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Abstract

With advances in process technology, soft errors are baugpan increasingly critical de-
sign concern. Soft errors are manifested as a toggle in Bovolegic, which may result in
failure of the system functionality. Owing to their largeear high density, and low operating
voltages, caches are worst hit by soft errors. Although E€orrection Code (ECC) based
mechanisms have been suggested to protect the data in c#uiebkave high performance and
power overheads. We observe that in multimedia applicafiont all data require the same
amount of protection from soft errors. In fact, an error iretmultimedia data itself does not
result in a failure, but often just results in a slight losgjofality of service. Thus, itis possible to
trade-off the power and performance overheads of soft gmotection with quality of service.
To this end, we propose a Partially Protected Cache (PPChigecture, in which there are two
caches, one protected and the other unprotected at the sawekdf memory hierarchy. We
demonstrate that as compared to the existing unprotectelecarchitectures, PPC architec-
tures can provide 4X reduction in failure rate, at only 1% runtime and 3% power heads.

In addition, we observe that the failure rate reduction éb¢a by PPCs is very sensitive to the
PPC cache configuration. Therefore, there exists the scoferther improving the solution
by correctly parameterizing the PPC configurations. Comnsedly, we develop Design Space
Exploration (DSE) strategies to find out the best PPC conéition. Our DSE technique can
reduce the exploration time by more thar s compared to the exhaustive approach.
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Abstract

With advances in process technology, soft errors are becoming agaisiaigly critical design con-
cern. Soft errors are manifested as a toggle in Boolean logic, which nsytra failure of the
system functionality. Owing to their large area, high density, and low operatifigges, caches
are worst hit by soft errors. Although Error Correction Code (EC@pbd mechanisms have been
suggested to protect the data in caches, they have high performanceoaret overheads. We
observe that in multimedia applications, not all data require the same atraduprotection from
soft errors. In fact, an error in the multimedia data itself does not result faikire, but often
just results in a slight loss of quality of service. Thus, it is possible to taifighe power and
performance overheads of soft error protection with quality of servigethis end, we propose a
Partially Protected Cache (PPC) architecture, in which there are two cachiee protected and the
other unprotected at the same level of memory hierarchy. We deratmtat as compared to the
existing unprotected cache architectures, PPC architectures can mamid reduction in failure
rate, at only 1% runtime and 3% power overheads. In addition, we obstrat the failure rate
reduction obtained by PPCs is very sensitive to the PPC cache configurdtmmefore, there ex-
ists the scope of further improving the solution by correctly parameterize@BC configurations.
Consequently, we develop Design Space Exploration (DSE) strategied tufithe best PPC con-
figuration. Our DSE technigue can reduce the exploration time by more@kaas compared to
the exhaustive approach.



1 Introduction

System reliability is becoming the paramount concern in system design in thesdemicron era
[1]. With technology scaling, i.e., smaller feature sizes, reduced voltagk lewer noise margins
etc., future generation of microprocessors will become increasinglepoanansient faults [13, 44].
A transient fault results in erroneous program state and incorregrgrooutputs, but they are
random and non destructive, i.e., resetting the device restores norhrlitee While transient
faults may be caused due to several reasons such as the intrinsic noigecirctlit and signal
interference, radiation-induced faults are responsible for more faithen all the other causes of
transient faults combined [5]. The crash of Sun Microsystem’s flaggress [25] and errors in
CISCO 12000 line cards [2] have been attributed to soft errors, aredrbaulted in significant fiscal
losses.

A high energy radiation particle, e.g., an alpha particle, a neutron or gfoten, may strike
the diffusion region of a CMOS transistor and produce charge whichresult in toggling the
logic value of the gates or flip-flops. This phenomenon of change in the $tajie of a transistor
is called anUpset An upset may have catastrophic consequences including the application ge
erating incorrect results, accessing protected memory regions, @ashigoing into an infinite
loop. The incorrect or erroneous behavior of an application due tetsixs called dailure. Note
that not all upsets result in a failure due to maskings such as electricaingaklgical masking,
latching-window masking, and microarchitectural masking. An upset wilbimeca failure if it is
not masked by any of these effects. Consequently, research hasllabicreasing the effective-
ness of each of these masking effects. Owing to the effectiveness lat¢heng-window masking,
upsets in memory elements have significantly higher probability of causing eefétilan upsets in
combinational logic [10, 23]. In addition, since memory elements may occupg than majority
of the chip area, and the fact that they operate on lower voltages, th@&xmemely vulnerable to
radiations, and radiation induced faults. In fact, according to [27], rttmar 50% of soft errors
happen in memories.

While it is possible to employ simple redundancy based techniques in off-chipnes, they
are not suitable for caches, which are highly sensitive to the perfoeramt power overheads of
redundancy based techniques. For example, (Siingle-bit Error Correction and Double-bit error
Detection(SEC-DED) codes may increase the cache access time by 95% [21]awead @msump-
tion by up to 22% [33]. Thus, only a few processors such as the Inteéutaprocessor [35] protect
L2 and L3 caches with ECC, but we are not aware of any processdogimpECC based protection
mechanism on L1-cache. This is mainly due to high overheads of ECC impldinarite8, 28].
Consequently, novel techniques are required for caches thateatually reduce failure rates while
incurring minimal power and performance overheads.

Multimedia applications require soft error protection, since they are isirrgly being used in
mission-critical applications, where human life itself may be dependent on taeammples include
exploring and sensing habitats in unreachable regions, and videdllsuneein hostile, hazardous,
or toxic territories. In addition, electronic devices that may be sensingrdraiting vital human
functions, e.g. heart lung machine, pacemaker, etc., need to be vehtaebathey may directly
put the human life in danger. Significant research has been accompiistiedising mechanisms



for protection against soft errors, and making digital devices morestobu

In this article, we propose an architecture and approach to prevames&#om soft errors for
multimedia applications while minimizing performance, power, and area ovestataa minimal
loss in quality of service. The main observation is that in multimedia applicatiwtsall data
is equally failure critical The image data, or audio data, is not as critical for failure as the loop
variables or the stack pointer. While the occurrence of a soft error iimage pixel may only
result in a slight degradation in the image quality, a soft error in the loophlariaay result in
segmentation fault. In such a case, we say that the image pix&hilsige non-critical (FNC) data,
while the loop variable is &ailure critical (FC) data.

To exploit the difference in the failure-criticality of the data of multimedia applicetiove
propose a novel architecture - Partially Protected Caches (PPC). AaRR{ecture maintains two
caches at the same level of memory hierarchy. One of the caches istpdotesm soft errors,
while the other one is unprotected. By mapping the failure critical data into titeqted cache,
and mapping the rest of the data into the unprotected cache, the failuref melications can
be drastically improved. Note that this improvement in failure rate is obtained natsthe cost
of Quality of Service (QoS) with very small impact on power and perforrmaiwfe find that the
effectiveness of PPC architectures is very sensitive on the PPC cawfiguration. And exploring
a huge possible space to find out the best cache configuration is irgrisive-consuming because
of the high number of simulations required, especially for the failure rateffiently find out the
best cache configuration of PPC architectures, we have develogerdlsexploration techniques.

