
A Combined Routing+Queueing Approach to Improving
Packet Latency of Video Sensor Networks

Arijit Ghosh

Tony Givargis

Technical Report CECS-09-03

April 14, 2009

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{arijitg, givargis}@cecs.uci.edu

Abstract

Video sensor networks operate on stringent requirements of latency. Packets have a deadline within

which they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the

loss of packets ultimately affects the quality of the application. Network latency is typically a function

of many interacting components. In this paper, we propose ways of reducing the forwarding latency of

a packet at intermediate nodes. The forwarding latency is caused by a combination of processing delay

and queueing delay. The former is incurred in order to determine the next hop in dynamic routing. We

show that unless link failures in a very specific and unlikely pattern, a vast majority of these lookups

are redundant. To counter this we propose source routing as the routing strategy. However, source

routing suffers from issues related to scalability and being impervious to network dynamics. We propose

solutions to counter these and show that source routing is definitely a viable option in practical sized

1

video networks. We also propose a fast and fair packet scheduling algorithm that reduces queueing delay

at the nodes. We support our claims through extensive simulation on realistic topologies with practical

traffic loads and failure patterns.

Contents

1 Introduction 2

2 Previous Work 4

3 Simulator 6

4 Redundancy 7

5 Source Routing with Lazy Correction 9

5.1 Scalability . 10

5.1.1 Topology Encoding . 10

5.1.2 Engineered topology . 14

5.2 Network dynamics - Lazy Correction . 16

6 Short Circuiting 18

7 Approximate Fair queueing 19

7.1 Uniqueness of Embedded Networks . 21

7.2 Approximate Fair Queueing . 22

8 Evaluation 25

8.1 Simulation parameters . 25

8.2 Metrics . 27

8.3 Results . 28

9 Conclusion 29

References 31

i

List of Figures

1 The number of packets that will incur a redundant lookup before 1 packet has a non-

redundant lookup is linearly proportional to the number of hops between the source and

the destination. 8

2 Redundancy: example topology. 9

3 Path encoding: example graph. 14

4 Scalability of encoding. 15

5 CDF: WITH encoding. 16

6 CDF: WITHOUT encoding. 17

7 CDF: Ineffciency. 18

8 Effect of number of failures. 19

9 Effect of number of packets. 20

10 Short circuiting hardware. 21

11 (a) R is a router with 2 input links and 3 queues with weights = 100,200,300 (b) Packets

are assigned to the different queues based on their sizes. (c) The exact schedule of packets

assuming that the round starts with Q0. 23

12 Two level AFQ scheduling. 24

13 Comparison of fairness. 25

14 Topologies used in evaluation. 26

15 Average throughput. 27

16 Jain’s fairness. 28

17 Per-flow throughput: G1. 30

18 Per-flow throughput: G2. 31

19 Per-flow throughput: G3. 32

20 CDF - Packet latencies: G1. 33

21 CDF - Packet latencies: G2. 34

22 CDF - Packet latencies: G3. 35

23 Playback latency: G1 . 36

ii

24 Playback latency: G2 . 37

25 Playback latency: G3 . 37

iii

A Combined Routing+Queueing Approach to Improving Packet Latency of

Video Sensor Networks

Arijit Ghosh, Tony Givargis

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{arijitg,givargis}@cecs.uci.edu

http://www.cecs.uci.edu

Abstract

Video sensor networks operate on stringent requirements of latency. Packets have a deadline within which

they have to be delivered. Violation of the deadline causes a packet to be treated as lost and the loss of

packets ultimately affects the quality of the application. Network latency is typically a function of many

interacting components. In this paper, we propose ways of reducing the forwarding latency of a packet at

intermediate nodes. The forwarding latency is caused by a combination of processing delay and queueing

delay. The former is incurred in order to determine the next hop in dynamic routing. We show that unless

link failures in a very specific and unlikely pattern, a vast majority of these lookups are redundant. To

counter this we propose source routing as the routing strategy. However, source routing suffers from issues

related to scalability and being impervious to network dynamics. We propose solutions to counter these and

show that source routing is definitely a viable option in practical sized video networks. We also propose a

fast and fair packet scheduling algorithm that reduces queueing delay at the nodes. We support our claims

through extensive simulation on realistic topologies with practical traffic loads and failure patterns.

1

1 Introduction

Sensor networks are becoming increasingly popular as non-intrusive surveillance systems. Resource-rich

wired sensor networks, or example Ethernet and ATM-based video surveillance network (VSN) using intel-

ligent cameras, are a prime example. The Dallas-Fort Worth International Airport has deployed a VSN [1]

that produces high-resolution, full-motion, broadcast-quality color images and audio in place of the current

systems that provide grainy black and white, or poor quality color video images. The city of New Orleans

uses a similar system at high-traffic spots and high-crime neighborhoods [2]. In early 2004, the Technology

Office worked with the New Orleans Police Department. Using detailed crime maps drawn with the city’s

COMSTAT crime analysis and management tools, they selected areas with a large number of murders, rob-

beries, vehicle thefts and drug trafficking. As a result of this, the First District recorded 57% fewer murders

and 30% fewer car thefts within a year of their deployment.

To be useful, VSN applications must incur minimum delay from when the event occurred to when the

incident was reported. Consider a terrorist attack in a shopping mall equipped with a VSN. In order for the

security team to react effectively, the VSN should be able to quickly detect the event, identify the suspects,

and provide real-time tracking of their movement. All aspects of the system - application, operating system,

network and hardware - affect the application latency. In this paper, we focus on network latency which

we define as the one-way delay incurred by a packet from the time when it is transmitted by the source to

the time when it is received by the destination. The packet latency is the sum of the propagation and the

transmission delays at each link along its route and the forwarding delay at each intermediate node. We

consider the forwarding delay from after the reception of the packet to just before its transmission. Thus,

the forwarding delay is a combination of the queueing delay and processing delay. The latter is made up of

such activities as routing lookup, header modification, buffer copying and so on. In this paper, we propose

ways of reducing the forwarding delay and hence reduce the packet latency.

Queueing delay occurs when a physical link has to be shared among multiple packets. One way to reduce

this delay is to reduce the number of packets in the network. This approach is known as traffic shaping and

typically occurs before the packet enters the network. The other approach, which is more relevant to this

paper, is to reduce the processing time of packet scheduling algorithms. Packet schedulers need to be fast

and fair. There are usually two categories of packet schedulers that can be found commonly in literature:

2

those that emphasize speed, for example round-robin schedulers, and those that emphasize fairness, for

example timestamp schedulers. In this paper we propose a scheduling algorithm that attempts to bridge the

gap between the two. It has very good fairness characteristics, is extremely simple making it amenable to a

hardware implementation and provides the latency bound on a single packet.

