
Approximate Fair Queueing: A Low Complexity Packet
Scheduler for Embedded Networks

Arijit Ghosh

Tony Givargis

Technical Report CECS-09-02

April 14, 2009

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

(949) 824-8168

{arijitg, givargis}@cecs.uci.edu

Abstract

Fair queueing is a well-studied problem in modern computer networks. There are two classes of

queueing algorithms. One focuses on bounded delay and good fairness properties. The other focuses on

the performance of the scheduling algorithm itself. However in embedded networks working under real

time constraints, equally important is the deadline imposed by the application. Modern queueing algo-

rithms do not address that fact explicitly. In this paper we propose a scheduling algorithm, Approximate

Fair queueing, that aims to bridge this gap. Approximate Fair Queueing schedules packets based on

the packet’s deadline. In doing so, it maintains fairness in allocating resources to all competing flows.

The delay that a packet experiences due to the execution of the scheduling algorithm is also reduced

by reducing the frequency of execution. We perform extensive evaluation by simulating a system with a

single bottleneck node and up to 1000 concurrent flows.

Contents

1 Introduction 1

2 Related Work 3

2.1 Timestamp schedulers . 3

2.2 Round robin schedulers . 4

3 Generalized Processor Sharing 6

3.1 Model . 6

3.2 Advantages . 7

3.3 Scope for improvement in EmNets . 7

4 Approximate Fair queueing 8

4.1 Model . 8

4.2 Algorithm . 9

5 Evaluation 10

6 Conclusion 15

References 16

i

List of Figures

1 There are 4 flows sharing an output link of bandwidth B=24. Flow f 1 has a requested band-

width of 3. It is allocated a bandwidth = 4
3+2+4+3 ·24 = 6. The allocated bandwidths of other

flows are computed similarly. 9

2 Since f 3 has the earliest deadline, it is scheduled. Since the allocated bandwidth of f 3 is 4,

it can send 4 packets. 11

3 Of the remaining flows, f 1 has the earliest deadline. Based on its allocated bandwidth, it

will send 2 packets. 12

4 Now f 4 gets scheduled. Again, its allocated bandwidth allows it to send 2 packets. 13

5 Jain’s fairness . 14

6 Bennet-Zhang fairness - 100 flows. 15

7 Bennet-Zhang fairness - 500 flows. 16

8 Bennet-Zhang fairness - 1000 flows. 17

9 Latency - 100 flows. 18

10 Latency - 500 flows. 19

11 Latency - 1000 flows. 20

12 CDF of packet latencies - AFQ. 21

13 CDF of packet latencies - W2FQ. 21

14 Throughput - 100 flows. 22

15 Throughput - 500 flows. 22

16 Throughput - 1000 flows. 23

ii

Approximate Fair Queueing: A Low Complexity Packet Scheduler for

Embedded Networks

Arijit Ghosh, Tony Givargis

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92697-3425, USA

{arijitg,givargis}@cecs.uci.edu

http://www.cecs.uci.edu

Abstract

Fair queueing is a well-studied problem in modern computer networks. There are two classes of queue-

ing algorithms. One focuses on bounded delay and good fairness properties. The other focuses on the

performance of the scheduling algorithm itself. However in embedded networks working under real time

constraints, equally important is the deadline imposed by the application. Modern queueing algorithms

do not address that fact explicitly. In this paper we propose a scheduling algorithm, Approximate Fair

queueing, that aims to bridge this gap. Approximate Fair Queueing schedules packets based on the packet’s

deadline. In doing so, it maintains fairness in allocating resources to all competing flows. The delay that

a packet experiences due to the execution of the scheduling algorithm is also reduced by reducing the fre-

quency of execution. We perform extensive evaluation by simulating a system with a single bottleneck node

and up to 1000 concurrent flows.

1 Introduction

Embedded network systems (EmNets), including sensor networks and distributed control applications, are

becoming an important new computing class with wide ranging and novel applications. These applications

1

often have strict quality-of-service (QoS) requirements like throughput and latency. Satisfying the QoS

requirements of competing flows, given a packet-switched network with decentralized control distributed

over all the routers, is a long standing problem that has been the subject of considerable research [6, 10, 11,

15, 18, 19, 20, 33, 7] in the networking community.

