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Abstract

With advances in process technology, soft errors are becoming an increasingly critical de-
sign concern. Soft errors are manifested as a toggle in Boolean logic, which may result in
failure of the system functionality. Owing to their large area, high density, and low operating
voltages, caches are worst hit by soft errors. Although Error Correction Code (ECC) based
mechanisms have been suggested to protect the data in caches, they have high performance and
power overheads. We observe that in multimedia applications, not all data require the same
amount of protection from soft errors. In fact, an error in the multimedia data itself does not
result in a failure, but often just results in a slight loss ofquality of service. Thus, it is possible to
trade-off the power and performance overheads of soft errorprotection with quality of service.
To this end, we propose a Partially Protected Cache (PPC) architecture, in which there are two
caches, one protected and the other unprotected at the same level of memory hierarchy. We
demonstrate that as compared to the existing unprotected cache architectures, PPC architec-
tures can provide 47× reduction in failure rate, at only 1% runtime and 3% power overheads.
In addition, we observe that the failure rate reduction obtained by PPCs is very sensitive to the
PPC cache configuration. Therefore, there exists the scope of further improving the solution
by correctly parameterizing the PPC configurations. Consequently, we develop Design Space
Exploration (DSE) strategies to find out the best PPC configuration. Our DSE technique can
reduce the exploration time by more than 6× as compared to the exhaustive approach.
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Abstract

With advances in process technology, soft errors are becoming an increasingly critical design con-
cern. Soft errors are manifested as a toggle in Boolean logic, which may result in failure of the
system functionality. Owing to their large area, high density, and low operatingvoltages, caches
are worst hit by soft errors. Although Error Correction Code (ECC) based mechanisms have been
suggested to protect the data in caches, they have high performance andpower overheads. We
observe that in multimedia applications, not all data require the same amount of protection from
soft errors. In fact, an error in the multimedia data itself does not result in afailure, but often
just results in a slight loss of quality of service. Thus, it is possible to trade-off the power and
performance overheads of soft error protection with quality of service.To this end, we propose a
Partially Protected Cache (PPC) architecture, in which there are two caches, one protected and the
other unprotected at the same level of memory hierarchy. We demonstrate that as compared to the
existing unprotected cache architectures, PPC architectures can provide 47× reduction in failure
rate, at only 1% runtime and 3% power overheads. In addition, we observe that the failure rate
reduction obtained by PPCs is very sensitive to the PPC cache configuration. Therefore, there ex-
ists the scope of further improving the solution by correctly parameterizing the PPC configurations.
Consequently, we develop Design Space Exploration (DSE) strategies to find out the best PPC con-
figuration. Our DSE technique can reduce the exploration time by more than6× as compared to
the exhaustive approach.
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1 Introduction

System reliability is becoming the paramount concern in system design in the deep submicron era
[1]. With technology scaling, i.e., smaller feature sizes, reduced voltage level, lower noise margins
etc., future generation of microprocessors will become increasingly prone to transient faults [13, 44].
A transient fault results in erroneous program state and incorrect program outputs, but they are
random and non destructive, i.e., resetting the device restores normal behavior. While transient
faults may be caused due to several reasons such as the intrinsic noise in the circuit and signal
interference, radiation-induced faults are responsible for more failures than all the other causes of
transient faults combined [5]. The crash of Sun Microsystem’s flagship servers [25] and errors in
CISCO 12000 line cards [2] have been attributed to soft errors, and have resulted in significant fiscal
losses.

A high energy radiation particle, e.g., an alpha particle, a neutron or a freeproton, may strike
the diffusion region of a CMOS transistor and produce charge which canresult in toggling the
logic value of the gates or flip-flops. This phenomenon of change in the logicstate of a transistor
is called anUpset. An upset may have catastrophic consequences including the application gen-
erating incorrect results, accessing protected memory regions, crashing, or going into an infinite
loop. The incorrect or erroneous behavior of an application due to upsets is called aFailure. Note
that not all upsets result in a failure due to maskings such as electrical masking, logical masking,
latching-window masking, and microarchitectural masking. An upset will become a failure if it is
not masked by any of these effects. Consequently, research has looked at increasing the effective-
ness of each of these masking effects. Owing to the effectiveness of thelatching-window masking,
upsets in memory elements have significantly higher probability of causing a failure than upsets in
combinational logic [10, 23]. In addition, since memory elements may occupy more than majority
of the chip area, and the fact that they operate on lower voltages, they are extremely vulnerable to
radiations, and radiation induced faults. In fact, according to [27], morethan 50% of soft errors
happen in memories.

While it is possible to employ simple redundancy based techniques in off-chip memories, they
are not suitable for caches, which are highly sensitive to the performance and power overheads of
redundancy based techniques. For example, usingSingle-bit Error Correction and Double-bit error
Detection(SEC-DED) codes may increase the cache access time by 95% [21] and power consump-
tion by up to 22% [33]. Thus, only a few processors such as the Intel Itanium processor [35] protect
L2 and L3 caches with ECC, but we are not aware of any processor employing ECC based protection
mechanism on L1-cache. This is mainly due to high overheads of ECC implementation [18, 28].
Consequently, novel techniques are required for caches that can eventually reduce failure rates while
incurring minimal power and performance overheads.

Multimedia applications require soft error protection, since they are increasingly being used in
mission-critical applications, where human life itself may be dependent on them.Examples include
exploring and sensing habitats in unreachable regions, and video surveillance in hostile, hazardous,
or toxic territories. In addition, electronic devices that may be sensing or controlling vital human
functions, e.g. heart lung machine, pacemaker, etc., need to be very reliable, or they may directly
put the human life in danger. Significant research has been accomplishedin devising mechanisms
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for protection against soft errors, and making digital devices more robust.
In this article, we propose an architecture and approach to prevent caches from soft errors for

multimedia applications while minimizing performance, power, and area overheads at a minimal
loss in quality of service. The main observation is that in multimedia applications,not all data
is equally failure critical. The image data, or audio data, is not as critical for failure as the loop
variables or the stack pointer. While the occurrence of a soft error in animage pixel may only
result in a slight degradation in the image quality, a soft error in the loop variable may result in
segmentation fault. In such a case, we say that the image pixel is afailure non-critical(FNC) data,
while the loop variable is afailure critical (FC) data.

To exploit the difference in the failure-criticality of the data of multimedia applications, we
propose a novel architecture - Partially Protected Caches (PPC). A PPCarchitecture maintains two
caches at the same level of memory hierarchy. One of the caches is protected from soft errors,
while the other one is unprotected. By mapping the failure critical data into the protected cache,
and mapping the rest of the data into the unprotected cache, the failure rate of applications can
be drastically improved. Note that this improvement in failure rate is obtained mostlyat the cost
of Quality of Service (QoS) with very small impact on power and performance. We find that the
effectiveness of PPC architectures is very sensitive on the PPC cacheconfiguration. And exploring
a huge possible space to find out the best cache configuration is intensively time-consuming because
of the high number of simulations required, especially for the failure rate. Toefficiently find out the
best cache configuration of PPC architectures, we have developed several exploration techniques.

