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Abstract 
 

Kahn Process Network (KPN) is a widely accepted model of computation in system 
application design. KPN consist of concurrent processes communicating with unidirectional 
FIFO channels (Kahn Channels). KPN processes are self scheduled and dependent only on the 
input data stream, which makes them particularly suitable for media processing and other data 
streaming applications.  

On the other hand, to shorten time-to-market projections, embedded systems designers are 
designing complex Multi-Processor Systems on Chip (MPSoCs) by using templates of system 
platforms and reconfiguring predefined MPSoC components. The design process separates the 
application into multiple concurrent processes and maps each onto a platform component.  

However, FIFO channels in the KPN specification are point-to-point primitives and cannot 
be directly mapped to the bus centric MPSoC platform. Therefore, implementing KPN 
applications on MPSoC requires manual application recoding and/or platform implementation. 
This paper presents a simple and efficient approach to synthesize KPN on MPSoC platforms. It 
proposes a  2-phase adaptation of the Kahn Channel communication of KPN to reflect the 
underlying MPSoC platform. The first phase replaces Kahn Channels with a memory segment 
and two point-to-point channels. The second phase maps each memory segment onto the memory 
component and each of the two channels into the bus components of the MPSoC platform.  
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Modeling Kahn Process Networks on MPSoC Platforms 
 

 Abstract 
 

Kahn Process Network (KPN) [4], [5] is a widely accepted model of computation in 
system application design. KPN consist of concurrent processes communicating with 
unidirectional FIFO channels (Kahn Channels). KPN processes are self scheduled and dependent 
only on the input data stream, which makes them particularly suitable for media processing and 
data streaming applications.  

On the other hand, to shorten time-to-market projections, embedded systems designers 
are designing complex Multi-Processor Systems on Chip (MPSoCs) by using templates of system 
platforms and reconfiguring predefined MPSoC components. The design process separates the 
application into multiple concurrent processes and maps each onto a platform component.  

However, FIFO channels in the KPN specification are point-to-point primitives and 
cannot be directly mapped to the bus centric MPSoC platform. Therefore, implementing KPN 
applications on MPSoC requires manual application recoding and/or platform implementation. 
This paper presents a simple and efficient approach to synthesize KPN on MPSoC platforms. It 
proposes a 2-phase adaptation of the Kahn Channel communication of KPN to reflect the 
underlying MPSoC platform. The first phase replaces Kahn Channels with a memory segment 
and two point-to-point channels. The second phase maps each memory segment onto the memory 
component and each of the two channels into the bus components of the MPSoC platform.  

 
1. Related Work 
 

As MPSoCs become larger and more complex, platform based modeling is seen as an 
efficient methodology that improves design productivity. METROPOLIS [6] is a three phase 
simulation model for platform based design of heterogeneous MPSoCs. Kopetz [7], [8] proposes 
a component model for dependable automotive systems. Both approaches aim to achieve 
dependability and reliability of heterogeneous MPSoC by modeling systems using predefined 
platform templates. However, their design flow requires input models that are compatible with 
the given platform. The Eclipse architecture [2] offers a platform template for heterogeneous 
media processing systems. It focuses on bus centric platforms with shared on-chip memory 
communication, while our work supports both same protocol communication (via memory) and 
communication of incompatible bus protocols (via transducers). 

Several approaches work on implementing application models such as KPN to MPSoC 
platforms. ESPAM tool [1] inputs KPN application model, an abstract platform description and 
an application-to-platform mapping to automatically generate communication components and 
drivers. However, the supported platforms are limited to processors with local memories for local 
write operation and remote read access to the local memory of every other processor in the 
platform. Furthermore, all processors need to support the same communication protocol in order 
to read each others local memories. Our approach supports more general communication 
architecture of MPSoC. 

In [3], [9], the goal is to model the system at transaction level with both purely functional and 
estimated timing for performace estimation. The inputs are application and platform 
specifications along with the mapping decisions. The requirement in [3] is that the input 
application complies with a communication architecture consisting of point-to-point blocking 
channels with no storage capabilities. We support application models with both blocking channels 
as well as FIFO channels with bounded storage capacities. 
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2. Kahn Process Networks 

 
Kahn Process Network (KPN) is an efficient programming model for specification of high-

performance, data-dependent media processing applications. KPN are especially effective in 
signal processing and data streaming, since the functional behavior of KPN is determined 
only by the input data, with no regard to the order in which the Kahn processes are executed. 
KPN processes perform their computation concurrently on their private state space, and the 
communication is done through unidirectional point-to-point FIFO channels.  
In a theoretical model, the FIFO channels have unbounded capacity and are accessed with 
blocking read and non-blocking write actions. 