The processing delay associated at intermediate nodes is incurred mainly in determining the next hop (in

case of dynamic routing). If source routing is used instead, this delay can be potentially eliminated which

could have a big impact on packet latencies. Source routing is inherently not scalable. This is because each

node has to maintain the complete path to all nodes in the network. Further, inclusion of the path increases

the size of the header which reduces the goodput of the system. In this paper, we analyze a typical VSN and

show that source routing IS feasible in practical deployments. The number of hops in a random topology

grow at a much slower rate of O(log N). If the topology be built to reflect a scale-free network, then the

above can be reduced to O(log log N). We propose a topology encoding scheme that places modest memory

requirements at the nodes and reduces the packet header overhead. A source route usually does not change

once specified. We break this assumption and propose a lazy correction scheme.

It is interesting to note that making source routing practical can have other positive impacts. A known

way of reducing congestion, and consequently queueing delay, is to use QoS routing. In this method,

packets are routed along the fastest and not necessarily the shortest path. Although attractive, QoS routing is

computationally expensive to be implemented as a dynamic protocol but becomes much more feasible with

source routing.

When source routing is used, then all an intermediate node has to do is to forward the packet from the

input to the output interface and completely bypass all other kinds of processing. Recognizing this, we pro-

pose a short-circuiting scheme that operates at the link layer. We propose a simple hardware implementation

which should make the forwarding operate at wire speeds.

To summarize, in this paper, we look at specific techniques to reduce the forwarding delay at each

intermediate node. In particular, we make the following contributions.

• We show that source routing is an attractive alternative that can be made practical in VSNs (Section

4). We propose a topology encoding for the same. We combine source routing with lazy correction to

react to network dynamics (Section 5).

3

• We propose a a link-layer short circuiting technique to improve packet switching (Section 6).

• We present an approximation of the WFQ algorithm that is amenable to hardware implementation to

improve the packet scheduling latency (Section 7).

• We present thorough evaluation of our system by simulating realistic network topologies using prac-

tical traffic types and failure models (Section Section 8).

2 Previous Work

Techniques to improve packet latency have long been a subject of intensive research in the networking

community. Many approaches targeting different parts of the networking subsystem have been proposed.

The speed of physical links have improved dramatically by the deployment of fiber optic networks and

Wavelength Division multiplexing (WDM). Processing speed at intermediate nodes have been improved by

using smart network processors that use different techniques for fast route lookup. Several smart packet

scheduling algorithms [3, 4, 5, 6, 7, 8] provide efficient queueing algorithms that aims to reduce the waiting

of a packet in a queue.

There are many service models and mechanisms to reduce packet latency. The Integrated Services [9]

model is characterized by resource reservation. For real-time applications, before data are transmitted, the

applications must first set up paths and reserve resources. RSVP is a signaling protocol for setting up paths

and reserving resources and is based on traffic characteristics. In Differentiated Services [10], packets are

marked differently to create several packet classes. Packets in different classes receive different services.

MPLS [11] is a forwarding scheme. Packets are assigned labels at the ingress of a MPLS-capable domain.

Subsequent classification, forwarding, and services for the packets are based on the labels. Traffic Engi-

neering is the process of arranging how traffic flows through the network. The idea is to reduce congestion

in the network by routing packets along alternate routes. Constraint Based Routing is to find routes that

are subject to some constraints such as bandwidth or delay requirement. A thorough discussion of all the

relevant approaches can be found in [12]. An approach to provide guaranteed delay is to use a network with

Weighted Fair Queueing (WFQ) switches and a data flow that is leaky bucket constrained [13]. However,

this requires that traffic be shaped at the source to conform to a specific characteristic.

4

There is a significant amount of prior work in finding scheduling disciplines that provide delay and

fairness guarantees. Generalized Processor Sharing [13] (also called Fluid Fair Queuing) is considered the

ideal scheduling discipline and acts as a benchmark for other scheduling disciplines. Practical scheduling

disciplines can be broadly classified as either timestamp schedulers or round-robin schedulers.

Timestamp schedulers [3, 4, 6, 7] try to emulate the operation of GPS by computing a timestamp for each

packet. Packets are then transmitted in increasing order of their timestamps. Although timestamp schedulers

have good delay properties, they suffer from a sorting bottleneck that results in a time complexity of O(log

F) per packet. Any scheduler that has a complexity of below O(log F) must incur a GPS-relative delay

proportional to F, the number of flows [14].

Round-robin schedulers [5, 8, 15, 16] are the other broad class of work-conserving schedulers. These

schedulers typically assign time slots to flows in some sort of round-robin fashion. By eliminating the sorting

bottleneck associated with timestamp schedulers, they achieve an O(1) time packet processing complexity.

As a result, they tend to have poor delay bounds and output burstiness.

Stratified round robin [17] is an attempt to bridge the gap between the simplicity of round robin sched-

ulers and the fairness of timestamp schedulers. SRR groups flows of roughly similar bandwidth requirements

into a single flow class. Within a flow class, a weighted round robin scheme is employed. However, deadline

based scheduling is employed over flow classes. Although the number of slows to be sorted is reduced by

this method, it still is partially dependent on the efficiency of the sorting algorithm.

In contrast to the above approaches, we present a scheduling algorithm that has low complexity, exhibits

good fairness and provided a bounded delay for a single packet that is independent of the number of flows.

Source routing (SR) is a very old technique that has been used extensively in both wired and wireless

networks including sensor networks [18]. Although simple, SR has not really been popular in wide area

networks because it doesn’t scale well with the network size. In SR, the entire path that the packet travels is

included in it. This implies that a node has to maintain a route to every other node. This imposes an O(N)

routing table overhead. The typical approach to solving this problem is by introduction of hierarchies [19].

In this paper, we also propose a topological solution but is different from existing hierarchical solutions.

The second problem of scalability comes from the increased size of packet headers due to the inclusion of

the path. A solution to this was proposed in [20]. In this, the direction of the neighbors are encoded in the

5

Table 1: Flow specifications
Name Description Rate
HDTV A single channel of High Definition resolution MPEG2 encoded video 20 Mbps [21]
SDTV A PAL or NTSC-equivalent Standard Definition video 3 Mbps
Stereo A multichannel DolbyDigital ‘AC-3’ audio with a maximum 13.1 channels 6 Mbps [22]

Standard Audio An audio channel encoded with Advanced Audio Coding format 128 Kbps

source path. We expand on this idea and make it more general so that it can be applied to topologies with

arbitrary number of neighbors.

3 Simulator

We use a two level event-driven simulation. At the session level, the simulator generates flows at each

source node. Flows arrive according to a Poisson distribution. We consider flows sending either audio or

video data. The flow specifications are shown in Table 1.

At the packet level, it manages the lifetime of a packet. Specifically, it has routing, queueing, failure

and delay modules. The routing module simulates a link-state based shortest path algorithm, much like

Open Shortest Path First (OSPF). The queueing strategy used is Approximate Fair Queueing which will be

discusses in Section 7. We use two failure models. Γ0 represents a model where links are chosen at random.

