
Transaction Level Platform Modeling in SystemC for
Multi-Processor Designs

Lochi Yu, Samar Abdi, Daniel Gajski

Technical Report CECS-07-01
Jan. 25, 2007

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8919

lochi.yu@uci.edu, sabdi@ics.uci.edu, gajski@ics.uci.edu

Abstract

This report describes Transaction Level Platform Modeling in SystemC for MPSoC designs.
The MPSoC platform is a net-list of processing elements, busses and bridge elements. The
Processing Elements which can host a process (a C program) or memory. Busses, modeled
as Universal Bus Channels (UBCs), offer communication functions for these processes and
bridge elements (transducers) link different busses together. This platform yields an executable
Transaction Level SystemC model, and has the advantage that the designer can use the existing
C code and will yield a completely simulatable platform. To test the modeling style, 2 different
platforms of a H264 decoder were developed and tested successfully. This report describes the
internal structure of the busses, processing elements, and transducers of this model.

1

Contents
1 Introduction 1

2 Processing Elements 2
2.1 Processes . 2
2.2 Memory elements . 4

3 Universal Bus Channel 4
3.1 Synchronization . 4

3.1.1 Implementation . 5
3.2 Arbitration . 5
3.3 Addressing and data transfer . 6

4 Transducer Model 7
4.1 Buffers . 7
4.2 Request Buffers . 8
4.3 IO module . 9

5 H264 decoder models 9
5.1 Point-to-Point model . 10
5.2 Shared bus model . 10
5.3 Results . 11

6 Conclusions and future work 12

7 Acknowledgements 12

References 12

i

List of Figures
1 Executable TLM code organization. 2
2 Flag-based synchronization between processes . 5
3 TLM for transducer module . 7
4 H264 decoder platform . 9
5 Point to point H264 decoder model . 10
6 Shared bus H264 decoder model . 11

ii

Transaction Level Platform Modeling in SystemC for Multi-Processor
Designs

L. Yu, S. Abdi, D.Gajski
Center for Embedded Computer Systems

University of California, Irvine

Jan. 25, 2007

1 Introduction
Transaction level modeling using SystemC is emerging as a new paradigm for system modeling,
since the rise of complexity, size and heterogeneity of modern embedded systems have raised the
level of abstraction above RTL. On the other hand, platform based design [1] of multi processor
SoCs (MPSoC) is beign adapted to combine the best features of top down and bottom up system
design.

We present in this report a Transaction Level Platform Modeling style based in SystemC. In this
platform we have C programs running inside Processing Elements (PEs), connected with busses
which are linked by transducers. Each object in the platform is modeled according to a well de-
fined SystemC template. Busses use a well-defined template called Universal Bus Channel (UBC)
[2], transducers use their own defined General Transducer Architecture [3] template, processes are
sc threads and PEs are sc modules. In the SystemC environment, a sc module may have one or
more sc threads, and all sc threads run in parallel. Channels of communication, like the UBC, are
defined as sc channels, while transducers are also sc modules.

The platform is modeled as a top level sc module which instantiates all UBCs, transducers, PEs,
and connects all of them, as defined by the user in the GUI. This will create a fully executable
TLM SystemC code which allows the designer to quickly simulate the platform in this high level
abstraction level.

Related work TLM design in SystemC has gathered a lot of attention since it was introduced [4].
Several models and design flows [5] have been presented centering around TLM.

Other tools have been designed to facilitate platform designs: Metropolis [6] Platform-based
design allows modeling of heterogeneous systems.

This report will describe the Processing Elements in section 2, the Universal Bus Channel struc-
ture in section 3, and the General Transducer structure in section 4. The platform model is shown

1

with two examples of a H264 decoder in section 5. Section 6 has the conclusions and future work.

2 Processing Elements
Every Processing Element (PE) can have processes and/or memory elements. We can define multi-
ple PEs in a platform, and they must be connected to a bus. The processing elements that contains
processes have a defined internal structure, which contains C code, global functions prototypes, and
SystemC code.

2.1 Processes
The processes are the C programs that we want to run. These programs need to interface with
SystemC code in order to do any communication tasks. Figure 1 shows how the code is organized
in a process object.

Figure 1: Executable TLM code organization.

We see in Figure 1 a representation of the executable TLM, which has 3 basic parts. First, there
are the Communication API prototypes, which are the global functions prototypes that are included
in the application C code (lower left corner). This code uses the Communication APIs to access
the third block: the Platform model (right side of the figure). The platform model contains the
Communication API code that accesses SystemC code in each PE module, in order to communicate
with the busses.

