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Abstract 
 

 On-chip communication architectures have a significant impact on the power consumption and performance of 
modern Multi-Processor System-on-Chips (MPSoCs). However, customization of such architectures for an application 
requires the exploration of a large design space. Thus designers need tools to rapidly explore and evaluate relevant 
communication architecture configurations exhibiting diverse power and performance characteristics. In this technical 
report we present an automated framework (CAPPS) for fast system-level, application-specific, power-performance trade-
offs in bus matrix communication architecture synthesis. Our technical report makes two specific contributions. First, we 
develop energy macro-models for system-level exploration of bus matrix communication architectures. Second, we 
incorporate these macro-models into a bus matrix synthesis flow that enables designers to efficiently explore the power-
performance design space of different bus matrix configurations. Experimental results show that our energy macro-models 
incur less than 5% average cycle energy error across 180, 130 and 90nm technology libraries. Our early system-level power 
estimation approach also shows a significant speedup of as much as 2000X when compared with detailed gate-level power 
estimation. Furthermore, our bus matrix synthesis framework generates a tradeoff space with designs that exhibit an 
approximately 20% variation in power and 40% variation in performance for an industrial networking MPSoC application, 
demonstrating the usefulness of our approach.  
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ABSTRACT 
On-chip communication architectures have a significant 
impact on the power consumption and performance of 
modern Multi-Processor System-on-Chips (MPSoCs). 
However, customization of such architectures for an 
application requires the exploration of a large design space. 
Thus designers need tools to rapidly explore and evaluate 
relevant communication architecture configurations 
exhibiting diverse power and performance characteristics. In 
this technical report we present an automated framework for 
fast system-level, application-specific, Power-Performance 
trade-offs in bus matrix Communication Architecture 
Synthesis (CAPPS). Our technical report makes two specific 
contributions. First, we develop energy macro-models for 
system-level exploration of bus matrix communication 
architectures. Second, we incorporate these macro-models 
into a bus matrix synthesis flow that enables designers to 
efficiently explore the power-performance design space of 
different bus matrix configurations. Experimental results 
show that our energy macro-models incur less than 5% 
average cycle energy error across 180, 130 and 90nm 
technology libraries. Our early system-level power 
estimation approach also shows a significant speedup of as 
much as 2000X when compared with detailed gate-level 
power estimation. Furthermore, our bus matrix synthesis 
framework generates a tradeoff space with designs that 
exhibit an approximately 20% variation in power and 40% 
variation in performance for an industrial networking 
MPSoC application, demonstrating the usefulness of our 
approach. 
 
1. INTRODUCTION 
The rapidly increasing complexity of Multi-Processor 
System-on-Chip (MPSoC) designs, coupled with poor global 
interconnect scaling in the deep sub-micron era, is making 
on-chip communication a critical factor affecting overall 
system performance and power consumption [1]. These 
communication architectures are not only a major source of 
performance bottlenecks for data intensive application 
domains, such as multimedia and networking, but recent 
research has shown that they also consume as much power as 
other well-known primary sources of power consumption, 
such as processors and caches [2]. Designers must therefore 
give special emphasis to the selection and design of on-chip 
communication architectures early in the design flow, 
preferably at the system level.  

Several different types of on-chip communication 
architectures such as hierarchical shared buses [3] [4], bus 
matrices [5] and network-on-chip (NoC) [6] have been 
proposed. While hierarchical shared bus architectures, such as 
those proposed by AMBA [3] and CoreConnect [4] have been 
extensively used in the past, they are often unable to meet the 
high bandwidth requirements of emerging applications. 
Network-on-chips are able to overcome these bandwidth 
limitations, but can consume more area and significantly 
more power than shared bus-based designs in current 
lithographic processes [7]. Bus matrix architectures, such as 
the AMBA AHB bus matrix [5], are an evolution of the 
hierarchical shared bus scheme. They consist of several 
parallel buses that can provide superior bandwidth response, 
while keeping the simple, standard interface of bus-based 
communication architectures, which is essential in promoting 
IP reuse. Such bus matrix architectures are being increasingly 
used in designs today. 
On-chip communication architectures such as the bus matrix 
typically have customizable topologies and parameters, which 
creates a vast exploration space [8]. Different configurations 
in this space can have vastly different power/energy and 
performance characteristics. While meeting the performance 
constraints of an application is certainly an important criterion 
for the choice of a particular configuration, minimization of 
energy consumption is just as relevant, especially for mobile 
devices which run on batteries and have a limited energy 
budget [9]. Even more important are the thermal implications 
of power consumption. A large portion of the energy 
consumed from the power supply is converted into heat. An 
increase of even 10 ºC in the operating temperature has been 
shown to not only increase interconnect delay (reducing 
performance), but also increase electromigration (EM), 
which significantly increases device failure rate [10]. Since 
interconnect temperatures can reach as high as 90 ºC [11], 
reducing power consumption becomes essential to ensure 
correct operation, and also to reduce costs for expensive 
cooling and packaging equipment.  
Consequently, designers require a way to effectively traverse 
the vast communication architecture exploration space during 
its design/ synthesis phase, to trade off power-performance 
characteristics. Due to the highly complex nature of modern 
applications, performing performance and especially power 
exploration at the lower RTL/gate levels can be excessively 
time consuming. There is a need to raise the exploration 
abstraction to the system level, where not only can the speed 



of exploration be improved, but design decisions also have a 
greater impact on power and performance, than at the lower 
levels. However, such an effort requires reliable power 
estimation at the system level, which is not a trivial task.  

