
Stream Annotations for Energy Trade-offs in a Video

Decoder for Multimedia Applications ∗

Radu Cornea Alex Nicolau Nikil Dutt

Donald Bren School of Information and Computer Science

University of California, Irvine, CA 92697-3425

{radu,nicolau,dutt}@ics.uci.edu

CECS Technical Report #06-09

May 2006

Abstract

Recent applications for distributed mobile devices, including multimedia video/audio stream-
ing, typically process streams of incoming data in a regular, predictable way. Profiling shows
that the runtime behavior of these applications can be accurately predicted most of the time
by analyzing the data to be processed and annotating the stream with information collected.
We introduce an annotation-based approach to power-quality trade-offs and demonstrate
its application on CPU frequency scaling during video decoding, for an improved user ex-
perience on portable devices. Our experimental results show that savings of up to 50%
can be achieved for the processor power consumption on typical PDAs during MPEG video
decoding.

∗This work was partially supported by NSF award ACI-0204028.

Contents

1 Introduction 5

2 Data Annotation 6
2.1 General Considerations . 6
2.2 Applications for Annotations . 6
2.3 System architecture . 8

3 MPEG Background 8

4 Annotation Based DVS 10
4.1 Decoding Time Estimation . 10
4.2 DVS Control . 11

5 Experimental Results 13
5.1 Experimental Setup . 13
5.2 Frame Decoding Time . 14
5.3 Power Savings . 16

6 Related Work 18

7 Conclusions and Future Work 19

A Macroblock Distribution 21

B Frame Decoding Times (one fitting curve) 22

C Frame Decoding Times (two fitting curves) 26

D Frame Decoding Times - global estimation (all) 32

E Frame Decoding Times - global estimation (all CIF) 34

F Power Savings 36

List of Figures

1 System model . 8
2 Frames in a MPEG stream . 8
3 Macroblock Distribution(action clip) . 9
4 Frame Decoding Times (action clip) . 10
5 Decode Time Variation with Frame Size . 11
6 Frequency Scaling for Frame Decoding . 12
7 Different DVS heuristics . 13
8 Linear Regression Fitting (action clip) . 15
9 Errors for Linear Fitting (action clip) . 15

2

10 Quadratic Regression Fitting (action clip) . 16
11 Errors for Quadratic Fitting (action clip) . 16
12 Fitting Curve (’foreman’ CIF clip) . 16
13 Fitting Curves (’foreman’ CIF clip) . 16
14 Normalized CPU power consumption results . 18
15 Macroblock Distribution(action clip) . 21
16 Macroblock Distribution(news clip) . 21
17 Frame Decoding Times (’action’ clip) . 22
18 Fitting curve (’action’ clip) . 22
19 Frame Decoding Times (’news’ clip) . 22
20 Fitting curve (’news’ clip) . 22
21 Frame Decoding Times (’akiyo’ CIF clip) . 23
22 Fitting curve (’akiyo’ CIF clip) . 23
23 Frame Decoding Times (’coastguard’ CIF clip) . 23
24 Fitting Curve (’coastguard’ CIF clip) . 23
25 Frame Decoding Times (’container’ CIF clip) . 24
26 Fitting Curve (’container’ CIF clip) . 24
27 Frame Decoding Times (’foreman’ CIF clip) . 24
28 Fitting Curve (’foreman’ CIF clip) . 24
29 Frame Decoding Times (’hall’ CIF clip) . 24
30 Fitting Curve (’hall’ CIF clip) . 24
31 Frame Decoding Times (’mobile’ CIF clip) . 25
32 Fitting Curve (’mobile’ CIF clip) . 25
33 Frame Decoding Times (’news’ CIF clip) . 25
34 Fitting Curve (’news’ CIF clip) . 25
35 Frame Decoding Times (’silent’ CIF clip) . 25
36 Fitting Curve (’silent’ CIF clip) . 25
37 Frame Decoding Times (’action’ clip) . 26
38 Fitting Curves (’action’ clip) . 26
39 Frame Decoding Times (’news’ clip) . 26
40 Fitting Curves (’news’ clip) . 26
41 Frame Decoding Times (’akiyo’ CIF clip) . 27
42 Fitting Curves (’akiyo’ CIF clip) . 27
43 Frame Decoding Times (’coastguard’ CIF clip) . 27
44 Fitting Curves (’coastguard’ CIF clip) . 27
45 Frame Decoding Times (’container’ CIF clip) . 28
46 Fitting Curves (’container’ CIF clip) . 28
47 Frame Decoding Times (’foreman’ CIF clip) . 28
48 Fitting Curves (’foreman’ CIF clip) . 28
49 Frame Decoding Times (’hall’ CIF clip) . 28
50 Fitting Curves (’hall’ CIF clip) . 28
51 Frame Decoding Times (’mobile’ CIF clip) . 29
52 Fitting Curves (’mobile’ CIF clip) . 29
53 Frame Decoding Times (’news’ CIF clip) . 29
54 Fitting Curves (’news’ CIF clip) . 29