An important component of the many QoS architectures proposed is the packet scheduling algorithm

used by routers in the network. The packet scheduler determines the order in which packets of various in-

dependent flows are forwarded on a shared output link. Packet scheduling affects the queueing delay. The

International Telecommunication Union Telecommunication Standardization Sector (ITU-T) G.114 recom-

mendation, for example, specifies that for good voice quality, no more than 150 ms of one-way, end-to-end

delay should occur. A poorly designed scheduling algorithm could add as much as two seconds of delay to

a packet [12].

Generally speaking, packet scheduling algorithms can be divided into two categories. Timestamp-based

(also called deadline-based) algorithms [23, 13, 4, 34] have provably good delay and fairness properties

[16, 17, 22, 30, 31], but generally need to sort packet deadlines, and therefore suffer from complexity

logarithmic in the number of flows N. Round-robin-based algorithms [29, 14, 9] have O(1) complexity, and

while they support fair allocation of bandwidth, they fail to provide good delay bounds. EmNets typically

have soft real time requirements and so the former kind is more preferable. However, to reduce the latency of

a packet due to the scheduling algorithm, we need to make it simpler, which possibly opens the opportunity

for a hardware implementation.

A packet scheduler should have the following properties.

Fairness: The packet scheduler must provide some measure by which multiple flows receive a fair share

of system resources, for example, the shared output link. In particular, each flow should get its fair share of

the available bandwidth, and this share should not be affected by the presence and (mis)behavior of other

flows.

Bounded delay: EmNet applications require the total delay experienced by a packet in the network to

be bounded on an end-to-end basis. Packets arriving after the deadline are considered useless and are treated

as lost; and the loss of a certain number of packets will seriously affect the quality of the application. The

packet scheduler decides the order in which packets are sent on the output link, and therefore determines the

2

queuing delay experienced by a packet at each intermediate router in the network.

Low complexity: While often overlooked, it is critical that all packet processing tasks performed by

routers, including output scheduling, be able to operate in nanosecond time frames. The time complexity of

choosing the next packet to schedule should be small, and in particular, it is desirable that this complexity

be a small constant, independent of the number of flows N. Implementing a hardware solution is preferable

to produce desirable throughput. Indeed, activities like route lookup are also performed in hardware [24].

Designing a packet scheduler with all of these constraints is a big challenge that warrants attention. This

paper presents a very simple queueing algorithm called Approximate Fair Queueing (AFQ). AFQ schedules

the packet at the head of a flow depending on the deadline that is earliest. Once scheduled, consecutive

packets in the same flow are scheduled as long as the allocated bandwidth constraints are respected. This

notion is different from the existing timestamp schedulers. As will be shown later, AFQ is a better fit for

embedded networks where flows work under soft real time constraints.

2 Related Work

There is a significant amount of prior work in finding scheduling disciplines that provide delay and fairness

guarantees. Generalized Processor Sharing [27] (also called Fluid Fair Queuing) is considered the ideal

scheduling discipline that achieves perfect fairness and isolation among competing flows. However, the

fluid model assumed by GPS is not amenable to a practical implementation, as network communication

takes place in the form of packets that must be transmitted atomically. Nevertheless, in terms of fairness and

delay guarantees, GPS acts as a benchmark for other scheduling disciplines. Practical scheduling disciplines

can be broadly classified as either timestamp schedulers or round-robin schedulers.

2.1 Timestamp schedulers

Timestamp schedulers [23, 15, 13, 21, 34] try to emulate the operation of GPS by computing a timestamp

for each packet. Packets are then transmitted in increasing order of their timestamps. For example, the well-

known Weighted Fair Queuing [13] algorithm uses this method by computing the timestamp of a packet

as the time it would finish being serviced under a reference GPS server. WFQ exhibits some short-term

unfairness which is addressed by the Worst-case Weighted Fair Queuing [23] algorithm. While WFQ sched-

3

ules the packet with the least timestamp among all packets, WF2Q only considers those packets that have

started receiving service under the reference GPS server. As a result, WF2Q achieves “worst-case fairness”,

a notion defined in [23]. Although both WFQ and WF2Q have good delay bounds and fairness properties,

the need to maintain a reference GPS server results in high complexity. Specifically, both algorithms have a

time complexity of O(N), where N is the number of competing flows. It has subsequently been shown how

to modify WF2Q so that it has a time complexity of O(log N) [5].

