

A Framework for Memory and Communication
Architecture Co-synthesis in MPSoCs

Sudeep Pasricha and Nikil Dutt

Center for Embedded Computer Systems
University of California Irvine
Irvine, CA 92697-3425, USA

1 (949) 824-2248
{sudeep, dutt}@cecs.uci.edu

CECS Technical Report #06-03
February, 2006

 1

A Framework for Memory and Communication
Architecture Co-synthesis in MPSoCs

Sudeep Pasricha and Nikil Dutt

Center for Embedded Computer Systems
University of California Irvine
Irvine, CA 92697-3425, USA

1 (949) 824-2248
{sudeep, dutt}@cecs.uci.edu

CECS Technical Report #06-03
February, 2006

Abstract

 Memory and communication architectures have a significant impact on the cost, performance, and time-
to-market of complex multi-processor system-on-chip (MPSoC) designs. The memory architecture dictates most
of the data traffic flow in a design, which in turn influences the design of the communication architecture. Thus
there is a need to co-synthesize the memory and communication architectures to avoid making sub-optimal
design decisions. This is in contrast to traditional platform-based design approaches where memory and
communication architectures are synthesized separately. In this technical report, we propose an automated
application specific co-synthesis framework for memory and communication architectures (COSMECA) in
MPSoC designs. The primary objective is to design a communication architecture having the least number of
busses, which satisfies performance and memory area constraints, while the secondary objective is to reduce the
memory area cost. Results of applying COSMECA to several industrial strength MPSoC applications from the
networking domain indicate a saving of as much as 40% in number of busses and 29% in memory area
compared to the traditional approach.

 2

A Framework for Memory and Communication Architecture Co-synthesis in
MPSoCs

Sudeep Pasricha and Nikil Dutt

Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA
{sudeep, dutt}@cecs.uci.edu

Abstract

Memory and communication architectures have a
significant impact on the cost, performance, and time-to-
market of complex multi-processor system-on-chip
(MPSoC) designs. The memory architecture dictates most
of the data traffic flow in a design, which in turn influences
the design of the communication architecture. Thus there is
a need to co-synthesize the memory and communication
architectures to avoid making sub-optimal design
decisions. This is in contrast to traditional platform-based
design approaches where memory and communication
architectures are synthesized separately. In this technical
report, we propose an automated application specific co-
synthesis framework for memory and communication
architectures (COSMECA) in MPSoC designs. The primary
objective is to design a communication architecture having
the least number of busses, which satisfies performance
and memory area constraints, while the secondary
objective is to reduce the memory area cost. Results of
applying COSMECA to several industrial strength MPSoC
applications from the networking domain indicate a saving
of as much as 40% in number of busses and 29% in
memory area compared to the traditional approach.

1 Motivation

Modern multi-processor system-on-chip (MPSoC)
designs are rapidly increasing in complexity. These designs
are characterized by large bandwidth requirements and
massive data sets which must be stored and accessed from
memories, especially for applications in the multimedia and
networking domains. The communication architecture in
such systems – which must cope with the entire inter-
component traffic – not only impacts performance
considerably, but also consumes a significant chunk of the
design cycle [1-2]. Another major factor influencing
performance is the memory architecture, which can occupy
upto 70% of the die area [3]. Estimates indicate that this
figure will go up to 90% in the coming years [4]. Since
memory and communication architectures have such a
significant impact on system cost, performance and time-
to-market, it becomes imperative for designers to focus on
their exploration and synthesis early in the design flow,

with the help of efficient design flow concepts such as
those proposed in platform-based design [6].