3

55 Frame Decoding Times (’silent’ CIF clip) . 29
56 Fitting Curves (’silent’ CIF clip) . 29
57 Frame Decoding Times (all clips) . 30
58 Fitting Curves (all clips) . 30
59 Frame Decoding Times (all CIF clips) . 30
60 Fitting Curves (all CIF clips) . 30
61 Frame Decoding Times (’akiyo’ CIF clip) . 31
62 Fitting Curves (’akiyo’ CIF clip) . 31
63 Frame Decoding Times (’akiyo’ QCIF clip) . 31
64 Fitting Curves (’akiyo’ QCIF clip) . 31
65 Frame Decoding Times (’akiyo’ QCIF+CIF clip) . 32
66 Fitting Curves (’akiyo’ QCIF+CIF clip) . 32
67 Fitting Curves (’action’ clip) . 32
68 Fitting Curves (’news’ clip) . 32
69 Fitting Curves (’akiyo’ CIF clip) . 33
70 Fitting Curves (’coastguard’ CIF clip) . 33
71 Fitting Curves (’container’ CIF clip) . 33
72 Fitting Curves (’foreman’ CIF clip) . 33
73 Fitting Curves (’hall’ CIF clip) . 33
74 Fitting Curves (’mobile’ CIF clip) . 33
75 Fitting Curves (’news’ CIF clip) . 34
76 Fitting Curves (’silent’ CIF clip) . 34
77 Fitting Curves (’action’ clip) . 34
78 Fitting Curves (’news’ clip) . 34
79 Fitting Curves (’akiyo’ CIF clip) . 35
80 Fitting Curves (’coastguard’ CIF clip) . 35
81 Fitting Curves (’container’ CIF clip) . 35
82 Fitting Curves (’foreman’ CIF clip) . 35
83 Fitting Curves (’hall’ CIF clip) . 35
84 Fitting Curves (’mobile’ CIF clip) . 35
85 Fitting Curves (’news’ CIF clip) . 36
86 Fitting Curves (’silent’ CIF clip) . 36

List of Tables

1 Power Savings (individual) . 17
2 Power Savings (global) . 17
3 Power Savings for the 2 Curve Fitting . 36

4

1 Introduction

Recent developments in PDAs and cellphones have made possible a range of new applications
for mobile devices, such as multimedia streaming (audio and video), online gaming, voice over
IP. All these applications have one thing in common: they process incoming streaming data
using known algorithms, in a repetitive fashion. The main power consuming components
of a handheld device are the CPU, display and network interface. Running multimedia
applications further aggravates the situation, as these programs are known to be both CPU-
intensive and to require higher network bandwidth.

Research has shown that most streaming applications follow a regular pattern of phases
during their execution. They start with an initiation phase followed by a repeated main loop
that contains the main phases of the algorithm and ends with a finalization phase. In case
of streaming applications (video, audio or gaming), the algorithms are typically composed
of different filters (e.g. motion estimation, quantization, DCT), which are applied on the
incoming data (a sequence of frames in the case of multimedia streaming) in a regular,
repetitive way. This regular behavior is confirmed by recent research [10].

This regular behavior is only affected by the nature of data to be processed. Data
stream and its characteristics introduce a degree of variation within the execution of these
applications, like timings, load, power consumption and other metrics ([8]). Therefore, by
analyzing the data either off-line or online before it is processed allows us to gain knowledge
its content which makes an entire range of data-aware optimizations possible at the data
stream level.

By profiling incoming data and annotating it with the information collected, we can
predict the behavior of the application and use this knowledge for improving either the per-
formance or energy consumption. These optimizations are especially useful in the case of
mobile devices where battery capacity is a limiting factor. For these applications, anno-
tations can substantially improve battery life of mobile devices and therefore increase user
experience.

Moreover, data annotation and profiling could be integrated in the future with application
profiling (execution phases), for a unified view of the application’s behavior during runtime
and further improvements in both power savings and performance.

In this paper we focus on data annotations for multimedia streaming, more specifically
MPEG decoding. We show that pre-analysis of video streams allows for more aggressive
DVS techniques, while still meeting timing constraints. These translate into power savings
of up to 50% as compared to a no DVS approach or up to 30-40% as compared to a simple
DVS based on worst case execution time.

5

2 Data Annotation

2.1 General Considerations

Data annotation is the process of analyzing a stream of data and supplementing it with
a summary of the information collected, information which will be use later for data-aware
optimizations to be performed at run-time. Annotations typically focus on patterns or trends
in the data that can be exploited later for power or performance benefits.

The steps for annotating data stream are:

• Profile data stream (offline or online by a proxy server)

• Embed profiling information into data stream (annotate)

• Use annotations at runtime for optimizations

The annotations can be performed either statically (offline annotation/profiling for ex-
ample in the case of media serving, where information is preprocessed and saved on media
servers) or dynamically (in case of live streams, through on-the fly annotation done at an
intermediary proxy node). In this work, we assume that the annotations we are added off-
line, through profiling of an extensive data set, representative for the application domain.
We focus on multimedia streaming and annotations that are relevant to this domain.