Our experiments on an HP iPAQ h4300 [14] like system demonstrate that PPC architectures
can reduce the failure rate by 47× at only 1% degradation in performance and 3% increase in the
system energy consumption as compared to the existing unprotected cache.And as compared to
previously proposed solution of protecting the whole cache, PPC achieves almost the same failure
rates, but with 16% performance improvement and 8% energy reduction. Our heuristic exploration
algorithms can find best PPC cache configuration solutions while reducing the exploration time by
more than 6× as compared to the exhaustive exploration approach.

2 Background

2.1 Soft Errors

Poor system design, crosstalk, and radiations can cause upsets or bit-flips in electronic devices such
as memory and logic components where these upsets can be manifested as soft errors or transient
faults. External radiations are primary contributors to soft errors, which have been investigated since
1970’s.

Fig. 1 [26] illustrates the mechanism of a soft error event in a CMOS device. When energetic
particles such as alpha particles, neutrons, and protons from packaging material or cosmic rays strike
the sensitive area of the silicon device, they generate electron-hole pairsin the wake. The source and
diffusion nodes of a transistor can collect these charges,Qcollected. WhenQcollected becomes more
than some critical value,Qcritical , the state of the logic device, e.g., a Boolean gate, may invert.
Since this logic toggle is temporary, the occurrence of such a defect is called a transient fault or a
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Figure 1: External radiation may induce soft errors

soft error. Neutrons among several radiations are considered as a critical source causing soft errors
since they cannot be shielded completely even with most man-made construction. For instance, a
radiation can penetrate five feet of concrete [26].

2.2 Soft Error Rate and Vulnerability

The soft error rate (SER) in Fig. 1 is related as

SER ∝ Nf lux×CS×e−(
Qcritical

Qs
) (1)

whereNf lux is the intensity of the neutron flux,CSis the area of the cross section of the node, and
Qs is the charge collection efficiency [13]. SinceQcritical is proportional to the node capacitanceC
and the supply voltageV, SER has an exponential relationship with the supply voltage as well as
the capacitance from Equation (1). Thus, with decreasing supply voltageand shrinking feature size,
the rate of soft errors will increase exponentially [13, 44]. In fact, Baumann [5] predicts that the
SER in the next generation SRAMs will be up to two orders of magnitude higherwhile the SER
of DRAMs has been saturated. Multiplied by the trend of increasing size of SRAMs in multimedia
embedded systems, the SER is becoming an important design concern.

However, not always an upset becomes a soft error due to masking effects. Four kinds of
effects naturally mask an upset to translate into a soft error: i)electrical maskingoccurs when the
pulse resulting from a particle strike is attenuated by subsequent logic gatesdue to the electrical
properties of the gates to the point that it does not affect the result of thecircuit, ii) logical masking
occurs when a particle strikes a portion of the combinational logic that is blocked from affecting the
output due to a subsequent gate whose result is completely determined by its other input values, iii)
latching-window masking occurs when the pulse resulting from a particle strike reaches a latch,
but not at the clock transition where the latch captures its input value, and iv) microarchitectural
masking occurs when the data that is changed is obsolete and does not affect theprogram state or
the program output.

On the other hand, the unit of SER, FIT (Failures in Time), is the number of soft errors per Mbit
for one billion-operation hours. Thus, the SER is linearly proportional to the cache size and the
execution time apparently. However, the possibility from a fault (i.e., upset) toan error (i.e., soft
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error) is not directly proportional to the cache size and the execution time since all upsets do not
propagate errors. Therefore, there is a definite need for an accurate metric to estimate soft errors.

Substantial work has concentrated on estimating the soft error rate, and the corresponding failure
rate. Architectural Vulnerability Factors (AVF) was defined in [30] as theprobability that a fault in a
particular structure will result in a visible error in a final output. However this factor is constant for
a given structure, and is not application dependent. This methodology hasbeen widely exploited
[27], and also extended to present the vulnerability of the cache systems in[4, 3]. In particular,
Asadi et al. presented the critical time of the critical word , the residency time of the word data in
caches, and examined the vulnerability of the cache components and the effects of cache policies
such as flushing, write-thru and refreshing. However, they did not capture the byte-level residency
time, and ignored the effects of the write operation in a word on the other words in the same line at
eviction. Similarly, the temporal vulnerability factor (TVF) [43] and the cachevulnerability factor
(CVF) [45] have been proposed as metrics to estimate the vulnerability of the caches to soft errors.
However, they failed to present the actual relationship of the vulnerability factor and the failures of
applications.

2.3 Soft Error Protection Techniques

Solutions to combat the challenge of soft errors have been proposed atvarious levels of design
abstraction from process technology to architectural solutions.

2.3.1 Process Technology Solutions

Radioactive substances such as alpha particles emitted by packaging and wafer processing materials
are one of the major sources of radiations that cause soft errors in semiconductors. Thus, advances in
process technology such as purification of packaging materials, radiationhardening, and elimination
of Boron-10 (B10) impurities are expected to mitigate the soft errors [6]. However, the effects of
interaction between high energetic cosmic particles (e.g., neutrons) and radioactive materials cannot
be prevented completely [26].

Process technology solutions such as SOI (Silicon On-Insulator) processes [31, 38] have been
proposed. In order to mitigate the soft errors, they extend the depletion region or raise the capaci-
tance, which increases the critical charge of semiconducting devices. However, process engineering
technology may require the cost of additional process complexity, the loss of manufacturability, and
extra substrate cost [5].

2.3.2 Software and Compiler Solutions

Reis et al. [36] presented the software-implemented fault tolerance (SWIFT) for soft error detection
by exploiting unused resources and enhancing control-flow checking.Also, Luccetti et. al [24]
proposed software mechanisms to tolerate soft errors by leveraging virtual machine and memory
sharing techniques. However, they are limited to detecting errors, and mustbe used in conjunction
with recovery techniques.
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Through the user-specified annotations, the compiler can separate and map data elements in
programs to reliable domain which has protection against soft errors, andto unreliable domain
without protection [9]. But it required the annotation for important data by user specification.

2.3.3 Microarchitectural Solutions

At the processor architecture level, error detection and correction codes (EDC and ECC) have been
widely investigated and implemented as the most effective schemes in order to detect and correct
soft errors in memory systems like cache and main memory [34]. However, anECC system imple-
mentation consists of an encoding block as well as a decoding block responsible for detection and
correction, and of extra bits storing ECC values. Whenever data is written,an encoding block need
to code data and store the error correction codes for this data at an extrastorage. And also every
read operation requires to decode data, which can correct errors bycomparing ECC values at the
extra storage. Thus, ECC consumes extra energy and incurs performance delay as well as additional
area cost [3, 21, 33, 47].