Traditionally, in platform-based design, memory
synthesis is performed before the communication
architecture synthesis step [7-11]. While treating these two
steps separately is done mainly due to tractability issues
[5][12], it can lead to sub-optimal design decisions.
Consider the example of a networking MPSoC subsystem
shown in Fig. 1(a). The figure shows the system after
HW/SW partitioning, with all the IPs defined, including
memory which is synthesized based on data size and high-
level bandwidth constraint analysis. Fig. 1(b) shows the
traditional approach where communication architecture
synthesis is performed after memory synthesis, while Fig.
1(c) shows the case where memory and communication
architectures have been co-synthesized using the
COSMECA approach. Now let us consider the implications
of using a co-synthesis framework. Firstly, the co-synthesis
approach is able to detect that the data arrays stored in
Mem1 and Mem2 end up sharing the same bus, and
automatically merges and then maps the arrays onto a
larger single physical memory from the library, thus saving
area. Secondly, the co-synthesis approach is able to merge
data arrays stored in Mem3 and Mem5 onto a single
memory from the library, saving not only area but also
eliminating two busses, as shown in Fig. 1(c). However,
Mem5 cannot share the same bus as Mem3 (or Mem4) in
Fig. 1(b) because the access times of the pre-synthesized
physical memories are such that they cause traffic conflicts
which violate bandwidth constraints. Thirdly, due to the
knowledge of support for out-of-order (OO) transaction
completion [14] by the communication architecture, the co-
synthesis approach is able to add an OO buffer of depth 6
to Mem4, which enables it to reduce the number of ports
from 2 to 1, thus saving area, while still meeting bandwidth
constraints. It is thus apparent that the COSMECA co-
synthesis approach is able to make better synthesis
decisions by exploiting the synergy and interdependence
between the memory and communication architecture
design spaces, to reduce the overall cost of the synthesized
system.

In this technical report, we propose an automated
application specific co-synthesis framework for memory
and communication architectures (COSMECA) in MPSoC
designs. The primary objective is to design a

 3

communication architecture having the least number of
busses, which satisfies performance and memory area
constraints, while the secondary objective is to reduce the
memory area cost. We consider a bus matrix (sometimes
also called crossbar switch) [18] type of communication
architecture for synthesis, since it is increasingly being
used by designers in high bandwidth designs today.

µP1

µP2

µP3

µP4

µP5

Mem1

Mem2

Mem5

S3

Mem4

S1
S2

Mem3

(a) MPSoC system

µP1

µP2

µP3

µP4

µP5

Mem1 Mem2

Mem5

S3 Mem4

i

ii

iii

S1 S2 Mem3

memory area = 34.12 mm2, |bus|=11

(b) Result of performing memory synthesis before
communication architecture synthesis

µP1

µP2

µP3

µP4

µP5

Mem12 Mem35

S3 Mem4

i ii

iii
S1 S2

|OO(mem4)| = 6

memory area = 25.93 mm2, |bus|=9

(c) Result of performing co-synthesis of memory and
communication architectures

Fig. 1 Comparison of traditional approach (separate memory
and communication architecture synthesis) and co-synthesis
approaches for MPSoC example

Our approach tailors the memory and communication
architectures to the application being considered, to reduce
system cost. Using a combination of an efficient static
branch and bound hierarchical clustering algorithm and
heuristics, we are able to quickly prune the uninteresting
portion of the design space, while using fast transaction-
based bus cycle-accurate SystemC [19] simulation models
to capture dynamic system-level effects accurately and

verify the results. COSMECA effectively synthesizes bus
topology, arbitration schemes, bus speeds and OO buffer
sizes for the communication architecture; and
simultaneously performs data array allocation/mapping to
memory blocks, deciding their number, sizes, ports and
types from the memory library, for the memory subsystem.
To the best of our knowledge, no previous work has
performed automated co-synthesis considering so many
exploration parameters. Results of applying COSMECA to
several industrial strength MPSoC networking applications
indicate a saving of as much as 40% in number of busses
and 29% in memory area, compared to the traditional
approach of separate synthesis.