Γ1 represents a failure model described in [23]. To decide when the failure happens, we picked a random

number for the Weibull distribution with parameters α = 0.046 and β = 0.414. We use the power law with

slope = -1.35 to decide where the failure occurs according to the following. Let nl be the number of failures

occurring in link l over a period of time T. Then the failure probability pl is proportional to nl/T. If the links

n1,n2. . . ,nL are independent, then the probability that failure happens on link l with probability pl/(p1 + p2

. . . + pL) = nl/(n1 + n2 . . . + nL). Link states are flooded only when a link fails. We employ a simple

flooding strategy as follows. Upon receiving an LSU message, a node updates its database and forwards the

information to all its neighbors, except the one from which the update was received. Duplicate messages are

discarded. LSU messages are kept in a separate queue and are treated with highest priority by each node.

For our simulations, we use four different topologies, G0, G1, G2 and G3 (Figure 14). G0 is a random

graph, G1 is representative of a network within a building while G2 and G3 represents a wider area network.

Their characteristics are given in Table 2. All links are bidirectional. To reduce the number of variables, we

6

Table 2: Properties of topologies
Topology Nodes Links Max. Hops Max. out degree

G0 4000 50000 15 1250
G1 16 24 4 4
G2 19 30 5 5
G3 14 21 4 4

use a constant propagation delay of 10ms for all links. All links are assumed to be 1 Gbps. Transmission

speeds for different sized packets are calculated accordingly.

4 Redundancy

In modern packet switched networks, dynamic routing is the most widely deployed protocol. At each hop,

a packet finds the next hop by executing the shortest path algorithm from the current hop to the destination.

In practical implementations, each router pre-computes the shortest path to all nodes in the network so that

when a packet arrives, determining the next hop amounts to a table lookup. Traversing the different layers

of the network stack as well as table lookup at each hop takes up a non-trivial amount of time. An idle

Click modular router, for example, takes 30 µs to forward a 64 byte packet [ref:click]. In a completely

stable network, all route lookups will be redundant and a considerable amount of time can be saved by using

source routing. However, in reality, links fail regularly. To gain an insight on the degree of redundancy

in the presence of link failures, we performed the following experiments. We routed 25,000, 50,000 and

100,000 packets between 680,000 randomly chosen pairs of nodes in G0. Using fault model Γ0, we injected

up to 500 failed links in a manner that 30% of the chosen routes have at least one failed link along them.

An incredible 93% of the route lookups turned out to be redundant.

To understand the reason behind this, let us consider the case where a single link fails. Let there be a

source node A and a destination node B. Let the link between nodes C and D fail. Let Pold and Pnew be the

paths between A and B before and after the link fails. If CD /∈ Pold , then Pold = Pnew and all intermediate

lookups will be redundant. Let us now consider the case where CD is in Pold . Then obviously, Pold 6= Pnew.

As the link state information propagates from C and D to the rest of the network, all nodes (at any given

time) can essentially be divided into two regions: nodes that have received the update and have the newest

routes belong to the fresh region; all others belong to the stale region. If A is already in the fresh region,

7

then A will generate Pnew making all intermediate lookups redundant. Now consider the case when A is in

the stale region. A will generate Pold as the route of the packet. All intermediate nodes in the stale region

will produce the same result as A and hence will cause redundant lookups. As soon as the packet reaches

a node in the fresh region, Pnew will be generated. Lookup in this case is not redundant. But from now on

until B, again all lookups will be redundant.

To summarize, a route lookup will be different between two nodes belonging to the two different regions

but will be the same at all nodes in a given region. This means unless the path of a packet traverses the

boundary between the two regions, all intermediate route lookups will be redundant.

Let A be n hops away from B and generate r packets/second. Let t and p be the propagation time

(between consecutive nodes) and the packet processing time respectively. Let P be the number of packets

generated by A before it gets into the fresh region. Thus p is the number of packets that will have exactly

one non-redundant route lookup.

P = n× (t+p)× r

Figure 1 shows that P increases linearly with the distance of A from B.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 5 10 15 20 25 30 35

N
um

be
r

of
 p

ac
ke

ts

Number of hops

HDTV
SDTV
Dolby
AAC

Figure 1: The number of packets that will incur a redundant lookup before 1 packet has a non-redundant
lookup is linearly proportional to the number of hops between the source and the destination.

Imagine a packet traversing a n-hop path from P to U as shown in Figure 2. For a route lookup at each

8

P Q R S T U

Case 0:
At t0: Packet p at P Link Q-R fails
At t1: p reaches Q Q has link state information Route lookup in Q

is NOT redundant

Case 1:
At t0: Packet p at P Link R-S fails
At t1: p reaches Q Link state information Route lookup in Q

reaches Q is NOT redundant

Case 2:
At t0: Packet p at P Link S-T fails
At t1: p reaches Q Link state information Route lookup in Q

reaches R IS redundant

Figure 2: Redundancy: example topology.

hop to be non-redundant, all of the following three conditions must hold.

• The Mean Time To Failure (MTTF) between links must exceed the sum of the average packet pro-

cessing time and propagation time between two consecutive hops of the packet.

• All failures should occur along the path of the packet.

• The currently failed link can be no farther than two hops away from the current hop. Let the link

between S and T fail when the packet is at P. Let the processing and propagation time of both the data

and link update packets be the same. Then, when the packet reaches Q, the link update will only have

reached R. Thus, the lookup at Q will be redundant.

It shows that for routing lookup to be non-redundant at every hop, the failure pattern has to be very

specific. Clearly, while possible, there is a low probability for this to happen in real life. Based on this

analysis, we infer that source routing is definitely a viable option to be used in VSN.

5 Source Routing with Lazy Correction

Source routing is a simple approach where the sender specifies the complete route of the packet along the

network. Although simple and attractive, source routing has a few disadvantages. First, source routing is not

9

scalable. Each node has to maintain the path to all nodes in the network which incurs a space complexity of

O(N), Further, the entire route is included in the packet header. This reduces the goodput of the system. Sec-

ond, once a route is specified, it is not changed. By not taking cognizance of changing network conditions,

source routing could cause a packet to traverse a longer path. In the worst case, it might even fail to deliver

a packet. Third, source routing presents a security hazard since it allows address spoofing. In this paper we

address the issues related to scalability and network dynamics and leave security as part of our future work.

5.1 Scalability

We address the scalability issues by proposing two techniques. The first is a scheme to encode the topology.

The second is to build the sensor network according to a particular topology. Neither of the approaches

reduce the storage complexity. But our analysis shows that in practical scenarios, the actual number of bytes

used will be significantly reduced.