In order to reduce high overheads due to ECC, many architectural techniques have been studied.
Kim and Somani [17] proposed the parity cache with the check codes and the shadow cache with
multiple replicas for higher reliability. They protect the cache data partially using data locality so
the coverage for protection may be small, or they have overheads to keep replicas. Zhang et al.
[47] proposed in-cache replication where the dead cache block spaceis recycled to hold replicas
of the active cache block. However, since the load of replication is limited, it cannot provide the
full protection. And Zhang [46] presented replication cache where a small fully associative cache
is added to keep the replica of every write to the L1 data cache, but it incursoverheads in terms of
power, perforamance, and area to keep the replica and to detect as wellas correct errors. A cache
scrubbing technique [29] has been proposed, which can fix all single-bit errors periodically and pre-
vent potential double-bit errors. However, this technique may have highperformance, power, and
area overheads due to ECC implementation. An adaptive protection algorithm has been proposed
for low power caches, which protects clean data less than dirty data blocks[22]. For high reliable
caches, Neuberger et al. [32] presented a combined method with Hamming and Reed-Solomon
codes in order to correct at least double-bit transient faults in an energy-efficient way. Kim [18] also
proposed the combined approach of parity and ECC codes to generate thereliable cache system in
an area-efficient way. Recently, Cai et al. [8] explored cache parameters, especially cache sizes,
to increase reliability while considering power and performance. However, they all exploit expen-
sive error correcting codes in order to protect all the data in caches, which may waste power and
performance for unnecessary protection in multimedia applications.

2.4 Our Contributions

This work starts from the observation that not all data require the same amount of protection against
soft errors. We propose a new cache architecture which is able to provide different levels of pro-
tection for application data. By categorizing and mapping the data wisely to thesecaches, effective
protection from soft errors can be achieved at minimal power and performance overheads. Also we
present heuristic exploration algorithms to find out a PPC configuration under the multiple constrints
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since cache parameters cause high impacts on failure rate, power, and peformance, and exploring
design space is intensively time-consuming.

Our approach has several novel features: i) we try to reduce the failures due to soft errors, instead
of reducing the soft errors themselves, ii) our approach reduces failures due to soft errors in data
caches at minimal impact on power or performance, however at the cost of QoS degradation, iii)
our technique is very effective for multimedia applications, iv) our selective data protection can be
used in conjunction with previously proposed soft error protection mechanisms, and v) our heuristic
algorithms can efficiently explore a design space to find the best configuration satisfying multiple
constraints.

3 Motivation

To compare the susceptibility of application data on soft errors, we deviseda simple experiment. As
shown in Fig. 2, the data that the application accesses is divided into pages.We injected soft errors
randomly in only one page, and simulated the application several times to estimate thefailure rate.
Soft errors are injected with a constant probability per line, and per unit time, only in the lines of
the page that are in the cache.

2

1

N

N x 1 KB page

Random
Error
Injection

N KB

Data Memory
Application

1,000 Simulations Number of
Failures

K

Figure 2: Failure rate due to soft errors in each page (= number of failures out of 1,000 runs)

Fig. 3 plots the failure rate of thesusan edgesbenchmark from MiBench suite [12] when soft
errors are injected in one page at a time, on all pages accessed by the application. For these ex-
periments, the soft error injection rate was 10−6 errors per line per page, the page size was 1 KB,
and data cache was a 32 KB 32-way set associative cache with 32 byte linesize (similar to the Intel
XScale [15]). We ran simulations 1,000 times, and the failure rate was estimated as the number
of runs out of 1,000 simulations that the application failed.susan edgesis an image processing
application, which takes a pgm image and marks the edges in a given image. Theoutput is also a
pgm image. The simulation is declared as a failure, if the output image file cannotbe opened by the
xv [16] image viewer application.

Fig. 3 shows that soft errors in some pages are much more likely to cause anapplication failure
than soft errors in other pages. In fact, for this image processing application, only soft errors in some
of the pages, 9 pages out of 83, cause an application failure. Soft errors in most of the other pages
do not result in a failure. The degradation in quality typically shows up in the form of white/black
pixels in the output image. A simple analysis reveals that the pages that do not cause failures are the
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Figure 3: Failure rate distribution (benchmark :susan edges) - failures are reported in occurrences
of soft errors at only 9 pages out of 83

image data, and the pages that contain stack variables, and other programvariables cause failures.
Existing solutions that protect the whole cache using ECC is a overkill for these multimedia data
pages, especially in situations where a little loss in quality of service can be tolerated. An ideal
solution would provide protection to only the pages that may cause application failures, and reduce
the overheads by not protecting data that may not cause application failures.

4 Our Approach

4.1 Architecture Model and Approach

To provide different levels of protection against soft errors, we propose a novel cache architecture,
Partially Protected Cache (PPC). Our concept of Partially Protected Cache is derived from the con-
cept of Horizontally Partitioned Caches (HPC) [11]. HPC is a promising technique in which the
processor has multiple (typically two) caches at the same level of memory hierarchy, and partition-
ing the application data wisely between the two caches can improve both the performance and the
energy consumption [37, 19, 40]. Similarly, PPC architectures will have multiplecaches at the same
level of memory hierarchy, varying in the level of soft error protection they provide. In particular,
in this article we consider two data caches at the L1 level, named the protected cache and the un-
protected cache as shown in Fig. 4. The protection against soft errorsin the protected cache can be
provided by any of the existing techniques, e.g., increased transistor size, increased supply voltage,
SEC-DED etc. In this article, we consider that the protected cache has SEC-DED to correct one bit
error and detect two bit errors.

The memory is mapped to the two caches at a page level of granularity. Each page has a Cache
Mapping Attribute or CMA. CMA defines which cache the page is mapped to. When a new page is
requested in the cache, it comes into the cache defined by the CMA. CMA is stored in the Translation
Look-aside Buffer (TLB) along with the address mapping. When the processor requests any cache
data, first the TLB lookup is performed to see if the page is present in the cache, and if yes, to
figure out which one of the two caches. Therefore, only one cache lookup is performed per access.
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Note that our approach for data partitioning into the two caches does not increase the number of
pages, and the number of TLB misses. Every time data is written into the cache, the data has to be
encoded, and every time it is read from the cache, the data needs to be decoded and check needs to
be performed, for occurrence of soft errors. Thus, the SEC-DEDdecoder becomes a part of timing
critical path, and has power and performance overheads.

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Processor
Pipeline

Memory

Processor

Unprotected Cache

TLB

Protected Cache

Protection
Overhead

Figure 4: Partially Protected Cache Architecture - one protected and the other unprotected at the
same level of memory hierarchy

In order to minimize the performance impact of the PPC architecture, the protected cache should
be small, so that the total penalty of the protected cache and the SEC-DED implementation is less
than or equal to the unprotected cache. However, now since the protected cache is smaller, it is
important to map data very carefully into this cache. Mapping too much data into theprotected
cache can result in frequent misses, and therefore performance degradation.

4.2 Application Data Partitioning

To exploit the PPC architecture, the compiler has to categorize and partition theapplication data into
the protected and the unprotected cache. In general, a detailed analysis for each variable is needed
to be able to partition the application, the characteristics of multimedia applications simplify this
analysis. In multimedia applications, while a soft error in an image pixel, may only cause minor
distortion in the image, or negligible loss in QoS, a soft error in the loop controlvariable may result
in memory segment violation, or a failure. Other examples of failures caused by soft errors include
system crash and an infinite loop the application might go into. For multimedia applications, we
define the multimedia data as failure non-critical, and all the rest of the data is failure critical.