2 Related Work

Communication architectures have been the focus of
much research over the past several years because of their
significant impact on system performance [12][24].
Hierarchical shared bus communication architectures such
as those proposed by AMBA [15], CoreConnect [16] and
STbus [17] can cost effectively connect few tens of IPs, but
are not scalable to cope with the demands of modern
MPSoC systems. Network-on-Chip (NoC) based
communication architectures [20] have recently emerged as
a promising alternative to handle communication needs for
the next generation of high performance designs, but
research on the topic is still in its infancy, and few concrete
implementations of complex NoCs exist to date [21].
Currently, designers are increasingly making use of bus
matrix [18] communication architectures to meet the
bandwidth requirements of modern MPSoC systems. The
need for bus matrix architectures in high performance
designs and its superiority over hierarchical shared busses
has been emphasized in previous work [22-24].
Accordingly, we focus on the synthesis of bus matrix
communication architectures.

Although a lot of work has been done in the area of
hierarchical shared bus architecture synthesis (e.g. [2][25-
26][36-40]) and NoC architecture synthesis (e.g. [27-
28][41-43]), few efforts have focused on bus matrix
synthesis. [29] proposed a transaction based simulation
environment that allows designers to explore and design a
bus matrix. But the designer needs to manually specify the
communication topology, and arbitration scheme, which is
too time consuming for today’s complex systems. The
automated synthesis approach for STBus crossbars
proposed in [30] generates crossbar topology, but does not
consider generation of parameters such as arbitration
schemes, bus speeds and OO buffer sizes, which have
considerable impact on system performance [12][26][44].
COSMECA overcomes these shortcomings by
automatically synthesizing both topology and
communication parameters for the bus matrix.

Previous research in the area of memory and
communication architecture synthesis has either ignored

 4

the co-synthesis aspect, or focused on a small subset of the
problem. Typically, high-level synthesis approaches
perform memory allocation and mapping before
communication architecture synthesis [7-11], ignoring the
overhead of the communication protocol during synthesis.
While treating these two steps separately is mainly due to
tractability issues [5][12], the merits of integrating
communication synthesis with memory synthesis are
clearly demonstrated in [13]. Only a few approaches have
attempted to simultaneously explore memory and
communication subsystems. [31] presents a tool to
automatically generate a full crossbar and a dynamic
memory management unit (DMMU). [32] considers the
connectivity topology early in the design flow in
conjunction with memory exploration, for simple
processor-memory systems. More recently, [33] deals with
bus topology and static priority based arbitration
exploration, to determine the best memory port-to-bus
mapping for pre-synthesized memory blocks. Other
approaches which deal with memory synthesis make use of
static estimations of communication architectures such as
those proposed in [34-35]. Such approaches are unable to
capture dynamic effects such as contention and address
only a limited exploration space. More importantly, none of
the abovementioned approaches attempts to perform co-
synthesis. COSMECA is a novel memory and
communication architecture co-synthesis framework which
improves upon existing synthesis approaches by (i)
automatically generating bus topology and parameter
values for arbitration schemes, bus speeds and OO buffer
sizes, while considering dynamic simulation effects, and
(ii) simultaneously determining a mapping of data arrays to
physical memories while also deciding the number, size,
ports and type of these memories, from a memory library.
Results of applying the COSMECA approach to several
industrial strength case studies (presented in Section 6)
emphasizes the usefulness and need of such an approach
for MPSoC designs.

3 Bus Matrix Communication Architectures

This section describes bus matrix architectures. Fig. 2 (a)
shows a three-master, five-slave full AMBA bus matrix. A
bus matrix consists of several busses in parallel which can
support concurrent high bandwidth data streams. The Input
stage is used to handle interrupted bursts, and to register
and hold incoming transfers if receiving slaves cannot
accept them immediately. Decode generates select signals
for slaves. Unlike in traditional shared bus architectures,
arbitration in a bus matrix is not centralized, but distributed
so that every slave has its own arbitration. Also, typically,
all busses within a bus matrix have the same data bus
width, which usually depends on the application.