Self-Clocked Fair Queuing [21] and Virtual Clock [34] are timestamp schedulers that use computation-

ally more efficient schemes to compute timestamps without maintaining a reference GPS server. As a result,

timestamps can be computed quickly. However, it is still required to sort packets in ascending order of their

timestamps. Consequently, they still have a time complexity of O(log N) per packet.

In general, although timestamp schedulers have good delay properties, they suffer from a sorting bottle-

neck that results in a time complexity of O(log N) per packet. The Leap Forward Virtual Clock [4] algorithm

attempts to address this problem by coarsening the way in which timestamps are computed in Virtual Clock.

This results in a reduced time complexity of O(log log N) per packet. This is an interesting result in terms

of showing that rough sorting is almost as good as exact sorting. However, the implementation requires a

complicated data structure such as a Van Emde Boas tree that typically would have higher constants, and

is not suited to a hardware implementation. Thus, the high computational costs associated with timestamp

schedulers prevent them from being used in practice.

Recent lower bounds [32] suggest that the O(log N) sorting overhead is fundamental to achieving good

delay bounds. In particular, any scheduler that has a complexity of below O(log N) must incur a GPS-relative

delay proportional to N, the number of flows.

2.2 Round robin schedulers

Round-robin schedulers [29, 9, 26] are the other broad class of work-conserving schedulers. These sched-

ulers typically assign time slots to flows in some sort of round-robin fashion. By eliminating the sorting

bottleneck associated with timestamp schedulers, they achieve an O(1) time packet processing complexity.

As a result, they tend to have poor delay bounds and output burstiness.

Deficit Round Robin (DRR) [29] is a well-known example of a round-robin scheme. DRR assigns a

4

quantum size to each flow that is proportional to the weight of the flow. Each flow has a deficit counter that

measures the current unused portion of the allocated bandwidth. Packets of backlogged flows are transmitted

in rounds, and in each round, each backlogged flow can transmit up to an amount of data equal to the sum

of its quantum and deficit counter. The unused portion of this amount is carried over to the next round as

the value of the deficit counter. Once a flow is serviced, irrespective of its weight, it must wait for N-1 other

flows to be serviced until it is serviced again. Also, during each round, a flow transmits its entire quantum

at once. As a result, DRR has poor delay and burstiness properties. However, due to its extreme simplicity,

DRR (or some variant) is the scheduling discipline typically implemented in high speed routers such as the

Cisco GSR [3].

Summarizing, timestamp schedulers have good fairness and delay properties but high complexity, while

round-robin schedulers are simple to implement but have poor delay bounds and show output burstiness.

More recently proposed schemes [9, 26, 8] have attempted to achieve the best of both worlds by combining

the fairness and delay properties of timestamp schedulers with the low complexity of round robin schedulers.

This is typically done by evolving a round robin scheme like DRR and incorporating some elements of a

timestamp scheduler.

The Smoothed Round Robin [9] discipline addresses the output burstiness problem of DRR. This is

done by spreading the quantum allocated to a flow over an entire round using a Weight Spread Sequence.

Although SRR also results in better delay bounds than DRR, the worst case delay experienced by a packet

is still proportional to N, the number of flows.

Aliquem [26] is an evolution of DRR that permits scaling down the quantum assigned to a flow in each

round. However, since the quantum may be less than the maximum packet size, a flow may not be able to

transmit any data in each round. Therefore a mechanism is required to keep track of the round in which a

flow has accumulated enough credit to transmit a packet. Their mechanism, called Active List Management,

can be implemented using a priority encoder, similar to Stratified Round Robin. The scaling down of the

quanta results in better delay and burstiness properties.

Bin Sort Fair Queuing [8] uses an approximate bin sorting mechanism to schedule packets. Each packet

is assigned a deadline similar to a timestamp scheduler. Packets with close deadlines are assigned to the

same bin. Within a bin, there is no sorting of packets based on deadlines. Therefore, packets are transmitted

5

in approximately the same order as their deadlines.

