

CAPPS: A Framework for Power-Performance Trade-Offs in

On-Chip Communication Architecture Synthesis ∗

Sudeep Pasricha, Young-Hwan Park, Fadi J. Kurdahi and Nikil Dutt

Center for Embedded Computer Systems
University of California Irvine
Irvine, CA 92697-3425, USA

{spasrich, younghwp, kurdahi, dutt}@uci.edu

CECS Technical Report #06-12
November, 2006

Abstract

 On-chip communication architectures have a significant impact on the power consumption and performance of
modern Multi-Processor System-on-Chips (MPSoCs). However, customization of such architectures for an application
requires the exploration of a large design space. Thus designers need tools to rapidly explore and evaluate relevant
communication architecture configurations exhibiting diverse power and performance characteristics. In this technical
report we present an automated framework (CAPPS) for fast system-level, application-specific, power-performance trade-
offs in bus matrix communication architecture synthesis. Our technical report makes two specific contributions. First, we
develop energy macro-models for system-level exploration of bus matrix communication architectures. Second, we
incorporate these macro-models into a bus matrix synthesis flow that enables designers to efficiently explore the power-
performance design space of different bus matrix configurations. Experimental results show that our energy macro-models
incur less than 5% average cycle energy error across 180, 130 and 90nm technology libraries. Our early system-level power
estimation approach also shows a significant speedup of as much as 2000X when compared with detailed gate-level power
estimation. Furthermore, our bus matrix synthesis framework generates a tradeoff space with designs that exhibit an
approximately 20% variation in power and 40% variation in performance for an industrial networking MPSoC application,
demonstrating the usefulness of our approach.

∗ This research was partially supported by grants from SRC (2005-HJ-1330) and a CPCC fellowship.

CAPPS: A Framework for Power-Performance Trade-Offs in
On-Chip Communication Architecture Synthesis

Sudeep Pasricha, Young-Hwan Park, Fadi J. Kurdahi, Nikil Dutt

Center for Embedded Computer Systems
University of California, Irvine, CA

{spasrich, younghwp, kurdahi, dutt}@uci.edu

ABSTRACT
On-chip communication architectures have a significant
impact on the power consumption and performance of
modern Multi-Processor System-on-Chips (MPSoCs).
However, customization of such architectures for an
application requires the exploration of a large design space.
Thus designers need tools to rapidly explore and evaluate
relevant communication architecture configurations
exhibiting diverse power and performance characteristics. In
this technical report we present an automated framework for
fast system-level, application-specific, Power-Performance
trade-offs in bus matrix Communication Architecture
Synthesis (CAPPS). Our technical report makes two specific
contributions. First, we develop energy macro-models for
system-level exploration of bus matrix communication
architectures. Second, we incorporate these macro-models
into a bus matrix synthesis flow that enables designers to
efficiently explore the power-performance design space of
different bus matrix configurations. Experimental results
show that our energy macro-models incur less than 5%
average cycle energy error across 180, 130 and 90nm
technology libraries. Our early system-level power
estimation approach also shows a significant speedup of as
much as 2000X when compared with detailed gate-level
power estimation. Furthermore, our bus matrix synthesis
framework generates a tradeoff space with designs that
exhibit an approximately 20% variation in power and 40%
variation in performance for an industrial networking
MPSoC application, demonstrating the usefulness of our
approach.

1. INTRODUCTION
The rapidly increasing complexity of Multi-Processor
System-on-Chip (MPSoC) designs, coupled with poor global
interconnect scaling in the deep sub-micron era, is making
on-chip communication a critical factor affecting overall
system performance and power consumption [1]. These
communication architectures are not only a major source of
performance bottlenecks for data intensive application
domains, such as multimedia and networking, but recent
research has shown that they also consume as much power as
other well-known primary sources of power consumption,
such as processors and caches [2]. Designers must therefore
give special emphasis to the selection and design of on-chip
communication architectures early in the design flow,
preferably at the system level.

Several different types of on-chip communication
architectures such as hierarchical shared buses [3] [4], bus
matrices [5] and network-on-chip (NoC) [6] have been
proposed. While hierarchical shared bus architectures, such as
those proposed by AMBA [3] and CoreConnect [4] have been
extensively used in the past, they are often unable to meet the
high bandwidth requirements of emerging applications.
Network-on-chips are able to overcome these bandwidth
limitations, but can consume more area and significantly
more power than shared bus-based designs in current
lithographic processes [7]. Bus matrix architectures, such as
the AMBA AHB bus matrix [5], are an evolution of the
hierarchical shared bus scheme. They consist of several
parallel buses that can provide superior bandwidth response,
while keeping the simple, standard interface of bus-based
communication architectures, which is essential in promoting
IP reuse. Such bus matrix architectures are being increasingly
used in designs today.
On-chip communication architectures such as the bus matrix
typically have customizable topologies and parameters, which
creates a vast exploration space [8]. Different configurations
in this space can have vastly different power/energy and
performance characteristics. While meeting the performance
constraints of an application is certainly an important criterion
for the choice of a particular configuration, minimization of
energy consumption is just as relevant, especially for mobile
devices which run on batteries and have a limited energy
budget [9]. Even more important are the thermal implications
of power consumption. A large portion of the energy
consumed from the power supply is converted into heat. An
increase of even 10 ºC in the operating temperature has been
shown to not only increase interconnect delay (reducing
performance), but also increase electromigration (EM),
which significantly increases device failure rate [10]. Since
interconnect temperatures can reach as high as 90 ºC [11],
reducing power consumption becomes essential to ensure
correct operation, and also to reduce costs for expensive
cooling and packaging equipment.
Consequently, designers require a way to effectively traverse
the vast communication architecture exploration space during
its design/ synthesis phase, to trade off power-performance
characteristics. Due to the highly complex nature of modern
applications, performing performance and especially power
exploration at the lower RTL/gate levels can be excessively
time consuming. There is a need to raise the exploration
abstraction to the system level, where not only can the speed

of exploration be improved, but design decisions also have a
greater impact on power and performance, than at the lower
levels. However, such an effort requires reliable power
estimation at the system level, which is not a trivial task.

1.1 Report Overview and Contributions
In this technical report, we address the issues highlighted
above by proposing an automated synthesis framework
(CAPPS) to perform application-specific, system-level
power-performance trade-offs, for bus matrix
communication architectures. Our key contributions in this
technical report are: (i) detailed energy macro-models for
the bus matrix architecture, which can be used in any cycle-
accurate simulation models for power estimation across
technology libraries; and (ii) an automated synthesis
framework for the bus matrix architecture, which uses these
energy macro-models in the fast and accurate transaction-
level CCATB [12] simulation environment in SystemC [13],
to efficiently explore the power-performance design space of
the generated set of solutions. Our experimental results
demonstrate estimation accuracy of average cycle energy to
within 5% using our energy macro-modeling approach with
respect to detailed gate-level estimation using Synopsys
PrimePower [14] for 180, 130 and 90nm technology libraries.
Moreover, our system-level power estimation approach
achieves upto 2000X speedup over gate-level estimation
when the macro-models are plugged into the transaction-level
CCATB [12] simulation environment in SystemC [13].
Applying our synthesis framework on a networking
industrial MPSoC application used for data packet
processing and forwarding, enabled a potential tradeoff of
approximately 20% for power, and 40% for performance,
for different points in the solution space, showing the
effectiveness of our approach.