 
1.1  Report Overview and Contributions 
In this technical report, we address the issues highlighted 
above by proposing an automated synthesis framework 
(CAPPS) to perform application-specific, system-level 
power-performance trade-offs, for bus matrix 
communication architectures. Our key contributions in this 
technical report are: (i) detailed energy macro-models for 
the bus matrix architecture, which can be used in any cycle-
accurate simulation models for power estimation across 
technology libraries; and (ii) an automated synthesis 
framework for the bus matrix architecture, which uses these 
energy macro-models in the fast and accurate transaction-
level CCATB [12] simulation environment in SystemC [13], 
to efficiently explore the power-performance design space of 
the generated set of solutions. Our experimental results 
demonstrate estimation accuracy of average cycle energy to 
within 5% using our energy macro-modeling approach with 
respect to detailed gate-level estimation using Synopsys 
PrimePower [14] for 180, 130 and 90nm technology libraries. 
Moreover, our system-level power estimation approach 
achieves upto 2000X speedup over gate-level estimation 
when the macro-models are plugged into the transaction-level 
CCATB [12] simulation environment in SystemC [13]. 
Applying our synthesis framework on a networking 
industrial MPSoC application used for data packet 
processing and forwarding, enabled a potential tradeoff of 
approximately 20% for power, and 40% for performance, 
for different points in the solution space, showing the 
effectiveness of our approach. 

 
2. RELATED WORK 
There is a large body of work dealing with performance-
oriented system-level synthesis of hierarchical shared bus 
[15-17], NoCs [18] and, more recently, bus matrix/crossbar 
[8] [43] architectures. Some approaches also consider power-
aware synthesis for hierarchical shared buses [19] and NoCs 
[20], but power-aware synthesis for bus matrix architectures 
has not been addressed. There have also been a few pieces of 
work which have looked at power-performance tradeoffs for 
segmented buses [21] and NoCs [22]. Our work differs from 
existing work in that we focus on the bus matrix 
communication architecture, for which we create an 
automated synthesis framework to enable exploration of 
power-performance trade-offs at the system level. 
Power modeling and estimation is typically performed either 
at the transistor, gate or register-transfer levels [23]. In 
practice, most commercial design flows use register-transfer 
or gate-level power estimation tools. However, due to the 
highly complex nature of modern applications, these 
approaches are too inefficient for early power estimation. To 
overcome this drawback, recent approaches [10] [24-29] 
analyze power for communication architectures at the 

system level, where significant improvements in run time 
can be achieved, at the cost of estimation accuracy. Some of 
these approaches extract gate-level power estimates and 
characterize transaction-level models [26-27]. Although 
these approaches allow for fast estimation, they can be 
highly inaccurate and lack reusability across technology 
libraries. Other approaches have created energy macro-
models from gate-level power estimates for the AMBA 
AHB hierarchical shared bus [10], STBus interconnection 
network [25] and NoCs [24]. One of the goals of our work 
is to create such energy macro-models for the bus matrix 
communication architecture that can then be used in a 
system-level simulation environment for fast cycle 
energy/power estimation. We also explore the effect of 
technology library scaling on system-level energy macro-
model based estimation time and accuracy. 
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Figure 1. AMBA AHB Full Bus Matrix 
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Figure 2. AMBA AHB Partial Bus Matrix 
 

3. AMBA AHB BUS MATRIX OVERVIEW 
We use the AMBA AHB (Advanced High Performance) bus 
matrix [5] as a representative of bus matrix communication 
architectures.  The AHB [3] bus protocol supports pipelined 
data transfers, allowing address and data phases belonging 
to different transactions to overlap in time. Additional 
features, such as burst transfers and transaction split support, 
enable high data throughputs. A bus matrix configuration 
consists of several AHB buses in parallel which can support 
concurrent high bandwidth data streams. Figure 1 shows a 2 
master, 4 slave AMBA AHB full bus matrix. The Input 
stage is used to handle interrupted bursts, and to register and 
hold incoming transfers if receiving slaves cannot accept 
them immediately. The Decoder generates select signals for 
slaves, and also selects which control and read data inputs 
received from slaves are to be sent to the master. The 
Output Stage selects the address, control and write data to 
send to a slave. It calls the Arbiter that uses an arbitration 
scheme to select the master that gets to access a slave, if 
there are simultaneous requests from several masters. 
Unlike in traditional hierarchical shared bus architectures, 



arbitration in a bus matrix is not centralized, but distributed 
so that every slave has its own arbitration. Also, typically, all 
busses within a bus matrix have the same data bus width, 
which usually depends on the application.  
One drawback of the full bus matrix structure shown in 
Figure 1 is that it connects every master to every slave in the 
system, resulting in a large number of wires and logic 
components in the matrix. While this configuration ensures 
high bandwidth for data transfers, it is certainly not optimal as 
far as power consumption is concerned. Figure 2 shows a 
partial bus matrix that has fewer wires and components (e.g. 
arbiters, MUXs), which consequently reduces power 
consumption, as well as area, at the cost of performance (due 
to an increase in the number of shared links). Our synthesis 
framework (described in Section 5) starts with a full bus 
matrix, and aims to generate a set of partial bus matrix 
configurations, with different number of buses and logic 
components that meet all the performance constraints of the 
application being considered. 

 
4. BUS MATRIX ENERGY MODELS 
In this section, we present details of our energy macro-
model creation methodology. We first describe the basics of 
energy macro-modeling. Then we present the macro-model 
generation methodology. Finally, we present the energy 
models for all the components in the bus matrix, including 
bus wires.  
 
4.1 Background on Energy Macro Models 
The energy consumption of a bus matrix can be obtained by 
identifying events that cause a noticeable change in its 
energy profile. For this purpose, we create energy macro-
models that can encapsulate events or factors having a 
strong correlation to energy consumption for a given 
component. A macro model consists of variables that 
represent factors influencing energy consumption, and 
regression coefficients that capture the correlation of each of 
the variables with energy consumption. A general energy 
macro model for a component can be expressed as: 
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where α0 is the energy of the component that is independent 
of the model variables, and αi is the regression coefficient 
for the model variable Ψi . 
For the purpose of our energy macro-models, we considered 
three types of model variables representing factors 
influencing energy consumption: control, data and 
structural. The control factor represents control events, 
involving a control signal that triggers energy consumption 
either when it transitions from 1 to 0 or 0 to 1, or when it 
maintains a value of 0 or 1 for a cycle. Control variables can 
either have a value of 1 when a control event occurs, or 0 
when no event occurs, in the energy macro model relation in 
Eq. (1). The data factor represents data events that trigger 
energy consumption on data value changes. Data variables 
take an integer value in Eq. (1) representing the Hamming 

distance (number of bit-flips) of successive data inputs. 
Finally, structural factors, such as data bus widths and 
number of components connected to the input also affect 
energy consumption of a component. They are represented 
by their integer values in Eq. (1).  
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Figure 3. Energy Macro-model Generation Methodology 
 