One drawback of the full bus matrix structure shown in
Fig. 2(a) is that it connects every master to every slave in
the system, resulting in a prohibitively large number of

busses. The excessive wire congestion can make it
practically impossible to route and achieve timing closure
for the design [1-2]. Fig. 2(b) shows a partial bus matrix
which has fewer busses and consequently uses fewer
components (e.g. decoders, arbiters, buffers), has a smaller
area and also utilizes less power. The basic idea here is to
group slaves/memories on shared busses, as long as
performance constraints are met. Points A and B in Fig.
2(b) are referred to as slave access points (SAPs). The
communication architecture synthesis in COSMECA
attempts to generate a partial bus matrix tailored to the
target application, with a minimal number of busses in the
matrix. Additionally, we generate arbitration schemes at
the SAPs, bus clock speed values and OO buffer size
values.

µP1

µP2

S1

S2

M1

M2

M3µP3

Input
stage

arb

arb

arb

arb

arb

slavesarbitersmatrixmasters Decode

Input
stage

Decode

Input
stage

Decode

(a) full bus matrix architecture

µP1

µP2

S1

S2

M1

M2

M3µP3

Input
stage arb

arb

matrix
masters Decode

Input
stage

Decode

Input
stage

Decode

A

B

(b) partial bus matrix architecture

Fig. 2 Bus Matrix Communication Architecture

4 Memory Subsystem

There are a variety of different memory types available
to satisfy memory requirements in applications. Typically,
designers have used off-chip DRAMs for larger memory
requirements and on-chip embedded SRAMs for smaller
memory requirements. Lately, on-chip embedded DRAMs
are gaining in popularity as they eliminate I/O signals to
separate memory chips, boosting performance and reducing
noise, as well as pin count, which ends up lowering system
cost. Although SRAMs have smaller access times than
DRAMs, they also take up a larger area, requiring a
tradeoff between area and performance between the two
memory types during synthesis. There is also a need for
non-volatile memories such as EPROMs and EEPROMs to
typically store read-only data in a system. The memory

 5

synthesis in COSMECA uses a memory library populated
by on-chip SRAMs, on-chip DRAMs, EPROMs and
EEPROMs having different capacities, areas, ports and
access times. We assume that the word size of these
memories is fixed, based on the application. Data arrays
and groups of scalars in the application are grouped
together into virtual memories (VMs) based on certain
rules, before being mapped onto the appropriate physical
memories from the library, which allow the application to
meet its area and performance constraints. This grouping of
data blocks allows us to reduce the number of memories in
the design, thus reducing area. We also try to avoid multi-
port memories because of their excessive area and cost
overhead.

Fig. 3 Communication Throughput Graph (CTG)

5 COSMECA Co-Synthesis Framework

This section describes the COSMECA co-synthesis

framework. First we state our assumptions and present the
problem definition. Next, we describe our simulation
engine and elaborate on the communication-memory
constraint set, which guides the co-synthesis process.
Finally, we describe the COSMECA co-synthesis flow in
detail.

5.1 Assumptions and Problem Definition

We are given an application for which we assume the

HW/SW partitioning has already been performed. The
resulting MPSoC design has possibly several hardware and
software IPs onto which application functionality has been
mapped. Memory in this model is initially represented by
abstract data blocks (DBs) which are collections of scalars
or arrays accessed by the application, similar to basic
groups in [10]. Generally, this MPSoC design will have
performance constraints, dependent on the application. The
throughput of communication between components is a
good measure of the performance of a system [25]. To
represent performance constraints in COSMECA, we define
a Communication Throughput Graph CTG = G(V,A) [2]
which is a directed graph, where each vertex v represents

an IP (or DB) in the system, and an edge a connects
components that need to communicate with each other. A
Throughput Constraint Path (TCP) is a sub-graph of a
CTG, consisting of a single component for which data
throughput must be maintained and other masters, slaves
and DBs which are in the critical path that impacts the
maintenance of the throughput.