5.1.1 Topology Encoding

Let us consider a random topology. Classical random graphs, also known as Erdös-Rényi graphs, are defined

by their degree distribution P(k) = exp(-λ)λk/k!. To uniquely identify N nodes in a ER topology, we need

log2N bits. To reduce the number of bits, we propose an encoding scheme based on logical labels assigned

to neighbors. Let M be the average number of neighbors of a node in a random graph. In our simple

encoding scheme, a node assigns a logical label to each of its neighbor, from 0 to M-1. The logical label is

independently assigned by each node. When a node joins the network and shares its neighbor information,

it includes the logical label corresponding to the neighbor identifier. The source node can now compute the

route in terms of the labels. Consider the example graph in Figure 3. Let node A be the sender of a packet

to node D. Each node assigns a logical label to its neighbor which is indicated next to the edge connecting

the node to the respective neighbor. For example, B assigns the logical labels 0, 1, 2, 3 and 4 to neighbors

E, G, C, A and F respectively. Under our encoding scheme, the path from A to B is indicated by 2-2-3. In a

random graph M � N [24].

This path encoding scheme saves a considerable amount of space. Consider for example an IP network

where M = 1000. Then our scheme will represent a savings of over 66%. To put things in perspective, the

10

maximum value of M in the current Internet is around 2000 [25].

It is well known that the average path length (APL) of ER networks scale in proportion to ln N [26]. In

[27] it has been analytically shown that the APL is given by

APL =
lnN− γ

ln(pN)
+

1
2

where γ ' 0.5772 is the Euler’s constant and pN = 〈k〉 The APL for ER graphs with 〈k〉 = 4, 10 and

20 is equal to 6, 4 and 3 respectively for a network with N = 10,000. Correspondingly, the diameter d of

a graph, defined by the maximal distance between any pair of vertices is given by ln N/ln(pN). From a ER

graph of infinite nodes, it has also been shown that 90% of the nodes have an average degree of 5 while less

than 0.00001% of the nodes have an average degree of 200 [28].

From the above statistics, we can assume that

• a route computed by the source to any node will be bounded by a few hops in a reasonably large

network (≤ 6 for a 10000 node network), and

• the majority of the logical labels in the path will be small numbers.

Our objective is to encode this path with a bit pattern that is quite efficient, is extremely fast to decode

and leverages the statistical insights in making the common case fast (Amdahl’s law). We use the following

technique. All labels are classified into two groups ∆0 and ∆1. Labels that are less than 32 bits belong to

the former group while all others belong to the latter. Accordingly, items in ∆0 and ∆1 are encoded by 5

and 8 bits respectively. To distinguish between the labels belonging to the two groups in the path, we prefix

a signature of 10 bits in which a 0/1 indicates if the current label belongs to ∆0/∆1. The choice of a fixed

length encoding and a signature bit pattern was to facilitate the use of a simple hardware circuit that will

allow extremely fast packet forwarding. In order to obtain empirical proof of our approach, we generated

different ER networks with up to 10000 nodes. For each topology, we set the average degree to be 4, 10

and 20. We then computed the shortest path between all pairs of nodes and used our encoding technique to

compute the number of bits. As can seen in Figure 4, the increase in the number of bits is definitely O(ln

N).

Although extremely unlikely, it is still possible that a label has a value of more than 255. In this case,

11

we use a hop-by-hop mechanism to negotiate part of the path for which the labels are large. Let a path from

node n1 to nk be denoted by n1,n2, . . . , ni, X, n(i + 1), . . . n j, Y, Z, n(j + 1), . . . , nk, where X, Y and Z are

labels grater than 255. In this case, the n1 computes the partial route to the intermediate node ni. At ni, the

packet falls back to the default hop-by-hop forwarding mechanism to reach X. X now computes the partial

path to n j. From here, again the packet gets forwarded one hop at a time up to Z. Finally, Z computes the rest

of the path to nk. Clearly, falling back to the hop-by-hop forwarding mechanism compromises the speed,

However, this is a tradeoff we chose to allow scalability of source routing. Considering that the likelihood

of this happening is 1 hop for 10000 nodes, we believe that this will not adversely affect the performance of

the system.

Algorithm 1 Encoder
bit vector final path[]
bit vector signature[10] = “0000000000”
array path in label[] = find route(src,dest)
for each position i in path in label[] do

if path[i] > 255 then
clear remaining path
break;

end if
if path[i] < 32 then

decimal to binary 5 bits(path[i])
concatenate with final path
signature[i] = 0

else
decimal to binary 8 bits(path[i])
concatenate with final path,bin path)
signature[i] = 1

end if
end for
concatenate(signature,final path)

From the above, we can see that the maximum number of bytes to encode the route in a 10000 node

network is about 5. A VSN is essentially a hierarchical resource-rich sensor network. It is hard to imagine it

to scale geographically (like the Internet) or in node density (like wireless mote-like sensornets). The space

overhead for a 10000 node network is about 50 KB which is modest by current technology standards. Let

us consider a TCP/IP packet with a MTU of 1500 bytes. Let the TCP and IP headers each be 20 bytes.

For simplicity, let us consider the rest of the packet to contain data. Then an overhead of 5B represents a

12

Algorithm 2 Decoder
bit vector[] recvd signature = split(path, 1st 10 bits)
bit vector[] remaining path = split(path, remaining bits)
if remaining path.empty() then

if I am destination then
return

else
bit vector final path[]
bit vector signature[10] = “0000000000”
current = my ip;
i = 0;
while true do

next hop = get next hop(current, dest)
if next hop > 255 then

if current == my ip then
send pkt(next hop);
return;

else
break from while loop

end if
else

encode(rest of the path);
end if
current = next hop;
increment i
if current = dest then

break from while loop
end if

end while
concatenate(signature,final path)

end if
else

if recvd signature[pkt hop count] == 0 then
first hop = binary to decimal 5 bit(remaining path);
delete first 5 bits(remaining path);

else
first hop = binary to decimal 8 bits(remaining path);
delete first 8 bits(remaining path);

end if
end if
send pkt(first hop);

13

.

.

.

.

.

.

E1.E2.E3.E4E

D1.D2.D3.D4D

C1.C2.C3.C4C

B1.B2.B3.B4B

A1.A2.A3.A4A

IP AddressNode

3, 2, 3Encoded

A1.A2.A3.A4, B1.B2.B3.B4,
C1.C2.C3.C4, D1.D2.D3.D4

Unencoded

Route from A to D

 A

B

F

E G

C

H

D

I0 1

2

3
0

1
4

0
5 2

1

2

1

2

0

3 0

0

0

1

2

1

Figure 3: Path encoding: example graph.

reduction of less than 1% in the goodput of the system. This shows that source routing is definitely practical

in relatively large sized VSN networks.

