updates a code with additional in-
formation regarding time. Meanwhile, back-annotation updates a more abstract design (high level
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descriptions) with information from later design stages (low level descriptions) to correct for inac-
curacies.

Annotation is done to the code so that when the model runs, the added information will produce
the correct delay for a specified portion of the code. This calculation of the delay can be done in
two ways: on-line and off-line.

Off-line delay estimation : the delay is precalculated (in our case, generation phase) from values
in the database. The code would look like this: wait(20ns).

On-line delay estimation : the delay is calculated using simulation variables at runtime and
generated values. The generated values can come from the database and the simulation variables can
be packet size, for instance. The resulting code can be something like this: wait(datasize*10ns).

3.4 Bus Features
The model described in the previous section achieves complete functionality, and the next step
would be to use this bus model and add accurate timing information to reflect a bus with a specific
protocol. Bus protocols differ in many different features. For simplicity, we have grouped them into
four areas:

1. Physical properties

2. Arbitration

3. Control

4. Data transfer

As a reference, we present in the appendix a comparison of several bus protocols, with the
features outlined below.

3.4.1 Physical properties

The physical properties that characterize a bus include Address size and Bus width. Another feature
is the maximum number of Master PEs that it allows. In some protocols like OPB[6], it is deter-
mined by the implementation, either limited by the maximum capacitance of the bus (I2C[9]) or by
what the power supports [8], while in others such as AMBA[4] the maximum number is fixed.
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3.4.2 Arbitration

Arbitration is needed when one or more masters request control of the bus. Each master needs to
wait for the arbiter to grant control before proceeding, since only one master can be on the bus at
any time. After certain number of cycles, the arbiter grants the bus to a chosen master (depends
on the arbitration policy) by asserting a control signal. Once the selected master detects this, it
acknowledges by asserting a bus control signal and proceeds to take control of the bus. Common
bus arbitration policies used in busses are:

1. Fixed priority

2. Dynamic priority

3. First-come-first-served

4. Round Robin

5. Least Recently used

Bus Parking This feature is also called Default master. In this case, the bus is granted by default
to one master. In case no other master requests the bus, the bus will remain in control of this default
one. This feature is useful for masters which continuously request the bus, since they save cycles
by not having to signal the arbiter constantly.

Arbitration pipelining The arbitration occurs before the master starts its control phase, since no
master is aware of who controls the bus until the arbiter asserts the corresponding lines. Arbitration
pipelining can occur by starting the arbitration process before the last cycle of the current data trans-
fer. That way, the next master can assert its control lines and take ownership of the bus immediately
after the previous master finishes its data transfer.

3.4.3 Control

Once the master PE has the ownership of the bus, several events may occur before or during the
data transfer phase:

Timeout If the slave does not answer the request of the master, after a specific amount of time,
the master will do a timeout, release the bus and abort the transaction.

Wait The slave might need some additional cycles in order to be ready when the Master addresses
it, so it may signal it to wait for a determined amount of time. In the case of a Wait signal, the
Master will disable the timeout counter in response but will keep ownership of the bus until the data
transfer is done.

8



Retry In case the slave is not ready for the data transfer, it may issue a Retry signal which will
ask the master to give up the control of the bus and re-ask for it after a certain number of cycles.
The data transfer with the slave will resume in an indetermined number of cycles, since the master
must request arbitration to take ownership of the bus, and this may vary, depending on the number
of masters also requesting the bus.

Split Similar to last case, the slave may be busy at the time the master is requesting communica-
tion. The slave can also issue a Split signal, which will ask the arbiter to re-take the ownership of
the bus from the master and ignore its subsequent requests until further notice from the slave. This
allows other masters to take the bus and continue their transactions, while the slave concludes its
current task. Once it has finished it, the slave will signal the arbiter to re-allow requests from the
original master. After that, normal transactions can continue.

Preemption In the case where the arbitration policy is based on priority, a master making a trans-
action can be preempted by a higher-priority master. Once this master has concluded its transaction,
control of the bus is returned to the preempted master. In some protocols, a master has control of a
bus signal which can allow or disallow preemption by another PE.

3.4.4 Data Transfer

Typically, data transfer phases include an address phase, where the master controls the address lines
of the bus, followed by a data phase, where the slave either reads from or writes to the bus. This is
repeated for each individual address the master wishes to access.

There are two features that optimize the data transfer speed:

Burst mode and Pipelining If the data transfer involves more than one address and the addresses
are sequential, the burst mode will allow the data reads or writes to happen in every cycle, by
pipelining the transfers, overlapping the control or address phase with the data phase.