Our experiments on an HP iPAQ h4300 [14] like system demonstrate that RRifeatures
can reduce the failure rate by 47at only 1% degradation in performance and 3% increase in the
system energy consumption as compared to the existing unprotected éawhas compared to
previously proposed solution of protecting the whole cache, PPC ashaévest the same failure
rates, but with 16% performance improvement and 8% energy reductiarheéristic exploration
algorithms can find best PPC cache configuration solutions while reduarexthoration time by
more than & as compared to the exhaustive exploration approach.

2 Background

2.1 Soft Errors

Poor system design, crosstalk, and radiations can cause upsetsigshit-@lectronic devices such
as memory and logic components where these upsets can be manifestadea®sobr transient
faults. External radiations are primary contributors to soft errors, lwéve been investigated since
1970’s.

Fig. 1 [26] illustrates the mechanism of a soft error event in a CMOS deWideen energetic
particles such as alpha particles, neutrons, and protons from pagkagiarial or cosmic rays strike
the sensitive area of the silicon device, they generate electron-holépdiesvake. The source and
diffusion nodes of a transistor can collect these char@gsiecteds WhenQgoliected DECOMES MoOre
than some critical valueQritical, the state of the logic device, e.g., a Boolean gate, may invert.
Since this logic toggle is temporary, the occurrence of such a defect isl @attansient fault or a
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Figure 1: External radiation may induce soft errors

soft error. Neutrons among several radiations are consideredréiea source causing soft errors
since they cannot be shielded completely even with most man-made construedioimstance, a
radiation can penetrate five feet of concrete [26].

2.2 Soft Error Rate and Vulnerability
The soft error rate (SER) in Fig. 1 is related as

Qeritical )

SER O Nju xCSx e ("6 (1)

whereNg x is the intensity of the neutron fluGSis the area of the cross section of the node, and
Qs is the charge collection efficiency [13]. Sin€griticar IS proportional to the node capacitarce

and the supply voltag¥, SER has an exponential relationship with the supply voltage as well as
the capacitance from Equation (1). Thus, with decreasing supply vatadyshrinking feature size,
the rate of soft errors will increase exponentially [13, 44]. In factyiBann [5] predicts that the
SER in the next generation SRAMs will be up to two orders of magnitude highde the SER

of DRAMSs has been saturated. Multiplied by the trend of increasing siz&AM\& in multimedia
embedded systems, the SER is becoming an important design concern.

However, not always an upset becomes a soft error due to masKemsef Four kinds of
effects naturally mask an upset to translate into a soft erretedtrical maskingoccurs when the
pulse resulting from a particle strike is attenuated by subsequent logic djse® the electrical
properties of the gates to the point that it does not affect the result ofrthet, ii) logical masking
occurs when a patrticle strikes a portion of the combinational logic that is d&fbickm affecting the
output due to a subsequent gate whose result is completely determined tneitgput values, iii)
latching-window masking occurs when the pulse resulting from a particle strike reaches a latch,
but not at the clock transition where the latch captures its input value vamntigroarchitectural
masking occurs when the data that is changed is obsolete and does not affpobginem state or
the program output.

On the other hand, the unit of SER, FIT (Failures in Time), is the number béswofrs per Mbit
for one billion-operation hours. Thus, the SER is linearly proportional ¢octiiche size and the
execution time apparently. However, the possibility from a fault (i.e., upseathterror (i.e., soft



error) is not directly proportional to the cache size and the execution tinse aihupsets do not
propagate errors. Therefore, there is a definite need for an &ecnedric to estimate soft errors.

Substantial work has concentrated on estimating the soft error rate aacarthsponding failure
rate. Architectural Vulnerability Factors (AVF) was defined in [30] asdtabability that a faultin a
particular structure will result in a visible error in a final output. Howevés tactor is constant for
a given structure, and is not application dependent. This methodologyelefiswidely exploited
[27], and also extended to present the vulnerability of the cache systefs3h In particular,
Asadi et al. presented the critical time of the critical word , the residency tfrtteeonvord data in
caches, and examined the vulnerability of the cache components andebis eff cache policies
such as flushing, write-thru and refreshing. However, they did rutuca the byte-level residency
time, and ignored the effects of the write operation in a word on the othersviottie same line at
eviction. Similarly, the temporal vulnerability factor (TVF) [43] and the caehmerability factor
(CVF) [45] have been proposed as metrics to estimate the vulnerability oatihes to soft errors.
However, they failed to present the actual relationship of the vulneratalityf and the failures of
applications.

2.3 Soft Error Protection Techniques

Solutions to combat the challenge of soft errors have been proposediais levels of design
abstraction from process technology to architectural solutions.

2.3.1 Process Technology Solutions

Radioactive substances such as alpha particles emitted by packagingfangnecessing materials
are one of the major sources of radiations that cause soft errors ing&taators. Thus, advances in
process technology such as purification of packaging materials, radiatidaning, and elimination
of Boron-10 B0) impurities are expected to mitigate the soft errors [6]. However, thetsfisfc
interaction between high energetic cosmic particles (e.g., neutrons) aodatie materials cannot
be prevented completely [26].

Process technology solutions such as SOI (Silicon On-Insulator) gsesd31, 38] have been
proposed. In order to mitigate the soft errors, they extend the depleticonrer raise the capaci-
tance, which increases the critical charge of semiconducting devicese\dqg process engineering
technology may require the cost of additional process complexity, theflosaraufacturability, and
extra substrate cost [5].

2.3.2 Software and Compiler Solutions

Reis et al. [36] presented the software-implemented fault tolerance (B\idiFsoft error detection
by exploiting unused resources and enhancing control-flow checldgp, Luccetti et. al([24]
proposed software mechanisms to tolerate soft errors by leveraginglvinachine and memory
sharing techniques. However, they are limited to detecting errors, ancbeused in conjunction
with recovery technigues.



Through the user-specified annotations, the compiler can separate andataaelements in
programs to reliable domain which has protection against soft errorsicandreliable domain
without protection [9]. But it required the annotation for important datadsr specification.

2.3.3 Microarchitectural Solutions

At the processor architecture level, error detection and correcticesd@DC and ECC) have been
widely investigated and implemented as the most effective schemes in ordeetb aled correct
soft errors in memory systems like cache and main memory [34]. HowevE&Ca&nsystem imple-
mentation consists of an encoding block as well as a decoding block wis|gofor detection and
correction, and of extra bits storing ECC values. Whenever data is widteerncoding block need
to code data and store the error correction codes for this data at arsexttige. And also every
read operation requires to decode data, which can correct errarsnyyaring ECC values at the
extra storage. Thus, ECC consumes extra energy and incurs penfogiaialay as well as additional
area cost [3, 21, 33, 47].