Although both Aliquem and BSFQ significantly improve the delay bounds of DRR, it appears that the

worst case delay of even a single packet is still proportional to N, the number of flows.

Stratified round robin [28] is an attempt to bridge the gap between the simplicity of round robin sched-

ulers and the fairness of timestamp schedulers. SRR groups flows of roughly similar bandwidth requirements

into a single flow class. Within a flow class, a weighted round robin scheme is employed. However, deadline

based scheduling is employed over flow classes. Although the number of slows to be sorted is reduced by

this method, it still is partially dependent on the efficiency of the sorting algorithm.

AFQ depends on sorting. However, the sorting is executed fewer times which provides a substantial gain

in packet latencies, especially when the network traffic gets heavy.

3 Generalized Processor Sharing

A GPS server is considered the ideal scheduling discipline providing perfect fairness and isolation among

competing flows. In this section, we review the basic idea behind it, discuss its advantages and highlight

why a policy based on it is not the most suitable for embedded networks.

3.1 Model

A Generalized Processor Sharing (GPS) server [27] is work conserving and operates at a fixed rate T. By

work conserving, we mean that the server must be busy if there are packets waiting in the system. It is

characterized by positive real numbers φ1, φ2, . . . , φN . Let Si(τ,t) be the amount of session i traffic is served

in an interval (τ,]. A session is backlogged at time t if a positive amount of that session’s traffic is queued at

time t. Then, a GPS server is defined as one for which

Si(τ, t)
S j(τ, t)

≥ φi

φ j
, j 6= i, j = 1,2, . . .N

for any session i that is continuously backlogged in the interval (τ, t].

Summing over all sessions j:

Si(τ, t)∑
j

1
φ j

≥ (t − τ)rφi

6

and session i is guaranteed a rate of

gi =
φi

∑ j φ j
r

3.2 Advantages

GPS is an attractive multiplexing scheme for a number of reasons:

• If ri is the average rate of session i, then, as long as ri ≤ gi, the session can be guaranteed a throughput

of ρi independent of the demands of the other sessions. In addition to this throughput guarantee, a

session i backlog will always be cleared at a rate ≥ gi.

• The delay of an arriving session i bit can be bounded as a function of the session i queue length,

independent of the queues and arrivals of the other sessions.

• By varying the φi’s, we have the flexibility of treating the sessions in a variety of different ways as

long as the combined average rate of the sessions is less than r.

• It is possible to make worst-case network queueing delay guarantees when the sources are constrained

by leaky buckets.

3.3 Scope for improvement in EmNets

As already explained, GPS-based scheduling algorithms emulate the bit-by-bit round robin principle on a

reference GPS server and schedules the packet with the earliest deadline. It is completely ignorant of the

deadline imposed by the application. Consider three backlogged flows f 0, f 1 and f 2 with packet sizes of

1500, 500 and 500 bytes respectively. For simplicity, let us assume that all flows are intended for different

applications running on the same host. A GPS scheduler will schedule the flows f 1 and f 2 before f 0. At

the application level, it is quite possible that f 0 has a much tighter deadline and needs to be scheduled first.

However, a GPS scheduler will not be able to address this.

A GPS scheduler calculates the timestamp of departure for every packet. In a real-time data flow,

there is a relative timing information that holds for consecutive packets. For example, imagine a high

definition video stream in a video sensor network. Once the stream starts playing at the destination, then

every subsequent packet has to arrive within a particular time. If this insight can be exploited, then it might

7

be possible to reduce the number of packets for which the deadline is calculated. While this does not reduce

the time complexity, it does reduce the constant factor (or the number of iterations), which depending on

bandwidth and the length of the flow, can only improve the performance of a GPS scheduler.

We exploit precisely these two opportunities in a very simple scheduling algorithm which we call Ap-

proximate Fair Queueing (AFQ). AFQ schedules flows. We assume that every packet has a deadline spec-

ified by the sender. Based on that, a node computes the deadline of only the first packet in the flow. The

scheduler schedules a flow with the earliest deadline. Once a flow is scheduled, it sends the maximum

number of packets allowed depending on its share of the available bandwidth. We now provide a detailed

explanation of our approach.