A sample SystemC code for a process is shown below:
extern ”C” i n t I n t r a (void) ;
void ∗ p t r I n t r a ;

c l a s s P In t r a : publ ic sc module{

2

5 publ ic :
SC HAS PROCESS(P In t r a) ;
P In t r a (sc module name name) : sc module (name){

SC THREAD(main) ;
}

10 sc por t<i ubc> busport ;
i n t main (){

p t r I n t r a = t h i s ;
I n t r a () ;

}
15 } ;

Each process will reside inside a function in the SystemC class sc module. The constructor will
initialize all processes by defining the functions as independent sc threads (line 8). Line 10 defines
a sc port which will be the interface to the UBC. The communication APIs will access this port to
communicate with the bus.

Inside each thread, a global pointer (declared in line 2) is assigned to the present object, and
then the C program is finally called.

The communication APIs exported to the application C code are global functions which call the
UBC methods inside the corresponding process’ sc thread. They are defined after each sc module,
one set for each process that communicates with the present one:
extern ”C” void recv P ID Intra P ID Main (void ∗ptr , i n t s ize , i n t mode){

P In t r a ∗p = (P In t r a ∗) p t r I n t r a ;
unsigned i n t s rc= P ID Main ;
unsigned i n t des t= P ID Int ra ;

5 / / Send request to transducer
unsigned i n t r=s i ze ;
p−>busport−>wri te (P ID Intra , ADDR Intra RECV Main ,

(unsigned char∗)&r , s i zeo f (unsigned i n t)) ;
p−>busport−>recv (P ID Intra , P ID Tx2 , ptr , s ize , mode,&src ,& des t) ;

10 }
extern ”C” void send P ID Intra P ID Main (void ∗ptr , i n t s ize , i n t mode){

P In t r a ∗p = (P In t r a ∗) p t r I n t r a ;
/ / Send request to transducer
unsigned i n t r=s i ze ;

15 p−>busport−>wri te (P ID Intra , ADDR Intra SEND Main ,
(unsigned char∗)&r , s i zeo f (unsigned i n t)) ;

p−>busport−>send (P ID Intra , P ID Tx2 , ptr , s ize , mode , P ID Intra , P ID Main) ;
}

The pointer p in lines 2 and 12 refer to their specific PE; this was necessary since the global
functions need to refer to one (and only) object of the process sc module. This way, the C program
will call these global functions and interface with the SystemC counterpart and access the busses’
communication functions. Therefore, we must have one class per processing element, and only one
object per class.

3

In summary, every Processing Element will be an sc module with one or more sc threads, each
one running C code. For every PE, there will be glocal functions(called by the C code) which will
access the UBC communication functions.

2.2 Memory elements
In case of memory elements, what the sc module contains is an array of variables and a port to
communicate with the busses. Other PEs will write and read this memory using the UBC’s commu-
nication functions.

3 Universal Bus Channel
This model abstracts the system bus as a single unit of communication. It provides the basic com-
munication services of synchronization, arbitration and data transfer that are part of a transaction.
At the transaction level, we are do not distinguish between different bus protocols. The bus is
modeled as a sc channel, implementing a sc interface which provides 5 public bus communication
functions:

1. Send/Recv for synchronized communication.

2. Read/Write for memory access.

3. MemoryAccess for memory control.

There are also 2 private functions, used by the above functions:

1. ArbiterRequest/ArbiterRelease for mutual exclusion.

2. Synchronize for synchronization.

In the present model, UBCs can only be connected to Processing Elements and transducers.

3.1 Synchronization
Synchronization is required for two processes to exchange data reliably. A sender process must wait
until the receiver process is ready, and vice versa. A Synchronization Table in the UBC keeps the
flags and events (indexed by process ids) that are used by a process to notify its transaction partner
process that it is ready. Synchronization between two processes takes place by one process setting
the flag and the other process checking and resetting the flag. Once the flag has been reset, the
transacting processes are said to be synchronized. We will refer to the process setting the flag as
the initiator and the process resetting the flag as resetter. The initiator and resetter processes for a
given transaction are determined at compile time. In Figure 2 , assume P1 is the initiator process

4

P
1
(
initiator
)
 P
2
(
resetter
)

Sync
.