In order to reduce high overheads due to ECC, many architecturaigeegshave been studied.
Kim and Somani [17] proposed the parity cache with the check codes arsh#tdow cache with
multiple replicas for higher reliability. They protect the cache data partiallygudata locality so
the coverage for protection may be small, or they have overheads to &glegas. Zhang et al.
[47] proposed in-cache replication where the dead cache block spaseycled to hold replicas
of the active cache block. However, since the load of replication is limitednhat provide the
full protection. And Zhang [46] presented replication cache where 8l fullg associative cache
is added to keep the replica of every write to the L1 data cache, but it iogarkeads in terms of
power, perforamance, and area to keep the replica and to detect aswellrect errors. A cache
scrubbing technique [29] has been proposed, which can fix all sbigégrors periodically and pre-
vent potential double-bit errors. However, this technique may havegedgormance, power, and
area overheads due to ECC implementation. An adaptive protection algoihimelen proposed
for low power caches, which protects clean data less than dirty data HRks-or high reliable
caches, Neuberger et al. [32] presented a combined method with Hamnurigegal-Solomon
codes in order to correct at least double-bit transient faults in aggediicient way. Kim [18] also
proposed the combined approach of parity and ECC codes to generagdidbke cache system in
an area-efficient way. Recently, Cai et al. [8] explored cachenpeters, especially cache sizes,
to increase reliability while considering power and performance. Howéwey all exploit expen-
sive error correcting codes in order to protect all the data in cachdshwnay waste power and
performance for unnecessary protection in multimedia applications.

2.4 Our Contributions

This work starts from the observation that not all data require the samemaiqurotection against
soft errors. We propose a new cache architecture which is able talprdifferent levels of pro-
tection for application data. By categorizing and mapping the data wisely to¢hebkes, effective
protection from soft errors can be achieved at minimal power andpeafice overheads. Also we
present heuristic exploration algorithms to find out a PPC configuratioerdinel multiple constrints



since cache parameters cause high impacts on failure rate, power,fandgee, and exploring
design space is intensively time-consuming.

Our approach has several novel features: i) we try to reduce thegfadue to soft errors, instead
of reducing the soft errors themselves, ii) our approach reducesesitiue to soft errors in data
caches at minimal impact on power or performance, however at the tQsiS degradation, iii)
our technique is very effective for multimedia applications, iv) our selectata protection can be
used in conjunction with previously proposed soft error protection nréshes, and v) our heuristic
algorithms can efficiently explore a design space to find the best cortfgusatisfying multiple
constraints.

3 Motivation

To compare the susceptibility of application data on soft errors, we de&isiaple experiment. As
shown in Fig. 2, the data that the application accesses is divided into pagesjected soft errors
randomly in only one page, and simulated the application several times to estim&tiutteerate.
Soft errors are injected with a constant probability per line, and per unit timlg in the lines of
the page that are in the cache.

Application
Data Memory Nx 1 KB page

Random
Error
Injection

000N | -

N

N KB - 1,000 Simulations Number of
Failures

Figure 2: Failure rate due to soft errors in each page (= number ofdaiturt of 1,000 runs)

A

HOOO

Fig. 3 plots the failure rate of theusan edgebenchmark from MiBench suite [12] when soft
errors are injected in one page at a time, on all pages accessed by licatapp For these ex-
periments, the soft error injection rate was §@rrors per line per page, the page size was 1 KB,
and data cache was a 32 KB 32-way set associative cache with 32 bytedif@milar to the Intel
XScale [15]). We ran simulations 1,000 times, and the failure rate was estinmtbée aumber
of runs out of 1,000 simulations that the application failetisan edges an image processing
application, which takes a pgm image and marks the edges in a given imageutpl is also a
pgm image. The simulation is declared as a failure, if the output image file chamgutened by the
XV [16] image viewer application.

Fig. 3 shows that soft errors in some pages are much more likely to caagpkration failure
than soft errors in other pages. In fact, for this image processing afipliconly soft errors in some
of the pages, 9 pages out of 83, cause an application failure. Soift @mrmost of the other pages
do not result in a failure. The degradation in quality typically shows up indhm fof white/black
pixels in the output image. A simple analysis reveals that the pages that dausetfailures are the

7
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Figure 3: Failure rate distribution (benchmargkusan edggs failures are reported in occurrences
of soft errors at only 9 pages out of 83

image data, and the pages that contain stack variables, and other pragraintes cause failures.
Existing solutions that protect the whole cache using ECC is a overkill feethaultimedia data
pages, especially in situations where a little loss in quality of service can battaerAn ideal
solution would provide protection to only the pages that may cause applicatioret, and reduce
the overheads by not protecting data that may not cause applicationdailure

4  Our Approach

4.1 Architecture Model and Approach

To provide different levels of protection against soft errors, wgpse a novel cache architecture,
Partially Protected Cache (PPC). Our concept of Partially Protectece@aderived from the con-
cept of Horizontally Partitioned Caches (HPC) [11]. HPC is a promisingnigcie in which the
processor has multiple (typically two) caches at the same level of memorydhigrand partition-
ing the application data wisely between the two caches can improve both thenpante and the
energy consumption [37, 19, 40]. Similarly, PPC architectures will have muttglkes at the same
level of memory hierarchy, varying in the level of soft error protectiagytprovide. In particular,
in this article we consider two data caches at the L1 level, named the protecteel and the un-
protected cache as shown in Fig. 4. The protection against soft érribres protected cache can be
provided by any of the existing techniques, e.g., increased transistpingimased supply voltage,
SEC-DED etc. In this article, we consider that the protected cache ha¥DQ&BEQGo0 correct one bit
error and detect two bit errors.

The memory is mapped to the two caches at a page level of granularity. Bgethps a Cache
Mapping Attribute or CMA. CMA defines which cache the page is mapped teerdmew page is
requested in the cache, it comes into the cache defined by the CMA. CMAds stithe Translation
Look-aside Buffer (TLB) along with the address mapping. When thegasar requests any cache
data, first the TLB lookup is performed to see if the page is present in tteecand if yes, to
figure out which one of the two caches. Therefore, only one caclk@fois performed per access.



Note that our approach for data partitioning into the two caches does measethe number of

pages, and the number of TLB misses. Every time data is written into the caeldatthhas to be

encoded, and every time it is read from the cache, the data needs toduedemnd check needs to
be performed, for occurrence of soft errors. Thus, the SEC-D&tdder becomes a part of timing
critical path, and has power and performance overheads.

Unprotected Cache || |
| Prpcegso TLB Memory
! Pipeline !
Protection 1
! Overhead ‘
Protected Cachg ;
1 Processor !

Figure 4. Partially Protected Cache Architecture - one protected and thewtprotected at the
same level of memory hierarchy

In order to minimize the performance impact of the PPC architecture, the o teache should
be small, so that the total penalty of the protected cache and the SEC-DED imd¢iomeis less
than or equal to the unprotected cache. However, now since the pbtmathe is smaller, it is
important to map data very carefully into this cache. Mapping too much data intordected
cache can result in frequent misses, and therefore performancddégn.

4.2 Application Data Partitioning

To exploit the PPC architecture, the compiler has to categorize and partitiapgheation data into
the protected and the unprotected cache. In general, a detailed anahesasH variable is needed
to be able to partition the application, the characteristics of multimedia applicationbfgith{s
analysis. In multimedia applications, while a soft error in an image pixel, may @ugeminor
distortion in the image, or negligible loss in QoS, a soft error in the loop covdrable may result
in memory segment violation, or a failure. Other examples of failures cayssafberrors include
system crash and an infinite loop the application might go into. For multimedia applisawe
define the multimedia data as failure non-critical, and all the rest of the daifureferitical.