4 Approximate Fair queueing

4.1 Model

There are N backlogged flows f 1 to f N . A flow is considered backlogged if it has at least one packet to

send. The flows share an output link with bandwidth B. Flow f i has a requested bandwidth of ri. The actual

allocated bandwidth bi, is the fraction of the total bandwidth allocated to it, normalized with respect to the

total of all requested bandwidths.

bi =
ri

r1 + r2 + · · ·+ rN
·B

The above ensure that

i=N

∑
i=1

bi ≤ B

For every flow f i, bi < B. Otherwise, scheduling is trivial as there is only one flow that is allocated the

entire bandwidth.

The weight wi of flow f i is defined as its allocated bandwidth normalized with respect to the total band-

width of the output link. Thus,

8

wi =
bi

B

It follows from the above that
i=N

∑
i=1

wi ≤ 1

15202530

10121416

89101112

1117

B = 24

r1 = 3
b1 = 6

r2 = 2
b2 = 4

r3 = 4
b3 = 8

r1 = 3
b1 = 6

Output

f1

f2

f3

f4

Figure 1: There are 4 flows sharing an output link of bandwidth B=24. Flow f 1 has a requested bandwidth
of 3. It is allocated a bandwidth = 4

3+2+4+3 ·24 = 6. The allocated bandwidths of other flows are computed
similarly.

Figure 1 shows an example output link being shared by four flows. The output link has a bandwidth

B = 24. The requested bandwidth ri and the allocated bandwidth ai of flow f i are shown. The packets are

numbered by their deadline. So for example, the 1st packet in f 4 has a deadline of 11, the next one 13 and

so on.

4.2 Algorithm

In a manner similar to GPS algorithms, AFQ computes a deadline and schedules the one with the earliest

deadline. However, in order to give priority to the flows with an earlier application deadline and to reduce

the number of computations, it does things slightly differently.

Unlike a GPS scheduler, the AFQ scheduler schedules flows. Each flow has a deadline associated with

9

Table 1: Flow specifications
Name Description Rate
HDTV A single channel of High Definition resolution MPEG2 encoded video 20 Mbps [2]
SDTV A PAL or NTSC-equivalent Standard Definition video 3 Mbps
Stereo A multichannel DolbyDigital ‘AC-3’ audio with a maximum 13.1 channels 6 Mbps [1]
Standard Audio An audio channel encoded with Advanced Audio Coding format 128 Kbps

it. The deadline of a flow is the deadline of the packet at the head of its queue. AFQ simply schedules

the flow with the earliest deadline. When a flow is scheduled, it is given a credit which is proportional to

the flow’s allocated bandwidth. The credit decides the number of bytes that the flow is actually allowed to

send. The credit scheme is similar to deficit round robin. In deficit round robin, each flow is assigned a fixed

credit which is larger than the smallest size packet. In contrast, we assign a credit which is proportional to

its weight.

ci ∝ bi

Let a scheduled flow f i have p1, p2, . . . , pn be n queued packets of fixed size p. Then the number of

packets, numi that will be sent by f i is given by

numi = bci

p
c

Figures 2, 3, and 4 show an example. Assume each packet requires two units. The first flow to be

scheduled is f 3. Since the assigned bandwidth b3 = 8, f 3 gets to send 4 packets once scheduled. The

deadline of f 3 is now set to 12. The next flow to be scheduled is f 1. As can be seen, AFQ, like GPS, is work

conserving.

5 Evaluation

In this section we present a thorough evaluation of AFQ by comparing it to Wf2q which is a very common

implementation of a GPS scheduler. We simulate a single node system similar to the one shown in Figure 1.

There are N flows that share the output link. We vary N from 100 to 1000. Each flow sends 100,000 packets.

10

15202530

10121416

12

1117

891011

f1

f2

f3

f4

Figure 2: Since f 3 has the earliest deadline, it is scheduled. Since the allocated bandwidth of f 3 is 4, it can
send 4 packets.