3.5 Bus Modeling
The most of the features described in the previous section can be easily added to our model, while
others cannot. The features that were added are arbitration, data transfer. These will add more
timing information about which master is transfering data at any given time, and how much time it
took to transfer that data.

Control features take charge mainly for error conditions on either the slave (needs more time or
takes too long) or a higher priority master preempting a low priority one. These error conditions
simulate in a lower abstraction level, hence we will not simulate them with our model.
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3.5.1 Bus delay database

Our estimation setup consists of dynamic timing analysis (simulation based) with online and offline
delay computation. We need a delay database because the delay for a single-word transaction is
affected by the following factors:

1. Type of memory (SRAM, DRAM)

2. Location of memory (internal, external)

3. Type of memory operation (read,write)

Our overall setup for timed TLMs is shown in Figure 2. As seen in this figure, our TLM
Generator uses bus properties values from a bus database in order to compute the delays.

Figure 2: Bus delay database setup

This database consists of two parts:

1. Bus properties For each available protocol, all implementable features are listed, includ-
ing bus physical properties (bus data width, address space), arbitration options, data transfer
options. These features are obtained from the datasheets.

10



2. Bus delay values This part of the database lists delay values in multiple test setups. The
setups differ in: bus protocol, memory written or read, type of memory accessed, and location
of memory (local or external). All setups followed these conditions: read/write one single
word to a memory, with no instruction traffic on the bus and only one master connected to the
bus. The goal was to record the absolute delay for a transaction, without the interference of
instruction or program data fetches, and arbitration delays. These two effects will be discussed
below.

3.5.2 Transaction delay modeling

Our aim is to obtain an accurate transaction delay for any communication between two processes
or between a process and a memory. Each individual transaction is composed of 3 parts:

1. Arbitration delay: tarb

2. Synchronization delay: tsync

3. Data transfer delay: tdt

The total transaction delay is:

Ttotal = tarb + tsync + tdt (1)

Although we can model the three components of the transaction, we cannot estimate arbitra-
tion and synchronization; we can only measure it during simulation. In the data transfer phase,
estimation can be done depending on the bus features present.

There are some delay components in arbitration and synchronization which we can estimate,
such as time to set/reset a flag, or to raise the signal granting the ownership of the bus. These delays
will be produced from the database, offline, during the generation phase. The actual time of the
synchronization or arbitration phase will be measured during simulation. The data transfer phase’s
delay estimation will be calculated online.

3.5.3 Arbitration modeling

Our model supports the following features: Bus parking, arbitration pipelining and these arbitration
policies: Round Robin (RR), Priority and First-Come-First-Served (FCFS). As a reminder, our
functional bus model used a mutual exclusion (sc mutex) policy.

Implementation There are two ways of implementing an arbiter, either by using a separate mod-
ule or thread to exclusively arbitrate each bus, or use each process requesting the bus to do its part
of the arbitration task. We chose the latter to improve simulation speed.

11



Listing 5: Arbiter Request delay
1 void ArbiterRequest (unsigned int ProcID) {
2 if (!(bus_parking && parked_pe.contain(ProcID))){
3 wait(ARB_REQ_DELAY_OPB,SC_NS);
4 }
5 arb_lock(ProcID);
6 return;
7 }

When a master asks for control of the bus, a call to ArbiterRequest is made, and the time it
takes to do the arbitration is logged at once, unless the bus parking feature is active (see Listing 5).
Before the delay is taken into account, two things must be checked: first if the bus parking feature
is activated and second if the process asking for the bus resides in the PE in which the bus is parked
(line 2). The arbiter request delay (line 3) is obtained from the database entry corresponding to that
bus protocol.

Arbitration policies The implementation for each policy differs but they follow a common
procedure: the process lists itself into a queue, and waits for its signal to proceed. The process
checks for the top process in the queue to be its process ID, if different, will wait until this top
process changes, via an event notification. The selection which is the next process to run is the
actual arbitration policy: a simple queue for FCFS, a priority queue or by taking turns in a RR.

The steps for each policy are shown in figures 3, 4 and 5.

Figure 3: FCFS Arbitration
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Figure 4: Fixed Priority Arbitration

The implementation of the steps is shown in Listing 6.
In the code, the process lists itself into the queue in lines 4, 10 and 19, and checks if it can

continue at once (lines 5, 11 and 21). If not, it will wait for the corresponding event before it starts
its transaction (lines 6, 12 and 22).

Once the process has finished its transaction, a call to ArbiterRelease is made, which will call
arb unlock (see Listing 7).
The process will remove itself from the queue if it has not done so (line 4) and notify the remaining
processes in the queue (lines 6, 10 and 29). That way, there is no need for an arbiter thread to be
present, since the processes are managing the queues and doing the notification themselves.