4.2 Methodology Overview 
A high level overview of the methodology used to create 
energy macro-models in this work is shown in Figure 3. We 
start with a system testbench, consisting of masters and slaves 
interconnected using the AMBA AHB bus matrix fabric. The 
testbench generates traffic patterns that exercise the matrix 
under different operating conditions. Synopsys Coretools [14] 
is used to configure the bus matrix (specify data bus width, 
number of masters and slaves etc.) and generate a 
synthesizable RTL description of the bus matrix architecture 
(Step 1). This description is synthesized to the gate-level with 
the Cadence Physically Knowledgeable Synthesis (PKS) [42] 
tool, for the target standard cell library (Step 2). PKS pre-
places cells and derives accurate wire length estimates during 
logic synthesis. In addition, it generates a clock tree including 
clock de-skewing buffers. The gate-level netlist is then used 
with Synopsys PrimePower [14] to generate power numbers 
(Step 3).  

 

 
 

Figure 4. Macro-model Template 
 

In parallel with the synthesis flow, we perform RTL 
simulation to generate signal waveform traces for important 
data and control signals (Step 4). These signal waveforms 
are compared with cycle energy numbers, obtained after 



processing PrimePower generated power report files with 
Perl scripts, to determine which data and control signals in 
the matrix have a noticeable effect on its energy 
consumption. The selected data and control events become 
the variables in a macro-model template that consists of 
energy and variable values for each cycle of testbench 
execution (Step 5). Figure 4 shows an example of a macro-
model template for one of the components of the bus matrix. 
The template consists of energy values (cycle_energy) and 
variable values (S_load, S_desel, HD_addr, S_drive) for 
each cycle of testbench execution. This template is used as 
an input to the GNU R tool [30] that performs multiple 
linear regression analysis to find coefficient values for the 
chosen variables (Step 6). Steps 1-6 are repeated for 
testbenches having different structural attributes such as 
data bus widths and number of input components, to 
identify structural factors/variables that may influence cycle 
energy. 
Statistical coefficients such as Multiple-R, R-square and 
standard deviation for residuals [31] are used to determine 
the goodness of fit and the strength of the correlation 
between the cycle energy and the model variables. Once a 
good fit between cycle energy and macro model variables is 
found, the energy macro models are generated in the final 
step. These models can then be plugged into any system-
level cycle-accurate or cycle-approximate simulation 
environment, to get energy consumption values for the 
AMBA AHB bus matrix communication architecture.  

 
4.3 Bus Matrix Component Energy Models 
To obtain the energy consumption for the entire AMBA 
AHB bus matrix communication architecture, we used our 
energy macro-model generation methodology to create 
macro-models for each of its components. The total energy 
consumption of a bus matrix can be expressed as: 
 

EMATRIX = EINP + EDEC + EARB + EOUT + EWIRE       ... (2) 
 

where EINP and EDEC are the energy for the input and 
decoder components for all the masters connected to the 
matrix, EARB and EOUT are the energy for arbiters and output 
stages connecting slaves to the matrix, and EWIRE is the 
energy of all the bus wires that interconnect the masters and 
slaves. Energy macro-models were created for the first four 
components, with EWIRE being calculated separately.  
The energy macro-models are essentially of the form shown 
in Eq. (1). Leakage and clock energy, which are the major 
sources of independent energy consumption are considered 
as part of the static energy coefficient α0 for each of the 
components. Based on our experiments, we noticed a fairly 
linear relationship between cycle energy and macro-model 
variables for the components. We will now present the 
energy models for each of the components. 
 Input Stage: Every master connected to a bus matrix has its 
own input stage, which buffers address and control bits for a 
transaction, if a slave is busy. The input stage model can be 
expressed as: 
 

  EINP = αinp0 + αinp1.Ψload + αinp2.Ψdesel + αinp3.ΨHDin +   
            αinp4.Ψdrive                                 ... (3) 

 

where Ψload and Ψdrive are control signals asserted when the 
register is loaded, and when the values are driven to the 
slave respectively; Ψdesel is the control signal from the 
master to deselect the input stage when no transactions are 
being issued; and ΨHDin is the Hamming distance of the 
address and control inputs to the register.  
 Decoder: A decoder component is connected to every 
master, and consists of logic to generate the select signal for 
a slave after decoding the destination address of an issued 
transaction. It also handles multiplexing of read data and 
response signals from slaves. The decoder energy 
consumption model can be formulated as: 
 

  EDEC = αdec0 + αdec1.Ψslavesel + αdec2.Ψrespse l + αdec3.ΨHDin +  
                                     αdec4.Ψsel                                     ... (4) 
 

where Ψslavesel and Ψrespsel are control signals asserted in the 
cycle in which the slave select and the data/response MUX 
select signals are generated, respectively; ΨHDin is the 
Hamming distance of the read data and response signals 
from the slave; and Ψsel is a control signal which transitions 
when the decoder is selected or deselected.  
Output Stage: Every slave is connected to the bus matrix 
through the output stage, which handles multiplexing of 
address and control bits from the masters. It also calls the 
arbiter to determine when to switch between accessing 
masters. The energy consumption for the output stage is 
given by: 
 

   EOUT = αout0 + αout1.Ψaddrsel + αout2.Ψdatasel + αout3.ΨHDin +     
                              αout4.Ψnoport                                        ... (5) 
 

where Ψaddrsel and Ψdatasel are control signals asserted when 
address and data values are selected after a call to the arbiter 
results in a change in the master accessing the slave; ΨHDin is 
the Hamming distance of address and data inputs; and Ψnoport 
is a control signal from the arbiter, which goes high when 
no masters access the slave in a cycle.  
Arbiter: The arbiter is invoked by the output stage, and uses 
an arbitration scheme to grant access to one of the 
potentially several masters requesting for access to the slave. 
The cycle energy model for the arbiter is calculated as: 
 