For our benchmark, we use multimedia flows. Specifically, a flow is randomly chosen from one of four

types which are described in Table 1. Packets are generated according to the specified rate. Every packet

is assigned a deadline of 5 seconds from the time it is produced at the source. The delay experienced by a

packet is the sum of its processing delay in executing the scheduling algorithm and the queueing delay. In

real life, a packet will be subject to propagation and transmission delays too. But since they are independent

of the queueing algorithm, we ignore them in this paper. We assign a fixed delay of 1 ms (for one execution)

to both algorithms irrespective of the number of flows. Recall that both algorithms require sorting which

has a complexity of O(N). This we thought was fair since we do not reduce the complexity of the algorithm

per se. Our benefit comes from the fact that AFQ is executed fewer times, a fact that makes a telling impact

when the number of flows increase. We will compare the latency, throughput and fairness characteristics of

the two algorithms.

Fairness is a very general notion and might mean different things in different contexts. Here we compare

fairness in terms of two well known measures.

Jain’s fairness index is a measure of fairness that is independent of the population size, is independent

of the scale, is bounded and is continuous [25]. Jain’s fairness index is a measure of the fairness in resource

allocation. In our system, the resource is bandwidth. However, bandwidth directly affects throughput. Since

11

15202530

1416

12

1117

1012f1

f2

f3

f4

Figure 3: Of the remaining flows, f 1 has the earliest deadline. Based on its allocated bandwidth, it will send
2 packets.

the latter is what matters ultimately, we compute fairness in terms of the throughput. If ti is the throughput

of flow f i, then Jain’s fairness is defined as:

Fairness =
(∑ ti)2

(—f— ·∑ t2i)

Figure 5 shows how the two algorithms compare as the number of flows are increased. At lower numbers,

their performance is similar. However, as the number of flows increase, it appears that AFQ gets fairer. This

claim needs further clarification. W2fq performs equally well, and sometimes better, as compared to AFQ in

terms of how fairly raw bandwidth is allocated. But AFQ, as we will see later, has a much higher throughput

because of lower processing time. This become more acute as the number of flows increase and hence AFQ

performs better.

The fairness measure of Bennet-Zhang (also called worst-case fairness) is a more refined notion of

fairness. Rather than comparing the relative measure among flows, it compares the service received by a

single flow f i to the service it would receive in the ideal case. The ideal case is defined as that when f i

has exclusive access to an output link of bandwidth ri. Note that this case is identical to the GPS model.

Service, in this context, is measured by the throughput. We present the results for 100, 500 and 1000 flows

12

15202530

1416

12

1117

f1

f2

f3

f4

Figure 4: Now f 4 gets scheduled. Again, its allocated bandwidth allows it to send 2 packets.

in Figures 6, 7 and 8 respectively. As can be seen, AFQ outperforms Wf2q across the spectrum. AFQ is

cognizant of the packet deadline and allows the important ones to go first, resulting in a vast majority of

flows to experience a very high fairness measure. Wf2q is generally varies within a much smaller range than

AFQ indicating that the former is more predictable than the latter.

We next measure what we define as the startup latency. A multimedia stream has a strict deadline

within which successive packets must be received. Packets arriving after the deadline are considered useless

and are treated as lost; and the loss of a certain number of packets will seriously affect the quality of the

application. Startup latency is a measure of how long the destination has to wait before it can start playing

the stream without losing a single packet due to jitter violations. More specifically, for every flow, let p

packets be generated at a the rate of r packets/second starting at time ts. Let t f be the time that the final

packet is received. Then,

startup latency = t f − (p∗ r)− ts

According to the above, the lower value of startup latency, the better the scheduling algorithm. It also

follows that it is possible for startup latency to have a negative value. In this case, it means that all packets

arrived at the destination before the specified deadline (5 seconds in our experiments). We present the results

for 100, 500 and 1000 flows in Figures 9, 10 and 11 respectively. AFQ shows two very desirable properties:

13

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 200 300 400 500 600 700 800 900 1000

F
ai

rn
es

s
In

de
x

Number of flows

AFQ
Wf2q

Figure 5: Jain’s fairness

• AFQ consistently outperforms Wf2q. The margin increase with the increase in the number of flows.

• The performance of AFQ remains relatively stable even with an increase in the number of flows.

Figures 12 and 13 show the CDF of the end-to-end packet latencies of all packets for all flows.