Fig. 5 plots the percentage of failure-critical and failure non-critical datain the various multi-
media benchmarks, as found by our method. The plot shows that even this simple strategy can mark
from 30% to 63% of data as failure non-critical. A better data analysis technique can discover more
failure non-critical data, and therefore will improve the effectiveness of our technique. For exam-
ple, we can apply the vulnerability metric as discussed in Section 2.2 for further data partitioning.
However, even this simple technique of finding the failure-critical data is quiteeffective. Also note
that it is very easy for the designer to identify the multimedia data. It is typically present in large
arrays.
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Figure 5: Size of failure critical and failure non-critical data in applications
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Figure 6: Cache miss rates of failure critical and failure non-critical data (benchmark -susan
smoothing)

The other issue with mapping data to the small protected cache in PPC might be the possible
performance impact. Fig. 6 plots the miss rates of the failure critical and failurenon-critical data for
various cache sizes. We observe that the slope of the miss rate of the failure critical data is less than
that of the failure non-critical data. This implies that the size of the protected cache can be reduced
without much performance penalty. The reason behind this observation is that the failure critical
data that we have marked comprises of the local variables, function stack,etc. which have much
better cache behavior than that of the multimedia data. As a result, we can achieve low failure rates
without significant power and performance overheads.

5 Experimental Framework

In this section, we present the experimental framework to demonstrate the effectiveness of our
proposed architecture. We have developed a compiler-simulator-analyzer framework, in which a
compiler generates a page mapping list as well as an executable, a simulator runs an executable by
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Figure 7: Experimental Framework

mapping pages according to cache configurations, and outputs are analyzed to evaluate our PPC
architecture, as described in Fig. 7.

5.1 Compiler Platform and Benchmarks

We use a suite of several multimedia benchmarks from different sources for our simulations. In
the domain of image processing applications, we select three image filters, namely susan edges, su-
san smoothing,andsusan corners, from MiBench [12]. In the domain of audio applications, we use
adpcm encoderandadpcm decoderfrom MiBench, andG721 encoderandG721 decoderfrom Me-
diaBench [20]. As a representative video application, we chooseH263 encodergenerated from the
PeaCE project [42]. These examples form a representative set of typical multimedia applications.

We mark all the arrays that contain the multimedia data with the “FNCdata ” keyword, and
make them as global variables. We would like to stress again that it is very easy for an application
developer to identify the multimedia data. Then, our compiler identifies all the marked data as
FNC data, and generates a page mapping file as well as an executable for an application. And all
other data including dynamically allocated data are considered as FC data. This page mapping file
maintains a list of virtual addresses for FNC data, so FNC data are going to bemapped into the
unprotected cache and FC data into the protected cache in a PPC during simulations. Note that the
page level granularity of data partitioning can cause some pages consistingof FNC data and FC data,
which are considered FC and mapped into the protected cache. So our datapartitioning for PPC
architectures do not occur any extra overheads of space, performance, and energy consumption.

5.2 Simulation Platform

We select a simulation platform similar to the HP iPAQ h4300 [14], which has a popular Intel
XScale-cored PXA255 at 400 MHz with a partitioned data cache architecture – a 32 KB main data
cache and a 2 KB mini cache. The cycle-accurate simulator sim-cache fromthe SimpleScalar [7]
has been modified to support our PPC architectures and soft error injections explained below. Our
PPC architecture consists of the unprotected main data cache and the protected mini data cache with
an implementation of a SEC-DED technique. Thus, the simulator takes not only theexecutable but
also the page mapping file for data partitioning to a PPC as inputs generated by our compiler. While
running an application, the simulator can map FNC data into the unprotected main cache, and FC
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data into the protected mini cache in the PPC. After simulations, our PPC cache simulator returns
the number of failures and outputs such as the number of instructions for a benchmark and the
number of accesses as well as misses for each cache, which are used for estimating the performance
and the energy consumption for this configuration and the benchmark.

Soft errors are modeled and injected randomly during simulations with an accelerated SER in
order to see the results within a reasonable amount of time. Thus, our experiments relatively com-
pare the failure rate and QoS between our PPC architecture and the existingcaches with protection
or without protection. Note that the other analytic models such as performance, energy consump-
tion, and area are not affected by this accelerated SER. The base SER for single-bit errors (SBE)
is 10−9 per instruction per KB of cache. We also consider double-bit errors (DBE) with 100 times
less rate than that of SBE [44, 22], i.e., 10−11 per instruction per KB of cache for a DBE. For every
instruction, the simulator tries to generate a soft error in a randomly selected bit in a data cache at
a certain amount rate according to a cache size if it is valid in the cache. Also,DBE occurs in the
protected cache as well as in the unprotected cache, while SBE occurs only in the unprotected cache
since the implemented SEC-DED in the protected cache can automatically correctall single bit soft
errors.

5.3 Cache Configurations

In order to evaluate our PPC architectures in terms of failure rate, power,and performance, we
define three cache configurations: 1)Unsafe, 2) Safe, and 3)PPC. The first configuration,Unsafe,
has a unified data cache and does not protect data at all. Thus, it is highlyvulnerable to soft errors,
so it will show the high failure rate, which is bad. ButUnsafe configurationis good in terms of
both performance and power since it has no overheads for data protection while the others do. The
second configuration,Safe, has a unified data cache with implementation of a SEC-DED for data
protection, and protects all data, so it is high reliable in terms of the failure ratewith high overheads
of both power and performance, which are bad. Our proposedPPC configurationprotects only FC
data by mapping FC data into a protected mini cache in a PPC architecture. This configuration
will present the failure rate close to that ofSafe configurationand the performance and the energy
consumption close to those ofUnsafe configuration, which is very good. All cache parameters for
L1 data cache other than the size and the set-associativity are fixed in our experiments such as 32
bytes of linesize, FIFO (First-In First-Out) for replacement policy, and write-back policy.

5.4 Failure Model

Soft errors in FC data may cause failures. We define the concept of afailure in a simulation as the
occurrence of one of these conditions: i) application crash – the application execution generates
an abnormal exception or attempts to access a different memory segment, ii) infinite loop – the
application does not complete even after 10 times its expected execution time, iii) bad header – the
application produces incorrect header, because of which it cannot be opened by any viewer, and iv)
incorrect name and size – if the output file is of different name, or of different size. Note that the
degradation in the quality of service of multimedia applications due to soft errors is not defined as a
failure in our study.
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The occurrence of a soft error does not imply an application failure. Ifan error injected in a
variable will not be used, then the error does not matter. However, if the erroneous value will be
used in the future, then it will result in a failure. To estimate the failure rate, several simulations
need to be performed, and the mean is reported as the failure rate.