Annotations can be used either at the client side, for optimal playing, or at a proxy node,
which performs various operations on the data stream to adapt it to client’s capabilities
(transcoding, etc.). These annotations may proved useful in estimating the required band-
width for communication, estimating computation (for task balancing between transcoding
at the proxy vs the client), or applying more aggressive QoS trade-offs based on image
content.

The advantage of annotating the data in advance is two-fold. First, there is no overhead
for doing all the work at runtime. Second, because the information is available even before
decoding the data, more optimizations are possible, which would not be possible with a
runtime analysis. For example, annotation in the MPEG stream allow optimizations at
the network level because the information is stored in the MPEG header itself. Other
optimizations (like DVS) can be applied earlier, even before decoding is finished, because
the annotations are immediately available from the data stream. Without annotations, the
client application would first need to first decode the data and analyze it or use some history
based predictions, with a more limited knowledge because only a small window of data can
be analyzed at one time.

2.2 Applications for Annotations

The idea of annotation is not new. Annotations have been previously used in other domains.
For example, in compilers, annotations are sometimes used for maintaining as much from
the original semantics as possible. Annotations are also used by programmers in their code

6

to provide hints to the compiler [7]. For example, register assignment for variable in C falls
in this category. Other examples include the use of ’pragma’ directives (C, C++, Ada).

Similarly, we see the process of annotating the data stream as either automated (per-
formed statically, by an analysis step) or under user supervision, where the user can, for
example, specify which parts or objects of the video stream are more important and should
be best preserved in a power-quality trade-off.

Multimedia streaming applications can be analyzed at different abstraction layers: ap-
plication, middleware/network, OS, hardware. Each of these layers benefits from additional
information on the data to be processed.

The video streams provide a perfect opportunity to apply data annotations. Video
streaming and video playing are especially strenuous for the processor and network sub-
system, where most of the possible optimization are located. Therefore, annotations can
prove helpful at both these levels by providing more information on the stream’s content,
trends and patterns.

At network level, annotations help streamlining or optimizing the transmission based
on the content (i.e. encoding parameters directly translate into communication bandwidth).
Network interfaces typically have low power modes, which can be exploited, with information
on the variation in the transfer rates.

Most operating system for mobile devices perform various power slowdown/shutdown
optimizations to conserve battery energy. Without information on the data to be processed,
the OS takes a conservative approach and considers the worst case when applying these
power saving measures. Data annotation improves the decisions that are made at this level,
resulting in larger power savings and longer battery life.

At hardware level, annotations may help reconfiguring the hardware to perfectly match
the requirements for the data to be processed (e.g. cache size and associativity can be tuned
based on the encoding parameters of the video stream).

In this paper we look at data annotation in the context of MPEG video decoding. The
idea is to estimate processor requirements for decoding video frames. In general, frames in
a MPEG stream have different distribution of I, P and B macroblocks. As each macroblock
type require a certain amount of computation, there are huge differences between decoding
times for different frames. The annotation would store the processing requirements for each
individual frame through a high level estimation based on macroblock distribution and frame
size.

The analysis is performed at frame level, as each frame has different macroblock dis-
tribution. The estimation can be applied later in the decoding step for a more aggressive,
data-aware DVS (for power savings, especially for B frames, which require less computation).

There has been previous work for estimating frame decoding time for video streams.
However, in these cases, the decoding time was known only after the frame was extracted
completely from the video stream, which delays the time when power savings schemes can
be used. In our approach, frame complexity information is available right after the frame is
received, since the information is precomputed and stored in the MPEG header. This allows
other optimizations at network/OS level, not possible with the previous techniques.

7

2.3 System architecture

S P

C

C

C

ProxyServer Switch Access
Point

Transcoder, etc.

WAN WIRED ETHERNET

WIRELESS

�

�

�

�

�

Annotation

Figure 1: System model

We assume the distributed system model depicted in Fig. 1. The system entities include
a multimedia server, a proxy node that can perform various optimizations on the stream
(e.g. transcoding), the users with low-power wireless devices and other network equipment
along the way. The multimedia servers store media content and stream videos to clients
upon requests issued by the users on their handheld devices. The communication between
the handheld device and the servers can be routed through a proxy server – a high-end
machine that has the ability to process the video stream in real-time. The proxy node can
also perform in-line profiling/annotation for real-time video streaming (videoconferencing is
an example of such an application).

The annotations can be generated and stored in the video stream (headers) at either the
server side or the proxy node, therefore saving the client of any additional work. Another
option is to send the annotations over a separate control channel.

3 MPEG Background

A typical MPEG video stream is composed of sequences of frames (I, P, B), some of which
are entirely encoded in the stream (intracoded), some which are predicted based on either
previous, subsequent frames or a combination(Fig. 2).

I B B B B PP

MPEG
Stream

Figure 2: Frames in a MPEG stream

8

The 3 types of frames in a MPEG video stream are composed of macroblocks (16x16
pixels) as follows:

• I frames: only I (intracoded) macroblocks

• P frames: I and P (forward predicted) macroblocks (P predominate)

• B frames: I, P and B (backward predicted and interpolated forward-backward) mac-
roblocks (B predominate, followed by P and I)

Macroblock distribution varies with the amount of motion in video clip.
If we plot the distribution of macroblock types in a video clip we observe that the relative

percentage of I, P, B macroblocks varies depending on the nature of the video stream and the
amount of motion in it (e.g. Fig.3). Therefore, for accurate prediction we need to separately
profile video clips from different categories (clips with dynamic action vs mostly static, news
type).