A simple example of KPN is shown in Figure 1, with 3 processes (P1, P2 and P3) 
connected with 2 FIFO units (f1 and f2) with sizes m, n > 1. In P1 P2 communication, sender 
P1 “pushes” the data in the FIFO f1 with the non-blocking write() function call and receiver P2 
pulls it from the same FIFO with the call read().In P2 P3 communication, P2 will write in FIFO 
f2 and P3 will read from it. If the receivers P2 and P3 call read() while their FIFOs are empty, 
they will block  until the data is stored in the corresponding FIFO by sending process(es) P1 and 
P2, respectively.  

 
 
 
 

Figure 1. An example process network model. 

Table 1 lists the properties of KPN channels, with columns for the benefits (PROs) and 
the drawbacks (CONs) of such approach.  

 
PROs CONs 
1. Literal implementation of KPN model of computation    1. FIFO channel not reflective of  the platform  
2. Process synchronization done via FIFO accesses 
     Non-blocking write = push in FIFO  
     Blocking read          = pull from FIFO 

2. FIFO is type-defined, so messages with 
different types need to be either unified into a 
single type (e.g. byte) or transferred via separate 
FIFOs 

 Table 1. Properties of KPN channel 
 
3. Platform Based Design 

 
Implementing systems on chip (SoC) has traditionally assumed describing the system at 

the RT (register transfer) level using a hardware description language such as VHDL or Verilog. 
With the advance of Multi-Processor SoCs (MPSoC) and rising complexity of system 
applications, the abstraction level for specifying systems has moved above RTL.  

The emerging platform based design speeds up the design process by supporting 
component reuse and by adopting communication paradigms that hide pin accurate details from 
the designer. It enables specifying both HW and SW aspects of the system at the same time, and 
consists of separating the application code into multiple concurrent processes and mapping each 
into predefined components in the MPSoC platform. The design process inputs the specification 
model (Spec) of the application and the MPSoC platform on which the application will be 
mapped. The output is a functional transaction level model (TLM) of the system, used to evaluate 
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the system’s performance with regard to computation/communication time-delay, buffer/memory 
size requirements and bus utilization.  

 
4.1. Inputs 

Specification model (Spec) is the functional representation of the system, with 
concurrent processes encapsulating computation and communicating through bus channels. The 
channels implement send/recv/write/read function calls with the communication primitives for 
routing, synchronization and data transfer.  

MPSoC platform is a net-list of platform components used for implementing 
computation, communication and storage capacities (memories). Computing components are 
processor cores, ASIC units and HW accelerators, while buses, bridges and interface units 
implement communication. 

 
4.2. Output  
 TLM models computation with processes contained in modules, while the bus 
communication is modeled with the set of Universal Bus Channels (UBCs). The UBC represents 
the system bus(es) and implements send/receive methods and shared memory access.  
 
 
4. Problem Definition 
 
The communication of KPN is implemented with read and writes to unidirectional FIFO 
channels. However, FIFO channels are point-to-point primitives and as such cannot be directly 
mapped to the platform. This is so because the connectivity of the components of MPSoC 
platform is based on the shared system bus instead of point-to-point links.  

 
Figure 2. KPN in ESE Design Flow. 

  
Therefore, in implementing the KPN system, the designer is burdened with a task of manually 
partitioning and mapping the application with regards to the chosen MPSoC platform.  The issue 
is shown on Figure 2.  
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5. Solution 
 

We propose a simple, 2-phase method of adapting the FIFO communication of KPN to reflect 
the underlying MPSoC platform. In the first phase, each FIFO Kahn channel is broken down to a 
memory fragment and two point-to-point channels providing access to it to the corresponding 
Kahn process. The sender process will access the memory fragment with the write primitive of 
the first channel, and the receiver will read the memory using the second channel.  The second 
phase maps each memory fragment onto the memory component and each of the two channels 
into the UBC components of the MPSoC platform. KPN processes are directly mapped to 
Modules of the platforms (Modules can contain >1 processes).  
Our approach is shown on figure 3.  
 