2. RELATED WORK
There is a large body of work dealing with performance-
oriented system-level synthesis of hierarchical shared bus
[15-17], NoCs [18] and, more recently, bus matrix/crossbar
[8] [43] architectures. Some approaches also consider power-
aware synthesis for hierarchical shared buses [19] and NoCs
[20], but power-aware synthesis for bus matrix architectures
has not been addressed. There have also been a few pieces of
work which have looked at power-performance tradeoffs for
segmented buses [21] and NoCs [22]. Our work differs from
existing work in that we focus on the bus matrix
communication architecture, for which we create an
automated synthesis framework to enable exploration of
power-performance trade-offs at the system level.
Power modeling and estimation is typically performed either
at the transistor, gate or register-transfer levels [23]. In
practice, most commercial design flows use register-transfer
or gate-level power estimation tools. However, due to the
highly complex nature of modern applications, these
approaches are too inefficient for early power estimation. To
overcome this drawback, recent approaches [10] [24-29]
analyze power for communication architectures at the

system level, where significant improvements in run time
can be achieved, at the cost of estimation accuracy. Some of
these approaches extract gate-level power estimates and
characterize transaction-level models [26-27]. Although
these approaches allow for fast estimation, they can be
highly inaccurate and lack reusability across technology
libraries. Other approaches have created energy macro-
models from gate-level power estimates for the AMBA
AHB hierarchical shared bus [10], STBus interconnection
network [25] and NoCs [24]. One of the goals of our work
is to create such energy macro-models for the bus matrix
communication architecture that can then be used in a
system-level simulation environment for fast cycle
energy/power estimation. We also explore the effect of
technology library scaling on system-level energy macro-
model based estimation time and accuracy.

µP1
S1

S2

MEM1

MEM2

Input
stage

Arbiter slavesmatrixmasters Decode

Input
stage

Decode

µP2

Output
stage

Arbiter
Output
stage

Arbiter
Output
stage

Arbiter
Output
stage

Figure 1. AMBA AHB Full Bus Matrix

µP1
S1

S2

MEM1

MEM2
Input
stage

slavesmatrixmasters Decode

Input
stage

Decode

µP2

Arbiter
Output
stage

Arbiter
Output
stage

Figure 2. AMBA AHB Partial Bus Matrix

3. AMBA AHB BUS MATRIX OVERVIEW
We use the AMBA AHB (Advanced High Performance) bus
matrix [5] as a representative of bus matrix communication
architectures. The AHB [3] bus protocol supports pipelined
data transfers, allowing address and data phases belonging
to different transactions to overlap in time. Additional
features, such as burst transfers and transaction split support,
enable high data throughputs. A bus matrix configuration
consists of several AHB buses in parallel which can support
concurrent high bandwidth data streams. Figure 1 shows a 2
master, 4 slave AMBA AHB full bus matrix. The Input
stage is used to handle interrupted bursts, and to register and
hold incoming transfers if receiving slaves cannot accept
them immediately. The Decoder generates select signals for
slaves, and also selects which control and read data inputs
received from slaves are to be sent to the master. The
Output Stage selects the address, control and write data to
send to a slave. It calls the Arbiter that uses an arbitration
scheme to select the master that gets to access a slave, if
there are simultaneous requests from several masters.
Unlike in traditional hierarchical shared bus architectures,

arbitration in a bus matrix is not centralized, but distributed
so that every slave has its own arbitration. Also, typically, all
busses within a bus matrix have the same data bus width,
which usually depends on the application.
One drawback of the full bus matrix structure shown in
Figure 1 is that it connects every master to every slave in the
system, resulting in a large number of wires and logic
components in the matrix. While this configuration ensures
high bandwidth for data transfers, it is certainly not optimal as
far as power consumption is concerned. Figure 2 shows a
partial bus matrix that has fewer wires and components (e.g.
arbiters, MUXs), which consequently reduces power
consumption, as well as area, at the cost of performance (due
to an increase in the number of shared links). Our synthesis
framework (described in Section 5) starts with a full bus
matrix, and aims to generate a set of partial bus matrix
configurations, with different number of buses and logic
components that meet all the performance constraints of the
application being considered.

4. BUS MATRIX ENERGY MODELS
In this section, we present details of our energy macro-
model creation methodology. We first describe the basics of
energy macro-modeling. Then we present the macro-model
generation methodology. Finally, we present the energy
models for all the components in the bus matrix, including
bus wires.

4.1 Background on Energy Macro Models
The energy consumption of a bus matrix can be obtained by
identifying events that cause a noticeable change in its
energy profile. For this purpose, we create energy macro-
models that can encapsulate events or factors having a
strong correlation to energy consumption for a given
component. A macro model consists of variables that
represent factors influencing energy consumption, and
regression coefficients that capture the correlation of each of
the variables with energy consumption. A general energy
macro model for a component can be expressed as:

 ... (1) ∑ ⋅+=
=

n

1i
ii0componentE Ψαα

where α0 is the energy of the component that is independent
of the model variables, and αi is the regression coefficient
for the model variable Ψi .
For the purpose of our energy macro-models, we considered
three types of model variables representing factors
influencing energy consumption: control, data and
structural. The control factor represents control events,
involving a control signal that triggers energy consumption
either when it transitions from 1 to 0 or 0 to 1, or when it
maintains a value of 0 or 1 for a cycle. Control variables can
either have a value of 1 when a control event occurs, or 0
when no event occurs, in the energy macro model relation in
Eq. (1). The data factor represents data events that trigger
energy consumption on data value changes. Data variables
take an integer value in Eq. (1) representing the Hamming

distance (number of bit-flips) of successive data inputs.
Finally, structural factors, such as data bus widths and
number of components connected to the input also affect
energy consumption of a component. They are represented
by their integer values in Eq. (1).

Synthesis
(Cadence PKS)

RTL Simulation
(ModelSim)

Configure & Generate AMBA
Bus Matrix (Synopsys Coretools)

Gate-level Power Simulation
(PrimePower/ModelSim)

Tech Lib

Signal Waveforms

Power Reports Macro-model
Template Creation

Multiple Regression Analysis
(GNU R)Energy Macro Models

System TestBench
1

2

3

plug into cycle-accurate energy
estimation environment

4

5

6

Perl
scripts

Figure 3. Energy Macro-model Generation Methodology

4.2 Methodology Overview
A high level overview of the methodology used to create
energy macro-models in this work is shown in Figure 3. We
start with a system testbench, consisting of masters and slaves
interconnected using the AMBA AHB bus matrix fabric. The
testbench generates traffic patterns that exercise the matrix
under different operating conditions. Synopsys Coretools [14]
is used to configure the bus matrix (specify data bus width,
number of masters and slaves etc.) and generate a
synthesizable RTL description of the bus matrix architecture
(Step 1). This description is synthesized to the gate-level with
the Cadence Physically Knowledgeable Synthesis (PKS) [42]
tool, for the target standard cell library (Step 2). PKS pre-
places cells and derives accurate wire length estimates during
logic synthesis. In addition, it generates a clock tree including
clock de-skewing buffers. The gate-level netlist is then used
with Synopsys PrimePower [14] to generate power numbers
(Step 3).