0%

20%

40%

60%

80%

100%

I P B B P B B P B B P B B P B B I

Frame Type

%
 M

ac
ro

bl
oc

ks

B

P

I

Figure 3: Macroblock Distribution(action clip)

Because I macroblocks are completely intracoded, they require IDCT for decoding and are
typically much larger than the other macroblocks. On the other hand, P and B macroblocks
are predicted from other frames. Therefore they are smaller in size and require both motion
compensation and IDCT. Normally, IDCT is more computationally intensive than motion
compensation and depends on the size of the block to be processed.

In MPEG, the processing requirements for decoding a macroblock is typically such that
Pi > Pp > Pb. The distribution of different macroblocks in a frame allows us to roughly
estimate the required time for decoding the entire frame (which always contains a constant
number of macroblocks, depending on its pixel size). As each frame can potentially have a
different distribution, we store this annotation at frame level.

There is a clear delimitation between decoding times for different frame types (I/P/B),
as can be seen in Fig. 4 where we show the distribution of frame decoding times during the

9

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 4: Frame Decoding Times (action clip)

execution of a video clip (action). Moreover, the relative variation of the points follows the
patterns of activity (motion) in the video clips.

In our approach, the annotations are used to help estimating the computation needed
for decoding frame (decoding time). The prediction is then applied in a power management
scheme (DVS for slowing down the processor on a frame by frame basis). Nevertheless, there
are other levels in an application where annotations on the incoming data could be useful
(one such example is the network subsystem).

In case of MPEG decoding, saving are mainly due to the inequality between decoding I/P
versus B frames, where the CPU is idle for longer periods of time, allowing more aggressive
power management schemes.

4 Annotation Based DVS

In the previous section we showed that video decoding has a very regular and predictive
behavior most of the time. Next, we use these observation and attempt to use it in a
prediction scheme based on annotation data, which allows us to apply more aggressive power
saving schemes.

4.1 Decoding Time Estimation

If we plot decoding time for a frame as a function of the frame size, we observe a strong
correlation between the two in practically all video clips. For example for the same video
clip as in Fig. 4 the plot is shown in Fig. 5.

In order to estimate decoding time based on frame size Dec(f) = F (size(f)) we apply
regression fitting algorithms for defining a function between frame sizes and decoding times.

10

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size

Figure 5: Decode Time Variation with Frame Size

Both linear and and quadratic regressions are tested against profiled data. Results are
evaluated in terms of estimation errors.

Next, we devise an estimation heuristic for frame decoding time and use it to control a
DVS scheme.

4.2 DVS Control

In this section we describe our prediction algorithm and dynamic frequency scaling. Since
current iPaq PDAs do not support voltage scaling, we limit our results to frequency scaling
with the mention that voltage scaling would even further improve the results. Therefore in
the reminder of the paper the term DVS will refer to “frequency scaling” only.

In general, the power consumed by a CMOS circuit can be approximated through the
formula P = CfV 2

dd, where C is the switching capacitance of the circuit, f is the clock
frequency and Vdd is the supply voltage level.

Our technique slows down the processor (saving power) during each frame decode to the
lowest frequency that still allows it to finish before the frame deadline.

Fig. 6 shows the frequency and time involved in the decoding of a single frame. Originally,
the processor runs at full frequency (fo) and the frame is decoded in to time. The deadline
for decoding a frame is given by td and depends on the frame rate at which the video is
encoded.

Based on the size of the frame, we use an approximation function Festim and predict the
decoding time as

testim = Festim(s)
Because of estimation errors, the computed decode time can vary from the actual decoding

time by a ε value. The smaller ε, the better our prediction is:
testim − ε < torig < testim + ε

11

Frequency

Timetdeadlinetorig

festim

forig

� � �

torig-
� torig+

�0

Original
Decode

End Time Deadline

Original
Frequency

New
Frequency

Figure 6: Frequency Scaling for Frame Decoding

This allows us to run the processor at a lower frequency given by the equation:
(testim + ε)forig = tdeadlinefestim

Original power consumption is determined by the original frequency:
Porig = CforigV

2
dd

Power consumption using the predictive approach becomes:
Pestim = CfestimV 2

dd

To evaluate the power savings, we compare our approach to the original case, where no
DVS technique is in effect and the processor runs at full power all the time. We also compare
our technique against a simple heuristic, which we call “simple WCET DVS”. This heuristic
assumes a constant processor frequency for the duration of the entire clip, chosen so that all
frames can be decoded before the deadline (slows down the processor such that the worst
case decoding time is still before the deadline). Power consumption in this case is:

Pwcet = CfwcetV
2

dd, where the frequency fwcet is determined from:
tmaxforig = tdeadlinefwcet, with tmax bounding the largest (WCET) decode time during

the entire clip (or a large window in the execution).
The “simple WCET heuristic” is similar to what a current DVS-capable device would ac-

tually perform and does not take advantage of the time difference between decoding different
frames. In contrast, our estimation based approach tries to compute (within a reasonable er-
ror) the decode time for each individual frame based on the annotations stored in its header.
An illustration of these three cases (no DVS, “simple WCET DVS” and estimation-based
DVS) is depicted in Fig. 7.

