
System Definition and ESE Data Structure

Lochi Yu, Samar Abdi, Daniel Gajski

Technical Report CECS-09-04
Mar. 25, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

lochi.yu@uci.edu, sabdi@uci.edu, gajski@uci.edu

Abstract

This report describes the Embedded Systems Environment Data Structure (ESE DS) which
captures the details of a model of an embedded system, including application and platform in-
formation. A platform includes Processing Elements (PEs), shared busses, transducers, chan-
nels and routes. A designer can use a GUI to produce this ESEDS and can freely manipulate
the platform for design exploration purposes. The output can be used to either produce a Trans-
action Level Model or a Pin Cycle Accurate Model of the system. To test this data structure,
we used 3 different multimedia applications, mapped them into platforms, and applied different
operations and transformations. Also, TLMs were generated from this ESEDS and their per-
formance was recorded. We concluded that this data structure is flexible enough for platform
transformations and yields enough information to describe an embedded system to generate
refined models from it.

1

Contents
1 Introduction 1

2 Transaction Level Models 2

3 Related works 2

4 System Definition 3
4.1 Application . 3
4.2 Platform . 5

5 Embedded Systems Environment Data Structure 7
5.1 ESEDS Formalism . 8

5.1.1 Design . 9
5.1.2 Processing Element (PE) . 9
5.1.3 Bus . 10
5.1.4 Transducer (TX) . 11
5.1.5 Communication Channels . 12
5.1.6 Route . 13
5.1.7 Connection . 13

5.2 ESEDS Rules . 13

6 Platform Manipulations 14
6.1 Basic platform operations . 14
6.2 Moving processes . 14
6.3 Application plus mapping specification . 16
6.4 ESE Object configurations . 16

7 Experimental Results 18

8 Conclusions 20

9 Acknowledgments 23

References 23

i

List of Figures
1 Embedded Systems Environment design flow . 4
2 ESE system definition . 4
3 Partitioning processes . 5
4 Platform definition . 6
5 Process mapping . 6
6 Channel mapping . 7
7 ESEDS element hierarchy . 8
8 ESE DS project directory structure . 15
9 Routing options for a channel . 17
10 JPEG decoder platform . 18
11 MP3 decoder platform . 19
12 H264 decoder platform . 19
13 Basic ESE Operations . 20
14 Platform transformations and mapping . 21
15 Functional TLM Generation . 21
16 Timed TLM Generation . 22
17 Execution speedup after platform transformations 22

ii

System Definition and ESE Data Structure

L. Yu, S. Abdi, D.Gajski
Center for Embedded Computer Systems

University of California, Irvine

Mar. 25, 2009

1 Introduction
Embedded systems’ rising complexity has forced the industry to adopt new design techniques.
Higher engineering costs, shorter time-to-market timeframes and longer design and verification
phases demand a change in the traditional design approaches.

In the traditional approach, the Top-down methodology, the starting point is an abstract model
of the system. This model is further refined in steps, adding more implementation-specific features,
until a point where its components can be instantiated from a library.

A second approach is a Bottom-up methodology, where the design starts with a set of presyn-
thesized components and builds subsystems with them, up until a whole system has been defined.

Instead of using either a top-down or a bottom-up approach, the alternative is Platform-based
design [9, 13]. It adapts the best features of the two approaches in system design. The starting
point is not one abstract model of the entire system, but an instance of a platform. A platform is
a valid composition of elements and their interconnections [5]. With these elements, subsequent
refinements will bring the design down to the implementation level. The advantage of this approach
is that several platforms are already prebuilt to have an optimized performance for specific type
of applications such as multimedia, automotive, or industrial. They can be regarded as a common
hardware denominator among those kinds of applications.

The components of the platform can be embedded processors, memories, hardware IPs, In-
put/Output components or communication elements such as bridges, transducers, or shared busses.
For instance, a multimedia platform already has integration of embedded processors, memories,
analog-to-digital and digital-to-analog converters, direct memory access module, and specialized
hardware for mathematical operations.