Figure 4. Macro-model Template

In parallel with the synthesis flow, we perform RTL
simulation to generate signal waveform traces for important
data and control signals (Step 4). These signal waveforms
are compared with cycle energy numbers, obtained after

processing PrimePower generated power report files with
Perl scripts, to determine which data and control signals in
the matrix have a noticeable effect on its energy
consumption. The selected data and control events become
the variables in a macro-model template that consists of
energy and variable values for each cycle of testbench
execution (Step 5). Figure 4 shows an example of a macro-
model template for one of the components of the bus matrix.
The template consists of energy values (cycle_energy) and
variable values (S_load, S_desel, HD_addr, S_drive) for
each cycle of testbench execution. This template is used as
an input to the GNU R tool [30] that performs multiple
linear regression analysis to find coefficient values for the
chosen variables (Step 6). Steps 1-6 are repeated for
testbenches having different structural attributes such as
data bus widths and number of input components, to
identify structural factors/variables that may influence cycle
energy.
Statistical coefficients such as Multiple-R, R-square and
standard deviation for residuals [31] are used to determine
the goodness of fit and the strength of the correlation
between the cycle energy and the model variables. Once a
good fit between cycle energy and macro model variables is
found, the energy macro models are generated in the final
step. These models can then be plugged into any system-
level cycle-accurate or cycle-approximate simulation
environment, to get energy consumption values for the
AMBA AHB bus matrix communication architecture.

4.3 Bus Matrix Component Energy Models
To obtain the energy consumption for the entire AMBA
AHB bus matrix communication architecture, we used our
energy macro-model generation methodology to create
macro-models for each of its components. The total energy
consumption of a bus matrix can be expressed as:

EMATRIX = EINP + EDEC + EARB + EOUT + EWIRE ... (2)

where EINP and EDEC are the energy for the input and
decoder components for all the masters connected to the
matrix, EARB and EOUT are the energy for arbiters and output
stages connecting slaves to the matrix, and EWIRE is the
energy of all the bus wires that interconnect the masters and
slaves. Energy macro-models were created for the first four
components, with EWIRE being calculated separately.
The energy macro-models are essentially of the form shown
in Eq. (1). Leakage and clock energy, which are the major
sources of independent energy consumption are considered
as part of the static energy coefficient α0 for each of the
components. Based on our experiments, we noticed a fairly
linear relationship between cycle energy and macro-model
variables for the components. We will now present the
energy models for each of the components.
 Input Stage: Every master connected to a bus matrix has its
own input stage, which buffers address and control bits for a
transaction, if a slave is busy. The input stage model can be
expressed as:

 EINP = αinp0 + αinp1.Ψload + αinp2.Ψdesel + αinp3.ΨHDin +
 αinp4.Ψdrive ... (3)

where Ψload and Ψdrive are control signals asserted when the
register is loaded, and when the values are driven to the
slave respectively; Ψdesel is the control signal from the
master to deselect the input stage when no transactions are
being issued; and ΨHDin is the Hamming distance of the
address and control inputs to the register.
 Decoder: A decoder component is connected to every
master, and consists of logic to generate the select signal for
a slave after decoding the destination address of an issued
transaction. It also handles multiplexing of read data and
response signals from slaves. The decoder energy
consumption model can be formulated as:

 EDEC = αdec0 + αdec1.Ψslavesel + αdec2.Ψrespse l + αdec3.ΨHDin +
 αdec4.Ψsel ... (4)

where Ψslavesel and Ψrespsel are control signals asserted in the
cycle in which the slave select and the data/response MUX
select signals are generated, respectively; ΨHDin is the
Hamming distance of the read data and response signals
from the slave; and Ψsel is a control signal which transitions
when the decoder is selected or deselected.
Output Stage: Every slave is connected to the bus matrix
through the output stage, which handles multiplexing of
address and control bits from the masters. It also calls the
arbiter to determine when to switch between accessing
masters. The energy consumption for the output stage is
given by:

 EOUT = αout0 + αout1.Ψaddrsel + αout2.Ψdatasel + αout3.ΨHDin +
 αout4.Ψnoport ... (5)

where Ψaddrsel and Ψdatasel are control signals asserted when
address and data values are selected after a call to the arbiter
results in a change in the master accessing the slave; ΨHDin is
the Hamming distance of address and data inputs; and Ψnoport
is a control signal from the arbiter, which goes high when
no masters access the slave in a cycle.
Arbiter: The arbiter is invoked by the output stage, and uses
an arbitration scheme to grant access to one of the
potentially several masters requesting for access to the slave.
The cycle energy model for the arbiter is calculated as:

 EARB = αarb0 + (αarb1+n.αarb2).Ψarb + αarb3.Ψarb+1 +
 (αarb4+n.αarb5).Ψdesel + αarb6.Ψdesel+1 ... (6)

where Ψarb and Ψarb+1 are control signals representing the
cycle when arbitration occurs, and the subsequent cycle
when the master select signal is generated; Ψdesel and Ψdesel+1
are control signals representing the cycle when the arbiter is
not selected by any master, and the subsequent cycle when it
generates the noport signal for the output stage; and n
represents the number of masters connected to the arbiter.
Bus Wires: The bus wires that connect masters, slaves and
logic components in the bus matrix dissipate dynamic power
due to switching, and leakage power due to the repeaters
inserted in long wires to reduce signal delay. The expression
for energy consumption of a bus wire from [32] is extended

to include the effect of repeaters (to reduce wire delay), and
is given as:

EWIRE = 0.5 (ΣCL+2
ddV

d
l .CREP + l.(CG+2CC)).α +

d
l .EREP ... (7)

where Vdd is the supply voltage, α is the switching factor
representing bit transition activity on the wire, ΣCL is the
sum of load capacitances of all the components connected to
the wire, including the driver and receiver, CREP is the
capacitance of a repeater, CG is the wire-to-ground
capacitance per unit length, CC is the coupling capacitance
per unit length of the wire to its adjacent wires, l is the
length of the wire, d is the inter-repeater distance and EREP is
the repeater internal energy.
This single bus wire model is extended for an N bit bus. The
Berkeley Predictive Technology Model (PTM) [41] is used
to estimate values for ground (CG) and coupling (CC)
capacitances. The static energy of the repeater (EREP) and its
capacitance (CREP) are obtained from data sheets. The
component load capacitance on the wire (CL) is obtained
after component synthesis. Repeater capacitance and static
energy is obtained from data sheets. A high-level simulated-
annealing based floorplanner [33] is used to generate IP
block placement to obtain wire lengths and [34] is used to
determine optimal-delay repeater spacing/sizing. Finally, the
switching factor (α) is obtained from simulation.