Fig.'5 plots the percentage of failure-critical and failure non-critical dathe various multi-
media benchmarks, as found by our method. The plot shows that eveimthle strategy can mark
from 30% to 63% of data as failure non-critical. A better data analysis teglrmign discover more
failure non-critical data, and therefore will improve the effectivendssuo technique. For exam-
ple, we can apply the vulnerability metric as discussed in Section 2.2 for fudéta partitioning.
However, even this simple technique of finding the failure-critical data is gtfiéetive. Also note
that it is very easy for the designer to identify the multimedia data. It is typicaélgegot in large
arrays.
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Figure 5: Size of failure critical and failure non-critical data in applications
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smoothing

The other issue with mapping data to the small protected cache in PPC might bes#ilelgp
performance impact. Fig! 6 plots the miss rates of the failure critical and faiameritical data for
various cache sizes. We observe that the slope of the miss rate of the itioal data is less than
that of the failure non-critical data. This implies that the size of the proteeteleccan be reduced
without much performance penalty. The reason behind this observatioatiththfailure critical
data that we have marked comprises of the local variables, function stackwhich have much
better cache behavior than that of the multimedia data. As a result, we canealchigfailure rates
without significant power and performance overheads.

5 Experimental Framework

In this section, we present the experimental framework to demonstrateféutiveiness of our
proposed architecture. We have developed a compiler-simulator-anéigzeework, in which a
compiler generates a page mapping list as well as an executable, a simulatanrexecutable by
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Application

mapping pages according to cache configurations, and outputs areethédyevaluate our PPC
architecture, as described in Fig. 7.

5.1 Compiler Platform and Benchmarks

We use a suite of several multimedia benchmarks from different sourcenif simulations. In
the domain of image processing applications, we select three image filterdyraursan edges, su-
san smoothingandsusan cornersrom MiBench [12]. In the domain of audio applications, we use
adpcm encodeaindadpcm decodeirom MiBench, ands721 encodeandG721 decodefrom Me-
diaBench|[20]. As a representative video application, we chbl@&3 encodegenerated from the
PeaCE project [42]. These examples form a representative seticditypultimedia applications.
We mark all the arrays that contain the multimedia data with thENCdata_” keyword, and
make them as global variables. We would like to stress again that it is veryfaren application
developer to identify the multimedia data. Then, our compiler identifies all the mhat&ta as
FNC data, and generates a page mapping file as well as an executabieafiplization. And all
other data including dynamically allocated data are considered as FC d&gafle mapping file
maintains a list of virtual addresses for FNC data, so FNC data are goingrnt@peed into the
unprotected cache and FC data into the protected cache in a PPC duringisimsulisote that the
page level granularity of data partitioning can cause some pages consfdtNg data and FC data,
which are considered FC and mapped into the protected cache. So oyad#ianing for PPC
architectures do not occur any extra overheads of space, perfoefrend energy consumption.

5.2 Simulation Platform

We select a simulation platform similar to the HP iPAQ h4300 [14], which has alpojntel

XScale-cored PXA255 at 400 MHz with a partitioned data cache architeetar32 KB main data
cache and a 2 KB mini cache. The cycle-accurate simulator sim-cachalmB8impleScalar [7]
has been modified to support our PPC architectures and soft erraiongexplained below. Our
PPC architecture consists of the unprotected main data cache and thésprotet data cache with
an implementation of a SEC-DED technique. Thus, the simulator takes not ordyebatable but
also the page mapping file for data partitioning to a PPC as inputs generataddpnapiler. While

running an application, the simulator can map FNC data into the unprotected rchi ead FC
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data into the protected mini cache in the PPC. After simulations, our PPC daullatsr returns
the number of failures and outputs such as the number of instructions fenchimark and the
number of accesses as well as misses for each cache, which areusstihiating the performance
and the energy consumption for this configuration and the benchmark.

Soft errors are modeled and injected randomly during simulations with atesatesl SER in
order to see the results within a reasonable amount of time. Thus, ouiregpes relatively com-
pare the failure rate and QoS between our PPC architecture and the egigtives with protection
or without protection. Note that the other analytic models such as perfoenpanergy consump-
tion, and area are not affected by this accelerated SER. The baseoEERdle-bit errors (SBE)
is 1072 per instruction per KB of cache. We also consider double-bit errors€jvth 100 times
less rate than that of SBE [44, 22], i.e., b per instruction per KB of cache for a DBE. For every
instruction, the simulator tries to generate a soft error in a randomly seletiadaldata cache at
a certain amount rate according to a cache size if it is valid in the cache. D& ,0ccurs in the
protected cache as well as in the unprotected cache, while SBE octyins thre unprotected cache
since the implemented SEC-DED in the protected cache can automatically atirsiagjle bit soft
errors.

5.3 Cache Configurations

In order to evaluate our PPC architectures in terms of failure rate, pandrperformance, we
define three cache configurations:Unsafe 2) Safe and 3)PPC. The first configurationUnsafe
has a unified data cache and does not protect data at all. Thus, it is idhérable to soft errors,
so it will show the high failure rate, which is bad. Bunsafe configuratiorns good in terms of
both performance and power since it has no overheads for datatotetiile the others do. The
second configuratiorGafe has a unified data cache with implementation of a SEC-DED for data
protection, and protects all data, so it is high reliable in terms of the failurewititdigh overheads
of both power and performance, which are bad. Our prop8$3d configuratiomprotects only FC
data by mapping FC data into a protected mini cache in a PPC architecture. offigucation
will present the failure rate close to that 8&fe configuratiomnd the performance and the energy
consumption close to those Bihsafe configurationwhich is very good. All cache parameters for
L1 data cache other than the size and the set-associativity are fixed iRpmrimeents such as 32
bytes of linesize, FIFO (First-In First-Out) for replacement policy, aniteaback policy.

5.4 Failure Model

Soft errors in FC data may cause failures. We define the concedadtiee in a simulation as the
occurrence of one of these conditions: i) application crash — the applicatiecution generates
an abnormal exception or attempts to access a different memory segmenthitgitdop — the
application does not complete even after 10 times its expected execution timed ilighder — the
application produces incorrect header, because of which it caermdned by any viewer, and iv)
incorrect name and size — if the output file is of different name, or of idiffesize. Note that the
degradation in the quality of service of multimedia applications due to softsagoiot defined as a
failure in our study.
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The occurrence of a soft error does not imply an application failuran lérror injected in a
variable will not be used, then the error does not matter. However, ifrtoeeous value will be
used in the future, then it will result in a failure. To estimate the failure rateraksimulations
need to be performed, and the mean is reported as the failure rate.