 
Figure 3. Proposed Adaptation of KPN to support Platform Based Design. 

 
6. Phase 1: Kahn Channel Mappings to Spec Channels + Storage Elements 
 

In our 2-step approach, each Kahn Channel is first replaced with two double-handshake Spec 
Channel(s) and a storage element (memory, bridge). The Kahn Channels will be transformed into 
the following objects: 

1. 2 Spec Channels + shared memory fragment    
a. Shared memory fragment is local to both processes  
b. Shared memory fragment is global to both processes 

2. 2 Spec Channels + shared TX unit     
 
Shared local memory fragment can be used as comm. buffer only if both processes reside on 
the same processor/Module (intra-processor communication). If processes are remote but both 
support the same communication protocol, they can use global shared memory fragment as a 
communication buffer (inter-processor communication). TX unit is needed for protocol 
translation when one process is in a module that resides on a different bus (and supports different 
communication protocol) than the other process.  
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Regardless of the type of communication buffer (memory fragment or TX), two channels C1 and 
C2 implement read/write accesses to it. The non-blocking write property of a Kahn channel is 
preserved, since the sender process (P1) can resume execution after writing into the memory 
regardless of the state of the receiver (P2). As in KPN, the receiver will not resume its execution 
until the data is read (blocking read property).   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Kahn FIFO mapping to indirect communication paradigm:  
(a) via shared memory or (b) via bridge (TX) unit 

 
Figure 4. shows two possible mappings of a Kahn channel to an inter-processor 

communication architecture, with each process residing in different modules and sharing a global 
memory. If the modules of sending and receiving processes reside on the same bus, channels C1 
and C2 will implement the same communication protocol (C1 and C2 highlighted green, in 
Figures 4 below). However, if processes support different protocols, they must use the services of 
the bridge unit TX in order to communicate (Figure 4. right). The TX unit will accept the data 
from the sending process using one protocol (C3, highlighted green) and forward it to the 
receiving process with the other protocol (C4, highlighted red) 

Finally, if the processes reside in the same module (intra-processor communication), the 
shared memory is local to that processor. In such case, processes do not use the bus to access the 
memory, but instead call the RTOS. As before, the RTOS communication services are modeled 
with a point-to-point blocking channel to the local memory.  

  
 6.2.  Shared Memory implementation   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Shared Memory implementation of Kahn Channel   
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Figure 5. shows one shared memory implementation of a FIFO, with a memory array 

(FIFO) and three integer variables: a pointer head indicating the first address location available 
for write access, a pointer tail pointing to a first available read access location and a status flag 
that annotates the number of currently stored bytes.  

Both processes must test the status flag before writing to or reading from the location 
indicated with head or tail pointer, respectively. Testing the flag is performed within the 
communication routines (send/recv) implemented in the channels C1 and C2. If the memory is 
full, the sending process will wait for the POLLING_INTERVAL before polling again. It will not 
leave the channel call send() until the message is stored in the memory. On the other hand, if the 
memory is empty, process will poll the memory every POLLING_INTERVAL (within the recv 
call) until the message is available.  

Table 2. Properties of shared memory implementation of Kahn Channel 
 
6.3. Shared TX unit implementation: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Shared TX unit implementation of Kahn Channel   
 

Kahn channel mapping that includes a bridge unit TX (Figure 6) has channels with 
different protocols (C3 and C4). Each process uses its channel to first request the service of the 
TX and than transfer the message to the FIFO in the TX. The service requests are stored in the 
corresponding registers Rq1 or Rq2, depending on the process that called it. The incoming TX 
requests and the access to the FIFO are managed by the TX controller process (Ctrlr, as shown on 
Figure 6). If the requests cannot be immediately serviced, the process that called it will block 
until the controller can accommodate it.    