Starting with a platform, the designers must map their applications to the processing cores
present, and can also consider substituting software components for faster IP cores. In addition,
the designers may wish to alter the platform to optimize performance.

1

In order to capture the whole embedded system, platform details and application details must
be included in a model. We propose a data structure based on XML[1] called ESE Data Structure
(ESEDS) which solves these problems and also opens up more posibilities of manipulation to a
embedded system model. Since it is based on XML, it is extensible to allow future additions to the
specification.

Once we have a well-defined data structure representing an embedded system, we can use it
in many ways. We can use it to automatically generate[15] an executable model of the system that
reflects platform choices: a transaction level model (TLM) of the design. In addition to that, another
benefit of having this data structure is that we can freely manipulate the platform to add/remove
hardware units or add/remove/move processes from programmable processors. Since we can also
produce a timed TLM of the system [8], these system features can be easily modified to achieve the
optimum performance.

2 Transaction Level Models
In recent years, transaction level models (TLMs) have emerged as the new paradigm for system
design. In transaction level models, the details of communication are separated from the details of
computation. Communication between computation modules is modeled as complete transactions
(hence the name of the abstraction level), instead of the hundreds of toggling signals in a Bus Func-
tional Model (BFM). While this significantly increases simulation speed, it decreases its accuracy.

We use channels to model the communication between modules, which are a repository of com-
munication services. They provide interfaces that service transaction requests by the computation
elements. More communication details can be added in different steps of the process, the same
as the computation details. This will increase the accuracy of the computation or communication
component. Depending on these factors, we can have different TLMs. In [4] they provide a clear
taxonomy of TLMs, based on the accuracy mentioned above.

3 Related works
Several languages have been developed over the years to describe either hardware or software.
For instance, Architecture Design Languages (ADL) are used to describe software and/or system
architecures. It has been used frequently to describe a specialized processor and synthesize simu-
lators and compilers for it. A comprehensive survey of ADLs has been done in [12]. Some design
languages capture the system in a Register Transfer Level, such as UDL/I [3] and MIMOLA[10].
The latter one is used not only for simulation, test generation and code generation, but also for
hardware synthesis.

Other groups have also developed languages based on XML, such as XADL[7] is designed to
describe software architectures, and its main features are extensibility and flexibility.

2

To model entire embedded sytems, the language EADL[11] was created to capture both hard-
ware and software components and their interactions. It is meant to facilitate design space explo-
ration and scalable hardware-software co-verification. This language differs from our approach in
the following ways: it abstracts all types of platform elements into three kinds of components: soft-
ware, hardware and bridge components. These components abstract all the processors, busses and
embedded OS of the platform. Another difference is that the designer must code in EADL to alter
the platform and to do any manipulations on it.

The Dalton Project [14] allows the designer to tune the platform specifications to optimize the
system performance, but it is oriented mainly for power consumption, and does not allow platform
transformations.

In our approach, the user does not have to deal with the complexities of any code or XML
structure. Our frontend GUI eases the design process so that the designer can concentrate con
transforming and remapping the platform to achieve optimum performance.

This report is structured in the following way: in Section 4 we define the elements of our system,
in Section 5 we describe the data structure used in our tools, including the formalism and rules for
ESEDS. In Section 6 we present the platform manipulations that our tools allows and in Section 7,
we show how our tools perform when manipulating 3 different multimedia platforms. Finally we
present the conclusions in Section 8.

4 System Definition
We have implemented the TLM based design into a tool named Embedded Systems Environment or
ESE [6]. The entire ESE design flow is shown in Figure 1. Our ESE Frontend has a GUI where
the designer can drag and drop components to create the platform. This frontend will manage the
XML data structure to insulate the users from the complexity of ESEDS and its internal structure.
This report will describe the ESE Data Structure, while the TLM Generator, TLM Estimator and
Backend synthesis tool will not be discussed here.

Our system will be defined with two components (see Figure 2):

1. Application

2. Platform

4.1 Application
The application is the component which the designer wishes to run on the embedded system. It may
be composed of one or several programs which will run on programmable embedded processors and
other specialized function which will either also run on embedded processors or synthesized into
specialized hardware units. The application can be composed of one or more processes.