         EARB = αarb0 + (αarb1+n.αarb2).Ψarb + αarb3.Ψarb+1 +     
                          (αarb4+n.αarb5).Ψdesel + αarb6.Ψdesel+1       ... (6) 
 

where Ψarb and Ψarb+1 are control signals representing the 
cycle when arbitration occurs, and the subsequent cycle 
when the master select signal is generated; Ψdesel and Ψdesel+1 
are control signals representing the cycle when the arbiter is 
not selected by any master, and the subsequent cycle when it 
generates the noport signal for the output stage; and n 
represents the number of masters connected to the arbiter.  
Bus Wires: The bus wires that connect masters, slaves and 
logic components in the bus matrix dissipate dynamic power 
due to switching, and leakage power due to the repeaters 
inserted in long wires to reduce signal delay. The expression 
for energy consumption of a bus wire from [32] is extended 



to include the effect of repeaters (to reduce wire delay), and 
is given as: 

EWIRE = 0.5 (ΣCL+2
ddV

d
l .CREP + l.(CG+2CC)).α +  

d
l .EREP   ... (7) 

where Vdd is the supply voltage, α is the switching factor 
representing bit transition activity on the wire, ΣCL is the 
sum of load capacitances of all the components connected to 
the wire, including the driver and receiver, CREP is the 
capacitance of a repeater, CG is the wire-to-ground 
capacitance per unit length, CC is the coupling capacitance 
per unit length of the wire to its adjacent wires, l is the 
length of the wire, d is the inter-repeater distance and EREP is 
the repeater internal energy.  
This single bus wire model is extended for an N bit bus. The 
Berkeley Predictive Technology Model (PTM) [41] is used 
to estimate values for ground (CG) and coupling (CC) 
capacitances. The static energy of the repeater (EREP) and its 
capacitance (CREP) are obtained from data sheets. The 
component load capacitance on the wire (CL) is obtained 
after component synthesis. Repeater capacitance and static 
energy is obtained from data sheets. A high-level simulated-
annealing based floorplanner [33] is used to generate IP 
block placement to obtain wire lengths and [34] is used to 
determine optimal-delay repeater spacing/sizing. Finally, the 
switching factor (α) is obtained from simulation. 
 
5. CAPPS SYNTHESIS FRAMEWORK 
In this section, we describe the CAPPS automated 
framework for fast system-level, application-specific, 
power-performance trade-offs in bus matrix communication 
architecture synthesis. First we describe how performance 
constraints are represented in our approach, followed by our 
assumptions and goals. Next we present the high level 
floorplanning and wire delay estimation engines used to 
detect and eliminate clock cycle timing violations at the 
system level, as well as determine bus wire lengths. Finally, 
we describe the flow for the CAPPS framework in detail.  
 
5.1 Background 
Typically, MPSoC designs have performance constraints that 
are dependent on the nature of the application, and must be 
satisfied by the underlying on-chip communication architecture. 
The throughput of communication between components is a 
good measure of the performance of a system [15]. To 
represent performance constraints in our approach, we define a 
Communication Throughput Graph CTG = G(V,A) that is a 
directed graph, where each vertex v represents a component in 
the system, and an edge a connects components that need to 
communicate with each other. A Throughput Constraint 
Path (TCP) is a sub-graph of a CTG, consisting of a single 
component for which data throughput must be maintained, and 
other masters, slaves and memories that are in the critical path 
impacting the maintenance of the throughput. Figure 5 shows a 
CTG for a SoC subsystem, with a TCP involving the ARM2, 
MEM2, DMA and ‘Network I/F’ components, where data 

packets must stream out of ‘Network I/F’ at a rate of at least 1 
Gbps.  
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Figure 5. Communication Throughput Graph (CTG) 

 
5.2 Assumptions and Goals 
We are given an MPSoC application which has certain 
minimum performance constraints that need to be satisfied. 
The application has several components (IPs) that need to 
communicate with each other. We assume that hardware-
software partitioning has taken place and that the appropriate 
functionality has been mapped onto hardware and software 
IPs. These IPs are standard “black box” library components 
that cannot be modified during the synthesis process. The 
target standard bus matrix communication architecture (e.g. 
AMBA AHB bus matrix) is also specified.  
The goal of our bus matrix synthesis framework then, is to 
automatically generate a set of bus matrix configurations for 
the given application that meet the minimum performance 
constraints of the application. The output of the framework is 
a power-performance trade-off graph for the generated set of 
valid bus matrix solutions, allowing a designer to pick a 
solution with the desired combination of power and 
performance characteristics.    

 
5.3 Floorplan and Wire Delay Estimation 
Engines 
It is possible that after a bus matrix architecture has been 
synthesized at the system-level, it might not be physically 
realizable due to bus cycle timing violations [35]. This can 
be illustrated as follows. Figure 6 shows a floorplan for a 
system where IP1 and IP2 are connected to the same bus as 
ASIC1, Mem4, ARM, VIC and DMA components, and the 
bus has a clock frequency of 333 MHz. This implies that the 
bus cycle time is 3 ns. For a 0.13 µm process, a floorplanner 
determines a wire length of 9.9 mm between pins 
connecting the two IPs to the bus. Using output pin load 
capacitance values for IPs obtained from synthesis, the wire 
delay is calculated from formulations presented in [36-37], 
and found to be 3.5 ns, which clearly violates the bus clock 
cycle time constraint of 3 ns. Typically, once such violations 
are detected at the physical implementation stage in the 
design flow, designers end up pipelining the busses by 
inserting latches, flip-flops or register slices on the bus, in 
order to meet bus cycle time constraints. However, in our 
experience, such pipelining of the bus can not only have an 
adverse effect on critical path performance, but also requires 
tedious manual reworking of RTL code and extensive re-
verification of the design that can be very time consuming 
[35]. It is therefore important to detect and eliminate such 



violations as early as possible in the design flow, preferably 
at the system level. To detect and eliminate any possible bus 
cycle time violations in the bus matrix communication 
architecture solutions generated by our synthesis framework, 
we make use of high-level floorplanning and wire delay 
estimation engines.   
 