5. CAPPS SYNTHESIS FRAMEWORK
In this section, we describe the CAPPS automated
framework for fast system-level, application-specific,
power-performance trade-offs in bus matrix communication
architecture synthesis. First we describe how performance
constraints are represented in our approach, followed by our
assumptions and goals. Next we present the high level
floorplanning and wire delay estimation engines used to
detect and eliminate clock cycle timing violations at the
system level, as well as determine bus wire lengths. Finally,
we describe the flow for the CAPPS framework in detail.

5.1 Background
Typically, MPSoC designs have performance constraints that
are dependent on the nature of the application, and must be
satisfied by the underlying on-chip communication architecture.
The throughput of communication between components is a
good measure of the performance of a system [15]. To
represent performance constraints in our approach, we define a
Communication Throughput Graph CTG = G(V,A) that is a
directed graph, where each vertex v represents a component in
the system, and an edge a connects components that need to
communicate with each other. A Throughput Constraint
Path (TCP) is a sub-graph of a CTG, consisting of a single
component for which data throughput must be maintained, and
other masters, slaves and memories that are in the critical path
impacting the maintenance of the throughput. Figure 5 shows a
CTG for a SoC subsystem, with a TCP involving the ARM2,
MEM2, DMA and ‘Network I/F’ components, where data

packets must stream out of ‘Network I/F’ at a rate of at least 1
Gbps.

ARM1

ARM2

ITC

MEM1

ROM
MEM2

Timer

Network I/F

MEM3

DMA1 Gbps

Figure 5. Communication Throughput Graph (CTG)

5.2 Assumptions and Goals
We are given an MPSoC application which has certain
minimum performance constraints that need to be satisfied.
The application has several components (IPs) that need to
communicate with each other. We assume that hardware-
software partitioning has taken place and that the appropriate
functionality has been mapped onto hardware and software
IPs. These IPs are standard “black box” library components
that cannot be modified during the synthesis process. The
target standard bus matrix communication architecture (e.g.
AMBA AHB bus matrix) is also specified.
The goal of our bus matrix synthesis framework then, is to
automatically generate a set of bus matrix configurations for
the given application that meet the minimum performance
constraints of the application. The output of the framework is
a power-performance trade-off graph for the generated set of
valid bus matrix solutions, allowing a designer to pick a
solution with the desired combination of power and
performance characteristics.

5.3 Floorplan and Wire Delay Estimation
Engines
It is possible that after a bus matrix architecture has been
synthesized at the system-level, it might not be physically
realizable due to bus cycle timing violations [35]. This can
be illustrated as follows. Figure 6 shows a floorplan for a
system where IP1 and IP2 are connected to the same bus as
ASIC1, Mem4, ARM, VIC and DMA components, and the
bus has a clock frequency of 333 MHz. This implies that the
bus cycle time is 3 ns. For a 0.13 µm process, a floorplanner
determines a wire length of 9.9 mm between pins
connecting the two IPs to the bus. Using output pin load
capacitance values for IPs obtained from synthesis, the wire
delay is calculated from formulations presented in [36-37],
and found to be 3.5 ns, which clearly violates the bus clock
cycle time constraint of 3 ns. Typically, once such violations
are detected at the physical implementation stage in the
design flow, designers end up pipelining the busses by
inserting latches, flip-flops or register slices on the bus, in
order to meet bus cycle time constraints. However, in our
experience, such pipelining of the bus can not only have an
adverse effect on critical path performance, but also requires
tedious manual reworking of RTL code and extensive re-
verification of the design that can be very time consuming
[35]. It is therefore important to detect and eliminate such

violations as early as possible in the design flow, preferably
at the system level. To detect and eliminate any possible bus
cycle time violations in the bus matrix communication
architecture solutions generated by our synthesis framework,
we make use of high-level floorplanning and wire delay
estimation engines.

IP1

IP2

Figure 6. Example floorplan with bus cycle timing
violation

The floorplanning stage in a typical design flow arranges
arbitrarily shaped, but usually rectangular blocks
representing circuit partitions, into a non-overlapping
placement while minimizing a cost function, which is
usually some linear combination of die area and total wire
length. Our floorplanning engine is adapted from the
simulated annealing based floorplanner proposed in [33].
The input to the floorplanner is a list of components and
their interconnections in the system. Each component has an
area associated with it (obtained from RTL synthesis).
Dimensions in the form of width and height (for “hard”
components) or bounds on aspect ratio (for “soft”
components) are also required for each component.
Additionally, maximum die size and fixed locations for hard
macros can also be specified as inputs. Given these inputs,
our floorplanner minimizes the cost function

Cost = w1.Area +w2.BusWL +w3.TotalWL ... (8)

where Area is the area of the chip, BusWL is the wire length
corresponding to wires connecting components on a bus,
TotalWL is total wire length for all connections on the chip
(including inter-bus connections) and w1, w2, w3 are
adjustable weights that are used to bias the solution. The
floorplanner outputs a non overlapping placement of
components from which the wire lengths can be calculated
by using half-perimeter of the minimum bounding box
containing all terminals of a wire (HPWL) [38].
Once the wire lengths have been calculated, the delay
estimation engine is invoked. The wire delay is calculated
based on formulations proposed in [36-37], for optimal wire
sizing with buffer (or repeater) insertion. Both wire sizing
and buffer insertion are techniques that have been found to
reduce wire delay [39]. The inputs to this engine are (i) the

wire lengths from the floorplanner, (ii) buffer details
(resistance, capacitance and delay, the values of which are
obtained from data sheets; size and its corresponding critical
length for buffer insertion, which is obtained from [37]),
(iii) technology library dependent parameters (from [40])
and (iv) the capacitive loads (CL) of component output pins
(obtained from RTL synthesis).

CkCk-1

lk

C2C1

l2

Rd

l1

(a)

CLC0Rd

l

(b)

∑∑
=

==
k

j
j

j

i
i

L C
l

l
C

1

1 .∑
=

−=
k

j
LjO CCC

1

(c)

Figure 7. Transforming multiple pin net into two pin net

We can simplify the multiple pin net problem (which is
representative of a bus line) depicted in Figure 7(a) to
multiple two pin net problems, as shown in Figure 7(b).
First, let us consider the wire delay for a wire without buffer
insertion. The delay for a wire of length l, with optimal wire
sizing (OWS) [37], is given as

llcrcRcR
lW
l2

lW
lCRT fadfd

2

1

2
2

1
odOWS .

)()(⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++=

α
α

α
α

 … (9)),,('
Ldowsdriver ClRTt +=

where a1 rc
4
1

=α ,
Ld

a
2

CR
rc

2
1

=α and W(x) is

Lambert’s W function defined as the value of w which
satisfies wew=x. Rd is the resistance of the driver, l is the
wire length and CO and CL are capacitive loads that are
calculated as shown in Figure 7(c). The rest of the
parameters are dependent on the technology library used,
and are obtained from [40] – r is the sheet resistance in Ω/sq,
ca is unit area capacitance in fF/µm2 and cf is unit fringing
capacitance in fF/µm (defined to be the sum of fringing and
coupling capacitances).