3.5.4 Data transfer modeling

For the explicit communication case, for each transaction, the model has the size information of
the data to be written or read. Based on the burst or pipelining features present and fetching the
appropiate data from the bus delay database, the overall timing of the transaction can be determined.

We start by defining these values:

1. Total data transfer time in cycles: Tdt

2. Size of the transaction in bytes: S

3. Bus width of the bus in bits: Bwidth

13



Figure 5: Round Robin Arbitration
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Listing 6: Arbitration policies implementation
1 void arb_lock(unsigned int ProcID){
2 if(arb_policy==1){
3 //FCFS
4 queue.push_back(ProcID);
5 if(queue.front()!=ProcID){
6 wait(procev[ProcID]);
7 }
8 }elseif(arb_policy==2){
9 //Priority

10 prio_queue.push(priorities[ProcID]);
11 if(running==true||prio_queue.top().getid()!=ProcID){
12 wait(procev[ProcID]);
13 }
14 running=true;
15 prio_queue.pop();
16 }elseif(arb_policy==3){
17 //RoundRobin
18 waiting++;
19 rr[ProcID]=true;
20 if(!running&&waiting==1)current=ProcID;
21 if(current!=ProcID){
22 wait(procev[ProcID]);
23 }
24 running=true;
25 }
26 }

4. Control/Address phase length in cycles: CA

5. Bus transaction delay in cycles: Dbus

The data transfer size changes depending on the transaction (on-line estimation), while the
bus width and the control/address phase length are values that are taken from the bus protocol’s
datasheet. The delay value is fetched from the database during generation phase and inserted as a
constant.

In case of a normal transaction, the total time would be:

Tdt = CA ·S + d
S ·8

Bwidth
e ·Dbus (2)

If the bus supports burst mode, the time would be:

Tdt = CA+ d
S ·8

Bwidth
e ·Dbus (3)
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Listing 7: Arbitration Release
1 void arb_unlock(unsigned int ProcID){
2 if(arb_policy==1){
3 //FCFS
4 queue.pop_front();
5 if (queue.size()!=0)
6 procev[queue.front()].notify();
7 }elseif(arb_policy==2){
8 //Priority
9 running=false;

10 procev[prio_queue.top().getid()].notify();
11 }elseif(arb_policy==3){
12 //RoundRobin
13 waiting--;
14 running=false;
15 //increment current until someone can run
16 if(waiting!=0){
17 current++;
18 if(current>=MAX_P)
19 current=0;
20 int next=255;
21 for(inti=0;i<MAX_P;i++){
22 if (rr[i]==true && i<next && i>current-1)
23 next=i;
24 }
25 current=next;
26 if(current==255)
27 current=0;
28 }
29 procev[current].notify();
30 }
31 }

In both cases, equations 2 and 3 use the ceiling function because depending on the width of
the bus, several bytes are written or read simultaneously, but even if the number of bytes to be
transferred is less than the total capacity of the bus, one cycle would be needed.

Implementation The implementation of the timed bus functions involve the addition of the wait
statements, with the calculated delay for the transaction. The rest of the function remains the same
as the functional model.
Equations 2 and 3 are implemented as the wait statements in lines 13 and 11 of Listing 8, respec-
tively. The read, send and receive functions are implemented in a similar way.
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Listing 8: Write fuction
1 void write(unsigned int MyProcID, unsigned int addr,
2 void * data_ptr , unsigned int size){
3 ArbiterRequest(MyProcID);
4 wait(CA,SC_NS);
5 DataPtr = data_ptr; // setting the UBC data pointer
6 DataSize = size; // setting the size
7 RdWr = UBC_WRITE; // this is a write
8 BusAddress = addr; // addressing
9 AddrSet.notify(); // notification that data on the bus is valid

10 if (burst){
11 wait(ceil((size*8)/BUS_WIDTH)*DELAY,SC_NS);
12 }else{
13 wait(CA*size+ceil((size*8)/BUS_WIDTH)*DELAY,SC_NS);
14 }
15 BusAddress = ADDR_NONE;
16 ArbiterRelease(MyProcID);
17 return;
18 }

3.5.5 Instruction and Program Data communication

Previously, we showed how we can model explicit communication on the bus. Nevertheless, for
implicit communication, the case is more complicated if the instruction and data memories are
indeed connected to the same bus as the processor’s data bus port.