5.1.2 Engineered topology

The above section demonstrates the feasibility of using source routing in ER graphs. However, a VSN will

be very likely be a well-engineered system. In this section, we argue that if a VSN is built to exhibit the

properties of a scale-free network, then it makes using source routing more practical by making the APL

almost constant.

In mathematics and physics, a small-world network is a type of mathematical graph in which most

nodes are not neighbors of one another, but most nodes can be reached from every other by a small number

of hops or steps. Many empirical graphs are well modeled by small-world networks. Social networks, the

connectivity of the Internet, and gene networks all exhibit small-world network characteristics. Small-world

networks have high representation of cliques, and subgraphs that are a few edges shy of being cliques. The

highest-degree nodes are often called “hubs”. If a network has a degree-distribution which can be fit with

a power law distribution, it is taken as a sign that the network is small-world. These networks are known

as scale-free networks. The probability P(k) that a node in the network connects with k other nodes is

14

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1000050001

N
um

be
r

of
 b

its

Number of nodes

Degree = 4
Degree = 10
Degree = 20

ln N

Figure 4: Scalability of encoding.

proportional to k−γ. The coefficient γ may vary approximately from 2 to 3 for most real networks [29]. It

was proved that an uncorrelated power-law graph having 2 < γ < 3 will also have a network diameter d that

is proportional to O(lnlnN) [30].

So from the practical point of view, the diameter of a growing scale-free network might be considered

almost constant while the diameter of a 1 million node network is approximately 3 hops.

The power law distribution of a scale-free network produces a hierarchical topology with a fault tolerant

behavior. Since failures occur at random and the vast majority of nodes are those with small degree, the

likelihood that a hub would be affected is almost negligible. Even if such event occurs, the network will

not lose its connectedness, which is guaranteed by the remaining hubs. This characteristic was exploited in

generating highly tolerant sensor node placement [31]. As has been mentioned before, the network diameter

of growing scale-free networks is almost constant and is usually in the order of 3 to 5 hops for networks with

millions of nodes. The bounded hop count significantly reduces packet transmission time thereby improving

system latency. In addition, it also solves the scalability problem of source routing.

15

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 20 30 40 50 60 70 80

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Figure 5: CDF: WITH encoding.

5.2 Network dynamics - Lazy Correction

A second problem of source routing is that it is oblivious to network dynamics. In a dynamic routing

protocol, when the forwarding decision is made at each hop that has been updated with link state information,

the routing protocol proactively avoids traversing a link that has failed. A packet that is source routed

obviously cannot take advantage of this fact. Thus, a packet might end up in a “dead end” where the next

hop mentioned in the source route is no longer reachable.

To remedy this situation, we propose a lazy correction scheme. In this strategy, a packet is allowed to

move on along the source specified route until it reaches a node ni which can not reach the next hop n(i+1).

In this case, ni simply discards the rest of the route and recomputes the remainder of the path from itself to

the destination. The packet is forwarded along the new route. This is visually similar to geographic routing

around holes in wireless sensor networks. Since ni is closer to the destination than the source, it will have a

more recent update on the state of the links between itself and the destination as compared to the source. If

ni is unable to find a path, the packet is dropped.

Our approach does not affect the convergence and loop-free characteristics of the underlying routing

protocol. Our strategy affects where the rerouting decision will be made and not the route itself. However,

it definitely could affect the path stretch. Let psource and pdynamic be the paths using source and dynamic

16

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300 350 400 450

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Figure 6: CDF: WITHOUT encoding.

routing respectively. We define the path stretch λiof a packet i as:

λi =
psource

pdynamic

The average path stretch Λis the average over all packets.

Λ =
1
m

m

∑
i=1

λi

To check this we ran two sets of experiments on our G0 topology. We induced up to 500 link failures

using model Γ0 and routed 1000 packets between all nodes that had at least one failed path on their source

route. Figures 8,9 shows the cumulative distribution frequency. In the second set of experiments, we kept

the number of failures fixed at 500 while 1000, 10000 and 50000 packets were similarly routed between all

nodes that had at least one failed link. As can be seen, about 90% of the paths had a hop stretch of 1.5 or less.

Tables 3 and 4 show the average increase in path length. As exepected, we see that it is likely that a packet

will go through a few extra hops. But as will be shown in Section 8, the minimization of the processing and

queueing delays at each node, more than offsets this extra cost.

17

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

of bits

4000 nodes
5000 nodes
6000 nodes
7000 nodes
8000 nodes

Figure 7: CDF: Ineffciency.

Table 3: Average path stretch - 4000 nodes, 1000 packets between all pairs of nodes
Failures Average path stretch

100 1.13381
200 1.13414
300 1.1338
400 1.129
500 1.13

6 Short Circuiting

Using source routing provides an opportunity to reduce processing delays at intermediate nodes. However,

the benefit can only be had if the packet can be forced to bypass the network layer by being “short circuited”

through a lower layer. The idea is to provide an alternate datapath for packets in the node to leverage source

routing.

Recall that the source path is specified in terms of labels which is then encoded using fixed length

Table 4: Average path stretch - 4000 nodes, 500 failed links
Number of packets Average path stretch

1000 1.13
25000 1.0981
50000 1.09884

18

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

Hop Stretch

100 failures
200 failures
300 failures
400 failures
500 failures

Figure 8: Effect of number of failures.

encoding. Every node maintains a label lookup table which stores the association between a label (and

thereby a neighbor) and a physical interface. When a node receives a packet, it does the following.

• Shift the next bit from the signature string.

• If the string is empty, forward the packet to higher layers.

• If the bit is 0, shift out the next 5 bits from the path string. Decode it to generate the label number.

• Otherwise, shift out the next 8 bits from the path string. Decode it to generate the label number.

• Use the label number as an index to the label lookup table. Enqueue the packet in the queue corre-

sponding to the chosen physical interface.

A simple hardware circuit using standard components is shown in Figure 10.

7 Approximate Fair queueing

An important component that affects the packet latency is the packet scheduling algorithm used by routers

in the network. The packet scheduler determines the order in which packets of various independent flows

19

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6

C
D

F

Hop Stretch

1000 packets
10000 packets
50000 packets

Figure 9: Effect of number of packets.

are forwarded on a shared output link. Packet scheduling affects the queueing delay. A poorly designed

scheduling algorithm could add as much as two seconds of delay to a packet [32] In general, a packet

scheduler should have the following properties.

Fairness: The packet scheduler must provide some measure by which multiple flows receive a fair share

of system resources, for example, the shared output link. In particular, each flow should get its fair share of

the available bandwidth, and this share should not be affected by the presence and (mis)behavior of other

flows.

Bounded delay: Multimedia applications require the total delay experienced by a packet in the network

to be bounded on an end-to-end basis. The packet scheduler decides the order in which packets are sent on

the output link, and therefore determines the queuing delay experienced by a packet at each intermediate

router in the network.