3

Figure 1: Embedded Systems Environment design flow

Figure 2: ESE system definition

4

4.2 Platform
The platform is composed of processors, memories, or Hardware IPs, as mentioned above in [5].

Our system model can be viewed as a combination of a behavioral specification that defines
its functionality and a set of design decisions to implement the desired functionality. As for the
specification part, our tool does not need the C code itself, and only needs the information at the
process level. In order to specify the system, there are several steps to be taken:

1. Partition the application: the application should be partioned into several processes, separat-
ing the main process (at least one) and the specialized functions that should not reside in the
same processor. This process is illustrated in Figure 3.

Figure 3: Partitioning processes

2. Choose a platform: construct a platform with the basic components or use a pre-built platform
specialized for the type of application to be executed. Figure 4 shows a platform with 2
processors, 2 shared busses, one memory and one transducer (TX in the figure).

3. Process mapping: assign a computation element in the platform for each process to be exe-
cuted. For instance, the main process should be mapped into a programmable processor, and
the specialized functions such as filters and mathematical units should be mapped into hard-
ware IP elements (assuming that they will be synthesized into hardware). This is illustrated
in Figure 5

5

Figure 4: Platform definition

Figure 5: Process mapping

6

4. Channel creation and routing: For each pair of communication processes, a communication
channel must be created, an interface must be assigned and a route must be selected. The
interface is also called ”process port”, which refers to the specific port which the process will
use to communicate with the other process. The process is shown in Figure 6. The last step is
route selection, which is the path the data should go to reach its receiving process. All routes
may include transducers and one or more busses. In the example shown in Figure 6, channel
Ch1 can go through one shared bus and channel Ch2 through one transducer and two shared
busses.

Figure 6: Channel mapping

5 Embedded Systems Environment Data Structure
Our system definition will be stored in a special data structure named ESE Data Structure (ESEDS)
or eds file. This file will contain all information about the application (not the application itself)
and all the details about the platform. The reason of having a well-defined and strict (but complete)
system data structure is to achieve these goals:

1. Automatic TLM Generation: The eds file will contain sufficient information for the generation
algorithms to produce an executable SystemC TLM.

2. Platform transformations: The user will be capable of transforming the platform in different
ways in order to do architecture exploration. The transformations include: adding and delet-
ing objects (processors, communication elements, channels), modifying routes for channels,
moving processes from one procesor to another.

7

3. PCAM synthesis: Using the system features defined by the user, our Backend synthesis tool
can generate a pin-cycle accurate model of the system.

5.1 ESEDS Formalism
We store ESEDS files in XML format. XML [1] is a markup language that is designed to describe
information, it uses plain text and uses user-defined tags to interpret information. XML files are
composed of elements, which are the building blocks. Each element may have attributes which are
extra information on the element. Also, an element may be hierarchical: it may contain one or more
sub-elements under it.

The sets of rules which the ESEDS must conform to is described in an XML Schema Definition
(XSD) [2]. The schema defines the set of elements of a ESEDS, the set of valid attributes of each
element, the set of child elements under a hierarchical element, the data types for elements and
attributes, the default and fixed values for elements and attributes and the number of child elements.

The schema definition defines which types of elements can a ESEDS have, not the number, since
that is defined in the XML file. Since it also defines the type of subelements each element has, the
best way to illustrate this is with a tree diagram, in Figure 7.

Figure 7: ESEDS element hierarchy

All objects contain a set of attributes and may contain a set of children objects. The only object
in the ESEDS files is the DESIGN element, which contains all other objects.

8

5.1.1 Design

The DESIGN element is the root element of all ESEDS documents. It can be said that it is a set of
processing elements (PEs), memories and hardware IPs, and the communication elements between
them (transducers). It also contains connections and channel information.