Assuming that each simulation is an independentSuccess/Failure event,X is the number of
Successin simulations, and we performn experiments, then if the probability of a failure isp, thenX
is a binomially distributed random variable, which follows the binomial distribution with parameters
n andp (X ≈ B(n, p)). Therefore, the mean ofX will be µ= np, and the variance ofX will be σ2 =
np(1− p). The errorE = |X̄−µ| is less than or equal tozα/2σ/

√
n with confidence 100(1−α)%,

whereα is a confidence level. Therefore, the sample size to be able to state with 100(1−α)%

confidence that the error|X̄−µ| will not exceed a specified amountE is N = (
zα/2σ/

√
n

E )2. Thus, for
95% confidence,zα/2 = 2, and confidence interval.01%, the sample size,N = 40,000p(1− p).

To estimate the probability of a failure, suppose the probability of a failure is 2%, thenN =
40,000×0.02×0.98= 784. Also the number of simulations needed depends on the probability of
a failurep. For example, ifp is 2%, then we need about 784 simulations, while ifp is 20%, then we
need 6,400 simulations. To overcome this, the simulations are typically set up so that the failure rate
will be less than 10%. This is done by a manual process of tuning the upset injection rate for each
simulation. Thus, an application is first simulated 1,000 times, which is for about 2% to 3% failure
rate, and then the upset injection rate is adjusted to see the results within about1,000 simulations.

5.5 Performance Model

For performance comparison, the runtime of an application is estimated using thestatistics generated
by the sim-cache simulator. Assume that the Instructions Per Cycle (IPC) of the processor to be 1.
Our Unsafe cache configurationresembles the Intel XScale memory subsystem with cache access
latency of 2 cycles, and cache miss penalty of 25 cycles as in [40]. Thus,the runtime for theUnsafe
cache configuration, Runsa f e, is estimated asRunsa f e= I +Aunprotected×2+Munprotected×25, where
I is the number of instructions executed, andAunprotectedandMunprotectedare the number of accesses
and the number of misses, respectively, to the unprotected cache. For theSafe cache configuration,
we consider one extra cycle penalty due to the SEC-DED check. Note that this experiment does not
consider the speculative operation of ECC to reduce the critical path1. Thus, the runtime for theSafe
cache configuration, Rsa f e, is estimated asRsa f e= I +Aprotected×3+Mprotected×25, whereAprotected

andMprotectedare the number of accesses and the number of misses to the soft error protected cache,
respectively. For thePPC cache configuration, we keep the protected cache size smaller than the
unprotected cache size to ensure that the access times for both caches are the same, and equal to 2.
Thus, the runtime forPPC configuration, Rppc, is estimated asRppc= I +(Aprotected+Aunprotected)×
2+ (Mprotected+ Munprotected)× 25. Note that our performance model using sim-cache simulator
is well matched with the runtime output from sim-outorder simulator, which generates accurate
performance for multi-issue pipelined processors, but demands longer simulation time.

1Implementing speculative operation of ECC can reduce once cycle performance penalty, and result in better perfor-
mance of PPC than Unsafe configuration
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5.6 Energy Consumption Model

We estimate the energy consumption of the whole system including the processor pipeline, caches,
memory and the off-chip buses. The power value per access of the unprotected cache (Eunprotected)
is estimated using CACTI [39] cache energy models. In this study, the protected caches implement
a Hamming code (32,6) [34] as a SEC-DED technique, and therefore consume additional energy for
coding (or decoding) and writing (or reading) extra control bits (effectively increasing the linesize)
for each access. To estimate the energy per access for the protected cache with the extra coding
bits Eprotected, we use CACTI with increased linesize value parameter from 32 to 38 bytes,where
6 bytes are control data for 32 bytes. To estimate the energy overhead due to the SEC-DED coder
and decoder, we synthesize them using the Synopsys Design Compiler [41] with lsi10k libraries of
0.5 um technology. Note that the decoder is much more complex than the coder, however, since
the decoder is a part of “read operation”, it should be faster. After scaling the power numbers to
0.18um technology, the decoder of our implementation consumesEdec = 0.39 nJ per decoding,
and the coder consumesEcod = 0.2 nJ per coding. Every access to a protected cache incurs not
only Eprotectedbut alsoEdec to detect and correct a soft error, so the energy consumption for each
protected cache access isAprotected× (Eprotected+ Edec). And alsoMprotected×Ecod is modeled as
energy consumption for every miss to a protected cache since the data copyfrom memory to a
protected cache demands the encoding for SEC-DED. Note that we do notconsider a read and a
write operation separately, and do not consider the difference betweenenergy consumption of a
clean line and a dirty line in our simulation study2. As in [40], we estimate that the off-chip bus
consumes aboutEbus = 10 nJ per access, while the memory access energy isEmem= 32 nJ per
burst. For the processor, we assume that it consumes 400 mW operating at600 MHz, which is the
normal operating mode of the Intel XScale processor [15]. Thus,Eproc is 0.67nJ per instruction.

Using the above-mentioned energy models, we estimate the total system energyE as, E =
Eprocessor+ Ecache+ Ememory where Eprocessor= Eproc × I , Ecache = (Aunprotected× Eunprotected) +
Aprotected× (Eprotected+ Edec) + (Mprotected× Ecod), and Ememory= (Munprotected+ Mprotected) ×
(Ebus+Emem).

5.7 Area Model

We estimate the area of the unprotected cache,ARunprotectedusing CACTI. The area overhead due
to SEC-DED implementation in the protected caches is due to three sources, i.e., the coder, the
decoder, and the storage required for the extra control bits. We estimate the area with the extra bits
of the protected cache,ARprotected, in the cache using CACTI. The Synopsys area results scaled to
0.18um technology show that the area overhead of the coder + decoder,ARecc, is 0.55mm2. Thus,
the area of thePPC configurationis computed asAR= ARunprotected+ARprotected+0.55mm2.

2We evaluated the more detailed and accurate energy consumption model considering read/write operations and
clean/dirty cases but the differences are insignificant
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5.8 Quality of Service Model

QoS is very application specific, and the definition of QoS itself varies with applications. For QoS
comparison in image processing applications, we use the PSNR (Peak Signalto Noise Ratio) metric
in dB defined as:PSNR= 10LOG10(

MAX2

MSE ), whereMAX is the maximum pixel value andMSE is
the Mean Squared Error, which is the mean of the square of differencesbetween the pixel values
of the erroneous output and the correct output. QoS for audio applications is similarly defined. For
video applications, the PSNR is averaged over the image frames. Please notethat the QoS values in
this article are calculated with exaggerated SERs, which is mainly because of observing the failure
rates within a reasonable amount of simulation time, and does not affect the performance, energy
consumption, and area while it affects the QoS results significantly. Thus, the reported QoS is
meaningful to indicate the relative superiority rather than the absolute value of quality.

6 Effectiveness of PPC
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Figure 8: Effectiveness of our PPC architectures - PPC achieves minimalfailure rates with minimal
energy and performance overheads

This section demonstrates the effectiveness of our approach as compared to the traditional un-
protected cache configuration (Unsafe) and protected cache configuration (Safe).
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Figure 9: Evaluation of Quality and Area

We divide this section into two parts. In the first set of experiments, we compare the failure rate,
runtime, energy, area, and QoS for all the benchmarks for Safe, Unsafe and PPC configurations for
fixed cache parameters. In the second set of experiments, we demonstrate the applicability of our
technique over various cache sizes.