Low complexity: While often overlooked, it is critical that all packet processing tasks performed by

routers, including output scheduling, be able to operate in nanosecond time frames. The time complexity of

choosing the next packet to schedule should be small, and in particular, it is desirable that this complexity

be a small constant, independent of the number of flows N.

Designing a packet scheduler with all of these constraints is a big challenge that warrants attention.

20

Shifter

Multiplexer

Shifter

R
e
g
i
s
t
e
r

Binary
To

Decimal
Converter

……

30

InterfaceLabel

No. of hops Path bit string

1

5 8

10 Path bit string

Index
Lookup table

Legend

Shifter
No. of bits to shift

No. of bits to skip Bit string

Figure 10: Short circuiting hardware.

Generally speaking, packet scheduling algorithms can be divided into two categories. Timestamp sched-

ulers, where packets are transmitted in increasing order of their timestamps, have good delay properties,

they suffer from a sorting bottleneck that results in a time complexity of O(log F) per packet. Round-robin

schedulers assign time slots to flows in some sort of round-robin fashion and achieve a complexity of O(1).

They tend to have poor delay bounds and output burstiness.

We present a queueing strategy that aims to bridge the gap between the two. Specifically, our algorithm

has low complexity, good fairness and predictable single packet latency bound that is independent of the

number of flows.

7.1 Uniqueness of Embedded Networks

A GPS-based scheduling algorithm, for example Weighted Fair queueing (and its many variants) is a good

choice for wide area public networks, for example the Internet. However, using the same strategy in an VSN

might not work for many reasons.

At the heart of WFQ algorithm is the assignment of weights to flows. This is a very difficult problem

and all the results thus far are based on the specification of traffic characteristics by the sender [33]. Char-

acterizing traffic in sensornets can be a bit impractical as these networks react to unpredictable phenomena

21

in the physical world, for example terrorist attacks, which cannot be accurately modeled.

The GPS-like algorithms use the notion of a flow to make scheduling decisions. The definition of flow

is very fuzzy. It is commonly used to refer to a series of packets from a source to a destination. But a

source/destination can be defined in terms of its network address, the particular application in question and

the port. Correspondingly, a flow can be define in terms of one or many combinations of the aforesaid.

The concept gets murkier in sensornets because many different kinds of processing can take place inside

the network. To allow better utilization of resources, the system might decide to opportunistically merge,

process or split data streams [34]. Without a strict definition of a flow, it is hard to understand how a GPS

algorithm might be implemented.

Finally, a wide area network typically have two broad classes of traffic. The elastic class refers to those

that can tolerate delays, for example file transfers. The priority traffic refers to delay sensitive applications

that have soft real time constraints, for example multimedia data. In a VSN, all traffic belongs to the latter

class. Thus, there is no scope of giving preference to any particular class making it hard to implement

class-based fairness.

7.2 Approximate Fair Queueing

We now present Approximate Fair Queueing (AFQ), a simple scheduling algorithm that addresses the above

mentioned issues. The GPS scheduling algorithm is a generalization of the bit-by-bit round robin (BR)

algorithm. In the BR scheme, each flow sends one bit at a time in round robin fashion. In Approximate

Fair Queueing, packets are classified according to their weights into different queues and each queue is

scheduled in a round robin fashion. Specifically, each router maintains M queues where M is a constant. Let

the maximum transmission unit (MTU) of the underlying physical layer be B bytes. A queue Qi is assigned

an integral weight φi, where 0 < φi ≤ B An incoming packet p is assigned to Q j if the size of p is greater

than φ j−1 but less than or equal to φ j+1. Scheduling proceeds in a round robin manner among the M queues.

Let φmax be the maximum weight assigned to any queue. Then while servicing Q j, the scheduler will send a

burst of b φ j
φmax

c packets.

For example, let a router R maintain 3 flows where φ0 = 50, φ1 = 500 and φ2 = 1000. A packet of size

50 bytes will be placed in Q0, one of 250 bytes will be placed in Q1 while one of 1000 bytes will be placed

22

in Q2. The scheduler will then schedule 30, 3 and 1 packets from queues Q0, Q1 and Q2 respectively. If a

queue does not have any packet, the scheduler moves on to the next one. An example with a schedule is

shown in Figure 11.

R

400

20

250

50

10

60

1000

Q0(ø=100)

Q1(ø=200)

Q2(ø=300)

1020

60

50

250

1000 400

106020250400501000
Head of

outgoing queue

(a) (b)

(c)

Figure 11: (a) R is a router with 2 input links and 3 queues with weights = 100,200,300 (b) Packets are
assigned to the different queues based on their sizes. (c) The exact schedule of packets assuming that the
round starts with Q0.

The classification of weights can be done at a very fine scale. A fine grain classification maintains B

queues with φ0 = 1, φ1 = 2 and so on. This provides the most fairness according to our scheme and we

refer to this as the ideal scenario. However, as has been shown in many studies, multimedia traffic typically

peaks around 40 bytes or 500 bytes or 1500 bytes [37]. Using that insight, we instead suggest a much

coarser classification. The system maintains 5 queues: φ0 = 100, φ1 = 500. φ2 = 600, φ3 = 1000 and

φ4 = 1500. This is for an Ethernet based system which typically has an MTU of 1500 bytes. Notice that the

coarse-grained approach approximates the ideal scheme, hence the word “Approximate” in the name AFQ.

AFQ is amenable to a very simple hardware implementation. A modulo-log2M binary counter is re-

quired for a round robin selection of the queues. For each queue, another modulo-log2(b φ j
φmax

c) counter is

needed to keep a track of the number of packets sent in the current round. This implementation satisfies two

of our requirement - the scheduling algorithm should be fast and be easy to implement.

In order to verify the fairness of our algorithm, we routed up to F (= 100) flows through a single node

23

with one output link. The flow characteristics were randomly chosen from Table 2. We compare Wf2q

(a variant of WFQ with better worst case bounds), a fine-grained AFQ, a coarse-grained AFQ and a two-

level AFQ (2L-AFQ). 2L-AFQ is a variation of AFQ in the presence of a notion of flows. The router now

maintains two sets of queues. The first level (L1) queue is based on packet size. In the second level, we

maintain additionally a queue (L2) for each flow. The scheduler first chooses an (L1) queue that has packets

to send. Based on its weight, let n be the number of packets that can be sent. These n packets are now chosen

in a round robin manner from the (L2) queues that are inside the chosen (L1) queue. Figure 12 demonstrates

this algorithm. As is shown in the diagram, the node maintains three L1 queues and each l1 queue in turn

maintains three L2 queues. When Q1 is chosen, the scheduler selects 3 packets to send. It selects one packet

each from L2 queues q10, q11 and q12 respectively.