IP1
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Figure 6. Example floorplan with bus cycle timing 
violation 

 
The floorplanning stage in a typical design flow arranges 
arbitrarily shaped, but usually rectangular blocks 
representing circuit partitions, into a non-overlapping 
placement while minimizing a cost function, which is 
usually some linear combination of die area and total wire 
length. Our floorplanning engine is adapted from the 
simulated annealing based floorplanner proposed in [33]. 
The input to the floorplanner is a list of components and 
their interconnections in the system. Each component has an 
area associated with it (obtained from RTL synthesis). 
Dimensions in the form of width and height (for “hard” 
components) or bounds on aspect ratio (for “soft” 
components) are also required for each component. 
Additionally, maximum die size and fixed locations for hard 
macros can also be specified as inputs. Given these inputs, 
our floorplanner minimizes the cost function 
 

Cost = w1.Area +w2.BusWL +w3.TotalWL            ... (8) 
 

where Area is the area of the chip, BusWL is the wire length 
corresponding to wires connecting components on a bus, 
TotalWL is total wire length for all connections on the chip 
(including inter-bus connections) and w1, w2, w3 are 
adjustable weights that are used to bias the solution. The 
floorplanner outputs a non overlapping placement of 
components from which the wire lengths can be calculated 
by using half-perimeter of the minimum bounding box 
containing all terminals of a wire (HPWL) [38]. 
Once the wire lengths have been calculated, the delay 
estimation engine is invoked. The wire delay is calculated 
based on formulations proposed in [36-37], for optimal wire 
sizing with buffer (or repeater) insertion. Both wire sizing 
and buffer insertion are techniques that have been found to 
reduce wire delay [39]. The inputs to this engine are (i) the 

wire lengths from the floorplanner, (ii) buffer details 
(resistance, capacitance and delay, the values of which are 
obtained from data sheets; size and its corresponding critical 
length for buffer insertion, which is obtained from [37]), 
(iii) technology library dependent parameters (from [40]) 
and (iv) the capacitive loads (CL) of component output pins 
(obtained from RTL synthesis).  
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Figure 7. Transforming multiple pin net into two pin net 
 
We can simplify the multiple pin net problem (which is 
representative of a bus line) depicted in Figure 7(a) to 
multiple two pin net problems, as shown in Figure 7(b). 
First, let us consider the wire delay for a wire without buffer 
insertion. The delay for a wire of length l, with optimal wire 
sizing (OWS) [37], is given as 
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Lambert’s W function defined as the value of w which 
satisfies wew=x. Rd is the resistance of the driver, l is the 
wire length and CO and CL are capacitive loads that are 
calculated as shown in Figure 7(c). The rest of the 
parameters are dependent on the technology library used, 
and are obtained from [40] – r is the sheet resistance in Ω/sq, 
ca is unit area capacitance in fF/µm2 and cf is unit fringing 
capacitance in fF/µm (defined to be the sum of fringing and 
coupling capacitances).  
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Figure 8. Wire model for BIWS optimization 

 
Now let us consider wire delay, with buffer insertion. Let lc 
be the critical length for buffer insertion, for the buffer size 
used, from [37]. If the length of a wire l is less than lc, then 
no buffers need to be inserted, and the wire delay is given 
by Eq. (9). If however l > lc, we need to insert buffers. The 



total number of buffers to be inserted, nb= . The wire 
is thus divided into nb+1 stages as shown in Figure 8. 
Except for the first and last stages, each stage has equal 
length lc and an equal delay Tcrit given by 

⎣ cll / ⎦

 

),,('
bcbowsbuffercrit ClRTtT +=                … (10) 

 

where tbuffer, Rb and Cb are the delay, resistance and 
capacitance of the buffer used, respectively. The first stage 
also has a length of lc, but a delay Tfirst given by 

 

),,('
Lcdowsdriverfirst ClRTtT +=             … (11) 

 

The length of the last stage llast =l - nb.lc, and its delay Tlast is 
given by 

 

),,('
Llastbowsbufferlast ClRTtT +=           … (12) 

 

Then the delay for a wire of length l, with optimal Buffer 
Insertion and Wire Sizing (BIWS), shown in Figure 8, can 
be summarized as 

 

                                          for l < lc           … (13) OWSBIWS TT =

                                         for lc < l < 2lc  … (14) lastfirst TT +=

                           for l > 2lc         … (15) lastcritbfirst TTnT ++= .
 

As we will demonstrate in the next section, our synthesis 
framework makes use of the described floorplanning and 
wire delay estimation engines to detect (and eliminate) bus 
cycle time violations. 
 
5.4 CAPPS Framework Overview 
We now describe the CAPPS bus matrix synthesis framework 
in more detail. This framework has been derived from our 
previous work on bus matrix synthesis that generated a single, 
optimal partial bus matrix solution having the least number of 
buses [8]. This technical report extends the framework by 
adding energy macro-models, and enabling power-
performance trade-offs on an output solution set having 
possibly several diverse bus matrix configurations. 
The basic idea is to start with a full bus matrix configuration, 
and iteratively cluster slaves together to reduce the logic 
components and wires in the matrix that will intuitively allow 
a reduction in power consumption. But this will come at the 
cost of performance, which degrades with decreasing number 
of buses, because of bottlenecks at the slave end due to 
increased traffic (and consequently extended arbitration 
delays). The final solution set will consist of bus matrix 
configurations having different number of components and 
buses, without violating application performance constraints, 
lying between the extremes of a full bus matrix and an 
optimally reduced, partial bus matrix having the least number 
of buses and components possible. The power-performance 
trade-off graph for the solution set will then allow a designer 
to select a configuration having the desired power and 
performance characteristics for a particular application. 
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Figure 9. CAPPS Bus Matrix Synthesis Framework 
 