The energy savings in our technique come from the difference between the original CPU
power (or WCET power) and our estimation-based power, which is always lower or equal to
the original. We lower the CPU operating frequency by taking advantage of the slack time in
the decoding phase, which we more accurately estimate through annotations and profiling.

We estimate the CPU power savings of our annotation-based technique over both the
original power consumption, with no DVS scheme applied, and the power consumption in the
“simple WCET DVS” case. The results are computed for both offline annotation (streaming

12

Frame number

Decoding Time

0 21

Actual
Time

Estimated
Time

Worst
Case
Time

Absolute Deadline

�

3

Figure 7: Different DVS heuristics

of stored material) and real-time video streaming (e.g. videoconferencing).
Annotations can be stored to the stream in different ways: inside empty packets in

the MPEG stream or in a dedicated control channel. In our experiment we assume that
only the parameters of the fitting curve are transmitted for each clip, which requires just a
number of bytes per clip (the evaluation of the function is performed at runtime, being a very
simple quadratic function of the frame size). Another possibility would be to precompute
the estimated decode time and store it with each frame (saving even more processing time
at runtime, but requiring an additional number of bytes in the stream, though a minimal
overhead compared to the frame size overhead compared to the frame sizes).

5 Experimental Results

In the previous section we have shown that there is a strong correlation between frame sizes
and decoding times in the case of video decoding algorithm. We have also demonstrated how
in theory data annotations can be applied to video streaming. In particular we looked at
how annotations help prediction when we perform dynamic voltage scaling during decoding
phase.

We now apply our data annotation strategy in a real application of video decoding. First,
we derive an estimation function by analyzing profiled data from a set of videos from with
similar encoding parameters. Then, we use the resulted function to predict the decoding
time for each frame in the MPEG stream and we apply DVS in order to fully take advantage
of the remaining slack time by slowing down the processor while meeting the deadlines.

5.1 Experimental Setup

We used Sim-Panalyzer[1], a power architecture simulator, based on SimpleScalar. Sim-
Panalyzer models an ARM processor architecture and performs cycle accurate simulation.

13

At the end of execution the simulator reports a number of statistics, including power con-
sumption by the internal units of the processor.

The simulated architecture is a StrongArm processor (200MHz), found in typical iPaq
PDAs. The overhead for switching frequency is in the order of microseconds for a StrongArm
processor, as opposed to tens of milliseconds for a frame decoding time and therefore is
assumed negligible in our experiments. For measuring decoding times, we run the MPEG
decoder, which is part of Berkeley MPEG Tools. The predictor is written in Octave.

As data input, we use video clips of 10 second each (300 frames) with a framerate of
30fps. Eight of the clips are encoded in a CIF (352x288) pixel format, and are taken from the
multimedia community (akiyo, coastguard, container, foreman, hall, mobile, news, silent);
they cover the entire range from very still to very dynamic. The other two clips are encoded
in a 320x240 format (action, news).

Our experiments assume a frame-based DVS. Other approaches are possible too: for
example DVS applied to a group of frames. In this latter case, buffers are required between
the decoder and the display, to smoothen the variation between decoding times and avoid
frame delays. Also, the power savings would be slightly lower, but the technique could be
applied to even more devices (those with less DVS steps, more overhead).

5.2 Frame Decoding Time

We start by profiling the video clips in our simulator and generating the information required
for data annotation. The next step is to derive the approximation (estimation) function
(decode time vs frame size).

For curve fitting, we use linear and quadratic functions. For a linear regression we try to
approximate the decoding time as a linear function:

f(x) = a ∗ x + b
For a quadratic regression:
f(x) = a ∗ x2 + b ∗ x + c
a, b and c are determined using the “least square error” method. To evaluate the quality

of the results, we compute the coefficient of determination (R2 value) for the fit, which
indicates the percent of the variation in the data to be expected. The closer that R2 is to
1, the better the model “fits” the data.

We also compute the maximum residual value, which bounds the maximum variation
from the predicted value we can expect (ε in our discussion above). This bound limit is used
for assuring that almost no deadlines are missed, even in the presence of variations, thereby
maximizing quality.

In our experiments we computed this threshold such that virtually no deadlines were
missed. If the user can tolerate some quality degradation (frame loss), we could lower the
threshold even further, significantly improving power savings. This is the trade-off between
the quality of service delivered and the maximum power savings possible.

Example:

14

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 8: Linear Regression Fitting (action
clip)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 5 10 15 20

P
re

di
ct

io
n

E
rr

or
 (m

s)

Decode Time (ms)

Residuals vs Predicted Values (linear regression)

Figure 9: Errors for Linear Fitting (action
clip)

For a video clip (action), Fig. 8 shows a linear regression model, while Fig. 9 displays the
errors with this model (spread between -3.7 and 3).