201500100030010275…

120035050302501100…

500452532514001300…

5030…
4525…

2010…

350250…
500325…

300275…

12001100…
14001300…

15001000…

Q0(Ø=50)

Q1(Ø=500)

Q2(Ø=1500)

f0

f1

f2

q00

q01

q02

q10

q11

q12

q20

q21

q22

45103025300350500150027525032512001400100011001300 50 20

Time t=0

(a)

(b)

(c)

(a) 3 flows - fi, i=0,1,2,
each with 6 packets of
different sizes

(b) 3 L1 queues - Qi, j=0,1,2,
Each Qi with 3 L2 queues qji

(c) The schedule of packets.
Up to 30, 3 and 1 packets
from Q0, Q1, Q2 resp.
In a given Qj, qji scheduled
in RR

Figure 12: Two level AFQ scheduling.

The metric that we use for comparison is widely known Jain’s fairness [35]. If ti is the throughput of

flow Fi, then Jain’s fairness is defined as:

Fairness =
(∑ ti)2

(F×∑x2
i)

with 1 being the most fair and 0 being the least. As can be seen from Figure 13, all variations of AFQ

are fairer than Wf2q. In addition, the latter suffers a greater reduction in its fairness index as the number of

24

flows increase.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90 100

F
ai

rn
es

s

Number of flows

Wf2q
Fine

Coarse
2L-AFQ

Figure 13: Comparison of fairness.

8 Evaluation

In this section, we put together all the concepts discussed in the previous sections and compare it with

a traditional packet forwarding system. We implement three packet delivery systems. The first one uses

source routing with lazy correction, a link level hardware forwarding and 2L-AFQ scheduling strategy. We

refer to this as “Two level”. The second is essentially the same as the first with the difference that it uses

a coarse grained AFQ strategy instead. We refer to this as “Coarse”. The third simulates a regular packet

switched network using dynamic routing and the worst-case weighted fair queueing scheduling algorithm

[4] We refer to this as the the Wf2q.

8.1 Simulation parameters

We use the topologies G1, G2 and G3 as shown in Figure 14 with their properties being discussed in Table

1. The grayed out links are the ones that fail according the failure model Γ1. Each topology has a single

destination node. All other nodes send data packets to this chosen node. The chosen destination node for

G1, G2 and G3 are 15, 0 and 1 respectively. Each source node generats one flow. A flow is randomly chosen

25

from one of the four types shown in Table 2. Each flow generates 20,000 packets. The size of a packet is

randomly chosen from the intervals [40B,200B], [400B,600B] and [1000B,1500B]. Packets are generated

at a fixed rate calculated from the type of flow.

0 1 3

1

0

G1

G2

G3

4

5 62

10 7

98

12

11

1314

15

0
2

6

3

5

4

8

9

7

11

10

1617
18

15

13

14

12

1

7

5

2
4

3

6

8

11

10 13

12

9

Figure 14: Topologies used in evaluation.

The delay of a packet is modeled as follows. When a packet reaches a node, it can either go through

the lower layers and then be handled by the IP layer, or it can be short circuited through the link layer using

the hardware circuit described in Section 6. In both cases, the fundamental task is a table lookup to select

the next hop or the physical interface respectively. IP lookup can be implemented in many different ways.

To make a fair comparison with our short circuit switch, we assume that it is implemented in hardware. So

for both strategies, we assign a constant time of 100 ns for table lookup. The penalty of the former comes

from the traversal of the network layers. For this, we assign a fixed value of 1 ms. The packet then waits

in a queue, the duration of which is decided by the dynamic traffic conditions. To each packet, we then

add a delay proportional to the efficiency of the queueing algorithm. Recall that a Weighted Fair Queueing

algorithm has a running time complexity of O(F), where F is the number of flows. To simulate realistic

scenarios, we inject 10000 dummy flows at each node. Based on that, we assign a delay of 3ms to the

execution of the Wf2q algorithm. By contrast, AFQ has a constant time complexity in O(1). We assign a

delay of 1ms in executing the AFQ algorithm. Finally, the transmission and propagation delays are set as

26

described in Section 3.

Figure 15: Average throughput.

8.2 Metrics

We evaluate our approaches based on the following metrics.

• Throughput: We provide a raw measure of the efficiency of the system in terms of its throughput.

We provide two measures of throughput. The per-flow throughput is the number of bits successfully

transmitted per second The average throughput takes the weighted harmonic mean of the average

per-flow throughput [35], using the message length as the weight:

average throughput = ∑i∈F bi

∑i∈F ti

where F is the total number of flows in the network, bi represents the number of bytes sent over

connection i and ti its duration.

• Latency: We provide a holistic measure of application latency that we refer to as the playback latency.

A multimedia stream has a strict deadline within which successive packets must be received. Packets

arriving after the deadline are considered useless and are treated as lost; and the loss of a certain

27

Figure 16: Jain’s fairness.

number of packets will seriously affect the quality of the application. Playback latency is a measure

of how long the destination has to wait before it can start playing the stream without losing a single

packet due to jitter violations. More specifically, for every flow, let p packets be generated at a the

rate of r packets/second starting at time ts. Let t f be the time that the final packet is received. Then,

playback latency = t f − (p∗ r)− ts

In addition, we also present the cumulative distribution frequencies of all packets of all flows.

• Fairness: We compute Jain’s fairness index as described in Section 7.2 using the average throughput

as of each flow as described above.

8.3 Results

Figure 15 shows the average throughput of the three systems normalized with respect to the coarse-grained

approach. Across all topologies, our system have a much better throughput than Wf2q system. At the same

time, the fairness index is also better, as shown in Figure 16. A more interesting insight can be had when

comparing the throughputs of the individual flows. Even the per-flow throughput is better in our system.

28

The variation of the throughputs is lower in case of Wf2q suggesting that it might provide tighter, but not

necessarily better, on the throughput variance. The trend, however, is very similar in all systems across all

topologies. The playback latency data, on the other hand, is quite surprising. In G1, the performance of

Wf2q varies by almost 10 times. Our approach, on the other hand, remains practically constant. The same

trend for Wf2q is observed in G3 where our approach has a variation of a factor of 4. In G3, the expected

behavior changes for certain flows where Wf2q performs better. If we look at the CDF of latencies of all

packets across all flows in G1, our system shows that more than 90% of packets have a latency of 200s.

The corresponding number is 1800s for Wf2q. In G2, Wf2q performs sightly better. 90% of packets have

a latency of 130s while in our system the corresponding number is 150s. Finally, in the G3, topology, the

cumulative latency in our system is almost half that of the Wf2q system. In all experiments, we observe that

there is not much difference between the 2L-AFQ and the coarse-grained AFQ approaches. This suggests

that an approximate approach is comparable to the more accurate algorithm. This perfectly suits a VSN

where the nodes get sudden bursts of packets with the route and the packet size as the only information to

exploit.

From the above experiments we draw the following conclusions.