Formally, the objects of a DESIGN d are: < P,B,T,C,R,Chp2p,Chmem >,Ch f i f o, where

• P is the set of Processing Elements

• B is the set of Busses

• T is the set of Transducers

• C is the set of Connections

• R is the set of Routes

• Chp2p is the set of Process-to-process channels

• Chmem is the set of Memory channels

• Ch f i f o is the set of Fifo channels

Its attributes are set by (nd,bd,cd, ld,sd, pd) where nd is the name of the design, bd is the FPGA
board model, cd , ld , sd and pd are the compilation, linking, simulation and post-simulation options,
respectively.

Its whole tree is shown in Figure 7. A simple example with one PE, one bus, one transducer and
the connections between them is shown below:

5.1.2 Processing Element (PE)

As shown in listing 1, a PE is a child of the DESIGN element and is a processor. Other categories
are hardware IP or memory. Its children are defined formally by < L, I,M >:

• L: represents the set of processes running inside the PE. It states the C files plus header files
that compose that process.

• I: represents the ports the process uses to communicate with other processes, via communi-
cation channels.

• M: represents the set of memories

Given a PE x, the set of attributes is (nx, tx,sx, ix,dx,dbx) where nx is the name of the PE, tx is the
type, sx is the synthesis option, ix and dx are the instruction and data cache sizes, and dbx is the debug
option. A sample PE XML code is shown below: In this example, the PE0 has one process named
PE0 P0 which is defined by the source files p1.c and fixed.h. It has a process port (or interface)
defined for a send function, which can be used by any selected communication channel.

9

Listing 1: Sample EDS file
1 <!-- ESE API Version:0.1.0b -->
2 <DESIGN name = "bare_ese" board = "VIRTEX2">
3 <PE name = "PE0" category = "PROCESSOR" type = "MICROBLAZE" ismem = "0">
4 </PE>
5 <TX name = "CE0">
6 <TXIF name = "CE0_PORT_0" bus = "Bus0" arbpolicy = "FCFS">
7 </TXIF>
8 <TXFIFO name = "CE0_fifo" size = "0" partstyle = "SPLIT">
9 </TXFIFO>

10 </TX>
11 <BUS name = "Bus0" category = "BUS" type = "OPB">
12 <SYNCTABLE>
13 </SYNCTABLE>
14 <ARBITABLE policy = "FCFS">
15 <ARBPRIO pename = "PE0" prionumber = "0"/>
16 </ARBITABLE>
17 <ADDRTABLE>
18 <TXENTRY name = "CE0 CE0_PORT_0"/>
19 </ADDRTABLE>
20 <PKTTABLE>
21 </PKTTABLE>
22 </BUS>
23 <CONN pe = "CE0" bus = "Bus0" peRole = "S" port = "CE0_PORT_0"/>
24 <CONN pe = "PE0" bus = "Bus0" peRole = "M" port = "MICROBLAZE_PORT_0"/>
25 </DESIGN>

5.1.3 Bus

A bus has the children represented by < AD,AB,SY,PK >:

1. AD: one address table, contains all the high and low addresses for each communication chan-
nel, memory, processor and transducer connected to the bus.

2. AB: one arbitration table, contains the arbitration table to be used by the bus arbiter; it shows
the priority of each process in the bus.

3. SY: one synchronization table, contains synchronization entries for each pair of communicat-
ing processes. Details information such as synchronization type (interrupt or polling), which
process is the initiator or resetter, where is the flag located (resetter or initiator) and the sen-
sitivity (edge or level).

4. PK: one packet table, details the packetization options for all channels.

A bus x has the following attributes: (nx, tx, px) where nx is the name of the bus, tx is the type of the
bus and px is the name of the PE which is parked (if bus parking is enabled in this bus).