6.1 Impact of Our Approach

Similar to caches in the Intel XScale architecture, the Unsafe cache configuration consists of a 32
KB unprotected cache, the Safe cache configuration consists of a 32 KBprotected cache, and the
PPC configuration consists of a 32 KB unprotected cache and a 2 KB protected cache.

Fig. 8(a) shows that the PPC configuration achieves failure rates close tothose of the Safe
cache configuration, and both of these configurations achieve failure rates about 47× less than that
of the Unsafe cache configuration on an average. Fig. 8(a) plots the failure rates achieved by the
three cache configurations on a logarithmic scale, and they are normalized tothe failure rate of
the Unsafe cache configuration. In both the Safe and PPC configurations, failures occur only due
to double-bit soft errors since all the single-bit errors are correctedby SEC-DED implementation
in protected caches while both single-bit soft errors and double-bit soft errors cause failures in
the Unsafe configuration. Fig. 8(a) shows that in some benchmarks (e.g.,susan smoothing) PPC
configuration results in lower failure rate than the Safe cache configuration and in some benchmarks
(e.g.,susan corners) the Safe cache configuration is better. However, in most benchmarks PPC
configurations provide failure rates close to those of Safe cache configurations, and much lower
than those of Unsafe cache configurations.

Fig. 8(b) shows that PPC configuration achieves the performance closeto that of the Unsafe
configuration, and incurs only less than 1% performance overhead thanthe Unsafe configuration on
an average while the Safe configuration incurs about 19% performanceoverhead mainly because
of cache access time penalty. Fig. 8(b) plots the runtime for the three cache configurations. The
runtimes are normalized to the runtime of the Unsafe cache configuration. Theplot shows that as
compared to the previously proposed Safe cache configuration, the PPCconfiguration has on an
average 16% performance improvement.
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Figure 10: Robustness of Our Approach over Varying Cache Sizee (benchmark -susan edges)

Fig. 8(c) shows that PPC configuration consumes less system energy than the Safe configura-
tion. Fig. 8(c) plots the system energy consumption of the three cache configurations normalized
to that of the Unsafe cache configuration. The plots show that as compared to the Safe cache con-
figuration, the PPC configuration consumes 8% less energy on an average. As compared to the
Unsafe cache configuration, the PPC configuration consumes about 3%more energy while the Safe
configuration consumes 13% more energy on an average mainly because of unnecessary protection
for multimedia data, which is saved by PPC approach. Note that the energy consumption indicates
the energy consumed by the whole system including processor, data cache, memory, and off-chip
buses. If we consider only energy consumption of the memory subsystem, PPC configuration is
more effective since the processor energy consumptions for each cache configuration are the same.
For example, PPC cache configuration consumes the memory subsystem energy 20% less than the
Safe configuration.

To simplify the multi-dimensional comparison of various metrics (failure rate, energy, run-
time), we define a composite quality metric (CMc f g) for each cache configuration,c f g, asCMc f g =
Fc f g×Rc f g×Ec f g, whereFc f g is the logarithmic failure rate,Rc f g is the runtime, andEc f g is the
energy consumption for a cache configurationc f g. The lower the composite metric, the better the
configuration. Fig. 8(d) shows the composite metric for all the three cache configurations for each
benchmark. The plot clearly shows that the PPC configuration is a superior design choice. The PPC
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Figure 11: Comparison of composite metric amongSafe, Unsafe and PPC configurations

configuration is 40× better than the Unsafe cache configuration, and 2× better than the Safe cache
configuration in terms of a composite metric.

Fig. 9(a) shows that PPC configuration results in better QoS than the Unsafe configuration and
worse QoS than the Safe configuration. Fig. 9(a) plots the QoS of the threecache configurations
normalized to the QoS of the Unsafe cache configuration. The plots show that as compared to the
Safe cache configuration, our PPC configuration incurs a QoS penalty of 32%, while as compared
to the Unsafe cache configuration our PPC configuration improves the QoSby 54% on an average.
Note that QoS values are exaggerated due to accelerated SER in order to observe the failure rates
in a reasonable amount of simulation time. Table 1 presents the video quality in PSNR using a
benchmarkH263 encoderfor the three configurations according to SER, and clearly shows that
the quality degradation of PPC configurations is negligible (less than 5% otherthan SER = 10−9)
compared to that of Safe configuration.

Fig. 9(b) compares the area among the Unsafe, Safe, and PPC cache configurations along the
total cache sizes. The plot shows that the area overhead for the PPC cache configuration is smaller
than that for the Safe cache configuration since the PPC configuration just implements the SEC-
DED algorithm for the only small size of mini cache, which remains the same size for the coding
and decoding blocks but reduces the storage size for the control bits. In one specific configuration
as 32 KB data cache for the Unsafe, Safe and PPC, which has extra 2 KBprotected cache, the area
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overhead for the Safe cache configuration compared to the Unsafe cache configuration shows about
22% but the PPC cache configuration can be implemented with just 7% area overhead, which means
that we can reduce around 12% area when we build the PPC configurationcache instead of the Safe
one.

To summarize, our results demonstrate that as compared to the traditional Unsafe cache configu-
ration, our proposed PPC cache configuration can reduce failure rates by 47×, while incurring only
1% runtime, 3% energy, and 7% area overhead with improved QoS. As compared to the previously
proposed Safe cache configuration, our proposed PPC cache configuration can achieve almost the
same failure rates while improving both the runtime by 16%, energy by 8%, and area by 12% at the
cost of QoS. Thus, PPC architectures allow designers to explore configurations with minimal failure
rate by trading-off QoS at minimal power, performance, and area overheads.

6.2 Robustness of Our Approach

In this set of experiments, we demonstrate the effect of varying cache sizes on the effectiveness of
PPC architectures with one benchmarksusan edges. For the Safe and the Unsafe configurations, we
use protected and unprotected cache sizes ranging from 512 bytes to 32KB in exponents of 2. Thus,
there are 7 cache configurations in the Safe cache configuration or Unsafe cache configuration.
In the PPC cache configuration, we vary the unprotected cache size from 1 KB to 32 KB, while
varying the protected cache size from 512 bytes to less than the unprotected cache size. Thus, there
are 21 PPC cache configurations. Although we performed these experiments for all possible cache
associativities, from direct mapped to fully associative, in exponents of 2, in this article we present
results only for cache associativity equal to 4.