Figure 9 shows the major steps in the CAPPS synthesis 
framework. The inputs are (i) the application-specific 
Communication Throughput Graph (CTG), (ii) a library of IP 
components consisting of masters, slaves and memories, (iii) 
a template of the target full bus matrix communication 
architecture (e.g. AMBA AHB bus matrix), (iv) energy 
macro-models for the bus matrix, and (v) designer constraints, 
that allow a designer to set the bus matrix bus clock 
frequency, data bus width (assumed to be uniform for all 
buses in the matrix) and arbitration schemes. The output is a 
set of solutions that meet application performance constraints, 
and a power-performance trade-off report for these solutions.  
We start by first mapping components in the IP library onto 
the full bus matrix template (Step 1). Next, we perform 
preprocessing on this matrix structure by (i) removing unused 
buses with no data transfers on them, according to the CTG, 
and (ii) migrating components that are accessed exclusively 
by a master, to its local bus, in order to reduce components 
(arbiters, output stage) and wire congestion in the matrix 
(Step 2). The subsequent step involves static analysis to 
further reduce the number of components and buses in the 
matrix, by using a branch and bound based hierarchical 
clustering algorithm to cluster slave components (Step 3). 
Note that we do not cluster masters because it adds two levels 
of contention (one at the master end and another at the slave 
end) in a data path that can drastically degrade system 
performance.  
The branching algorithm starts out by clustering two slave 
clusters at a time, and evaluating the gain from this operation. 
Initially, each slave cluster has just one slave. The total 
number of clustering configurations possible for a bus matrix 
with n slaves is given by (n! × (n-1)!)/2(n-1). This creates an 
extremely large exploration space, which cannot be traversed 
in a reasonable amount of time. In order to consider only 
useful clustering configurations, we make use of a bounding 
function, which ensures that (i) only beneficial clusterings are 
allowed that result in component or wire savings and (ii) 
performance constraints are still valid after clustering. The 
interested reader can refer to our previous work in [8] for a 
more detailed treatment of this algorithm. 



The output of the algorithm is a set of solutions that are 
ranked and stored in a database according to the number of 
buses. The next step (Step 4) selects a solution from the 
ranked database, and does the following: (i) fixes arbitration 
schemes for each slave cluster in the matrix, and (ii) performs 
simulation, to gather power and performance statistics. The 
arbitration scheme gives priority to higher Throughput 
Constraint Paths (TCPs) from the CTG. Simulation is 
performed using a fast, transaction-level CCATB [12] 
simulation model in SystemC [13]. It allows us to verify if all 
performance (TCP) constraints are satisfied, in the next step 
(Step 5), since it is possible for dynamic factors such as traffic 
congestion, and buffer overflows etc. to invalidate the 
statically predicted solution, in some cases.  
Steps 4 and 5 are repeated for the desired number of times, 
based on the number of solutions required in the output set. 
The designer can specify different strategies to select 
solutions from the ranked database, such as selecting 
solutions from the top and the bottom of the rankings, and 
then selecting solutions at regular intervals between them, to 
get a wider spread on the power-performance characteristics. 
Finally, we use the energy and performance statistics obtained 
from simulation in Step 4, for each of the solutions in the 
output set, to generate power-performance (and energy-
runtime) trade-off graphs. 

 
5.4.1 Linking Energy Macro-Models with CCATB Models 
The CCATB simulation abstraction uses function/transaction 
calls instead of signals, to speed up the simulation-based 
estimation process [12]. It incorporates bus matrix energy 
macro-models for energy estimation. The equations from 
Section 4.3 are inserted in the code, at points where a change 
in the value of an energy consuming event (i.e. dependent 
variable) can occur.  
To illustrate the linking of a transaction in the CCATB model 
with the energy macro-models, we present an example of a 
single write transaction and show how it activates the macro-
models as it propagates through the bus matrix. Table 1 gives 
the dependent variables from Section 4.3, for each of the 
components in the matrix that are triggered during the write 
transaction in the model, assuming no slave delays and a 
single cycle overhead for arbitration. Every change in a 
dependent variable for a component triggers its corresponding 
energy macro-model equation, which calculates the energy 
for the event and updates the cycle energy value. Static 
energy values are updated at the end of every cycle. Energy 
values can be recorded at each cycle, for every component if 
needed; or in a cumulative manner for the entire bus matrix, 
for use in the final power-performance trade-off analysis. 

 
Table 1. Dependent Variable Activations for a Write 

Transaction 
Component Cycle n Cycle n+1 Cycle n+2 
Input Stage Ψload, ΨHDin Ψdrive - 
Decoder Ψslavesel, ΨHDin Ψrespsel - 
Arbiter Ψarb Ψarb+1 - 
Output Stage - Ψaddrsel, ΨHDin Ψdatasel, ΨHDin 
 

6. EXPERIMENTS 
 
6.1 Energy Macro-model Generation 
In order to generate the energy macro-models for the AHB 
bus matrix communication architecture, we first selected a 
diverse set of bus matrix based system testbenches, having 
different number of master and slave components, bus 
widths, and data traffic profiles that activate the components 
in the bus matrix in different states. We used these to 
generate the energy macro-models and obtained the 
component regression coefficients using the methodology 
from Figure 3, for the TSMC 180nm standard cell library. 
The regression coefficients for the macro-models of each of 
the components of the bus matrix (Section 4.3) are shown in 
Table 2. Also shown are the R squared (R2) values which 
measure the goodness of fit for each regression [31]. The 
value of R2 is a fraction between 0.0 and 1.0. A value of 0.0 
indicates that knowing the variable values will not allow us 
to predict the energy values, whereas a value of 1.0 
indicates that knowing the variable values will allow us to 
predict the value of energy perfectly. From the table it can 
be seen that the R2 values are close to 1.0, thus enabling 
reliable prediction of energy at the system-level. 
 
Table 2. Coefficients for Energy Macro-Models (180nm) 

 

Component Variable Energy 
coeff. (pJ) 

Variable Energy 
coeff. 
(pJ) 

R2 

αinp0 7.78 αinp3 0.96 
αinp1 3.81 αinp4 3.27 

Input Stage 

αinp2 2.60  

0.97 

αdec0 0.47 αdec3 0.13 
αdec1 3.04 αdec4 0.38 

Decoder 

αdec2 2.17  

0.90 

αout0 0.72 αout3 0.14 
αout1 2.61 αout4 1.48 

Output Stage 

αout2 1.53  

0.94 

αarb0 0.65 αarb4 0.34 
αarb1 0.76 αarb5 0.48 
αarb2 0.30 αarb6 0.52 

Arbiter 

αarb3 0.60  

0.86 

 
Next, we targeted the same system testbenches to the 130nm 
and 90nm TSMC standard cell libraries and repeated the 
regression coefficient generation process for the 
components in the bus matrix. The regression coefficients 
for the Input Stage bus matrix component, for each of the 
standard cell libraries, are shown in Table 3. It can be seen 
from the table that as we reduce the standard cell size, the 
coefficient values decrease, which is indicative of a decrease 
in overall power consumption. However, note that the 
reduction in coefficient values is not linear and the table 
indicates a change in relative importance of model variables 
with a change in standard cell library. For instance, the 
value of the coefficient for model variable αinp3 is less than 
1/3rd the value of the coefficient for αinp4 at 180nm, but this 
ratio reduces to 1/2 for the 90nm library. 