The results for the linear regression model are:
a = 0 b = 4.46
R2 = 0.92 MaxResid = 4.02
For the quadratic model, Fig. 10 and Fig. 11 present the curve fitting and errors (between

-1.5 and 1.5 in this case).
Absolute results:
a = −6.7e − 08 b = 0.002 c = 2.77
R2 = 0.98289 MaxResid = 2.2647
As we can see, the quadratic model gives a better match both from R2 point of view

(0.99 vs 0.95) and maximum residual value (1.5 vs 3.7). This tells us that the maximum
error we can expect is around 1.5 ms, so we can plan the DVS slowdown accordingly, so as
not to miss deadlines where possible.

A problem arise when we apply this technique to different video clips: one curve fitting
cannot guarantee good results for all. Therefore, we separate I prediction from P/B, like in
Fig. 13. (I macroblocks have different behavior than P and B)

By analyzing a large number of video clips from different domains we concluded that
the best fit (best R2 value) is achieved when using the following two fitting curves: a linear
function for I-frames, and a quadratic function for P and B-frames (example in Fig. 13). A
single quadratic function would not capture the curve variations present in some of the clips
between the different types of frames (see Fig. 12). The variation is introduced by the extra
motion compensation step, which is present only in P and B-frames).

15

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 10: Quadratic Regression Fitting (ac-
tion clip)

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 5 10 15 20

P
re

di
ct

io
n

E
rr

or
 (m

s)

Decode Time (ms)

Residuals vs Predicted Values (quadratic regression)

Figure 11: Errors for Quadratic Fitting (ac-
tion clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 12: Fitting Curve (’foreman’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 13: Fitting Curves (’foreman’ CIF clip)

5.3 Power Savings

To simulate both an off-line scenario (stored media, annotations are performed off-line) and
a real-time streaming (videoconferencing, annotations are performed in-line, by the proxy
node) we experimented with two different setups:

(a) Individual estimation: the case of stored material
Because the profiling is performed off-line in this case, we applied the profiling and
estimation steps individually on each clip (i.e. each clip is first profiled, annotated,
then its own estimator is used for DVS). Results are shown in Table 1.

(b) Global estimation: simulates a real-time scenario
For an in-line annotation, we first profile globally all clips from the same domain and
with similar encoding parameters and derive a single global estimator. Next, we run
this estimator on each clip separately. This is a more realistic approach for live video

16

streams, where we may not want or be able to separately profile each clip, instead use
a set of similar clips from the same video domain for the off-line profiling step. The
results are presented in Table 2.

Video Savings Over Savings Over
Clip no DVS Simple DVS

action 65.2033 44.2539
akiyo cif 55.4909 48.5246

coastguard cif 51.4923 36.118
container cif 56.8692 50.9896
foreman cif 50.5261 41.534

hall cif 48.5585 32.8528
mobile cif 52.6674 44.4279
news cif 54.4522 45.244

news 59.3555 41.6503
silent cif 56.562 52.5924

Table 1: Power Savings (individual)

Video Savings Over Savings Over
Clip no DVS Simple DVS

action 49.4689 19.0467
news 52.6133 31.971

akiyo cif 54.1925 47.023
coastguard cif 51.3742 35.9625
container cif 56.8142 50.927
foreman cif 46.5873 36.8793

hall cif 47.0726 30.9133
mobile cif 51.7005 43.2927
news cif 47.5397 36.9341
silent cif 53.1341 48.8512

Table 2: Power Savings (global)

The power consumption results for both scenarios are presented in a graphical way in
Fig. 14, against the original (no DVS) and the “simple WCET DVS” case. The numbers are
normalized to the original power consumption (i.e. 100% means no DVS).

We observe that the power savings for the processor are up to 50% over no DVS and up
to 40% over “simple WCET DVS” (which already performs much better that the original
case), for the individual estimation. Even for the global estimation case where the savings

17

are slightly lower, the power gains are still high when compared to the other approaches.
Our savings translate to around 15% for the entire device, with virtually no quality loss.
More savings are possible if a lower quality of service is allowed.

0

10

20

30

40

50

60

70

80

90

100

ac
tio

n

ne
ws

ak
iyo

_c
if

co
as

tgu
ar
d_

cif

co
nta

ine
r_

cif

for
em

an
_c

if

ha
ll_

cif

mob
ile

_c
if

ne
ws_

cif

sil
en

t_c
if

Video Clips

N
o
rm

al
iz

ed
 P

ow
er

 C
o
ns

um
p
tio

n

No DVS
Simple WCET DVS
Individual Estimation DVS
Global Estimation DVS

Figure 14: Normalized CPU power consumption results

Other results are presented in the Appendix.

6 Related Work

There has been recent work that looks at the processed data and tries to derive various
heuristics for improving either communication or computation in streaming applications.