Flag
 test
 ready

s
e
t

ready

Data

transfer

t
i
m

e

event
 }
wait

reset

Figure 2: Flag-based synchronization between processes

and P2 as the resetter process. Hence, P1 sets the synchronization flag. If P2 is ready before P1, it
must keep reading the flag until P1 sets it. P1 notifies this event when it sets the synchronization
flag. Once P2 reads the flag as set, it recognizes that P1 is ready and resets the flag.

3.1.1 Implementation

The UBC model will have one flag and one sc event for each pair of communicating processes. The
synchronization by the two processes using Send/Recv functions is achieved by both calling the
Synchronize function, which does one of two things, depending if the calling process is the initiator
or the resetter:
unsigned i n t Synchronize (unsigned i n t MyID, unsigned i n t PartnerID ,

unsigned i n t MyMode) {
i f (MyMode==UBC INITIATOR && MyID==P ID Tx2 && PartnerID==P ID Int ra) {

sync Tx2 Intra =1;
5 ev sync Tx2 Intra . no t i fy () ;

r e tu rn UBC INITIATOR;
}
i f (MyMode==UBC RESETTER && PartnerID==P ID Tx2 && MyID==P ID Int ra) {

while (sync Tx2 Intra != 1){
10 wait (ev sync Tx2 Intra) ;

}
sync Tx2 Intra =0;
r e tu rn UBC RESETTER;

}
15 . . .

3.2 Arbitration
After synchronization, the resetter process will attempt to reserve the bus for data transfer. This is
necessary since the bus is a shared resource and multiple transactions attempted at the same time

5

must be ordered sequentially. The resetter process will request an arbitration to the bus, and since
the UBC model is exclusive for functional verification, the arbiter is modeled as a mutex (which is
a sc mutex in SystemC. An arbitration request corresponds to a mutex lock operation and once the
transaction is complete, the process will release the arbitration with a mutex unlock operation.

3.3 Addressing and data transfer
In order to do addressing and data transfer, the UBC uses the following variables and events:

1. Variable BusAddress that stores the starting address of the active transaction;

2. Event AddrSet that is notified when TxAddress is set (it is implemented as a sc event);

3. Variable DataPtr that keeps the pointer to the transacted data;

4. Variable DataSize that keeps the size in bytes of the transacted data;

5. Variable RdWr that identifies if a transaction is read or write (for Read/Write functions).

For synchronized communication, the resetter process sets BusAddress to the appropriate value from
the bus address table. This is done by checking the process IDs and assigning the corresponding
bus address:
i f (MyProcID==P ID Int ra && SendProcID==P ID Tx2)

BusAddress=ADDR DH Tx2 Intra ;
e l s e i f (MyProcID==P ID Trans && SendProcID==P ID Tx2)

BusAddress=ADDR DH Tx2 Trans ;

For memory transactions, the reader or write process sets BusAddress. This is followed by the
notification of event AddrSet that wakes up the other process or memory controller that is snooping
the address bus:
i f (MyProcID==P ID Tx2 && SendProcID==P ID Int ra){

while (BusAddress !=ADDR DH Intra Tx2){
wait (AddrSet) ;

}
5 }

In case of memory transaction, the memory controller reads the address BusAddress to check if the
address falls in its range and computes the offset. If it is a read it sets DataPtr to the right address in
the local memory according to computed offset, and if it’s a write, it will proceed with the memory
copy:
void MemoryAccess (unsigned i n t MEMLOW, unsigned i n t MEM HIGH, unsigned char ∗local mem) {

while (1) { / / memory i s always serv i c ing
while (BusAddress < MEMLOW | | BusAddress > MEM HIGH) {

wait (AddrSet) ; / / every time some address i s s e t

6

5 }
i f (RdWr == UBC READ) { / / I am addressed for read operat ion

DataPtr = local mem + (BusAddress − MEMLOW) ; / / base + o f f s e t
wait (SETUP DELAY, SC NS) ; / / only for s imulat ion
wait (HOLD DELAY+1 , SC NS) ; / / only for s imulat ion

10 }
e l se i f (RdWr == UBC WRITE){ / / I am addressed for wri te operat ion

memcpy (local mem + (BusAddress − MEMLOW) , DataPtr , DataSize) ;
wait (HOLD DELAY+1 , SC NS) ; / / only for s imulat ion

}
15 } / / elihw (1)

} / / end of MemoryAccess method

4 Transducer Model

Figure 3: TLM for transducer module

The transducer connects two busses, and its purpose is to facilitate multi-hop transactions, where
one process sends data to another process that is not directly connected to the sender via an UBC.
The basic functionality of the transducer is to simply receive data from the sender process, store it
locally and send it to the receiver process once the latter becomes ready. The transducer is modeled
as a sc module and there are three types of objects instantiated under the top level of the transducer.