Assuming that each simulation is an independemtcesgFailure event,X is the number of
Success simulations, and we performexperiments, then if the probability of a failuregsthenX
is a binomially distributed random variable, which follows the binomial distributidh parameters
nandp (X ~ B(n, p)). Therefore, the mean of will be = np, and the variance of will be 0 =
np(1—p). The errorE = [X — | is less than or equal & ,,0/+/n with confidence 10 — a)%,
wherea is a confidence level. Therefore, the sample size to be able to state with-100%

confidence that the err¢X — p| will not exceed a specified amoutis N = (M)z. Thus, for
95% confidencez, ;> = 2, and confidence intervd1%, the sample siz&| = 40,000p(1 - p).

To estimate the probability of a failure, suppose the probability of a failure istB&@nN =
40,000x 0.02x 0.98 = 784. Also the number of simulations needed depends on the probability of
a failurep. For example, ifois 2%, then we need about 784 simulations, whilgig 20%, then we
need 6,400 simulations. To overcome this, the simulations are typically set ugt slodfiailure rate
will be less than 10%. This is done by a manual process of tuning the upsetion rate for each
simulation. Thus, an application is first simulated 1,000 times, which is for al86ub3% failure
rate, and then the upset injection rate is adjusted to see the results withirlai@usimulations.

5.5 Performance Model

For performance comparison, the runtime of an application is estimated usstgtisdcs generated

by the sim-cache simulator. Assume that the Instructions Per Cycle (IPC3 pfdicessor to be 1.
Our Unsafe cache configuratiamsembles the Intel XScale memory subsystem with cache access
latency of 2 cycles, and cache miss penalty of 25 cycles as in [40]. THeugntime for theJnsafe
cache configuratiofRynsafe is €stimated aBynsate= | + Aunprotected 2+ Munprotectedx 25, where

| is the number of instructions executed, @@ protected@NdMuynprotected@re the number of accesses
and the number of misses, respectively, to the unprotected cache. Raftheache configuratipn

we consider one extra cycle penalty due to the SEC-DED check. Note ihakgeriment does not
consider the speculative operation of ECC to reduce the criticﬂ.p‘ﬁhms, the runtime for thBafe
cache configuratioyRsafe is estimated aBsafe= | +AprotectedX 3+ Mprotectedx 25, WheréAprotected
andMpetectedare the number of accesses and the number of misses to the soft etectgu@ache,
respectively. For th®PC cache configuratigrwe keep the protected cache size smaller than the
unprotected cache size to ensure that the access times for both cactiessame, and equal to 2.
Thus, the runtime foPPC configurationRpp, is estimated aBppc = | + (Aprotectedt Aunprotected X

2+ (Mprotected+ Munprotected % 25. Note that our performance model using sim-cache simulator
is well matched with the runtime output from sim-outorder simulator, which gé&ge@curate
performance for multi-issue pipelined processors, but demands loinggaton time.

Limplementing speculative operation of ECC can reduce once cyclerperfice penalty, and result in better perfor-
mance of PPC than Unsafe configuration
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5.6 Energy Consumption Model

We estimate the energy consumption of the whole system including the propgssine, caches,
memory and the off-chip buses. The power value per access of thetaecigd cacheHnprotected
is estimated using CACTI [39] cache energy models. In this study, the pedteaches implement
a Hamming code (32,6) [34] as a SEC-DED technique, and thereforameradditional energy for
coding (or decoding) and writing (or reading) extra control bits (e¢iffety increasing the linesize)
for each access. To estimate the energy per access for the protechedwith the extra coding
bits Eprotectes We use CACTI with increased linesize value parameter from 32 to 38 hytesge
6 bytes are control data for 32 bytes. To estimate the energy overhedd the SEC-DED coder
and decoder, we synthesize them using the Synopsys Design Comp]leiitld1silOklibraries of
0.5um technology. Note that the decoder is much more complex than the codexydmwince
the decoder is a part of “read operation”, it should be faster. Aftalireg the power numbers to
0.18um technology, the decoder of our implementation consubBygs= 0.39 nJ per decoding,
and the coder consumé&syq = 0.2 nJ per coding. Every access to a protected cache incurs not
only Eprotected but alsoEgec to detect and correct a soft error, so the energy consumption far eac
protected cache accessAsrotectedX (Eprotected+ Edec). And alsoMpotected Ecod iS modeled as
energy consumption for every miss to a protected cache since the datdreopynemory to a
protected cache demands the encoding for SEC-DED. Note that we dom&iter a read and a
write operation separately, and do not consider the difference betarergy consumption of a
clean line and a dirty line in our simulation stifdyAs in [40], we estimate that the off-chip bus
consumes abouE,,s = 10 nJ per access, while the memory access enerdhisn= 32 nJ per
burst. For the processor, we assume that it consumes 400 mW operadd@ iz, which is the
normal operating mode of the Intel XScale processor [15]. TBpSe is 0.67 nJ per instruction.
Using the above-mentioned energy models, we estimate the total system &nag§E =
Eprocessor+ Ecachet+ Ememory where Eprocessor: Eproc x|, Ecache= (Aunprotected>< Eunprotecte() +
Aprotected>< (Eprotected+ Edec) + (Mprotected>< Ecod)a and Ememory: (Munprotected+ Ilerotected) X
(Ebus+ Emem)-

5.7 Area Model

We estimate the area of the unprotected caélif,protectedUsing CACTI. The area overhead due
to SEC-DED implementation in the protected caches is due to three sources,ei.eodtir, the
decoder, and the storage required for the extra control bits. We estineaecth with the extra bits

of the protected cachéRyotected in the cache using CACTI. The Synopsys area results scaled to
0.18um technology show that the area overhead of the coder + dedd@gg, is 0.55mn?. Thus,

the area of th&®PC configurations computed a&\R= AR nprotectedt ARprotectedt 0.55mn¥.

2We evaluated the more detailed and accurate energy consumption noodédesing read/write operations and
clean/dirty cases but the differences are insignificant
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5.8 Quality of Service Model

QoS is very application specific, and the definition of QoS itself varies withicgtipns. For QoS
comparison in image processing applications, we use the PSNR (PeaktSibioge Ratio) metric
in dB defined asPSNR= 1OLOGlo('\,(',|LSXé), whereMAX s the maximum pixel value anbSEis
the Mean Squared Error, which is the mean of the square of differdrate®en the pixel values
of the erroneous output and the correct output. QoS for audio apptisaticimilarly defined. For
video applications, the PSNR is averaged over the image frames. Pleasieatthe QoS values in
this article are calculated with exaggerated SERs, which is mainly becaubsesi/img the failure
rates within a reasonable amount of simulation time, and does not affectrfioenpence, energy
consumption, and area while it affects the QoS results significantly. Thesefgorted QoS is
meaningful to indicate the relative superiority rather than the absolute vafpelty.

6 Effectiveness of PPC
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Figure 8: Effectiveness of our PPC architectures - PPC achieves mifaihnaé rates with minimal
energy and performance overheads

This section demonstrates the effectiveness of our approach as eshtpdhe traditional un-
protected cache configuration (Unsafe) and protected cache catiogu(Safe).
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Figure 9: Evaluation of Quality and Area

We divide this section into two parts. In the first set of experiments, we cantpa failure rate,
runtime, energy, area, and QoS for all the benchmarks for SafeféJasd PPC configurations for
fixed cache parameters. In the second set of experiments, we dertetistrapplicability of our
technique over various cache sizes.