Table 3. Properties of shared TX unit implementation of Kahn Channel 

PROs CONs 
1. Reflects the implementation model of the 
platform better than the input KPN model 

1. Requires (minimal) changes to current UBC 

2. Memory is untyped, so messages need to be 
converted into byte stream  

2. In complex systems with n>1 FIFO units, 
there can be different options to map FIFO into 
m <> n Memory Modules 3. Internal fragmentation  

PROs CONs 
1. Reflects the system platform  1. Redundant use of area and memory of TX 
2. With n>1 FIFO units, there can be different 
options to map FIFO into m <> n TX units 

2. Redundant code to communication: need to 
send request to TX before actual data transfer 

3. Requires no changes to current UBC 3. Overhead in processing data transfer, due to TX 
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7.  Integration of KPN to ESE Modeling Tool (Front End)  
 
Figure 7. outlines the ESE Modeling Tool, that inputs the Spec model of the system and outputs 
its functional TLM (with no timing annotations) and TLM with estimated timing. The Tool 
allows the system designer to define the MPSoC Platform through the interactive GUI and then to 
map the application source code to the platform within the System Capture. The captured system 
is then input into the TLM generator to produce the SystemC TLM, composed of 3 main files: 

1. tlm.cpp – defining the platform and the application mapping in SystemC 
2. ubc.sc – defining the bus model(s) and the system communication 
3. tx.sc – defining the bridge model(s) (if any exist in the system) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 7. ESE Modeling Tool  
 
 In order to integrate KPN into the Embedded System Environment (ESE) Tool, following needs 
to be incorporated into the ESE:  
 
7.1. Proposed extensions to GUI/System Capture  
 

The designer defining the Spec Model of the system needs to be able to create a Kahn 
Channel. A Kahn Channel is a unidirectional channel with buffer capacity and a non-blocking 
write property. It is fully defined with:  

1. Process Sender ID/interface: e.g. send_P_ID_Sender_P_ID_Receiver 
2. Process Receiver ID/interface: e.g. recv_P_ID_Receiver_P_ID_Sender 
3. Shared memory fragment or a TX unit, along with: 

a. corresponding routes from each process to the memory fragment/TX 
b. FIFO size (i.e. address range for a memory fragment or TX FIFO) 

Therefore, the window menu for Kahn Channel definition would be very similar to the 
definition of a Memory Channel except that, instead of connecting a process with a memory 
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connects two processes via an intermediary memory 
fragment. Also, unlike the Memory Channel, the 
Kahn Channel communication methods (e.g. 
send_P_ID_Sender_P_ID_Receiver, 
recv_P_ID_Receiver_P_ID_Sender) would include 
FIFO management methods (read_flag, write_flag).  

An example of a GUI window for Kahn 
Channel definition is shown on Figure 8. 

 
 
 
 
 
 
 
 
 

Figure 8. GUI window for Kahn Channel definition 
 
7.2. Proposed extensions to TLMgen  
 

Incorporating KPN into TLM generation (TLMgen) does not require any changes to the 
existing TX model (the tx.sc will remain unchanged). However, for mapping the Kahn Channel 
into 2 channels + shared memory fragment, TLM generator needs to implement a memory 
fragment with structures and methods of managing a circular FIFO. As stated in Section 6.2., a 
FIFO is defined with a memory array and 3 unsigned integer flags: fifoValue, fifoHead and 
fifoTail: the first contains the number of bytes currently stored in the FIFO, the second two are 
private pointers to the beginning and end of the FIFO. The pointers are updated upon every read 
and write to the memory.  
 
 
 
 
 
 

Figure 9. FlagStruct implementation (in ubc.sc file) 
 

Figure 9. shows the set of flags needed for FIFO management (implemented as a 
structure FlagStruct) in the UBC definition file (ubc.sc). Figure 10. and 11. present the 
read_mem_flag and write_mem_flag methods, respectively, that are also stored in the ubc.sc and 
invoked on every access to the memory fragment.  

The read_mem_flag method is invoked before the read/write data transfer to assure that 
the valid data exists in the fragment (Figure 10. lines 13-16, for UBC_READ) or that there is 
enough free space to write the new data (Figure 10. lines 17-20, for UBC_WRITE). 

 

 typedef struct flag_structure { 
 2.       unsigned int Value; 
 3.       unsigned int fifoHead; 
 4.       unsigned int fifoTail; 
 5. } FlagStruct; 
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Figure 10.  Implementation  of read_mem_flag method (in ubc.sc file) 
 

The write_mem_flag is invoked after the transfer has completed to update the pointers to 
the memory fragment. If the transfer was a data read (Figure 11. lines 3-10, for UBC_READ), the 
fifoTail will increase the address it is pointing to for the number of read bytes, and if it was a data 
write, the increase will be added to fifoHead (Figure 11. lines 11-18, for UBC_WRITE). The 
fifoValue will decrease/increase for the number of read/written bytes (lines 10 and 18). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Implementation  of write_mem_flag method implementation (in ubc.sc file) 