10

Listing 2: PE element
1 <PE name = "PE0" category = "PROCESSOR" type = "MICROBLAZE" ismem = "0">
2 <LEAF name = "PE0_P0" cfiles = " p1.c" hfiles = " fixed.h">
3 <INTERFACE name = "int1" type = "Send" send = "send_channel1"/>
4 </LEAF>
5 </PE>

Listing 3: BUS element
1 <BUS name = "Bus0" category = "BUS" type = "OPB" xpos = "10" ypos = "230">
2 <SYNCTABLE>
3 <SYNCENTRY syncid = "0" chname = "ch1" initiator = "CE0_PORT_0"
4 resettor = "mb0" type = "INTERRUPT" flagLocation = "mb0"
5 sensitivity = "None" flagSetMethod = "SIGNAL"/>
6 </SYNCTABLE>
7 <ARBITABLE policy = "FCFS">
8 <ARBPRIO pename = "PE0" prionumber = "0"/>
9 </ARBITABLE>

10 <ADDRTABLE>
11 <PROCENTRY name = "mb0" enable = "FALSE"/>
12 <CHP2PENTRY name = "ch1" pair = "mb0 CE0_PORT_0"/>
13 <TXENTRY name = "CE0 CE0_PORT_0" lowaddr = "0x80000000"/>
14 </ADDRTABLE>
15 <PKTTABLE>
16 <PKTENTRY chname = "ch1" transfertype = "None"/>
17 </PKTTABLE>
18 </BUS>

In listing 3, the bus has one channel ch1 going through it, and has one transducer and one PE
connected. This can be seen in the address table (line 9-13). The synchronization table in line 2-5
shows that there is just one synchronization entry, for the only channel ch1 which communicates
processes CE0 PORT 0 and mb0. It is important to note that even though the addresses in the
address table must be set manually by the user, the synchronization table is created automatically
by the ESE Frontend during channel creationg and route selection.

5.1.4 Transducer (TX)

A transducer relays data transfers from a process in a bus to another process connected to another
bus. It is needed when the design hass two hardware modules whose bus protocols are different. It
synchronizes with each process before accepting or transfering any data. In the case of a transducer
with one communication channel, the generated XML code is shown in listing 4.

The transducer contains one or more transducer interfaces and one FIFO.

11

Listing 4: TX element
1 <TX name = "CE0" chlist = "ch1" xpos = "70" ypos = "370">
2 <TXIF name = "CE0_PORT_0" bus = "Bus0" arbpolicy = "FCFS">
3 <TXREQ name = "CE0_PORT_0_req_mb0_mb1_SEND" type = "SEND"
4 srcprocs = "mb0" destprocs = "mb1" routes = "RT_0_PE0_PE1"
5 txrole = "S" storagesize = "4" place = "LOCAL">
6 <PKTSIZEBITS lsb = "8" msb = "31"/>
7 </TXREQ>
8 </TXIF>
9 <TXIF name = "CE0_PORT_1" bus = "Bus1" arbpolicy = "FCFS">

10 <TXREQ name = "CE0_PORT_1_req_mb0_mb1_RECV" type = "RECV"
11 srcprocs = "mb0" destprocs = "mb1" routes = "RT_0_PE0_PE1"
12 txrole = "S" storagesize = "4" place = "LOCAL">
13 <PKTSIZEBITS lsb = "8" msb = "31"/>
14 </TXREQ>
15 </TXIF>
16 <TXFIFO name = "CE0_fifo" size = "1000" partstyle = "SPLIT">
17 <PARTITION channels = "ch1" size = "256"/>
18 </TXFIFO>
19 </TX>

We can see in listing 4 that the transducer contains two transducer interfaces TXIF, and one trans-
ducer FIFO (TXFIFO). The transducer has one channel, and its partition in the fifo has a size of 256
bytes, as seen in line 17. The elements inside the transducer interfaces are the transducer requests
(TXREQ). These elements describe each communicating channel between processes and also links
them to the ROUTE element that belongs to them.

5.1.5 Communication Channels

There are three types of communication channels: memory channels (CHMEM), process-to-process
channels (CHP2P) and fifo channels (CHFIFO). The channels are abstract elements that reflect
the communication between either a memory and a process or between two processes. They do
not specify themselves the physical path of the data, this information is described in the ROUTE
element which is assigned to every mapped channel. All types of channels need an INTERFACE
from the process. This will be the port from which the process will use to transfer data. Formally,
the channel x has attributes defined by (sx,dx,rx, ix) where sx is the source process or memory, dx is
the destination process or memory, rx is the route and ix is the set of assigned interfaces. Channels
do not have any children objects.