We finally turn our attention to the throughput which in this paper is measured by the total number

of bits that were delivered from the time the first packet was generated at the source to the time when the

last packet was received at the destination. As before, we present the results for 100, 500 and 1000 flows

in Figures 14, 15 and 16 respectively. AFQ shows an order of magnitude better throughput than Wf2q.

Part of this is due to the more intelligent scheduling. But the biggest impact comes from the reduction in

the number of times that the sorting algorithm is executed. Recall, that in a GPS algorithm, every packet

encounters a O(log N) delay while being inserted into a sorted queue. In AFQ, in contrast, sorting is done

once for P packets where P depends upon the allocated bandwidth and the size of the individual packets.

This reduction in the expensive sorting algorithm makes a more pronounced impact as the number of flows

increase.

In summary, it can be said that the advantage of AFQ are the following.

• It has faster processing leading to a higher throughput.

14

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0 10 20 30 40 50 60 70 80 90 100

F
ai

rn
es

s
In

de
x

Number of flows

AFQ 100 flows
Wf2q 100 flows

Figure 6: Bennet-Zhang fairness - 100 flows.

• It is deadline-aware which allows far more flows to meet their deadlines. In systems, where streaming

is implemented (that is playing back a stream when only a part of it has been received), AFQ will

provide a much shorter startup latency.

The drawback of AFQ is its wider variation making it’s actual measured performance less predictable

than that of Wf2q. Note that if variation is measured in terms of the ability to respect deadlines, then AFQ

actually is much more stable and is unaffected by the increase in the number of flows.

6 Conclusion

In this paper, we proposed a new application deadline-aware scheduling algorithm called the Approximate

Fair Queuing. The key idea is to schedule flows, and not packets, based on the deadline of the packet at the

head of the flow. This is different from the concept of deadline that is used in conventional GPS scheduling

algorithms. Once scheduled, a flow sends multiple packets based on its share of the bandwidth and the size

of the individual packets. This considerably reduces the frequency of execution of the expensive sorting

algorithm and considerably impacts the application-level deadline.

Through extensive simulation, we show that Approximate Fair Queueing is better at meeting application

15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

F
ai

rn
es

s
In

de
x

Number of flows

AFQ 500 flows
Wf2q 500 flows

Figure 7: Bennet-Zhang fairness - 500 flows.

deadlines by taking that into consideration while making scheduling decisions. Further, by reducing the

overall time of execution of the scheduling algorithm, it significantly improves the throughput. Finally,

it shows remarkable stability when the number of flows increase by an order of magnitude. As such, we

believe that Approximate Fair Queueing is better suited for embedded networks.

References

[1] Dolby laborotories inc. www.dolby.com.

[2] Moving picture experts group, october 2006 http://www.chiariglione.org/mpeg.

[3] www.cisco.com. cisco gsr.

[4] S. S. abd G. Varghese and G. Chandranmenon. Leap forward virtual clock: An o(loglogn) queuing

scheme with guaranteed delays and throughput fairness. In Infocom, 1997.

[5] J. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. In SIGCOMM, 1996.

[6] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an overview.

Internet RFC 1633, June 1994.

16

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

F
ai

rn
es

s
In

de
x

Number of flows

AFQ 1000 flows
Wf2q 1000 flows

Figure 8: Bennet-Zhang fairness - 1000 flows.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation protocol (rsvp) –

version 1 functional specification. Internet RFC 2205, September 1997.

[8] S. .Cheung and C. Pencea. Bsfq: Bin sort fair queuing. In INFOCOM, 2002.

[9] G. Chuanxiong. An o(1) time complexity packet scheduler for flows in multi-service packet networks.

In SIGCOMM, 2001.

[10] D. Clark. The design philosophy of darpa internet protocols. In ACM SigComm, 1998.

[11] D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service. IEEE/ACM Transac-

tions on Networking, 1998.

[12] J. Davidson, M. Bhatia, S. Kalidindi, S. Mukherjee, and J. Peters. VoIP: An In-Depth Analysis. Cisco

Press, 2006.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queuing algorithm. In

SIGCOMM, 1989.