 1. extern "C" void read_mem_flag(unsigned int ProcID, unsigned int MemFlagAddr,  
 2.    FlagStruct *Flag, unsigned int MsgSize, unsigned int TransferType) { 
 3.   switch(ProcID){ 
 4.     case P_ID_Process1: 
 5.      P_ID_Process1 *p1 = (P_Process1 *) ptr_Process1; 
 6.      p1->Bus0busport->read(ProcID, MemFlagAddr, (void*)Flag, sizeof(FlagStruct)); 
 7.      break; 
 8.     case P_ID_Process2: 
 9.      P_Process2 *p2 = (P_Process2 *) ptr_Process2; 
10.      p2->Bus0busport->read(ProcID, MemFlagAddr, (void*)Flag, sizeof(FlagStruct)); 
11.      break; 
12.   } 
13.   if (TransferType == UBC_READ){ 
14.       // the memory is empty 
15.       if (Flag->Value < MEMORY_M0_EMPTY + MsgSize)  
16.         cout<<sc_time_stamp(); printf("\tProc%d: Memory empty.\n", ProcID); 
17.   } else if (TransferType == UBC_WRITE) { 
18.      // the memory is full 
19.       if(Flag->Value + MsgSize > MEMORY_M0_CAP)  
20.         cout<<sc_time_stamp(); printf("\tProc%d: Memory full.\n", ProcID); 
21.   } }  

 1. extern "C" void write_mem_flag(unsigned int ProcID, unsigned int MemFlagAddr, 
 2.   FlagStruct *Flag, unsigned int MsgSize, unsigned int TransferType) { 
 3.   if (TransferType == UBC_READ) { 
 4.       // update pointers for read 
 5.       Flag->fifoTail += MsgSize; 
 6.       if(Flag->fifoTail >= MEMORY_M0_CAP) 
 7.            // circular FIFO completed one cycle; back to init value 
 8.            Flag->fifoTail = MEMORY_M0_EMPTY; 
 9.       // update memory status 
10.     Flag->Value -= MsgSize; 
11.   } else if (TransferType == UBC_WRITE) { 
12.       // update pointers for write 
13.       Flag->fifoHead += MsgSize; 
14.       if(Flag->fifoHead >= MEMORY_M0_CAP) 
15.            // circular FIFO completed one cycle; back to init value 
16.            Flag->fifoHead = MEMORY_M0_EMPTY; 
17.       // update memory status 
18.       Flag->Value += MsgSize; 
19.   } 
20.   switch(ProcID){ 
21.     case P_ID_Process1: 
22.      P_Process1 *p1 = (P_Process1 *) ptr_Process1; 
23.      p1->Bus0busport->write(ProcID, MemFlagAddr, (void*)Flag, sizeof(FlagStruct)); 
24.      break; 
25.     case P_ID_Process2: 
26.      P_Process2 *p2 = (P_Process2 *) ptr_Process2; 
27.      p2->Bus0busport->write(ProcID, MemFlagAddr, (void*)Flag, sizeof(FlagStruct)); 
28.      break; 
29.   } } 
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1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Memory Module definition (in tlm.cpp file) 
 
The memory fragment is implemented as a sc_module with a servicing thread 
MEMORY_M0_thread. Figure 12. shows the memory implementation in the TLM definition file 
(tlm.ccp).  It contains an array of memory locations (line 8) and a bus port (line 9) to the UBC.  
The communication routines that support shared memory flag set-reset are as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Send/Recv communication methods (in tlm.cpp file) 

 #define MEMORY_M0_EMPTY (unsigned int) sizeof(FlagStruct) 
 #define MEMORY_M0_CAP   (unsigned int) 10000 
 #define MEMORY_M0_FULL  (unsigned int) MEMORY_M0_EMPTY+MEMORY_M0_FULL  
 
 1. class M_MEMORY_M0: public sc_module{ 
 2.  public: 
 3.   SC_HAS_PROCESS(M_MEMORY_M0); 
 4.   M_MEMORY_M0(sc_module_name name):sc_module(name){ 
 5.          MEMORY_M0[0] = MEMORY_M0[4] = MEMORY_M0[8] = MEMORY_M0_EMPTY;   
 6.  for(i = MEMORY_M0_EMPTY; i < MEMORY_M0_FULL; i++) 
 7.                        MEMORY_M0[i] = 0; 
 8.   SC_THREAD(MEMORY_M0_thread); 
 9.          set_stack_size(0x5000000); 
10.  } 
11.  unsigned char MEMORY_M0[MEMORY_M0_CAP]; 
12.  … 