 



Table 3. Coefficients for Input Stage Bus Component (in 
pJ) 

 

Standard 
cell library 

αinp0 αinp1 αinp2 αinp3 αinp4 

180 nm 7.78 3.81 2.60 0.96 3.27 
130 nm 1.33 0.66 0.04 0.24 0.56 
90 nm 1.23 0.44 0.02 0.20 0.40 

 
A major advantage of our energy macro-model approach is 
the ease with which it can be retargeted to different standard 
cell libraries. Typically retargeting to a new standard cell 
library is a very time-intensive effort.  However, our 
approach simply requires the generation of gate-level cycle 
energy numbers with the new library for the small system 
testbenches; these cycle energy numbers are used to update 
the cycle energy column in the macro-model template 
shown in Figure 4, after which the regression analysis is 
repeated. Once the gate level cycle energy numbers are 
available for the standard cell library, it only takes a few 
minutes to obtain the new coefficients for each of the 
components in the bus matrix. This enables rapid 
retargeting of models for new cell libraries and results in an 
order-of-magnitude reduction in development time.  
 
6.2 Accuracy of Energy Macro-Models 
We performed experiments to determine the macro-model 
accuracy for different technology libraries, by comparing 
our macro-model energy estimates with detailed gate-level 
energy estimates. We selected four system testbenches that 
were separate and distinct from the ones used for 
characterization and generation of the energy macro models, 
and had different bus matrix structures and traffic 
characteristics: (i) a 2 master, 3 slave bus matrix with 32 bit 
data bus width (2x3_32b), (ii) a 3 master, 4 slave bus matrix 
with 32 bit data bus width (3x4_32b), (iii) a 4 master, 5 
slave bus matrix with 32 bit data bus width (4x5_32b) and 
(iv) a 2 master, 3 slave bus matrix with 64 bit data width 
(2x3_64b). We synthesized these architectures and 
estimated cycle energy values using PrimePower [14] at the 
gate-level, for each of the 180, 130 and 90nm TSMC 
standard cell libraries. In parallel, we characterized the 
model variables and coefficient values in the energy macro-
models for each of the components in the matrix, to obtain 
estimated energy values.  
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Figure 10. Average cycle energy estimation errors 

 

Figure 10 compares the average error in energy estimated at 
each cycle by the macro-models at the early system-level, 
compared to gate-level estimation, for the different standard 
cell libraries. It can be seen that the energy macro-models 
allow highly accurate cycle energy estimation that is 
unaffected by the scaling of technology libraries towards 
deep sub-micron (DSM). The maximum average estimation 
error for the macro-models is only 4.19%.   
Next, we plugged the energy macro-models into a fast 
transaction-level bus cycle-accurate simulation environment 
(CCATB [12]) in SystemC [13]. The CCATB simulation 
abstraction captures the bus matrix at a cycle-accurate 
granularity and uses function/transaction calls instead of 
signals to obtain simulation speed over bus-cycle accurate 
(BCA) models which capture signal details, without 
sacrificing accuracy [12]. The simulation model 
incorporates bus matrix energy macro-models for cycle 
energy estimation. The equations from Section 4.3 are 
inserted in the code for each component, at points where a 
change in the value of an energy consuming event (i.e. 
dependent variable) can occur.  
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Figure 11. Predicted and measured power waveforms 
 

Figure 11 shows a snapshot of the power waveform 
generated by gate-level simulation using PrimePower, and 
the SystemC CCATB simulation using our energy macro-
models for the 2x3_32b bus matrix system testbench. As 
can be seen, the power estimates using the system-level 
CCATB simulation model are highly correlated to the actual 
power consumption. This high correlation highlights an 
additional benefit of the methodology in estimating peak 
energy (as opposed to average energy). Peak energy is 
important in the planning of power grids which is becoming 
increasingly difficult to do in DSM.  
 

Table 4. Comparing time taken for power estimation  
 

Test 
bench 

PrimePower 
Gate-level 
CPU time 

SystemC  
T-BCA level 

CPU time 

Speedup 
(X times) 

2x3_32b 2.58 hrs 9.1 sec 1021 
3x4_32b 7.91 hrs 18.8 sec 1515 
4x5_32b 27.04 hrs 49 sec 1987 
2x3_64b 3.10 hrs 9.9 sec 1127 

 
Table 4 compares the CPU time taken for the PrimePower 
simulation (for gate-level cycle energy estimation) with the 
system-level CCATB based prediction, for the four system 
testbenches described earlier. The time taken for the gate-



level and system-level power estimation does not depend on 
the technology library used, and is independent of it. As can 
be seen from the table, the system-level power estimation 
gives a substantial speedup close to 2000X over gate-level 
power estimation using PrimePower. Note that in our 
comparison we have not included time taken for value 
change dump (VCD) file generation and parasitic RC 
extraction file generation needed for PrimePower based 
estimation, which takes from several minutes to hours for 
each of the testbenches. From these speedup results and our 
earlier observation on the high estimation accuracy of the 
macro-models across technology libraries, we believe that 
our energy macro-modeling approach can be very useful for 
designers interested in fast and accurate communication 
architecture power estimation, early in the design flow, at 
the system level. 