6.1 Impact of Our Approach

Similar to caches in the Intel XScale architecture, the Unsafe cache catiiguconsists of a 32
KB unprotected cache, the Safe cache configuration consists of a 3#d{&cted cache, and the
PPC configuration consists of a 32 KB unprotected cache and a 2 KE:fgdteache.

Fig.|8(a) shows that the PPC configuration achieves failure rates clabege of the Safe
cache configuration, and both of these configurations achieve fadtee about 4% less than that
of the Unsafe cache configuration on an average. | Fig, 8(a) plotsitheefeates achieved by the
three cache configurations on a logarithmic scale, and they are normalitied tailure rate of
the Unsafe cache configuration. In both the Safe and PPC configuwafidinres occur only due
to double-bit soft errors since all the single-bit errors are correlayeS8EC-DED implementation
in protected caches while both single-bit soft errors and double-hitesadrs cause failures in
the Unsafe configuration. Fig. 8(a) shows that in some benchmarksgesan smoothingPPC
configuration results in lower failure rate than the Safe cache configntidin some benchmarks
(e.g.,susan cornepsthe Safe cache configuration is better. However, in most benchma®s PP
configurations provide failure rates close to those of Safe cache ocatiions, and much lower
than those of Unsafe cache configurations.

Fig.|8(b) shows that PPC configuration achieves the performance tddbkat of the Unsafe
configuration, and incurs only less than 1% performance overheadhthaimsafe configuration on
an average while the Safe configuration incurs about 19% perforntsmchead mainly because
of cache access time penalty. Fig. 8(b) plots the runtime for the three canfigurations. The
runtimes are normalized to the runtime of the Unsafe cache configurationpldthshows that as
compared to the previously proposed Safe cache configuration, the®®iGuration has on an
average 16% performance improvement.
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Figure 10: Robustness of Our Approach over Varying Cache Sizse(inark susan edggs

Fig./8(c) shows that PPC configuration consumes less system enengthéh8afe configura-
tion. Fig. 8(c) plots the system energy consumption of the three cachguemifons normalized
to that of the Unsafe cache configuration. The plots show that as cothjmettee Safe cache con-
figuration, the PPC configuration consumes 8% less energy on an eveiagcompared to the
Unsafe cache configuration, the PPC configuration consumes aboub8energy while the Safe
configuration consumes 13% more energy on an average mainly bedauseoessary protection
for multimedia data, which is saved by PPC approach. Note that the energyroption indicates
the energy consumed by the whole system including processor, dat caemory, and off-chip
buses. If we consider only energy consumption of the memory subsyst@ cénfiguration is
more effective since the processor energy consumptions for ealsh canfiguration are the same.
For example, PPC cache configuration consumes the memory subsystgm20% less than the
Safe configuration.

To simplify the multi-dimensional comparison of various metrics (failure raterggneun-
time), we define a composite quality metrieN].+g) for each cache configurationfg, asCMctg =
Fefg X Retg X Ecfg, WhereFgtq is the logarithmic failure rateRq¢g is the runtime, and¢q is the
energy consumption for a cache configuratidiy. The lower the composite metric, the better the
configuration. Fig. 8(d) shows the composite metric for all the three camfifggarations for each
benchmark. The plot clearly shows that the PPC configuration is a sudesgn choice. The PPC
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Figure 11: Comparison of composite metric am&ade, Unsafe and PPC configurations

configuration is 4& better than the Unsafe cache configuration, arcb2tter than the Safe cache
configuration in terms of a composite metric.

Fig./9(a) shows that PPC configuration results in better QoS than thedJrmafiguration and
worse QoS than the Safe configuration. Fig. 9(a) plots the QoS of thedhobe configurations
normalized to the QoS of the Unsafe cache configuration. The plots shoastlitampared to the
Safe cache configuration, our PPC configuration incurs a QoS per&gf@ while as compared
to the Unsafe cache configuration our PPC configuration improves théd)5%% on an average.
Note that QoS values are exaggerated due to accelerated SER in ortdsetaeeothe failure rates
in a reasonable amount of simulation time. Table 1 presents the video quality iR BSINg a
benchmarkH263 encodeffor the three configurations according to SER, and clearly shows that
the quality degradation of PPC configurations is negligible (less than 5% thi#@ISER = 10°)
compared to that of Safe configuration.

Fig. 9(b) compares the area among the Unsafe, Safe, and PPC cadigerations along the
total cache sizes. The plot shows that the area overhead for the BR€ammfiguration is smaller
than that for the Safe cache configuration since the PPC configuratioimjpiements the SEC-
DED algorithm for the only small size of mini cache, which remains the same @izbé coding
and decoding blocks but reduces the storage size for the control bibgel specific configuration
as 32 KB data cache for the Unsafe, Safe and PPC, which has extrgpfold®ted cache, the area
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overhead for the Safe cache configuration compared to the Unséfe cawcfiguration shows about
22% but the PPC cache configuration can be implemented with just 7% arbeagewhich means
that we can reduce around 12% area when we build the PPC configuratibe instead of the Safe
one.

To summarize, our results demonstrate that as compared to the traditionas daslad¢ configu-
ration, our proposed PPC cache configuration can reduce failusslyater<, while incurring only
1% runtime, 3% energy, and 7% area overhead with improved QoS. As cedjoethe previously
proposed Safe cache configuration, our proposed PPC cachguratifin can achieve almost the
same failure rates while improving both the runtime by 16%, energy by 8%,raadg 12% at the
cost of QoS. Thus, PPC architectures allow designers to explore gratfgns with minimal failure
rate by trading-off QoS at minimal power, performance, and area esdeh

6.2 Robustness of Our Approach

In this set of experiments, we demonstrate the effect of varying cache aizthe effectiveness of
PPC architectures with one benchmadsan edged-or the Safe and the Unsafe configurations, we
use protected and unprotected cache sizes ranging from 512 byteKBiB2xponents of 2. Thus,
there are 7 cache configurations in the Safe cache configuration afdJoache configuration.
In the PPC cache configuration, we vary the unprotected cache simelftéB to 32 KB, while
varying the protected cache size from 512 bytes to less than the unpdotectee size. Thus, there
are 21 PPC cache configurations. Although we performed these expesifoeall possible cache
associativities, from direct mapped to fully associative, in exponentsiofthis article we present
results only for cache associativity equal to 4.