6.2.1 Failure Rate Comparison

Fig. 10(a) plots the failure rates of benchmarksusan edgesfor Safe (squares), Unsafe (diamonds),
and PPC (triangles) cache configurations. The first observation that we make in this graph is that the
failure rate for the Unsafe cache configurations initially increases with the cache size, but eventually
becomes constant. The initial increase in failure rate is because with increasing cache size, the
amount of data in the cache increases, and more data is now vulnerable to soft errors. Once all
the application data are cache-resident, increasing the cache size any further does not increase the
failure rate. For benchmarksusan edgesthe memory footprint (size of unique memory addresses)
is 83 KB. Therefore, from 100 KB the failure rate saturates. The second important observation is

Table 1:Video Quality in PSNR (dB) according to SER

SER Unsafe Safe PPC

10−9 16.39 31.79 19.67
10−10 26.22 33.35 31.89
10−11 32.40 33.46 33.40
10−12 33.39 33.46 33.45
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that the failure rate in the PPC cache lies “in-between” the failure rates of theSafe configuration
and the Unsafe configuration, and is consistently closer to the Safe configuration. On an average,
the failure rate for PPC configuration is 38× better than those for the Unsafe cache configurations.
As compared to the Safe cache configurations, PPC configuration is 2.5× higher in the failure rate
on an average. The dark circle represents the PPC configuration that was found to be best by our
composite metric. It corresponds to a 2 KB unprotected cache and 512 bytes protected cache.

6.2.2 Performance Comparison

Fig. 10(b) plots the runtime (in cycles) for the Safe, Unsafe, and the PPC configurations. The most
important observation we make from this graph is that the runtime of PPC cacheconfigurations lies
“in-between” the runtimes of the Safe configuration and the Unsafe configuration. The Safe cache
configurations suffer from high runtime primarily because of increased cache access time due to
ECC implementation. The runtime overhead of PPC cache configurations is on an average 23%
less than that of the Safe configurations. As compared to the Unsafe cache configurations, PPC
configuration have 13% performance degradation on an average.

6.2.3 Energy Comparison

Fig. 10(c) plots the system energy consumption for the three cache configurations and shows that
the energy consumption of the Safe cache configuration is very high, primarily due to the SEC-
DED overhead. The most important observation from this plot is that the energy consumption
for PPC configurations lies “in-between” the energy consumptions of the Safe configuration and
the Unsafe configuration. On an average, PPC configurations consume23% less energy than Safe
cache configurations, and 17% more energy than Unsafe cache configurations.

6.2.4 Quality of Service Comparison

Fig. 10(d) plots the QoS of the Safe, Unsafe and PPC configurations. The graph again shows that
the QoS in the PPC configuration is “in-between” the Safe and the Unsafe configurations. On an
average, the QoS of the PPC configurations is 15% better than the QoS of Unsafe cache configura-
tions. As compared to the Safe cache configurations, the QoS of the PPC cache configurations is
worse by 33% on average. Note that these QoS evaluations result from accelerated SERs. In reality,
SER is much less than this accelerated SER, and results in much less quality degradation.

6.2.5 Composite Metric

Fig. 11(a) plots the composite quality metric for all the three cache configurations. The plot shows
that Safe cache configurations and the PPC configurations are the contenders for the best design
points. The best design point, however, corresponds to the PPC configuration with 2 KB unprotected
cache and 512 bytes protected cache. Plots for the other benchmarks, e.g., susan cornersas in
Fig. 11(b),G721 decoderas in Fig. 11(c), andH263 encoderas in Fig. 11(d), also support our
claim of the effectiveness of PPC architectures over both the traditional Unsafe, and the previously
proposed Safe cache configurations.
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7 Design Space Exploration

Till now, we have demonstrated the superiority ofPPC cache configurationsover the traditional
Unsafe cache configurations and the previously proposed Safe cache configurations. There is a
definite need to choose the best configuration of a PPC to satisfy the multiple constraints such as the
failure rate, power, and performance. However, those constraints are sensitive to cache parameters
such as the size and set-associativity, and further the design space exploration of the PPC cache
configurations has very high computational requirements.

7.1 Sensitivity of Cache Parameters in PPC

Under the multi-dimensional constraints, considering only one constraint can lead the very bad
configuration in other constraints. For example, the best configuration in terms of the runtime
among PPC configurations with 32 KB unprotected cache is 16 KB protected cache from Fig. 10(b).
However, this configuration is bad in terms of failure rate since it has about5 times higher failure
rate than the best one in the failure rate (512 bytes protected cache in Fig. 10(a)). And also other
parameters such as set-associativity cause high variation with respect to performance and energy
consumption in our experiments. Thus, overall variations can lead up to 26 times difference in the
failure rate, up to 10% in performance, and up to 3.6 times in energy consumption for a benchmark
susan cornersas will be shown in Fig. 13(a) and Fig. 13(b). Thus, there is a definite need to explore
design space and to find out a PPC configuration satisfying multiple constraints.

7.2 Design Space Exploration Problems

In these experiments, we keep the unprotected cache configuration constant, i.e., 32 KB, 32-way
set associative, and a 32-byte line. We only vary the protected cache configuration. We vary the
protected cache sizes from 1 KB to 16 KB in exponents of 2, and associativities from 1 to 32-way
set associative. Thus, there are only 5×6 = 30 configurations.

An exhaustive search of these cache configurations requires evaluating failure rate for all the
30 configurations. However, evaluating the failure rate of each configuration requires about 1,000
simulations based on failure rate estimation in Section 5.4. The failure rate can then be estimated
as the number of failures that occur in thousand simulations. Thus, if each simulation takes about
an hour, the exploration would require 30,000 hours, which is approximately 3 years. Although this
job is intrinsically parallelize-able, it is highly complex in computation. Please note that this is the
case, even though our design space is extremely small, i.e., only 30 configurations. In reality, the
PPC design space can be extremely large, if we also consider variations in the unprotected cache
configurations. We chose this design space for feasibility of our experiments.

If a single run of a benchmark takes an hour, finding out the failure rate of the benchmark
with 95% confidence and 1% error will take a month. Clearly, the simulation time is far too much
for design space exploration. In order to estimate the failure rate, we needto run simulations for
each configuration, which takes unreasonable amount of time. So we cannot explore the whole
design space with this approach. Owing to the immensely time consuming nature of Design Space
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Exploration (DSE) in failure rate computations, it is very important to develop efficient design space
exploration algorithms to find out the best protected cache configurations inminimal evaluations.

In this section, we will develop DSE algorithms, for 2 interesting problems.

Problem 1 Given maximum runtime and maximum energy consumption constraints, findout the
protected cache configuration that will result in minimum failure rate

Problem 2 Given maximum failure rate and maximum energy consumption constraints, find out
the protected cache configuration that will result in minimum runtime

7.3 BFExplore - DSE algorithm for Problem 1

BFExplore(S, A, Rconstraint, Econstraint)
01: Smin = 1,Smax= 16
02: Amin = 1,Amax= 32
03: for (s= Smin;s≤ Smax;s= 2×s)
04: for (a = Amax;a≥ Amin;a = a / 2)
05: Rs,a = evalRuntime(s,a)
06: if (Rs,a ≤ Rconstraint)
07: Es,a = evalEnergy(s,a)
08: if (Es,a ≤ Econstraint)
09: return {s,a}
10: endif
11: else
12: a = Amin−1
13: endif
14: endfor
15: endfor

16: return NULL
endBFExplore()