CLDriver Buffer

llast
lcrit lcrit lcrit

Figure 8. Wire model for BIWS optimization

Now let us consider wire delay, with buffer insertion. Let lc
be the critical length for buffer insertion, for the buffer size
used, from [37]. If the length of a wire l is less than lc, then
no buffers need to be inserted, and the wire delay is given
by Eq. (9). If however l > lc, we need to insert buffers. The

total number of buffers to be inserted, nb= . The wire
is thus divided into nb+1 stages as shown in Figure 8.
Except for the first and last stages, each stage has equal
length lc and an equal delay Tcrit given by

⎣ cll / ⎦

),,('
bcbowsbuffercrit ClRTtT += … (10)

where tbuffer, Rb and Cb are the delay, resistance and
capacitance of the buffer used, respectively. The first stage
also has a length of lc, but a delay Tfirst given by

),,('
Lcdowsdriverfirst ClRTtT += … (11)

The length of the last stage llast =l - nb.lc, and its delay Tlast is
given by

),,('
Llastbowsbufferlast ClRTtT += … (12)

Then the delay for a wire of length l, with optimal Buffer
Insertion and Wire Sizing (BIWS), shown in Figure 8, can
be summarized as

 for l < lc … (13) OWSBIWS TT =

 for lc < l < 2lc … (14) lastfirst TT +=

 for l > 2lc … (15) lastcritbfirst TTnT ++= .

As we will demonstrate in the next section, our synthesis
framework makes use of the described floorplanning and
wire delay estimation engines to detect (and eliminate) bus
cycle time violations.

5.4 CAPPS Framework Overview
We now describe the CAPPS bus matrix synthesis framework
in more detail. This framework has been derived from our
previous work on bus matrix synthesis that generated a single,
optimal partial bus matrix solution having the least number of
buses [8]. This technical report extends the framework by
adding energy macro-models, and enabling power-
performance trade-offs on an output solution set having
possibly several diverse bus matrix configurations.
The basic idea is to start with a full bus matrix configuration,
and iteratively cluster slaves together to reduce the logic
components and wires in the matrix that will intuitively allow
a reduction in power consumption. But this will come at the
cost of performance, which degrades with decreasing number
of buses, because of bottlenecks at the slave end due to
increased traffic (and consequently extended arbitration
delays). The final solution set will consist of bus matrix
configurations having different number of components and
buses, without violating application performance constraints,
lying between the extremes of a full bus matrix and an
optimally reduced, partial bus matrix having the least number
of buses and components possible. The power-performance
trade-off graph for the solution set will then allow a designer
to select a configuration having the desired power and
performance characteristics for a particular application.

Mapping

Preprocess

Branch and Bound
Clustering Algorithm

IP library

CTG matrix
template

design
constraints

Power-performance
Trade-off report

Select Arbitration
and Simulate

ranked solution
database

energy
macro models

check if
all constraints

met?
Output solution setNo Yes

1

2

3

4

5

Repeat Steps 4-5

Figure 9. CAPPS Bus Matrix Synthesis Framework

Figure 9 shows the major steps in the CAPPS synthesis
framework. The inputs are (i) the application-specific
Communication Throughput Graph (CTG), (ii) a library of IP
components consisting of masters, slaves and memories, (iii)
a template of the target full bus matrix communication
architecture (e.g. AMBA AHB bus matrix), (iv) energy
macro-models for the bus matrix, and (v) designer constraints,
that allow a designer to set the bus matrix bus clock
frequency, data bus width (assumed to be uniform for all
buses in the matrix) and arbitration schemes. The output is a
set of solutions that meet application performance constraints,
and a power-performance trade-off report for these solutions.
We start by first mapping components in the IP library onto
the full bus matrix template (Step 1). Next, we perform
preprocessing on this matrix structure by (i) removing unused
buses with no data transfers on them, according to the CTG,
and (ii) migrating components that are accessed exclusively
by a master, to its local bus, in order to reduce components
(arbiters, output stage) and wire congestion in the matrix
(Step 2). The subsequent step involves static analysis to
further reduce the number of components and buses in the
matrix, by using a branch and bound based hierarchical
clustering algorithm to cluster slave components (Step 3).
Note that we do not cluster masters because it adds two levels
of contention (one at the master end and another at the slave
end) in a data path that can drastically degrade system
performance.
The branching algorithm starts out by clustering two slave
clusters at a time, and evaluating the gain from this operation.
Initially, each slave cluster has just one slave. The total
number of clustering configurations possible for a bus matrix
with n slaves is given by (n! × (n-1)!)/2(n-1). This creates an
extremely large exploration space, which cannot be traversed
in a reasonable amount of time. In order to consider only
useful clustering configurations, we make use of a bounding
function, which ensures that (i) only beneficial clusterings are
allowed that result in component or wire savings and (ii)
performance constraints are still valid after clustering. The
interested reader can refer to our previous work in [8] for a
more detailed treatment of this algorithm.

The output of the algorithm is a set of solutions that are
ranked and stored in a database according to the number of
buses. The next step (Step 4) selects a solution from the
ranked database, and does the following: (i) fixes arbitration
schemes for each slave cluster in the matrix, and (ii) performs
simulation, to gather power and performance statistics. The
arbitration scheme gives priority to higher Throughput
Constraint Paths (TCPs) from the CTG. Simulation is
performed using a fast, transaction-level CCATB [12]
simulation model in SystemC [13]. It allows us to verify if all
performance (TCP) constraints are satisfied, in the next step
(Step 5), since it is possible for dynamic factors such as traffic
congestion, and buffer overflows etc. to invalidate the
statically predicted solution, in some cases.
Steps 4 and 5 are repeated for the desired number of times,
based on the number of solutions required in the output set.
The designer can specify different strategies to select
solutions from the ranked database, such as selecting
solutions from the top and the bottom of the rankings, and
then selecting solutions at regular intervals between them, to
get a wider spread on the power-performance characteristics.
Finally, we use the energy and performance statistics obtained
from simulation in Step 4, for each of the solutions in the
output set, to generate power-performance (and energy-
runtime) trade-off graphs.

5.4.1 Linking Energy Macro-Models with CCATB Models
The CCATB simulation abstraction uses function/transaction
calls instead of signals, to speed up the simulation-based
estimation process [12]. It incorporates bus matrix energy
macro-models for energy estimation. The equations from
Section 4.3 are inserted in the code, at points where a change
in the value of an energy consuming event (i.e. dependent
variable) can occur.
To illustrate the linking of a transaction in the CCATB model
with the energy macro-models, we present an example of a
single write transaction and show how it activates the macro-
models as it propagates through the bus matrix. Table 1 gives
the dependent variables from Section 4.3, for each of the
components in the matrix that are triggered during the write
transaction in the model, assuming no slave delays and a
single cycle overhead for arbitration. Every change in a
dependent variable for a component triggers its corresponding
energy macro-model equation, which calculates the energy
for the event and updates the cycle energy value. Static
energy values are updated at the end of every cycle. Energy
values can be recorded at each cycle, for every component if
needed; or in a cumulative manner for the entire bus matrix,
for use in the final power-performance trade-off analysis.