 1. extern "C" void send_P1_P2(void *ptr, int size){ 
 2.  Process1 *p = (Process1 *) ptr_Process1; { 
 3. FlagStruct flag; 
 4.   // poll flag   
 5.      while(1) { 
 6.       read_mem_flag(P1,MEMORY_M0_LOW, &flag, size, UBC_WRITE)); 
 7.       if(flag.Value + size > MEMORY_M0_CAP) 
 8.        wait(10, SC_NS);  // wait 10 ns before polling again 
 9.        else 
10.            break; 
11.      } 
12.   //write data 
13.   p->port->write(P1, MEMORY_M0_LOW+flag.fifoHead, ptr, size); 
14.      // set flag 
15.      write_mem_flag(P1, MEMORY_M0_LOW, &flag, size, UBC_WRITE); 
16. } 
17.   
18. extern "C" void recv_P2_P1(void *ptr, int size){ 
19.  Process2 *p = (Process2 *) ptr_Process2; { 
21. FlagStruct *flag; 
22.   // poll flag   
23.      while(1) { 
24.         read_mem_flag(P1, MEMORY_M0_LOW, &flag, size, UBC_READ); 
25.         if(flag.Value – size < MEMORY_M0_EMPTY) 
26.        wait(10, SC_NS);  // wait 10 ns before polling again 
27.         else 
28.            break; 
29.      } 
30.   //read data 
31.   p->port->read(P1, MEMORY_M0_LOW+flag.fifoTail, ptr, size); 
32.      // set flag 
33.      write_mem_flag(P1, MEMORY_M0_LOW, &flag, size, UBC_READ); 
34. } 
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7.3. Proposed extensions to TLMest  

KPN consists of a set of computing Kahn Processes and a set of Kahn Channels. TLM 
estimation can estimate Kahn Processes as a regular C code. However, the TLMest needs to 
provide time estimates that Kahn Channel needs to acquire the bus (only in inter-processor 
communication), synchronize each process with an intermediary buffer and transfer the data. 
Also, with each unsuccessful checking of the FIFO flags, the waiting period of the next transfer 
attempt needs to be defined. This can be done using a macro definitions stated in Figure 14.   
 
 
 
 
 

Figure14. Time delays definitions (in ubc.sc file) 
Next, wait statements would be inserted in the communication code (in ubc.sc and tx.sc)  to 

reflect the specified time delays. For example: before requesting and releasing the bus, the 
process would execute wait (REQ_OPB_BUS, SC_NS)  and the arbiter would in turn execute wait 
(ACK_OPB_BUS, SC_NS)  command. 

 
8.  Phase 2: Spec Model Mapping to MPSoC Platform  
 
The second phase is already implemented in ESE and no additional changes are required. The 
designer defines which memory fragments created from the Kahn Channels are mapped to which 
Memory Module and assigns an address space to each fragment. Similarly, the fragments mapped 
to the TX are defined as TX FIFOs. Further, the TLMgen assigns all created Spec Channels with 
the same route as mapped to the same UBC and schedules them to run sequentially. 
The approach is outlined in Figure 15. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Spec Channel Mapping into the UBC object 
 

#define REQ_OPB_BUS     (unsigned int)  2 // in nsec 
#define ACK_OPB_BUS     (unsigned int)  1 // in nsec 
#define READ_OPB_DELAY  (unsigned int)  2 // in nsec 
#define WRITE_OPB_DELAY (unsigned int)  2 // in nsec 
#define POLLING_DELAY   (unsigned int) 50 // in nsec 
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Modules Module1 and Module2 contain concurrent processes P1,P2…Pn and Pa,Pb,…Pm, 
respectively. The processes communicate via point-to-point Spec Channels either directly (e.g. 
P2PCh1 and P2PCh2, from Figure 15), or indirectly (e.g. on Figure 15, channels MemCh  
and.TxCh, to memory and bridge, respectively.). In indirect communication, in addition to Spec 
Channels each pair of processes also contains a dedicated memory fragment mapped either to the 
memory (M0, M1, M2…) or the internal storage of the bridge (TX unit). 
 Since point-to-point Spec Channels execute concurrently, when mapped to the UBC 
object they need to be made sequential. This is done with arbitration for the access to the UBC. 
Each processes need to obtain permission to access its channel before using it, and release the 
access after the transaction is done. Therefore, all transactions within the UBC are sequential. The 
arbitration in UBC is implemented as a simple first come first serve mutex lock. 
 