The Aspire research group studies various data-shaping for mobile multimedia commu-
nication. They profile and annotate still images for improving transmission over a wireless
channel usage (bandwidth, latency). In [6] the image data is compressed according to dy-
namic conditions and requirements. Content adaptation is classified depending on time
(static, dynamic), content (to determine optimal compression) and goals of technique or
metrics (constrained bandwidth, display size, response time).

Chandra performs an informed quality aware transcoding in [3], based on image char-
acteristics. He finds that a change in JPEG quality factor (compression metric controlled
by quantization steps) directly corresponds to information quality lost. A prediction for
computational overhead is applied, which approximates number of basic computation blocks
based on image size, color depth and can predict output size for a particular transcoding.

In [4], the authors analyze the characteristics of images available on web sites (distribu-
tion of gif or jpg images, size, colors and quality). They clasify images in: bullets, lines,

18

icons, banners, trueimages based on heuristics and analyze various transcoding techniques
for redugind image size (reducing spatial geometry or thumbnailing, reducing the number of
unique colors, changing the image format or compression)

Avanish Tripathi and Mark Claypool study different ways to reduce bandwidth in network
transmission in [11], by either temporal scaling (dropping frames), quality scaling (reducing
quality of frames) or spatial scaling (changing the size of frames). The quality degradation
is evaluated through an user study.

[5] presents a DVS technique for MPEG decoding to reduce energy consumption while
at the same time maintaining the quality of service. The approach is to separate decoding
time into a frame-dependent, which varies with the frame and a frame independent part,
constant regardless of the frame. The independent part is used to compensate the error that
can appear during the depending frame part.

Bavier et al in [2] present a set of experiments to measure the CPU processing required for
decoding a MPEG frame in software. The algorithm predicts the number of cycles required
for a given frame by constructing a linear model between frame type, size and time. The
accuracy is within 25% of the actual decode times.

In [9], the authors describe a feedback based controller for video decoding that apply
DVS for individual frames. The complexity of frames is estimated using a simple correlation
between frame length and decoding time.

In contrast, our technique performs an off-line profiling and annotation, which allows us
to more accurately estimate the frame decoding times with a minimal overhead at runtime.

7 Conclusions and Future Work

In this paper we presented a new approach toward optimization for multimedia streaming,
using data annotation. We have shown how annotation can be used for predicting runtime
behavior. We showe our experiments where we used data annotations for prediction based
DVS.

Our results show good power savings when prediction is performed on similar video clips:
up to 50% savings over no DVS and up to 40% over simple DVS (based on worst case
assumption)

As future work, we plan to extend our algorithm to include dynamic prediction when
the prediction error cannot be minimized with an offline approach. The dynamic algorithm
would maintains a history window for future prediction. Another extension is for prediction
on video clips with different encoding parameters(size, framerate, bitrate).

References

[1] Sim-panalyzer 2.0 reference manual. Technical report, University of Michigan, University of Colorado.

[2] Andy Bavier, Brady Montz, and Larry L. Peterson. Predicting mpeg execution times. Technical Report
97-15, University of Arizona, 1997.

19

[3] Surendar Chandra and Carla Schlatter Ellis. JPEG compression metric as a quality-aware image
transcoding. In USENIX Symposium on Internet Technologies and Systems, 1999.

[4] Surendar Chandra, Ashish Gehani, Carla Schlatter Ellis, and Amin Vahdat. Transcoding characteristics
of web images. In Martin Kienzle and Wu chi Feng, editors, Multimedia Computing and Networking
(MMCN’01), volume 4312, pages 135–149, San Jose, CA, jan 2001. SPIE - The International Society
of Optical Engineering.

[5] Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-based dynamic volt-
age and frequency scaling for a mpeg decoder. In Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, pages 732–737. ACM Press, 2002.

[6] D.G.Lee, D.Panigrahi, and S.Dey. Network-aware image data shaping for low-latency and energy-
efficient data services over the palm wireless network. In World Wireless Congress (3G Wireless),
2003.

[7] Samuel Z. Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Domain-
Specific Languages, pages 39–52, 1999.

[8] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, and Jayanth Srinivasan.
Variability in the execution of multimedia applications and implications for architecture. In International
Conference on Computer Architecture, pages 254–265, 2001.

[9] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips. Power-aware video decoding, 2001.

[10] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In International Symposium on
Computer Architecture, 2003.

[11] A. Tripathi and M. Claypool. Improving multimedia streaming with content-aware video scaling, 2001.

20

A Macroblock Distribution

Macroblock Distribution in an Action Clip

0%

20%

40%

60%

80%

100%

I P B B P B B P B B P B B P B B I B B P B B P B B P B B P B B P B B I B B P B

B

P

I

Figure 15: Macroblock Distribution(action clip)

Macroblock Distribution in a News Clip

0%

20%

40%

60%

80%

100%

I P B B P B B P B B P B B P B B I B B P I P B B P B B P B B P B B P B B I B B

B

P

I

Figure 16: Macroblock Distribution(news clip)

21

B Frame Decoding Times (one fitting curve)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 17: Frame Decoding Times (’action’
clip)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 18: Fitting curve (’action’ clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 19: Frame Decoding Times (’news’
clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 20: Fitting curve (’news’ clip)