12

5.1.6 Route

A route is assigned to a channel, and points to/from either a processing element or transducer to
another. It also lists the physical path through busses and transducers. Formally, a route x has the
following attributes: (sx,dx,bx, tx) where sx is the source processing element/transducer, dx is the
destination processing element/transducer, bx is a set of busses, and tx is set of transducers. Routes
do not have any children objects.

5.1.7 Connection

This element represents the physical connection between two objects. The attributes in a connection
x are (ox,bx) where ox is a processing element or transducer and bx is a bus.

5.2 ESEDS Rules
The formal description of ESEDS allows the creation of rules, which will serve to check for cor-
rectness in the structure of the EDS file. The ESE frontend must enforce these rules strictly, since
the synthesis and generation tools depend on it for their correct funcionality. Given a eds model M
and a design d with its objects < P,B,T,C,R,Chp2p,Chmem >:

• There can be only one Design element in each EDS file

• Processing Elements (PE) can only be connected to one bus

• Each route can be assigned to only one channel

• Process-to-process channels must be linked to two processes

• Memory channels must be linked to one process and one memory

• Each route must have one bus and any number of transducers

• For every channel that goes to a processing element, there is a port assinged to it

• For every channel that goes through a bus, it must have an address range set in an address
entry in its address table , a synchronization entry in its synchronization table and a packet
entry in its packet table

• For every channel that goes through a transducer, it must have at least two transducer request
entries in its transducer interface and a partition in its transducer fifo.

13

6 Platform Manipulations
Having our model in a well-defined data structure, allows us to develop tools that will manipulate
the system to fit our needs. Some of these needs include using the EDS file to produce and exe-
cutable system level model and transforming the platform (an thus the system) to explore different
architecture options.

6.1 Basic platform operations
The basic operations on the platform are:

1. Loading EDS files from disk

2. Saving EDS files to disk

3. Exporting EDS designs to disk

4. Adding EDS objects to the platform

5. Deleting EDS objects to the platform

Loading and saving EDS files involves not only the EDS files themselves, but also a set of files
attached to each process (C and H files) in a directory hierarchy that represents our design. In
Figure 8 we can see how an EDS project is saved.

The export operation gathers all theses files and compresses them into a single .bzip file, pre-
serving this directory hierarchy.

6.2 Moving processes
One possible operation the user might use is to move a process from a PE to another PE. This
need might arise when doing design exploration: the process may be slowing down a specific PE
because of an heavy load of processes in the Real Time Operating System (RTOS) . This can be
seen using the computation estimation tool during the SystemC simulation of the TLM. In this case,
the user can move the process to another embedded processor (PE) to lighten the load and speed up
execution time of the system.

This process has to take into account several dependencies between ESE objects. The changes
needed in the platform are:

1. Moving the process from source PE to target PE

2. Moving all ports that involve that process

3. Preserve the underlying directory/files structure of the PEs and processes.

14

Figure 8: ESE DS project directory structure

15

6.3 Application plus mapping specification
Mapping refers to the process of assigning either a process to a PE or a physical route to a CHP2P
or CHMEM. To assign a process to a PE, the procedure consists of creating a LEAF and assigning
C files and header files to it. This was illustrated in Figure 5.

In the case of channel mapping, it refers to the process of assigning a route to the channels.
There are two different types of routing:

1. Dynamic Routing: the route is selected at run-time. The packet is directed to the next node
(transducer) that is free and is closer to the final destination.

2. Static Routing: the route is selected at compile-time, so the path of the data is already known
and cannot change regardless of the circunstances.

The approach we have chosen is static routing, so the user must decide which route the channel will
have.

To map a route to a given channel, the user has to select the set of busses and transducers that
will be linked to the channel. Several options may exist for this step, since data can travel by
several different routes to reach its destination (either a memory or another process). We can see in
Figure 9 that for a channel ch1, there are two different routing options: either the red path, which
will go through bus2, transducer2, bus1, transducer1 and finally bus3, or the green path, which is
shorter, since it’ll go through bus2, transducer3, and bus3.