9. Experimental setup: 
 

The H.264 Encoder is part of the H.264 ITU-recognized standard for compression of a stream 
of video data frames. The algorithm divides each data frame into sub-blocks and performs a series 
of transformations on each. To achieve computational speedup, the algorithm attempts to re-apply 
already calculated transformations to adjacent sub-blocks. This is known as intra-frame 
prediction. Further, it predicts similarities in adjacent data frames and re-applies performed 
calculations to the next frame (inter-frame prediction).  

The major functional components in H.264 encoding algorithm are listed below: 
• Discrete cosine transformation (DCT) 
• Quantization 
• Inverse quantization 
• Inverse DCT 
• Motion Estimation / Prediction Calculation (both for inter- and intra-frame prediction) 
• Prediction Mode Selection (both for inter- and intra-frame prediction) 
The simplified KPN of H.264 Encoder is shown on Figure 16. The Kahn processes are 

shown with 13 diagram blocks and Kahn channels are abstracted with unidirectional arrows 
among blocks. The majority of Kahn channels (there are 43 in total) are omitted for clarity.  

 
 

Figure 16. H.264 Application Specification  
 
Processes ChromaIntra and LumaIntra are a part of intra-frame prediction, for both 

chroma (chromatic, colorful) and luma (achromatic, without color) aspect of the specter.  
Discrete cosine transformation and quantization are implemented in ChromaDct and LumaDct, 
processes (again, separately for chroma and luma aspects), while the inverse is done in 
ChromaIdct and LumaIdct.The heaviest computation load is encapsulated in MotionEst process, 
which performs motion estimation and prediction calculation for both intra- and inter-frame 
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predictions. Processes WriteMB and WritePic write the output into the output file, and Deblock 
and UpSample perform minor auxiliary computations, such as merging the blocks into the 
encoded frame (Deblock) and sampling them (UpSample).  

 We have mapped H.264 Encoder application on a set of heterogeneous MPSoC 
platforms. Following is the detailed description of the platforms. 
 
9.1. Platform 1 
 
 The first MPSoC platform, shown in Figure 17, consists of three processors (Modules 1 
to 3), two buses (UBC1 and UBC2) and a 2-port bridge (TX). Supported communication 
paradigms are:  

• Inter-processor communication: via shared memory  or TX and  
• Intra-processor communication: via processor local memory. 
 Shared Memory (via UBC1 channel) communication is implemented between processes of 
Module1 and Module2. Process of Module3 supports a different communication protocol and 
communicates with other processes through TX and two channels (UBC1 and UBC2).  

Finally, multitasking and intra-processor communication is supported within Module1 and 
Module2 (as shown in Figure 17. with two RTOS models, highlighted green): Module1 contains 
8 processes and Module2 has 4.  
 

 
Figure 17. MPSoC Platform 1 

 
9.2. Platform 2 
 
 The second MPSoC platform for H.264 Encoder contains five processors (Modules 1 to 
5), and three buses (UBC1, UBC2 and UBC3), as shown in Figure 18. All processors are 
communicating through a single 3-port bridge unit (TX). Processors Module1 and Module3 are 
supporting multitasking and intra-processor communication (green highlighted RTOS models): 
Module1 contains 7 processes and Module3 has 4.  
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Figure 18. MPSoC Platform 2 

 
9.3. Platform 3 
 
 The third and final MPSoC platform for H.264 Encoder has the same mapping as the 
platform described in the previous section (see Figure 18). However, in this platform, processes 
of Modules 3 and 4 are not using the bridge unit (TX) to communicate with each other, but are 
doing so via shared global memory.  
 

 
Figure 19. MPSoC Platform 3 

 
9.4. Communication profile of H264 Encoder 
 

The application consists of 13 processes that communicate among themselves. There are 
43 communicating sender-receiver pairs of processes, exchanging the total of 998 messages per 
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each data frame. The average message size is 6.625 KB, however, the sizes of messages are 
ranging from 4 bytes to 945 KB.   