4.1 Buffers
The data in transit via the transducer is stored in circular buffers, modeled as FIFO channels. The
number of channels in a buffer is equal to the total number of communication paths through the
transducer. Each buffer is modeled as a sc channel and implements a sc interface which supports
four functions as follows:

1. MayIWrite returns true if the requested space is available in the buffer else returns false;

7

2. MayIRead returns true if the requested number of bytes are present in the buffer else returns
false;

3. BufferWrite copies the incoming data to the buffer and updates the tail pointer;

4. BufferRead copies data from the buffer to the output and updates the head pointer;

4.2 Request Buffers
In general, before any data is sent/received to/from the transducer, a request must be made such that
the transducer interface may check if the internal buffers can accomodate the data or supply it. Such
a request may be included in the packet itself, but if the packet cannot fit, additional logic is needed
in the bridge to reject the packet and in the process to check for rejection and resend it. For simplic-
ity, we will only consider the scenario where the PE writes the request, followed by synchronization
and data transfer. In case of multiple competing processes, the requests from different processes are
arbitrated by the transducer and the communication with the successful process is initiated.

There are two request buffers in the transducer, one for each bus interface. The number of words
per request buffer is equal to the number of communication paths through the bridge. The request
buffer is modeled as any other memory module in a PE and thus has an address range on the bus.
Each word in the request buffer has a unique bus address. The requesting process writes the number
of bytes it expects to read/write into the communication path’s corresponding request buffer. The
request buffer is a module that supports two functions:

1. GetNextReady checks the request words in the buffer in a round-robin fashion. For the chosen
request, it checks if the corresponding buffer has enough data/space to complete the transac-
tion of requested size, calling the buffers’ functions MayIWrite and MayIRead. If it returns
Tx Yes, it returns the request ID and path, else it checks the next pending request:

. . .
i f (RequestBuffer [1]) {

∗Near = P ID Trans ;
∗Remote = P ID Main ;

5 ∗ s i ze = RequestBuffer [1] ;
∗TransferType = UBC RECV;
∗Mode = UBC RESETTER;
i f (OPB2DH−>MayIRead(∗Remote ,∗Near ,∗ s i ze) == Tx Yes)

r e tu rn t rue ;
10 }

i f (RequestBuffer [2]) {
∗Near = P ID Int ra ;
∗Remote = P ID Main ;
∗ s i ze = RequestBuffer [2] ;

15 ∗TransferType = UBC SEND;
∗Mode = UBC RESETTER;
i f (DH2OPB−>MayIWrite (∗Near ,∗Remote ,∗ s i ze) == Tx Yes)

8

r e tu rn t rue ;
}

20 . . .

2. ClearRequest removes the request from the buffer by setting the size to zero.

4.3 IO module
The IO module is the interface function of the transducer that talks to other processes on the bus.
It starts by calling the GetNextReady function in the request buffer. Then, for the selected sender
or receiver process, it calls the UBC receive or send function respectively. The IO module assumes
the role of the Resetter if the process is the Initiator, and vice versa. The data received from sender
is written to the corresponding FIFO. The data to be sent to the receiver is first read from the
corresponding FIFO before calling the transducer send function. Once the requested transaction is
completed, the request removed by calling the Clear function in the request buffer module.

5 H264 decoder models
In order to test our platform modeling style, we chose a H264 decoder and used the templates
described above. The H264 decoder takes a .cif.264 file, decodes and displays it in the screen, using
the Simple DirectMedia Layer (SDL) libraries in the GNU/Linux OS. We divided the decoder into
6 blocks:

Figure 4: H264 decoder platform

The input file is a .cif.264 file with a video clip of at least 25 frames. It is read by the ”Main”
block which does much of the processing. The main block initially calls the ”Get next nal” block
which reads the file and obtains a ”NAL” unit, which is the logical data packet of the H264 video
codec. The ”Input bits” block manages the pointers of the NAL units buffer. The two other blocks

9

”Intra dispatch” and ”Trans luma” process the video in terms of their luma and chroma data. The
last block ”Mult” does array multiplication for ”Trans luma”.