6.4 ESE Object configurations
The ESE frontend shall also allow setting configuration options on each element. There are multiple
options for each element, we list below the most important:

1. Compilation and linking options for the design and for each process

2. Synchronization type and sensitivity for each channel

3. Synchronization flag location for each pair of communicating processes

4. Packet size for each channel

5. Transducer fifo type: shared fifo or split fifo

6. Partition sizes for split fifo

7. Arbitration policy for busses

8. Process priorities

16

Figure 9: Routing options for a channel

17

7 Experimental Results
In order to test the performance of the ESEDS and our tools, we chose 3 multimedia applications: a
JPEG decoder, a MP3 decoder and a H264 decoder. The test setup for each application is composed
of two phases:

1. A simple one-processor platform is created, hosting all processes inside. The data structure is
saved, exported before running the functional TLM generator and the TLM estimator tools.
Finally, the timed TLM is run and the estimated timing is recoded.

2. Several processors are added into the system, along with one or more shared busses and trans-
ducers, this is the platform transformation step.All processes are distributed evenly between
all processors. Next, the communication channels are created and routes are assigned to each
one of them (remapping step). The TLMs are generated again and timing is recorded.

Every step in each phase has its time recorded, and it does not account for the user’s response time,
but only for the tool’s execution time. All tests were performed on an Pentium 4, 3 GHz, 1 GB
RAM machine running Linux kernel 2.6.

The Jpeg application consists of 5 processes, the mp3 decoder has 3 and the h264 decoder
consists of a total of 13 different processes.

The transformed platforms (after phase2) of the multimedia applications are shown in Figure 10,
Figure 11 and Figure 12. The boxes represent processors and transducers, the rounded boxes repre-
sent the processes and the lines present the busses and their connections. The channels and routes
are not represented in the figure.

Figure 10: JPEG decoder platform

The experimental results are presented in Table 1. As we can see, the basic operations’ (load,
save and export) time the same order or magnitude in the simple and parallel platforms (see also
Figure 13). The H264 platform is much more complex, and this is reflected in the higher load and
save times. This can be seen also in the platform transformations and remapping results (Figure 14).
The H264 has significantly more channels, so it’s natural to see that the remapping time is much
higher.

18

Figure 11: MP3 decoder platform

Figure 12: H264 decoder platform

Table 1: Platform operations experimental results
Platforms

JPEG-1 JPEG-2 MP3-1 MP3-2 H264-1 H264-2
XML LOC 16 281 35 219 489 503
XML bytes 477 15396 3168 15806 39151 43123

Load (s) 2.286 3.026 4.561 7.496 14.063 14.656
Save (s) 2.894 3.030 10.131 17.064 35.070 36.451

Export (s) 0.443 1.401 1.156 1.288 4.022 4.862
Platform transformation (s) - 0.914 - 0.695 - 10.310

Remapping (s) - 0.528 - 0.326 - 6.584
Func TLM Gen (s) 1.181 3.001 1.062 0.846 1.144 2.053

Timed TLM Gen (s) 22.660 32.5 83 109 168 179
Estimated timing (cycles) 72.9·106 15.8·106 3.51·109 2.66·109 6.94·1011 1.35·1011

19

In the case of function generation of TLMs (Figure 15), the time ranges between 1 and 3 sec-
onds, and taking into account the variability of the system’s resources, we could say that the gener-
ation time is approximately the same for all platforms.

For the timed TLM generation, the differences are bigger because of the annotation time. This
is proportional to the size of the source code, so the bigger the application, the longer it takes
(Figure 16). We can see in the last row of Table 1 that the estimated execution time of the multimedia
applications (in cycles) indeed goes down after the platform is transformed and remapped to a
parallel one. In Figure 17 we can see the percentage of speedup after the transformations.

Figure 13: Basic ESE Operations

8 Conclusions
In this report, we presented the description of the Embedded Systems Environment Data Structure
(ESEDS), its formalism and rules. As a summary, we can say that:

• ESEDS provides a complete description of the system: application and platform, enough to
manipulate the platform to transform it and explore new platform configurations.