• Source routing with AFQ and link level short-circuiting provides improves packet latencies over IP-

based networks using dynamic routing. This also improves the throughput of the system.

• It is fair to all flows as the number of flows in the system increases.

• It’s behavior is fairly agnostic to network topologies.

9 Conclusion

In this paper, we have shown that inspite of its perceived shortcomings, source routing is actually usable

in practical sized networks. If VSNs are built as scale-free networks and if a topology is encoded in terms

of labels, then source routing imposes only a modest overhead on storage requirements and goodput per-

formance. Source routing allows routing layer functionality to be bypassed at intermediate nodes. We

presented a hardware architecture that will allow short-circuiting of a packet through the link layer. We

29

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t(

bp
s)

Flow id

Two level
Coarse

Wf2q

Figure 17: Per-flow throughput: G1.

further reduce the packet latency at nodes by employing a fair but extremely fast packet scheduling algo-

rithm. All the above strategies working in concert provide a significant improvement of packet latency over

a similar IP-based network.

30

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06

 0 2 4 6 8 10 12 14 16 18

T
hr

ou
gh

pu
t(

bp
s)

Flow id

Two level
Coarse

Wf2q

Figure 18: Per-flow throughput: G2.

References

[1] “http://www.airport-int.com/categories/surveillance-solutions/peoplemover-project-brings-21st-

century-surveillance-system-to-dallas-airport.asp.”

[2] “http://www.tropos.com/pdf/case studies/tropos casestudy new orleans.pdf.”

[3] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queuing algorithm,” in

SIGCOMM, 1989.

[4] J. B. H. and Zhang, “Wf2q : Worst case fair weighted fair queuing,” in INFOCOM, 1996.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round robin,” in SIGCOMM, 1995.

[6] N. Figueira and J. Pasquale, “Leave-in-time: A new service discipline for real-time communications

in a packet-switching network,” in SIGCOMM, 1995.

[7] S. Golestani, “A self-clocked fair queueing scheme for broadband applications,” in INFOCOM, 1994.

[8] G. Chuanxiong, “An o(1) time complexity packet scheduler for flows in multi-service packet net-

works,” in SIGCOMM, 2001.

31

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 2 4 6 8 10 12 14

T
hr

ou
gh

pu
t(

bp
s)

Flow id

Two level
Coarse

Wf2q

Figure 19: Per-flow throughput: G3.

[9] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet architecture: an overview,”

Internet RFC 1633, June 1994.

[10] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated

services,” Internet RFC 2475, December 1998.

[11] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,” Internet draft

¡draft-ietf-mpls-arch-01.txt¿, March 1998.

[12] X. Xipeng and L. Ni, “Internet qos: a big picture,” IEEE Network, March 1999.

[13] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow control in integrated

services networks: The single node case,” IEEE/ACM Transactions on Networking, vol. 1, 1993.

[14] J. Xu and R. Lipton, “On fundamental tradeoffs between delay bounds and computational complexity

in packet scheduling algorithms,” in SIGCOMM, 2002.

[15] L. Lenzini, E. Mingozzi, and G. Stea, “Aliquem: A novel drr implementation to achieve better latency

and fairness at o(1) complexity,” in IWQoS, 2002.

[16] S. .Cheung and C. Pencea, “Bsfq: Bin sort fair queuing,” in INFOCOM, 2002.

32

Figure 20: CDF - Packet latencies: G1.

[17] S. Ramabhadran and J. Pasquale, “The stratified round robin scheduler:design, analysis and implemen-

tation,” IEEE/ACM Transactions on Networking (TON), vol. 14, no. 6, December 2006.

[18] T. Fuhrmann, “The use of scalable source routing for sensor networks,” in 2nd IEEE workshop on

Embedded Sensor Networks, 2005.

[19] V. Hadimani and R. Hansdah, “An efficient distributed scheme for source routing protocol in commu-

nication networks,” Lecture notes in Computer Science, vol. 3347, November 2005.

[20] C. Glass and L. Ni, “The turn model for adaptive routing,” in ISCA, 1992.

[21] “Moving picture experts group, october 2006 http://www.chiariglione.org/mpeg.”

[22] “Dolby laborotories inc. www.dolby.com.”

[23] A. Markopoulou, G.Iannaccone, S.Bhattacharyya, C.N.Chuah, Y.Ganjali, and C.Diot, “Characteriza-

33

Figure 21: CDF - Packet latencies: G2.

tion of failures in an operational ip backbone network,” IEEE Trans. on Networking, vol. 16, October

2008.

[24] D. J. Watts and S. H. Strogatz, “Collective dynamics of small world networks,” Nature, vol. 393, no.

6684, pp. 440–442, June 1992.

[25] “http://www.caida.org/research/topology/as core network/.”

[26] M. et al., Phys. Rev. E, vol. 64, no. 026118, 2001.

[27] A. Fronczak, P. Fronczak, and J. A. Holyst, “Average path length in random networks,” Phys. Rev. E,

2002.

[28] M. Stumpf and C. Wiuf, “Sampling properties of random graphs: The degree distribution,” Phys. Rev.

E, vol. 72, 2005.

34

Figure 22: CDF - Packet latencies: G3.

[29] H. Seyed-allaei, B. Ginestra, and M. Marsili, “Scale-free networks with an exponent less than two,”

Phys. Rev. E, vol. 73, 2005.

[30] R. Cohen and S. Havlin, “Scale-free networks are ultrasmall,” Phys. Rev. E, vol. 90, 2003.

[31] M. Ishizuka and M. Aida, “The reliability performance of wireless sensor networks configured by

power-law and other forms of stochastic node placement,” IEICE Trans. on Communications, vol.

E87-B, no. 9, pp. 2511–2520, September 2004.

[32] J. Davidson, M. Bhatia, S. Kalidindi, S. Mukherjee, and J. Peters, VoIP: An In-Depth Analysis. Cisco

Press, 2006.

[33] P. Lieshout, M. Mandjes, and S. Borst, “Gps scheduling:selection of optimal weights and comparison

with strict priorities,” in ACM SIGMETRICS Performance Evaluation Review, 2006.

[34] A. Ghosh and T. Givargis, “A software architecture for accessing data in sensor networks,” in INSS,

2008.

35

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 2 4 6 8 10 12 14

P
la

yb
ac

k
de

la
y(

s)

Flow id

Two level
Coarse

Wf2q

Figure 23: Playback latency: G1

[35] R. Jain, The Art of Computer Performance Analysis. Wiley, 1991.

36

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2 4 6 8 10 12 14 16 18

P
la

yb
ac

k
de

la
y(

s)

Flow id

Two level
Coarse

Wf2q

Figure 24: Playback latency: G2

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 2 4 6 8 10 12 14

P
la

yb
ac

k
de

la
y(

s)

Flow id

Two level
Coarse

Wf2q

Figure 25: Playback latency: G3

37