22

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 21: Frame Decoding Times (’akiyo’
CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 22: Fitting curve (’akiyo’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 23: Frame Decoding Times (’coast-
guard’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 24: Fitting Curve (’coastguard’ CIF
clip)

23

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 25: Frame Decoding Times (’container’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 26: Fitting Curve (’container’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 27: Frame Decoding Times (’foreman’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 28: Fitting Curve (’foreman’ CIF clip)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 29: Frame Decoding Times (’hall’ CIF
clip)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 30: Fitting Curve (’hall’ CIF clip)

24

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 31: Frame Decoding Times (’mobile’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 32: Fitting Curve (’mobile’ CIF clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 33: Frame Decoding Times (’news’ CIF
clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 34: Fitting Curve (’news’ CIF clip)

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 35: Frame Decoding Times (’silent’
CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (quadratic regression)

Figure 36: Fitting Curve (’silent’ CIF clip)

25

C Frame Decoding Times (two fitting curves)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 37: Frame Decoding Times (’action’
clip)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 38: Fitting Curves (’action’ clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 39: Frame Decoding Times (’news’
clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 40: Fitting Curves (’news’ clip)

26

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 41: Frame Decoding Times (’akiyo’
CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 42: Fitting Curves (’akiyo’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 43: Frame Decoding Times (’coast-
guard’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 44: Fitting Curves (’coastguard’ CIF
clip)

27

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 45: Frame Decoding Times (’container’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 46: Fitting Curves (’container’ CIF
clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 47: Frame Decoding Times (’foreman’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 48: Fitting Curves (’foreman’ CIF clip)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 49: Frame Decoding Times (’hall’ CIF
clip)

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 50: Fitting Curves (’hall’ CIF clip)

28

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 51: Frame Decoding Times (’mobile’
CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 52: Fitting Curves (’mobile’ CIF clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 53: Frame Decoding Times (’news’ CIF
clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 54: Fitting Curves (’news’ CIF clip)

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 55: Frame Decoding Times (’silent’
CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 56: Fitting Curves (’silent’ CIF clip)

29

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 57: Frame Decoding Times (all clips)

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 58: Fitting Curves (all clips)

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 59: Frame Decoding Times (all CIF
clips)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 60: Fitting Curves (all CIF clips)

30

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 61: Frame Decoding Times (’akiyo’
CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 62: Fitting Curves (’akiyo’ CIF clip)

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 63: Frame Decoding Times (’akiyo’
QCIF clip)

 1

 2

 3

 4

 5

 6

 7

 8

 0 1000 2000 3000 4000 5000 6000 7000 8000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 64: Fitting Curves (’akiyo’ QCIF clip)

31

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

D
ec

od
e

Ti
m

e
(m

s)

Frame Number

Frame Decoding Times

I
P
B

Figure 65: Frame Decoding Times (’akiyo’
QCIF+CIF clip)

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 66: Fitting Curves (’akiyo’ QCIF+CIF
clip)

D Frame Decoding Times - global estimation (all)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 67: Fitting Curves (’action’ clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 68: Fitting Curves (’news’ clip)

32

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 69: Fitting Curves (’akiyo’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 70: Fitting Curves (’coastguard’ CIF
clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 71: Fitting Curves (’container’ CIF
clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 72: Fitting Curves (’foreman’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 73: Fitting Curves (’hall’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 74: Fitting Curves (’mobile’ CIF clip)

33

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 75: Fitting Curves (’news’ CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 76: Fitting Curves (’silent’ CIF clip)

E Frame Decoding Times - global estimation (all CIF)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 77: Fitting Curves (’action’ clip)

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 78: Fitting Curves (’news’ clip)

34

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 79: Fitting Curves (’akiyo’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 80: Fitting Curves (’coastguard’ CIF
clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 81: Fitting Curves (’container’ CIF
clip)

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 82: Fitting Curves (’foreman’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 83: Fitting Curves (’hall’ CIF clip)

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 84: Fitting Curves (’mobile’ CIF clip)

35

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 85: Fitting Curves (’news’ CIF clip)

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

D
ec

od
e

Ti
m

e
(m

s)

Frame Size (bytes)

Decode Time vs Frame Size (linear regression)

Figure 86: Fitting Curves (’silent’ CIF clip)

F Power Savings

Individual Estimation Global Estimation
Video Savings Over Savings Over Savings Over Savings Over
Clip no DVS Simple DVS no DVS Simple DVS

action 65.2033 44.2539 46.636 14.5081
news 59.3555 41.6503 49.5052 27.5091

akiyo cif 55.4909 48.5246 51.1881 43.5483
coastguard cif 51.4923 36.118 50.6199 34.9691
container cif 56.8692 50.9896 56.3697 50.422
foreman cif 50.5261 41.534 45.4058 35.4831

hall cif 48.5585 32.8528 47.6642 31.6854
mobile cif 52.6674 44.4279 52.3581 44.0647
news cif 54.4522 45.244 43.9385 32.6049
silent cif 56.562 52.5924 50.4433 45.9146

Table 3: Power Savings for the 2 Curve Fitting

36