Table 1. Dependent Variable Activations for a Write

Transaction
Component Cycle n Cycle n+1 Cycle n+2
Input Stage Ψload, ΨHDin Ψdrive -
Decoder Ψslavesel, ΨHDin Ψrespsel -
Arbiter Ψarb Ψarb+1 -
Output Stage - Ψaddrsel, ΨHDin Ψdatasel, ΨHDin

6. EXPERIMENTS

6.1 Energy Macro-model Generation
In order to generate the energy macro-models for the AHB
bus matrix communication architecture, we first selected a
diverse set of bus matrix based system testbenches, having
different number of master and slave components, bus
widths, and data traffic profiles that activate the components
in the bus matrix in different states. We used these to
generate the energy macro-models and obtained the
component regression coefficients using the methodology
from Figure 3, for the TSMC 180nm standard cell library.
The regression coefficients for the macro-models of each of
the components of the bus matrix (Section 4.3) are shown in
Table 2. Also shown are the R squared (R2) values which
measure the goodness of fit for each regression [31]. The
value of R2 is a fraction between 0.0 and 1.0. A value of 0.0
indicates that knowing the variable values will not allow us
to predict the energy values, whereas a value of 1.0
indicates that knowing the variable values will allow us to
predict the value of energy perfectly. From the table it can
be seen that the R2 values are close to 1.0, thus enabling
reliable prediction of energy at the system-level.

Table 2. Coefficients for Energy Macro-Models (180nm)

Component Variable Energy
coeff. (pJ)

Variable Energy
coeff.
(pJ)

R2

αinp0 7.78 αinp3 0.96
αinp1 3.81 αinp4 3.27

Input Stage

αinp2 2.60

0.97

αdec0 0.47 αdec3 0.13
αdec1 3.04 αdec4 0.38

Decoder

αdec2 2.17

0.90

αout0 0.72 αout3 0.14
αout1 2.61 αout4 1.48

Output Stage

αout2 1.53

0.94

αarb0 0.65 αarb4 0.34
αarb1 0.76 αarb5 0.48
αarb2 0.30 αarb6 0.52

Arbiter

αarb3 0.60

0.86

Next, we targeted the same system testbenches to the 130nm
and 90nm TSMC standard cell libraries and repeated the
regression coefficient generation process for the
components in the bus matrix. The regression coefficients
for the Input Stage bus matrix component, for each of the
standard cell libraries, are shown in Table 3. It can be seen
from the table that as we reduce the standard cell size, the
coefficient values decrease, which is indicative of a decrease
in overall power consumption. However, note that the
reduction in coefficient values is not linear and the table
indicates a change in relative importance of model variables
with a change in standard cell library. For instance, the
value of the coefficient for model variable αinp3 is less than
1/3rd the value of the coefficient for αinp4 at 180nm, but this
ratio reduces to 1/2 for the 90nm library.

Table 3. Coefficients for Input Stage Bus Component (in
pJ)

Standard
cell library

αinp0 αinp1 αinp2 αinp3 αinp4

180 nm 7.78 3.81 2.60 0.96 3.27
130 nm 1.33 0.66 0.04 0.24 0.56
90 nm 1.23 0.44 0.02 0.20 0.40

A major advantage of our energy macro-model approach is
the ease with which it can be retargeted to different standard
cell libraries. Typically retargeting to a new standard cell
library is a very time-intensive effort. However, our
approach simply requires the generation of gate-level cycle
energy numbers with the new library for the small system
testbenches; these cycle energy numbers are used to update
the cycle energy column in the macro-model template
shown in Figure 4, after which the regression analysis is
repeated. Once the gate level cycle energy numbers are
available for the standard cell library, it only takes a few
minutes to obtain the new coefficients for each of the
components in the bus matrix. This enables rapid
retargeting of models for new cell libraries and results in an
order-of-magnitude reduction in development time.

6.2 Accuracy of Energy Macro-Models
We performed experiments to determine the macro-model
accuracy for different technology libraries, by comparing
our macro-model energy estimates with detailed gate-level
energy estimates. We selected four system testbenches that
were separate and distinct from the ones used for
characterization and generation of the energy macro models,
and had different bus matrix structures and traffic
characteristics: (i) a 2 master, 3 slave bus matrix with 32 bit
data bus width (2x3_32b), (ii) a 3 master, 4 slave bus matrix
with 32 bit data bus width (3x4_32b), (iii) a 4 master, 5
slave bus matrix with 32 bit data bus width (4x5_32b) and
(iv) a 2 master, 3 slave bus matrix with 64 bit data width
(2x3_64b). We synthesized these architectures and
estimated cycle energy values using PrimePower [14] at the
gate-level, for each of the 180, 130 and 90nm TSMC
standard cell libraries. In parallel, we characterized the
model variables and coefficient values in the energy macro-
models for each of the components in the matrix, to obtain
estimated energy values.

-2
-1
0
1
2
3
4
5

2x3_32b 3x4_32b 4x5_32b 2x3_64b

C
yc

le
 E

ne
rg

y
Er

ro
r

(%
)

180nm
130nm
90nm

Figure 10. Average cycle energy estimation errors

Figure 10 compares the average error in energy estimated at
each cycle by the macro-models at the early system-level,
compared to gate-level estimation, for the different standard
cell libraries. It can be seen that the energy macro-models
allow highly accurate cycle energy estimation that is
unaffected by the scaling of technology libraries towards
deep sub-micron (DSM). The maximum average estimation
error for the macro-models is only 4.19%.
Next, we plugged the energy macro-models into a fast
transaction-level bus cycle-accurate simulation environment
(CCATB [12]) in SystemC [13]. The CCATB simulation
abstraction captures the bus matrix at a cycle-accurate
granularity and uses function/transaction calls instead of
signals to obtain simulation speed over bus-cycle accurate
(BCA) models which capture signal details, without
sacrificing accuracy [12]. The simulation model
incorporates bus matrix energy macro-models for cycle
energy estimation. The equations from Section 4.3 are
inserted in the code for each component, at points where a
change in the value of an energy consuming event (i.e.
dependent variable) can occur.

0
1000
2000
3000
4000
5000
6000
7000
8000

1010 1170 1330 1490 1650 1810
time (ns)

po
w

er
 (u

W
)

PrimePower
SystemC CCATB

s

Figure 11. Predicted and measured power waveforms

Figure 11 shows a snapshot of the power waveform
generated by gate-level simulation using PrimePower, and
the SystemC CCATB simulation using our energy macro-
models for the 2x3_32b bus matrix system testbench. As
can be seen, the power estimates using the system-level
CCATB simulation model are highly correlated to the actual
power consumption. This high correlation highlights an
additional benefit of the methodology in estimating peak
energy (as opposed to average energy). Peak energy is
important in the planning of power grids which is becoming
increasingly difficult to do in DSM.