Figure 12: BFExplore Algorithm

For Problem 1, we develop a heuristic algorithm, BFExplore, described in Fig. 12. This problem
is the same as how to find the minimal size of the protected cache satisfying the given constraints of
power and performance because the failure rate is determined by the size of the protected cache, and
the smaller size, the lower failure rate.S is a set of sizes of the protected caches from 1 KB (Smin) to
16 KB Smax (Line 01).A is a set of set-associativity from 1-way (Amin) to 32-way (Amax) (Line 02).
BFExplore algorithm starts with the cache configuration with minimal protected cache size with the
largest set-associativity (Lines 3-4). If this configuration satisfies the given constraints (Rconstraint,
Econstraint), this configuration is returned as the best configuration in terms of failurerate (Lines
05-09) since it is the minimal protected cache size. If only energy constraint is not met, it repeats
the runtime and energy consumption evaluations (Line 10). But, if the runtime constraint is not
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satisfied, it increases the protected cache size, and repeats the algorithm(Lines 11-14). If it reaches
the end of the algorithm, it means that there is no configuration satisfying the given constraints (Line
16).
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Figure 13: Design Space Explorations to find the best configuration for aPPC in terms of failure rate
while satisfying energy consumption (< 4.0E + 6) and runtime (< 4.7E + 6) (32 KB unprotected
cache with varying protected cache size and set-associativity)

When we explore the design space for the best configuration in terms of thefailure rate with
the given constraints such as energy consumption less than 4.0E+6 nJoules and runtime less than
4.7E+6 cycles, the exhaustive approach without any observations require 30 explorations for each
configuration as marked with circles and triangles as in Fig. 13(a) and Fig. 13(b), which is about
30,000 evaluations. However, our BFExplore does not evaluate the failure rates for each configu-
ration, which is the huge reduction. In this example, we only evaluate 3 configurations as marked
with triangles as in Fig. 13(a) and Fig. 13(b), indicating that we reduce the number of explored
configurations by 10 times and thus decrease the number of evaluations by about 10,000 times.

7.4 BRExplore - DSE algorithm for Problem 2

For the second problem, how to find the best configuration in terms of runtime satisfying the given
failure rate and energy consumption, we present a heuristic algorithm BRExplore as described in
Fig. 14. First, our algorithm finds the largest protected cache to satisfy thegiven failure rateFconstraint

(Lines 03-08). Once it is found, all the smaller ones satisfyFconstraint. The second step evaluates
the energy consumption of each configuration with a decrease of set-associativity. If it satisfies
the given energy consumptionEconstraint, this is the best configuration (Lines 10-14) in terms of
runtime because the larger cache with the larger set-associativity shows thebetter performance, i.e.,
the lower runtime. This step for energy consumption evaluation is repeated after decreasing the
protected cache size (Lines 19-20) until a satisfied configuration is found. Otherwise, it fails to find
the configuration satisfying the given constraints and returnsNULL (Line 9, 17).

The number of evaluations for our BRExplore is 5,006 (5× 1,000 for failure rate evaluation
and 6× 1 for energy consumption evaluation) in the worst case where the minimal protected cache
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BRExplore(S, A, Fconstraint, Econstraint)
01: Smin = 1,Smax= 16
02: Amin = 1,Amax= 32
03: for (s= Smax;s≥ Smin;s= s / 2)
04: Fs = evalFailure(s)
05: if (Fs ≤ Fconstraint)
06: return AssocExplore (s, A, Econstraint)
07: endif
08: endfor
09: return NULL
endBRExplore()

AssocExplore (s, A, Econstraint)
10: for (a = Amax;a≥ Amin;a = a / 2)
11: Es,a = evalEnergy(s,a)
12: if (Es,a ≤ Econstraint)
13: return {s,a}
14: endif
15: endfor
16: if (s≤ Smin)
17: return NULL
18: else
19: s= s / 2
20: return AssocExplore (s, A, Econstraint)
21: endif
endAssocExplore ()

Figure 14: BRExplore Algorithm

size only satisfies the failure rate and only one set-associativity with the minimal size meets the
given energy constraint. In the best case, we can find the best configuration with only 1,001 simu-
lations (1× 1,000 for failure rate evaluation and 1× 1 for energy evaluation). Thus, our proposed
BRExplore algorithm can reduce the number of evaluations by up to 30 times ascompared to the ex-
haustive exploration since the exhaustive search requires 30,000 evaluations. When we explore the
design space for the best configuration in terms of runtime with the given constraints such as energy
consumption less than 4.0E+6 nJoules and failure rate less than 0.01 (near tothe worst case), the ex-
haustive approach explores the whole 30 points as marked with circles andtriangles as in Fig. 15(a)
and Fig. 15(b), which indicate the 30,000 simulations for only failure rate evaluations. However, our
BRExplore can find this near-to-optimal one (1 KB protected cache with 8-way set-associativity)
through 7 points out of 30 points, as marked with triangles in Fig. 15(a) and Fig. 15(b). This is
approximately 6 times reduction in terms of the number of evaluations.
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Figure 15: Design Space Explorations to find the best configuration for aPPC in terms of runtime
while satisfying energy consumption (< 4.0E + 6) and failure rate (< 0.01) (32 KB unprotected
cache with varying protected cache size and set-associativity)

8 Summary

Due to the incessant technology scaling, soft errors are becoming a critical design concern for
system reliability. Especially, soft errors in caches are the most important due to large area and low
voltage beyond sub-micron technology.

In this article, we propose a novel approach for mitigating failures causedby soft errors in
multimedia embedded applications where power, performance and reliability areall a concern. We
present Partially Protected Cache (PPC) architectures and propose a simple technique for mapping
data into such caches geared towards their use in multimedia applications. Our experimental results
showed that our technique reduces runtime by 16% and power consumptionby 8% and maintains
the same or the better failure rate in comparison with soft error resilient SEC-DED cache at the
cost of QoS degradation. As compared to the traditionalunsafe cache configuration, our proposed
PPC cache configurationcan reduce failure rates by 47×, while incurring only 1% runtime and 3%
energy overheads. These results on representative multimedia benchmarks clearly demonstrated
the utility of our approach for mitigating soft errors that can affect the safe execution of these
applications at a fraction of the cost and energy of a fully secure cachebased system.

We also propose heuristic algorithms to find the best configuration among the huge design
spaces considering multiple constraints such as failure rate, runtime, and energy consumption. Our
experiments demonstrated that our heuristic algorithms, BFExplore and BRExplore, efficiently ex-
plore the huge design spaces for our proposed PPC architectures, and reduce the number of evalua-
tions by up to 10,000 times as compared to the exhaustive explorations, for example, in finding the
best configuration in terms of failure rate satisfying the given performance and energy consumption
constraints.

Our future work includes finer data partitioning, which can increase the effects of our approach,
and compiler techniques to intelligently differentiate, partition and map failure non-critical data
from failure critical data. Especially, data partitioning algorithms in conjunctionwith vulnerability
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metrics are interesting future works. In addition to data cache, other cachecomponents such as
instruction cache and tags will be studied for applying PPC architectures. We are also planning to
extend the applicability of our technique to other normal applications concerning reliability as well
as power and performance. Further, future work may explore the use of DSE algorithms to adjust
PPC configurations at runtime.
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