 
6.3 Power-Performance Trade-offs 
To validate the CAPPS bus matrix synthesis framework, we 
applied it to an industrial MPSoC application from the 
networking domain, used for data packet processing and 
forwarding. Figure 12 shows the Communication Throughput 
Graph (CTG) for the application, with its minimum 
performance constraints that need to be satisfied, represented 
by Throughput Constraint Paths (TCPs) presented separately 
in Table 5.  
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Figure 12. CTG for networking MPSoC application 

 
Table 5. Throughput Constraint Paths (TCPs) 

 

IP cores in Throughput Constraint Path (TCP) Throughput 
Requirement 

ARM1, MEM1, DMA, MEM3, MEM5 320 Mbps 
ARM1, MEM3, MEM4, DMA, Network I/F2 240 Mbps 
ARM2, Network I/F1, MEM2  800 Mbps 
ARM2, MEM6, DMA, MEM8, Network I/F2 200 Mbps 
ARM3, ARM4 , Network I/F3, MEM2, MEM7 480 Mbps 

 
ARM1 is a protocol processor (PP), while ARM2 and ARM3 
are network processors (NP). The ARM1 PP is mainly 

responsible for setting up and closing network connections, 
converting data from one protocol type to another and 
generating data frames for signaling, operating and 
maintenance. The ARM2 and ARM3 NPs directly interact 
with the network ports and are used for assembling incoming 
packets into frames for the network connections, network port 
packet/cell flow control, assembling incoming packets/cells 
into frames, segmenting outgoing frames into packets/cells, 
keeping track of errors and gathering statistics. ARM4 is used 
for specialized data processing involving data encryption. The 
DMA is used to handle fast memory to memory and network 
interface data transfers, freeing up processors for more useful 
work. Besides these master cores, the application also has a 
number of memory blocks, network interfaces and peripherals 
such as interrupt controllers (ITC1, ITC2), timers (Watchdog, 
Timer1, Timer2), UARTs (UART1, UART2) and data packet 
accelerators (ASIC1, ASIC2). 
The application and the target AMBA AHB bus matrix 
architecture were captured at the CCATB abstraction [12] in 
SystemC [13], with the bus matrix energy macro-models 
plugged into the simulation environment. The bus matrix 
design constraints specified a data bus width of 32 bits, a 
clock frequency of 100 MHz and a static priority-based 
arbitration scheme. Power numbers are calculated for the 
TSMC 0.18µm standard cell library. We also included the 
energy contribution of bus wires as described in Section 4.3.  
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Figure 13. Power-Performance Trade-off graph 
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Figure 14. Component-wise Power Comparison 

 
Figure 13 shows the power-performance curves output by the 
framework for the MPSoC application. The x-axis shows 
solutions in the output set having different number of buses, 
while the y-axis shows the % change in power and 
performance, using the original full bus matrix as the base 
case. It can be seen that reducing the number of buses reduces 
the average power dissipation, because of a smaller number 
of arbiters, output stages and bus wires in the matrix, which 
results in less static and dynamic power consumption. Figure 
14 highlights this trend, showing a comparison of the 



component-wise power consumption for the full bus matrix 
and the solution having the least number of buses, which also 
consumes the least power. While the power consumed by the 
input stage initially decreases when the number of buses is 
decreased, due to reduced port switching, this trend is soon 
offset as traffic congestion increases arbitration delays, 
requiring additional buffering of transactions, for solutions 
with lesser number of buses. Similarly, for bus wires, the 
initial power reduction due to reduced number of wires in the 
matrix is soon offset by the need for longer shared wires to 
connect the increasingly clustered slaves. 
As far as the performance change is concerned, (measured in 
terms of average % change in data throughput of constraint 
paths) a reduction in the number of buses increases traffic 
congestion and reduces performance due to an increase in 
arbitration wait time. However it is interesting to note that 
there are certain points (e.g. point A) in Figure 13 where 
reducing the number of buses actually improves performance! 
This happens because of a reduction in port switching at the 
master end as slave clusters grow, reducing re-arbitration 
delays for masters. In addition to the average % change in 
throughput, another useful metric to gauge application 
performance is its total runtime. Figure 15 shows the 
corresponding total energy vs. application runtime trade-off 
graph for the MPSoC that is useful for cases where the 
application must execute within a given time or energy 
budget, such as for mobile battery-driven applications. 
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Figure 15. Total Energy vs. Runtime Trade-off graph 
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Figure 16. Power vs. Chip-Area Trade-off graph for 

MPSoC 
 
It is also possible to perform other design space trade-offs 
within the CAPPS framework. For instance, Figure 16 
shows the pareto-optimal trade-off curve between bus 
matrix power consumed and the total area of the chip. To 
obtain this curve, we iterated through several different 
floorplans in the floorplanning stage. Since different 
floorplans have different wire routing arrangements, every 
floorplan has a different value for power consumption of the 

bus wires. Typically, as the allowed chip area is increased, 
the floorplanner can optimize the floorplan better, by 
reducing bus wire length, which consequently reduces bus 
power consumption.  
Overall, the power-performance curves show a possible trade-
off of upto approximately 20% for power and upto 40% for 
performance, enabling a designer to select the appropriate 
point in the solution space which meets the desired power and 
performance characteristics. There is also a possible trade-
off of upto 10% for runtime and upto 15% for total energy 
consumed, which is a useful trade-off metric when the 
application is running on a fixed energy budget, which is the 
case for mobile battery-driven devices. The CAPPS 
automated system-level synthesis framework generated the 
solution set and statistics in a matter of a few hours, instead of 
days or even weeks it would have taken with a gate-level 
estimation flow. Such a framework is invaluable for designers 
early in the design flow, for quick and reliable 
communication architecture design space exploration, to 
guide design decisions at the system level.  

 

 
7. CONCLUSION 
We presented the CAPPS automated framework for fast 
system-level application-specific power-performance trade-
offs in bus matrix communication architecture synthesis. 
Detailed energy macro-models for the bus matrix 
communication architecture were created using multiple 
regression analysis. These energy macro-models were shown 
to have an average cycle energy estimation error of less than 
5% across the 180, 130 and 90nm technology libraries, 
compared with gate-level estimation. Plugging these macro-
models in a system-level simulation framework allows a 
substantial speedup of almost 2000X for cycle energy 
estimation, over gate-level estimation. These macro-models 
were used in the CAPPS synthesis framework for power 
estimation. Experimental results of applying CAPPS on an 
industrial networking MPSoC application generated results in 
a matter of a few hours, indicating a potential tradeoff 
between power and performance, energy and runtime, and 
chip area and power, for different points in the solution space, 
which shows the effectiveness of our approach. Future work 
will deal with applying this approach to other types of 
communication architectures. 
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