6.2.1 Failure Rate Comparison

Fig./10(a) plots the failure rates of benchmatsan edgefor Safe (squares), Unsafe (diamonds),
and PPC (triangles) cache configurations. The first observation éhattake in this graph is that the
failure rate for the Unsafe cache configurations initially increases withdbleecsize, but eventually
becomes constant. The initial increase in failure rate is because with imyeache size, the
amount of data in the cache increases, and more data is now vulnerabfe ¢éores. Once all
the application data are cache-resident, increasing the cache sizethiey floes not increase the
failure rate. For benchmardusan edgethe memory footprint (size of unigue memory addresses)
is 83 KB. Therefore, from 100 KB the failure rate saturates. The skgnportant observation is

Table 1:Video Quality in PSNR (dB) according to SER

| SER | Unsafe| Safe | PPC |

10°° 16.39 | 31.79| 19.67
10710 || 26.22 | 33.35| 31.89
1011 || 32.40 | 33.46| 33.40
10712 || 33.39 | 33.46| 33.45
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that the failure rate in the PPC cache lies “in-between” the failure rates @&dfesconfiguration
and the Unsafe configuration, and is consistently closer to the Safe aatibg On an average,
the failure rate for PPC configuration is 8®etter than those for the Unsafe cache configurations.
As compared to the Safe cache configurations, PPC configuration<ish#yber in the failure rate

on an average. The dark circle represents the PPC configurationabkdbund to be best by our
composite metric. It corresponds to a 2 KB unprotected cache and 512prgtected cache.

6.2.2 Performance Comparison

Fig. 10(b) plots the runtime (in cycles) for the Safe, Unsafe, and the BRf@arations. The most
important observation we make from this graph is that the runtime of PPC canfigurations lies
“in-between” the runtimes of the Safe configuration and the Unsafe coafign. The Safe cache
configurations suffer from high runtime primarily because of increasetie access time due to
ECC implementation. The runtime overhead of PPC cache configurations is aveeage 23%
less than that of the Safe configurations. As compared to the Unsafe canfigurations, PPC
configuration have 13% performance degradation on an average.

6.2.3 Energy Comparison

Fig. 10(c) plots the system energy consumption for the three cache aatiigns and shows that
the energy consumption of the Safe cache configuration is very high, niyirdae to the SEC-
DED overhead. The most important observation from this plot is that theggrm®nsumption
for PPC configurations lies “in-between” the energy consumptions of &fie &nfiguration and
the Unsafe configuration. On an average, PPC configurations corfhéess energy than Safe
cache configurations, and 17% more energy than Unsafe cacheuratifigs.

6.2.4 Quality of Service Comparison

Fig./10(d) plots the QoS of the Safe, Unsafe and PPC configuratioresgfBph again shows that
the QoS in the PPC configuration is “in-between” the Safe and the Unsafigamtions. On an
average, the QoS of the PPC configurations is 15% better than the QoSafeldmche configura-
tions. As compared to the Safe cache configurations, the QoS of the RRE aanfigurations is
worse by 33% on average. Note that these QoS evaluations resultdoatemted SERS. In reality,
SER is much less than this accelerated SER, and results in much less quakiyeadiegr.

6.2.5 Composite Metric

Fig. 11(a) plots the composite quality metric for all the three cache configusafidre plot shows
that Safe cache configurations and the PPC configurations are thedergdor the best design
points. The best design point, however, corresponds to the PP Cuatifogy with 2 KB unprotected
cache and 512 bytes protected cache. Plots for the other benchmarksusan cornersas in
Fig.|11(b), G721 decodeas in Fig, 11(c), andH263 encoders in Fig. 11(d), also support our
claim of the effectiveness of PPC architectures over both the traditiomsdfe, and the previously
proposed Safe cache configurations.
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7 Design Space Exploration

Till now, we have demonstrated the superiorityRIPC cache configurationgver the traditional
Unsafe cache configurations and the previously proposed Safe caclffigurations. There is a
definite need to choose the best configuration of a PPC to satisfy the multigaiats such as the
failure rate, power, and performance. However, those constramtseasitive to cache parameters
such as the size and set-associativity, and further the design spdoeatgp of the PPC cache
configurations has very high computational requirements.

7.1 Sensitivity of Cache Parameters in PPC

Under the multi-dimensional constraints, considering only one constrainteea the very bad
configuration in other constraints. For example, the best configurationrrstef the runtime
among PPC configurations with 32 KB unprotected cache is 16 KB proteatbe rom Fig. 10(b).
However, this configuration is bad in terms of failure rate since it has dbtotes higher failure
rate than the best one in the failure rate (512 bytes protected cache irOFg). 1And also other
parameters such as set-associativity cause high variation with respeafdommance and energy
consumption in our experiments. Thus, overall variations can lead up to 2§ diiffierence in the
failure rate, up to 10% in performance, and up to 3.6 times in energy consumfiptia benchmark
susan corneras will be shown in Fig. 13(a) and Fig. 13(b). Thus, there is a definitd tweexplore
design space and to find out a PPC configuration satisfying multiple cortstrain

7.2 Design Space Exploration Problems

In these experiments, we keep the unprotected cache configuraticampne., 32 KB, 32-way
set associative, and a 32-byte line. We only vary the protected cacfigumation. We vary the
protected cache sizes from 1 KB to 16 KB in exponents of 2, and assitigatifrom 1 to 32-way
set associative. Thus, there are only 6 = 30 configurations.

An exhaustive search of these cache configurations requires englégilure rate for all the
30 configurations. However, evaluating the failure rate of each caatign requires about 1,000
simulations based on failure rate estimation in Section 5.4. The failure rate cabetestimated
as the number of failures that occur in thousand simulations. Thus, if @adlason takes about
an hour, the exploration would require 30,000 hours, which is approxiyraiears. Although this
job is intrinsically parallelize-able, it is highly complex in computation. Please natelis is the
case, even though our design space is extremely small, i.e., only 30 catibigsr In reality, the
PPC design space can be extremely large, if we also consider variatiores unghotected cache
configurations. We chose this design space for feasibility of our expetime

If a single run of a benchmark takes an hour, finding out the failure rfateeobenchmark
with 95% confidence and 1% error will take a month. Clearly, the simulation time tedamuch
for design space exploration. In order to estimate the failure rate, wetaeed simulations for
each configuration, which takes unreasonable amount of time. So wetaaxplore the whole
design space with this approach. Owing to the immensely time consuming natuesighCZpace
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Exploration (DSE) in failure rate computations, it is very important to deveffagient design space
exploration algorithms to find out the best protected cache configurationisimal evaluations.
In this section, we will develop DSE algorithms, for 2 interesting problems.

Problem 1  Given maximum runtime and maximum energy consumption constraintsyfittte
protected cache configuration that will result in minimum failure rate

Problem 2  Given maximum failure rate and maximum energy consumption constranctsui
the protected cache configuration that will result in minimum runtime

7.3 BFExplore - DSE algorithm for Problem 1

BFEXxplore(S, A, Reonstraint Econstraind
01: Smin =1, Snax=16

02: Amin =1, Amax= 32

03:for (S= Smin;S< SmaxS=2x9)

04: for (@a=Amaxa>Amma=a/ 2)

05: Rsa = evalRuntimés, a)
06: if (Rga < Rconstraint)

07: Esa = evalEnergys, a)
08: if (Esa < Econstraint)
09: return {s,a}

10: endif

11: else

12: a=Ann—1

13: endif

14:  endfor

15: endfor

16:return NULL
endBFExplore()

Figure 12: BFExplore Algorithm

For Problem 1, we develop a heuristic algorithm, BFExplore, describeididZ. This problem
is the same as how to find the minimal size of the protected cache satisfying éimecgnstraints of
power and performance because the failure rate is determined by thé thiegomotected cache, and
the smaller size, the lower failure rateis a set of sizes of the protected caches from 1 BRj to
16 KB Snax (Line 01). Ais a set of set-associativity from 1-wakin) to 32-way Amay (Line 02).
BFExplore algorithm starts with the cache configuration with minimal protecteftkecsize with the
largest set-associativity (Lines 3-4). If this configuration satisfies tengconstraintsRconstrains
Econstraind, this configuration is returned as the best configuration in terms of faiaues(Lines
05-09) since it is the minimal protected cache size. If only energy consisaitot met, it repeats
the runtime and energy consumption evaluations (Line 10). But, if the runtimstreant is not
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satisfied, it increases the protected cache size, and repeats the aldbiitesnl1-14). If it reaches
the end of the algorithm, it means that there is no configuration satisfyinguée gonstraints (Line
16).