The application is mapped to the described MPSoC platforms.  
In Platform1 (three processors, 1st row of Table 4), only 24 pairs of processes communicate 
within a processors (via local memory, 2nd column on Table 4.), and 19 are accessing the bus. 
Further, 13 of those are using the global shared memory (3rd column, Table 4) and 6 are using a 
bridge TX to translate between protocols (4th column, Table 4).  
In Platform2 (five processors, 2nd row of Table 4), 18 process pairs are communicating via local 
shared memory, and 25 are requesting the services of the bridge element (TX).  
Finally, in Platform3 (five processors, 2nd row of Table 4), the KPN-to-platform mapping is the 
same as in Platform2. However, in Platform1, 1 pair of processes is communicating via shared 
memory (3rd row, 3rd column). Therefore, the traffic through the TX unit in this platform is 
alleviated by one (from 25 pairs to 24 pairs, 2nd and 3rd row, column 4), as compared to Platform2 
TX traffic. 
 

Intra-processor comm. pairs Inter-processor comm. pairs   
Name: Local Sh. Mem. Global Sh. Mem. TX 
Platform1 24 (55.82%) 13 (30.23%) 6 (13.95%) 
Platform2 18 (41.86%) 0 25 (58.14%) 
Platform3 18 (41.86%) 1 (2.32%) 24 (55.81%) 

Table 4. Communication profile of the H264 Encoder mapped to Platform1 to Platform3 
 

9.5. Results: 
 
The created TLMs of 3 platforms can be separated into two types: 

• purely functional models with no timing annotations, or untimed TLMs, and 
• TLM with estimated timing for both communication and computation, or timed TLMs 

For models of both groups, we measured the execution time of their simulations on a Pentium 
with 4 CPUs, running on 3 GHz and with 1 GB of RAM. The results of these measurements are 
shown on Table 5, columns 3 and 4, for untimed and timed TLMs, respectively. 
In addition, the timed models estimate how long the implementation of that particular system on 
FBGA board1 will take to run. The results of time estimation of timed TLMs for all 3 platforms 
are shown in column 5 of Table 5.  
 

Untimed TLM Estimated time TLM  
Name: 

 
Platform Description: Simulation 

exe. time 
Simulation 
exe. time 

Simulated time 
(estimate)1 

Platform1 3 modules, 2 buses, 1 2-port TX 47.88 s TBD TBD 
Platform2 5 modules, 3 buses, 1 3-port TX 54.51 s 635.36 s 824.60 s 
Platform3 5 modules, 3 buses, 1 3-port TX 53.96 s  640.95 s 814.58 s 

Table 5. Simulation time of TLM models of the H264 Encoder mapped to Platform1 to Platform3 
 

The simulation runs the fastest for the untimed TLM (columns 3 and 4 of Table 5) of 
Platform1, because more data transfers are handled within a processor and with fast accesses to 
its local memory (24 P2P channels of Platform1 versus 18 in Platform2). As the platform 
complexity increases, the number of bus accesses in inter-processor transactions grows. Since bus 
transactions need to be serialized, they will take more time to complete. Finally, the bridge unit 

                                                           
1 Modules mapped to SW PEs are implemented as Microblaze soft-core processors; the buses are OPT on-
chip buses; the TX units are implemented as HW IP units. 
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adds additional delays since the processes must wait for the TX to be ready and have enough 
buffer space available to perform the requested service.  
 
 
 

10. Conclusion: 
 
We presented simple and automatic 2–phase method of converting KPN application into a TL 

model that reflects the MPSoC platform. In the first phase, the KP channel is converted into a 
memory fragment accessible with to point-to-point blocking channels. The designer maps the 
fragment to (a) a global memory unit, (b) local memory of the processor or to (c) a buffer of a 
bridge unit and the channels are automatically assigned to appropriate bus models. The second 
phase consists of serializing the channel accesses within each bus model in the platform. 

Simulation results of the TLMs generated with our method demonstrates the benefits of our 
approach. With a small increase in simulation time of multi-core platforms (as compared to a 
single-core reference platform), it provides the user with a fast functional validation of the system 
that accurately reflects the underlying MPSoC platform.    

 For future work, our research is focused on generating TLMs with timing annotations for 
system computation and communication. We are also working on extending the supported inputs 
to communication paradigms with mailboxes and semaphores. Finally, our future work will 
include support for platform templates of more complex MPSoC and NoC architectures.  
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