Table 4. Comparing time taken for power estimation

Test
bench

PrimePower
Gate-level
CPU time

SystemC
T-BCA level

CPU time

Speedup
(X times)

2x3_32b 2.58 hrs 9.1 sec 1021
3x4_32b 7.91 hrs 18.8 sec 1515
4x5_32b 27.04 hrs 49 sec 1987
2x3_64b 3.10 hrs 9.9 sec 1127

Table 4 compares the CPU time taken for the PrimePower
simulation (for gate-level cycle energy estimation) with the
system-level CCATB based prediction, for the four system
testbenches described earlier. The time taken for the gate-

level and system-level power estimation does not depend on
the technology library used, and is independent of it. As can
be seen from the table, the system-level power estimation
gives a substantial speedup close to 2000X over gate-level
power estimation using PrimePower. Note that in our
comparison we have not included time taken for value
change dump (VCD) file generation and parasitic RC
extraction file generation needed for PrimePower based
estimation, which takes from several minutes to hours for
each of the testbenches. From these speedup results and our
earlier observation on the high estimation accuracy of the
macro-models across technology libraries, we believe that
our energy macro-modeling approach can be very useful for
designers interested in fast and accurate communication
architecture power estimation, early in the design flow, at
the system level.

6.3 Power-Performance Trade-offs
To validate the CAPPS bus matrix synthesis framework, we
applied it to an industrial MPSoC application from the
networking domain, used for data packet processing and
forwarding. Figure 12 shows the Communication Throughput
Graph (CTG) for the application, with its minimum
performance constraints that need to be satisfied, represented
by Throughput Constraint Paths (TCPs) presented separately
in Table 5.

ARM1

ARM2

ARM3

DMA

ARM4

Watchdog

UART1

ITC1

ITC2

Timer1

Timer2

UART2

ROM1

MEM1

MEM2

MEM3

MEM4

MEM5

Network I/F1

Network I/F2

Network I/F3

MEM6

ASIC1

ASIC2

ROM2

Figure 12. CTG for networking MPSoC application

Table 5. Throughput Constraint Paths (TCPs)

IP cores in Throughput Constraint Path (TCP) Throughput
Requirement

ARM1, MEM1, DMA, MEM3, MEM5 320 Mbps
ARM1, MEM3, MEM4, DMA, Network I/F2 240 Mbps
ARM2, Network I/F1, MEM2 800 Mbps
ARM2, MEM6, DMA, MEM8, Network I/F2 200 Mbps
ARM3, ARM4 , Network I/F3, MEM2, MEM7 480 Mbps

ARM1 is a protocol processor (PP), while ARM2 and ARM3
are network processors (NP). The ARM1 PP is mainly

responsible for setting up and closing network connections,
converting data from one protocol type to another and
generating data frames for signaling, operating and
maintenance. The ARM2 and ARM3 NPs directly interact
with the network ports and are used for assembling incoming
packets into frames for the network connections, network port
packet/cell flow control, assembling incoming packets/cells
into frames, segmenting outgoing frames into packets/cells,
keeping track of errors and gathering statistics. ARM4 is used
for specialized data processing involving data encryption. The
DMA is used to handle fast memory to memory and network
interface data transfers, freeing up processors for more useful
work. Besides these master cores, the application also has a
number of memory blocks, network interfaces and peripherals
such as interrupt controllers (ITC1, ITC2), timers (Watchdog,
Timer1, Timer2), UARTs (UART1, UART2) and data packet
accelerators (ASIC1, ASIC2).
The application and the target AMBA AHB bus matrix
architecture were captured at the CCATB abstraction [12] in
SystemC [13], with the bus matrix energy macro-models
plugged into the simulation environment. The bus matrix
design constraints specified a data bus width of 32 bits, a
clock frequency of 100 MHz and a static priority-based
arbitration scheme. Power numbers are calculated for the
TSMC 0.18µm standard cell library. We also included the
energy contribution of bus wires as described in Section 4.3.

-50

-40

-30

-20

-10

0

10

15 18 22 24 26 32 38 42 100

no. of buses

ch
an

ge
 (%

)

power
perf

A

Figure 13. Power-Performance Trade-off graph

0

5

10

15

20

25

30

full matrix best solution

Po
w

er
 (m

W
) bus wires

output_stg
arbiter
decoder
input_stg

Figure 14. Component-wise Power Comparison

Figure 13 shows the power-performance curves output by the
framework for the MPSoC application. The x-axis shows
solutions in the output set having different number of buses,
while the y-axis shows the % change in power and
performance, using the original full bus matrix as the base
case. It can be seen that reducing the number of buses reduces
the average power dissipation, because of a smaller number
of arbiters, output stages and bus wires in the matrix, which
results in less static and dynamic power consumption. Figure
14 highlights this trend, showing a comparison of the

component-wise power consumption for the full bus matrix
and the solution having the least number of buses, which also
consumes the least power. While the power consumed by the
input stage initially decreases when the number of buses is
decreased, due to reduced port switching, this trend is soon
offset as traffic congestion increases arbitration delays,
requiring additional buffering of transactions, for solutions
with lesser number of buses. Similarly, for bus wires, the
initial power reduction due to reduced number of wires in the
matrix is soon offset by the need for longer shared wires to
connect the increasingly clustered slaves.
As far as the performance change is concerned, (measured in
terms of average % change in data throughput of constraint
paths) a reduction in the number of buses increases traffic
congestion and reduces performance due to an increase in
arbitration wait time. However it is interesting to note that
there are certain points (e.g. point A) in Figure 13 where
reducing the number of buses actually improves performance!
This happens because of a reduction in port switching at the
master end as slave clusters grow, reducing re-arbitration
delays for masters. In addition to the average % change in
throughput, another useful metric to gauge application
performance is its total runtime. Figure 15 shows the
corresponding total energy vs. application runtime trade-off
graph for the MPSoC that is useful for cases where the
application must execute within a given time or energy
budget, such as for mobile battery-driven applications.

-15

-10

-5

0

5

10

15 18 22 24 26 32 38 42 100

no. of buses

ch
an

ge
 (%

)

energy
runtime

Figure 15. Total Energy vs. Runtime Trade-off graph

bus matrix power vs. chip area

22
23
24
25
26
27
28

86 87 88 89 90 91

chip area (mm2)

B
us

 M
at

rix
 P

ow
er

(m

W
)

Figure 16. Power vs. Chip-Area Trade-off graph for

MPSoC

It is also possible to perform other design space trade-offs
within the CAPPS framework. For instance, Figure 16
shows the pareto-optimal trade-off curve between bus
matrix power consumed and the total area of the chip. To
obtain this curve, we iterated through several different
floorplans in the floorplanning stage. Since different
floorplans have different wire routing arrangements, every
floorplan has a different value for power consumption of the

bus wires. Typically, as the allowed chip area is increased,
the floorplanner can optimize the floorplan better, by
reducing bus wire length, which consequently reduces bus
power consumption.
Overall, the power-performance curves show a possible trade-
off of upto approximately 20% for power and upto 40% for
performance, enabling a designer to select the appropriate
point in the solution space which meets the desired power and
performance characteristics. There is also a possible trade-
off of upto 10% for runtime and upto 15% for total energy
consumed, which is a useful trade-off metric when the
application is running on a fixed energy budget, which is the
case for mobile battery-driven devices. The CAPPS
automated system-level synthesis framework generated the
solution set and statistics in a matter of a few hours, instead of
days or even weeks it would have taken with a gate-level
estimation flow. Such a framework is invaluable for designers
early in the design flow, for quick and reliable
communication architecture design space exploration, to
guide design decisions at the system level.