Two different models were developed: a point-to-point model with 5 busses and a shared bus
model with 2 busses and 1 transducer. The goal was to test the platform modeling style with two
different platforms, by reading a set of input files and visualizing the output.

5.1 Point-to-Point model
This model shown in Figure 5 has one main sc module with the main sc thread. All other PEs
communicate with the main module using an individual bus; there are a total of 5 busses. The
functions were mapped one-to-one to each block.

Figure 5: Point to point H264 decoder model

5.2 Shared bus model
The second platform also maps each function to a hardware block. The blocks share 2 busses and
uses a transducer. This model shown in Figure 6. The main sc thread sends and receives data

10

Table 1: Simulation times and code size for input clip of 25 frames
Results

Platform SystemC LOC Sim time
C model - 1.865s
Point-to-Point 1362 4.690s
Shared bus 1571 14.551s

from the PEs connected to Bus1 and from the other PEs connected to Bus2, via the transducer.
There is also local communication between the module Trans luma and Mult which does not use
the transducer but uses only Bus2.

Figure 6: Shared bus H264 decoder model

5.3 Results
Both models were tested successfully with 4 .cif.264 files, with file sizes ranging from 28572 bytes
to 632376 bytes. The frames decoded in each clip ranged from 25 frames in the smallest file to 360
frames in the largest. We present in Table 1 the simulation times for the smallest clip and code sizes
of both models in comparison with the original C code of the H264 decoder. Note: the simulation
environment was a Pentium 4, 2.80Ghz, 1Mb Cache, 1Gb RAM, running Linux kernel 2.6.9.

We can see in Table 1 that while the code size is similar between the point-to-point model and
the shared-bus model, the simulation time is considerably higher in the latter one. In the second
model, the arbitration of the busses comes into play since the two busses are not exclusive for any
block, as was in the first model. Furthermore, the presence of the transducer and its FIFOs produce
extra overhead that impacted on the simulation time.

11

6 Conclusions and future work
In this report, we presented a transaction level platform modeling style for MPSoC in SystemC.
The model consists of processes, UBCs and transducers. The processes are implemented using
sc threads inside PEs, which are modeled as sc modules. Busses are modeled as sc channels and
act as a single unit of communication, providing synchronization, arbitration and data transfer.
The transducers connect two busses, and consist of buffers, 2 request buffers, and 2 IO modules.
These models enable us to build an executable TLM in SystemC code, using the same C code to
simulate the system. We tested the modeling style with 2 different platforms for a H264 decoder:
a point-to-point model and a shared-bus model. Both performed successfully but with different
simulation times. In the future, we plan to upgrade the transducer to allow transducer-to-transducer
and transducer-to-memory module communication.

7 Acknowledgements
This work was supported in part by the Gigascale Systems Research Corporation (GSRC) under its
Heterogeneous Systems Design pillar (Task 1.4.3.2). We would like to thank Abhijit Davare of UC
Berkeley for pointing us to the original C reference of the H.264 decoder.

References
[1] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, A. Sangiovanni-Vicentelli. System Level

Design: Orthogonalization of Concerns and Platform-Based Design. In IEEE Transactions on
Computer-Aided Design, Vol. 19, No. 12, December 2000.

[2] S. Abdi, D. Gajski. UBC: A Universal Bus Channel for Transaction Level Modeling. Technical
Report CECS-06-07, University of California, Irvine, April 2006.

[3] D. Gajski, H. Cho, S. Abdi. General Transducer Architecture. Technical Report CECS-05-08,
University of California, Irvine, August 2005.

[4] T. Grotker. System Design with SystemC. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[5] A. Donlin. Transaction level modeling: flows and use models. In CODES+ISSS ’04: Proceed-
ings of the 2nd IEEE/ACM/IFIP international conference on Hardware/software co design and
system synthesis, pages 75-80, New York, NY, USA, 2004. ACM Press.

[6] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-Vicentelli. Metropolis: An
Integrated Electronic System Design Environment. IEEE Computer Society, April 2003.

12

	1 Introduction
	2 Processing Elements
	2.1 Processes
	2.2 Memory elements

	3 Universal Bus Channel
	3.1 Synchronization
	3.1.1 Implementation

	3.2 Arbitration
	3.3 Addressing and data transfer

	4 Transducer Model
	4.1 Buffers
	4.2 Request Buffers
	4.3 IO module

	5 H264 decoder models
	5.1 Point-to-Point model
	5.2 Shared bus model
	5.3 Results

	6 Conclusions and future work
	7 Acknowledgements
	References