Instruction and data fetches occur during the program execution and during regular explicit bus
communications. From a bus’ point of view, the bus model has no way of determining the pattern
of this instruction/data flow, since it acts as a slave for the processor. The only way to model this
communication is from the processor side. Our timed TLM generator [5] estimates not only the
probable delay for computation, but also has a cache model that dictates when there is a cache miss.
It is on this cache miss that a new cache line (in the instruction cache or data cache) must be obtained
by using the bus.

implementation We will group all implicit communication delay times, and add them to the next
explicit transaction on that bus. Each time the cache model decides to have a cache line fetch, it will
update a delay counter. At the next explicit transaction, during the data transfer phase, the UBC will
“spend” this extra delay before executing its regular wait delay. This approach obviously sacrifices
accuracy for speed, since we would not be producing the expected arbitration delays on the other
lower priority processors while the cache line is being fetched. The arbitration effects are anyways
only visible and produce an accurate result if the computation estimation is accurate, so in order for
the entire model to have high accuracy, we rely on the computation estimation engine entirely. Two
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Figure 6: JPEG encoder platform

Table 1: Data Communication measurements in a JPEG encoder TLM
Data traffic FPGA board TLM estimation % Error

(cycles) (cycles)
jpeg to dct 171275 172980 1.00

dct to quantize 160242 156800 2.15
quantize to zigzag 321213 304640 5.16

zigzag to huffencode 324130 304640 6.01

aspects must be considered: computation estimation accuracy and cache model accuracy. These
models will not be discussed in this report.

4 Experimental Results
To test our bus model, we chose a JPEG encoder application, and mapped it into a platform con-
sisting of 5 PEs, 1 bus and 1 transducer. The platform is shown in Figure 6. All instruction and
data memory of each PE is located in local busses, and only explicit inter-PE communication is
happening on the shared bus. We used our TLM generator [12] to create a timed model and mea-
sured the explicit communication delays between all PEs. To see the accuracy of these estimations,
we synthesized the platform to a Xilinx Virtex4 FPGA and did the same measurements between its
MicroBlaze processors. The results are shown in Table 4. We can see that the error in the estima-
tion is less than 6% and in the best case, of 1% (between the first and the second PE). A graphical
representation of the results is shown in Figure 7.
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Figure 7: Communication delay between PEs

5 Conclusions
In this report, we presented the structure of the Universal Bus Channel model and its internal func-
tions. Also, we reviewed the most important features that differentiate different bus protocols and
selected a subset to be implemented into our UBC model in order to get accurate timing information
that would represent an available protocol.

The features that were incorporated into our timed UBC model were: physical properties such
as bus width and maximum number of masters, arbitration features such as different arbitration
policies, bus parking and arbitration pipelining, and finally data transfer features such as pipelining
and burst mode data transfers. These features along with actual data transfer delays in each protocol,
are stored in a bus model database, which is accessed during the TLM generation phase. This
information is used for the on-line estimation of the data transfer delay.

Our timing information is composed of the measurement of our arbitration model, synchro-
nization functions and the estimation of the data transfer phase. Assuming that our system has
an accurate computation estimation, the performance our Transaction Level Model can be easily
measured and taken into account for design purposes.

Running our communication estimation tool in a jpeg encoder platform, we saw that the es-
timated data transfer time is within 94% of the FPGA board measurement. This reflects a good
estimation accuracy for our tool.
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Table 2: Protocols Comparison chart

Feature OPB AMBA-
AHB

AMBA-
APB CAN I2C PCI

Arbitration
policy

Fixed, dy-
namic, RR,
LRU

Depends on
application

No masters,
all slaves

Priority,
Fixed
(wired),
wired AND

wired AND,
No priority

not part of
spec

Maximum
number of
masters

implementation
dependent 16 masters NA 211

limited by
maximum
capacitance

electrically
supports (5
average)

Burst
mode

Bus lock +
sequential
address

4, 8, 16 beat
wrapped
and incre-
mental

NA No No Yes

Preemption Yes
Yes, unless
LOCK is as-
serted

No No No No

Wait states Yes
Yes,
BUSY and
HREADY

No No - Yes

Pipelining

Overlapped
bus arbitra-
tion and data
transfer

Overlapped
address
phase and
data phase

No No No
Arbitration
is over-
lapped

Split No Yes No - -

Yes, ”de-
layed
transac-
tions”

Address
size 32 bits 32 bits 32 bits -

7 bits + 16
reserved
addresses =
total of 112
devices

64 bits

Bus
Parking
(default
master)

Yes Yes NA NA NA
Yes, ”arbi-
tration park-
ing”

Retry Yes, back-off
for 1 cycle

Yes, back-
off for 2 cy-
cles

No No No Yes
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