7. CONCLUSION
We presented the CAPPS automated framework for fast
system-level application-specific power-performance trade-
offs in bus matrix communication architecture synthesis.
Detailed energy macro-models for the bus matrix
communication architecture were created using multiple
regression analysis. These energy macro-models were shown
to have an average cycle energy estimation error of less than
5% across the 180, 130 and 90nm technology libraries,
compared with gate-level estimation. Plugging these macro-
models in a system-level simulation framework allows a
substantial speedup of almost 2000X for cycle energy
estimation, over gate-level estimation. These macro-models
were used in the CAPPS synthesis framework for power
estimation. Experimental results of applying CAPPS on an
industrial networking MPSoC application generated results in
a matter of a few hours, indicating a potential tradeoff
between power and performance, energy and runtime, and
chip area and power, for different points in the solution space,
which shows the effectiveness of our approach. Future work
will deal with applying this approach to other types of
communication architectures.

REFERENCES
[1] R. Ho, K. W. Mai, M. A. Horowitz, “The Future of Wires”,

Proc. IEEE, vol. 89, April 2001
[2] K. Lahiri, A. Raghunathan, “Power Analysis of system-level

on-chip communication architectures”, CODES+ISSS 2004
[3] ARM AMBA Specification and Multi layer AHB

Specification, (rev2.0), http://www.arm.com, 2001
[4] "IBM On-chip CoreConnect Bus Architecture",

www.chips.ibm.com/products/coreconnect/index.html
[5] AMBA AHB Interconnection Matrix,

www.synopsys.com/products/designware/amba_solutions.html
[6] L.Benini, G.D.Micheli, “Networks on Chips: A New SoC

Paradigm”, IEEE Computers, Jan. 2002

[7] F. Angiolini et al., “Contrasting a NoC and a Traditional
Interconnect Fabric with Layout Awareness”, DATE 2006

[8] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Constraint-Driven
Bus Matrix Synthesis for MPSoC", ASPDAC 2006

[9] K. Lahiri et al., “Battery driven system design: A new frontier
in low power design”, ASPDAC 2002

[10] M. Caldari et al. “System-level power analysis methodology
applied to the AMBA AHB bus”, DATE 2003

[11] L. Shang et al., “Thermal Modeling, Characterization and
Management of on-chip networks”, MICRO 2004

[12] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Fast Exploration of
Bus-based On-chip Communication Architectures",
CODES+ISSS 2004

[13] SystemC initiative, www.systemc.org
[14] Synopsys CoreTools, PrimePower www.synopsys.com
[15] M. Gasteier, M. Glesner, “Bus-based communication

synthesis on system level”, ACM TODAES, January 1999
[16] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane,

"Floorplan-aware Automated Synthesis of Bus-based
Communication Architectures", DAC 2005

[17] M. Drinic et al. “Latency-guided on-chip bus network
design”, ICCAD 2000

[18] A. Pinto, L. P. Carloni, A. L. Sangiovanni-Vincentelli,
“Efficient Synthesis of Networks On Chip,” ICCD 2003

[19] N.D. Liveris, P. Banerjee, “Power aware interface synthesis
for bus-based SoC designs”, DATE 2004

[20] U. Ogras, R. Marculescu, “Energy and Performance-Driven
NoC Communication Architecture Synthesis using a
Decomposition Approach”, DATE 2005

[21] J. Guo et al., “Energy/area/delay trade-offs in the physical
design of on-chip segmented bus architecture”, SLIP 2006

[22] H-S. Wang et al., “Orion: a power-performance simulator for
interconnection networks”, MICRO 2002

[23] A. Raghunathan et al., “High level Power Analysis and
Optimization”, Kluwer Academic Publishers, 1998

[24] J. Chan et al., “NoCEE: energy macro-model extraction
methodology for network on chip routers”, ICCAD 2005

[25] A. Bona et al., “System level power modeling and simulation
of high-end industrial network-on-chip”, DATE 2004

[26] N. Dhanwada, et al., “A power estimation methodology for
systemC transaction level models”, CODES+ISSS 2005

[27] U. Neffe et al. “Energy estimation based on hierarchical bus
models for power-aware smart cards”, DATE 2004

[28] N. Eisley, L. Peh, “High level power analysis of on-chip
networks”, CASES 2004

[29] T.T. Ye, L. Benini, G. De Micheli, “Analysis of power
consumption on switch fabrics in network routers” DAC 2002

[30] GNU R, http://www.gnu.org/software/r/R.html
[31] J.J. Faraway, “Linear Models with R”, CRC Press, 2004
[32] C. Kretzschmar, et al., “Why transition coding for power

minimization of on-chip buses does not work”, DATE 2004
[33] S. N. Adya, I. L. Markov, "Fixed-outline Floorplanning:

Enabling Hierarchical Design", IEEE TVLSI, Dec. 2003
[34] J. Cong, D. Z. Pan, “Interconnect Performance Estimation

Models for Design Planning”, IEEE TCAD, June 2001
[35] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-Romdhane,

"FABSYN: Floorplan-aware Bus Architecture Synthesis,"
IEEE TVLSI March 2006

[36] J. Cong, D. Z. Pan, “Interconnect Performance Estimation
Models for Design Planning”, IEEE TCAD, June 2001

[37] J. Cong, Z. Pan, “Interconnect delay estimation models for
synthesis and design planning”, ASPDAC 1999

[38] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, A.
Zelikovsky, “On Wirelength Estimations for Row-based

Placement”, In IEEE Trans. on ICCAD, vol.18, (no.9), IEEE,
Sept. 1999

[39] J. Cong, Z. Pan, L. He, C-K. Koh, K-Y. Khoo, “Interconnect
design for deep submicron ICs”, ICCAD 1997

[40] Semiconductor Industry Association, “National Technology
Roadmap for Semiconductors”, SIA 1997

[41] Berkeley Predictive Technology Model, U.C. Berkeley,
http://www-devices.eecs.berkeley.edu/~ptm/

[42] Cadence PKS, www.cadence.com/datasheets/pks_ds.pdf
[43] S. Murali, G. De Micheli, “An Application-Specific Design

Methodology for STbus Crossbar Generation”, DATE 2005

http://www.systemc.org/
http://www.synopsys.com/
http://www.gnu.org/software/r/R.html
http://www-devices.eecs.berkeley.edu/%7Eptm/
http://www.cadence.com/datasheets/pks_ds.pdf