1.0E-01 4‘ Runtime vs. Failure Rate (Susan Corners) 1.0E-01 4‘ Energy Consumption vs. Failure Rate (Susan Corners)’*
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Figure 13: Design Space Explorations to find the best configurationr#BGain terms of failure rate
while satisfying energy consumptior: (4.0E + 6) and runtime £ 4.7E + 6) (32 KB unprotected
cache with varying protected cache size and set-associativity)

When we explore the design space for the best configuration in terms ililne rate with
the given constraints such as energy consumption less than 4.0E+6sndndleuntime less than
4.7E+6 cycles, the exhaustive approach without any observationseed explorations for each
configuration as marked with circles and triangles as in Fig. 13(a) and &fb), which is about
30,000 evaluations. However, our BFExplore does not evaluate theefadtes for each configu-
ration, which is the huge reduction. In this example, we only evaluate 3 cwafigns as marked
with triangles as in Fig. 13(a) and Fig. 13(b), indicating that we reduce uheber of explored
configurations by 10 times and thus decrease the number of evaluatioheuiyl®,000 times.

7.4 BREXxplore - DSE algorithm for Problem 2

For the second problem, how to find the best configuration in terms of runétiséysng the given
failure rate and energy consumption, we present a heuristic algorithnx@&E€ as described in
Fig. 14. First, our algorithm finds the largest protected cache to satisgjvbie failure raté;onstraint
(Lines 03-08). Once it is found, all the smaller ones satisfisiraine The second step evaluates
the energy consumption of each configuration with a decrease of seiiassty. If it satisfies
the given energy consumptidfonsiraing this is the best configuration (Lines 10-14) in terms of
runtime because the larger cache with the larger set-associativity sholbettdeperformance, i.e.,
the lower runtime. This step for energy consumption evaluation is repeatrddatreasing the
protected cache size (Lines 19-20) until a satisfied configuration isifdDtherwise, it fails to find
the configuration satisfying the given constraints and rethitd& L (Line 9, 17).

The number of evaluations for our BREXxplore is 5,006<(8.,000 for failure rate evaluation
and 6x 1 for energy consumption evaluation) in the worst case where the minintalped cache
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BREXplore(S, A, Feonstraint Econstraint)
01: Snin=1,Snax= 16

02: Amin = 1, Amax= 32

03:for (S= SnaxS> Smin;S=5S/ 2)
04: Fs=-evalFailurgs)

05: if (Fs < Feonstraind

06: return AssocExplore (s, A, Econstrain)
07: endif

08: endfor

09: return NULL

endBREXxplore()

AssocExplore 6, A, Econstrain)

10: for (@ = Amaxa> Amma=a/ 2)
11:  Esa=evalEnergys,a)

12:  if (Esa < Econstraind

13: return {s a}

14:  endif

15: endfor

16:if (s < Snin)

17: return NULL

18: else

19: s=s/2

20:  return AssocExplore (s, A, Econstrainy
21: endif

endAssocExplore ()

Figure 14: BREXxplore Algorithm

size only satisfies the failure rate and only one set-associativity with the minineahgeets the
given energy constraint. In the best case, we can find the best eatfan with only 1,001 simu-
lations (1x 1,000 for failure rate evaluation andxl 1 for energy evaluation). Thus, our proposed
BREXxplore algorithm can reduce the number of evaluations by up to 30 tineesrgeared to the ex-
haustive exploration since the exhaustive search requires 30,0ld@tiwas. When we explore the
design space for the best configuration in terms of runtime with the givesireamts such as energy
consumption less than 4.0E+6 nJoules and failure rate less than 0.01 (theawtrst case), the ex-
haustive approach explores the whole 30 points as marked with circlesamgles as in Fig. 15(a)
and Fig| 15(b), which indicate the 30,000 simulations for only failure ratiiatians. However, our
BREXxplore can find this near-to-optimal one (1 KB protected cache witlag-set-associativity)
through 7 points out of 30 points, as marked with triangles in Fig. 15(a) andlB(b). This is
approximately 6 times reduction in terms of the number of evaluations.
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Figure 15: Design Space Explorations to find the best configurationP&t@in terms of runtime
while satisfying energy consumptior: (4.0E + 6) and failure rate < 0.01) (32 KB unprotected
cache with varying protected cache size and set-associativity)

8 Summary

Due to the incessant technology scaling, soft errors are becoming alcdésign concern for
system reliability. Especially, soft errors in caches are the most imponi@tiodarge area and low
voltage beyond sub-micron technology.

In this article, we propose a novel approach for mitigating failures cabgesbft errors in
multimedia embedded applications where power, performance and reliabiliéy areoncern. We
present Partially Protected Cache (PPC) architectures and propiosgl@ technique for mapping
data into such caches geared towards their use in multimedia applicationxp@tinental results
showed that our technique reduces runtime by 16% and power consurbpt8% and maintains
the same or the better failure rate in comparison with soft error resilient[¥HT-cache at the
cost of QoS degradation. As compared to the traditiomabfe cache configuratipour proposed
PPC cache configuratiocan reduce failure rates by 47while incurring only 1% runtime and 3%
energy overheads. These results on representative multimedia bekshotearly demonstrated
the utility of our approach for mitigating soft errors that can affect the saecution of these
applications at a fraction of the cost and energy of a fully secure daased system.

We also propose heuristic algorithms to find the best configuration amonguties design
spaces considering multiple constraints such as failure rate, runtime, argy @onsumption. Our
experiments demonstrated that our heuristic algorithms, BFExplore and@&Exefficiently ex-
plore the huge design spaces for our proposed PPC architectuleggdaice the number of evalua-
tions by up to 10,000 times as compared to the exhaustive explorationsafopé in finding the
best configuration in terms of failure rate satisfying the given perforemand energy consumption
constraints.

Our future work includes finer data partitioning, which can increase feetsfof our approach,
and compiler techniques to intelligently differentiate, partition and map failurecritinal data
from failure critical data. Especially, data partitioning algorithms in conjunatiith vulnerability
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metrics are interesting future works. In addition to data cache, other cachponents such as
instruction cache and tags will be studied for applying PPC architecturesar®Valso planning to
extend the applicability of our technique to other normal applications coimggreliability as well
as power and performance. Further, future work may explore thefu38© algorithms to adjust
PPC configurations at runtime.
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