• The basic operations on the platform, mapping and platform transformations can be done in
a small amount of time, allowing the designer to focus on design space exploration.

• The well structured data structure allows other tools to be developed to take the system spec-
ification as input and produce either a functional TLM, timed TLM or cycle-accurate model.

20

Figure 14: Platform transformations and mapping

Figure 15: Functional TLM Generation

21

Figure 16: Timed TLM Generation

Figure 17: Execution speedup after platform transformations

22

9 Acknowledgments
This work could not have been done if not for the work of Junyu Peng who laid the foundations of
ESE Data Structure. Yonghyun Hwang, who built the first part of the ESE API tool and also helped
define the ESEDS, deserves credit for his contributions to this work.

References
[1] Xml. http://www.w3.org/XML.

[2] Xml schema. http://www.w3.org/XML/Schema.

[3] H. Akaboshi. A Study on Design Support for Computer Architecture Design. PhD thesis,
Kyushu University, Japan, 1996.

[4] Luka Cai and Daniel Gajski. Transaction level modeling: an overview. In ACM Press, edi-
tor, CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/software Codesign and System Synthesis, pages 19–24, New York, NY, 2003.

[5] L. Carloni, F.D. Bernardinis, C. Pinello, and A. Sangiovanni-Vicentelli. Embedded Systems
Handbook, chapter Platform-based design for embedded systems. CRC Press, 2005.

[6] CECS. Embedded systems environment. http://www.cecs.uci.edu/ ese, 2008.

[7] E.M. Dashofy, A Van der Hoek, and R.N. Taylor. A highly-extensible, xml-based architec-
ture description language. In Proceedings of the working IEEE/IFIP Conference on Software
Architecture, pages 103–112, 2001.

[8] Yonghyun Hwang, Samar Abdi, and Daniel Gajski. Cycle-approximate retargetable perfor-
mance estimation at the transaction level. In Proceedings of the Design, Automation and Test
in Europe conference, March 2008.

[9] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and Alberto Sangiovanni-
Vicentelli. System level design: Orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Circuits and Systems, 19(12):1523–1543,
December 2000.

[10] R. Leupers and P. Marwedel. Retargetable code generation based on structural processor
descriptions. Design Automation for Embedded Systems, 3:1, 1998.

[11] Juncao Li, N.T. Pilkington, Fei Xie, and Qiang Liu. Embedded architecture description lan-
guage. Computer Software and Applications, 2008 COMPASA ’08, 32nd Annual IEEE Inter-
national, pages 32–43, July 2008.

23

[12] P. Mishra and N. Dutt. Architecture description languages for programmable embedded sys-
tems. In IEEE Proceedings on Computers and Digital Techniques (CDT), Special Issue on
Embedded Microelectronic Systems: Status and Trends, volume 152, pages 285–297, May
2005.

[13] Alberto Sangiovanni-Vicentelli. Defining platform-based design. EEDesign of EETimes,
February 2002.

[14] Frank Vahid and Tony Givargis. Platform tuning for embedded systems design. IEEE Com-
puter, 34(3):112–114, March 2001.

[15] Lucky Lo Chi Yu Lo and Samar Abdi. Automatic systemc tlm generation for custom com-
munication platforms. In Proceedings of 25th IEEE International Conference on Computer
Design, October 2007.

24

	1 Introduction
	2 Transaction Level Models
	3 Related works
	4 System Definition
	4.1 Application
	4.2 Platform

	5 Embedded Systems Environment Data Structure
	5.1 ESEDS Formalism
	5.1.1 Design
	5.1.2 Processing Element (PE)
	5.1.3 Bus
	5.1.4 Transducer (TX)
	5.1.5 Communication Channels
	5.1.6 Route
	5.1.7 Connection

	5.2 ESEDS Rules

	6 Platform Manipulations
	6.1 Basic platform operations
	6.2 Moving processes
	6.3 Application plus mapping specification
	6.4 ESE Object configurations

	7 Experimental Results
	8 Conclusions
	9 Acknowledgments
	References