[14] D.Saha, S. Mukherjee, and S. Tripathi. Carry-over round robin: A simple cell scheduling mechanism

for atm networks. IEEE/ACM Transactions on Networking, 1998.

17

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ta

rt
up

 L
at

en
cy

 (
s)

Number of flows

AFQ 100 flows
Wf2q 100 flows

Figure 9: Latency - 100 flows.

[15] N. Figueira and J. Pasquale. Leave-in-time: A new service discipline for real-time communications in

a packet-switching network. In SIGCOMM, 1995.

[16] N. Figueira and J. Pasquale. An upper bound on the delay for the virtual clock service discipline.

IEEE/ACM Transactions on Networking, 1995.

[17] N. Figueira and J. Pasquale. A schedulability condition for deadline-based service disciplines.

IEEE/ACM Transactions on Networking, 1997.

[18] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the internet. IEEE/ACM

Transactions on Networking, 1999.

[19] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM

Transactions on Networking, 1993.

[20] S. Floyd and V. Jacobson. Link-share and resource management models for packet networks.

IEEE/ACM Transactions on Networking, 1995.

[21] S. Golestani. A self-clocked fair queueing scheme for broadband applications. In INFOCOM, 1994.

18

-100

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500

S
ta

rt
up

 L
at

en
cy

 (
s)

Number of flows

AFQ 500 flows
Wf2q 500 flows

Figure 10: Latency - 500 flows.

[22] P. Goyal and H. Vin. Generalized guaranteed rate scheduling algorithms: A framework. IEEE/ACM

Transactions on Networking, 1997.

[23] J. B. H. and Zhang. Wf2q : Worst case fair weighted fair queuing. In INFOCOM, 1996.

[24] J. Hasan and T. N. Vijaykumar. Dynamic pipelining:making ip-lookup truly scalable. ACM SIGCOMM

Computer Communication Review, 35(4), 2005.

[25] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for resource

allocation in shared systems. DEC Research Report TR-301, 1984.

[26] L. Lenzini, E. Mingozzi, and G. Stea. Aliquem: A novel drr implementation to achieve better latency

and fairness at o(1) complexity. In IWQoS, 2002.

[27] A. Parekh and R. Gallager. A generalized processor sharing approach to flow control in integrated

services networks: The single node case. IEEE/ACM Transactions on Networking, 1, 1993.

[28] S. Ramabhadran and J. Pasquale. The stratified round robin scheduler:design, analysis and implemen-

tation. IEEE/ACM Transactions on Networking (TON), 14(6), December 2006.

[29] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round robin. In SIGCOMM, 1995.

19

-200

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

rt
up

 L
at

en
cy

 (
s)

Number of flows

AFQ 1000 flows
Wf2q 1000 flows

Figure 11: Latency - 1000 flows.

[30] D. Stiliadis and A. Varma. Efficient fair queueing algorithms for packet switched networks. IEEE/ACM

Transactions on Networking, 1998.

[31] D. Stiliadis and A. Varma. Rate proportional servers: A design methodology for fair queueing algo-

rithms. IEEE/ACM Transactions on Networking, 1998.

[32] J. Xu and R. Lipton. On fundamental tradeoffs between delay bounds and computational complexity

in packet scheduling algorithms. In SIGCOMM, 2002.

[33] L. Zhang. A new architecture for packet switching network protocols. PhD thesis, Massachusetts

Institute of Technology, 1989.

[34] L. Zhang. Virtual clock: A new traffic control scheme for packet switching networks. In SIGCOMM,

1990.

20

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Packet latency (s)

AFQ 100 flows
AFQ 1000 flows

Figure 12: CDF of packet latencies - AFQ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Packet latency (s)

Wf2q 100 flows
Wf2q 1000 flows

Figure 13: CDF of packet latencies - W2FQ.

21

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

bp
s)

Number of flows

AFQ 100 flows
Wf2q 100 flows

Figure 14: Throughput - 100 flows.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

bp
s)

Number of flows

AFQ 500 flows
Wf2q 500 flows

Figure 15: Throughput - 500 flows.

22

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

bp
s)

Number of flows

AFQ 1000 flows
Wf2q 1000 flows

Figure 16: Throughput - 1000 flows.

23