Fig. 3 shows a CTG for a network subsystem, with a
TCP involving the ARM2, DB2, DMA and ‘Network I/F’
components, where the rate of data packets streaming out
of the ‘Network I/F’ component must not fall below 1
Gbps.
Problem Definition: A bus B can be considered to be a
partition of the set of components V in a CTG, where B
V. Then our primary objective is to determine an optimal
component to bus assignment for a bus matrix architecture,
such that the partitioning of V onto N busses results in a
minimal number of busses N and satisfies memory area
bounds while meeting all performance constraints in the
design, represented by the TCPs in a CTG. As a secondary
objective, we attempt to reduce memory area cost of the
solution.

⊂

ARM1

ARM2

ITC

DB1
DB6

DB2

Timer

Network I/F

DB3

DMA

1 Gbps

DB4

DB5

5.2 Simulation Engine

Since communication behavior in a system is
characterized by unpredictability due to dynamic bus
requests from IPs, contention for shared resources, buffer
overflows etc., a simulation engine is necessary for
accurate performance estimation. COSMECA uses a hybrid
approach based on static estimation as well as dynamic
simulation. For the dynamic simulation part, we capture
behavioral models of IPs and bus architectures in SystemC
[19][26][45], and keep them in an IP library database.
SystemC provides a rich set of primitives for modeling
concurrency, timing and synchronization - channels, ports,
interfaces, events, clocks, signals and wait-state insertion.
Concurrent execution is performed by multiple threads and
processes (lightweight threads) and execution schedule is
governed by the scheduler. SystemC also supports capture
of a wide range of modeling abstractions from high level
specifications to pin and timing accurate system models.
Since it is a library based on C++, it is object oriented,
modular and allows data encapsulation – all of which are
essential for easing IP distribution, reuse and adaptability
across different modeling abstraction levels.

Since simulation speed is important, we chose a fast
transaction-based, bus cycle accurate modeling abstraction,
which averaged simulation speeds of 150–200 Kcycles/sec
[26][44], while running embedded software applications on
processor ISS models. The communication model in this
abstraction is extremely detailed, capturing delays arising
due to frequency and data width adapters, bridge
overheads, interface buffering and all the static and
dynamic delays associated with the standard bus
architecture protocol being used.

 6

5.3 Communication-Memory Constraint Set Ψ

In the interest of generating a practically realizable
system, we allow a designer to specify a discrete set of
valid values (referred to as a constraint set Ψ) for
communication parameters such as bus clock speeds, OO
buffer sizes and arbitration schemes. Additionally, Ψ
allows the specification of constraints on the type of
memory to allocate for DBs, for instance, in the case of a
DB which the designer knows must be read from an
EEPROM memory. We allow the specification of two
types of constraint sets for components – a global
constraint set (ΨG) and a local constraint set (ΨL). The
presence of a local constraint overrides the global
constraint, while the absence of it results in the resource
inheriting global constraints. For instance, a designer might
set the allowable bus clock speeds for a set of busses in a
subsystem to multiples of 33 MHz, with a maximum speed
of 166 MHz, based on the operation frequency of the cores
in the subsystem, while globally, the allowed bus clock
speeds are multiples of 50 MHz, up to maximum of 250
MHz. This provides a convenient mechanism for the
designer to bias the co-synthesis process based on
knowledge of the design and the technology being targeted.
Such knowledge about the design is not a prerequisite for
using our co-synthesis framework, but informed decisions
can help avoid the synthesis of unrealistic system
configurations.

5.4 COSMECA Co-Synthesis Flow

We describe the COSMECA co-synthesis flow in more
detail in this section. Fig. 4 gives a high level overview of
the flow. The inputs to COSMECA include a
Communication Throughput Graph (CTG), a library of
behavioral IP models (IP library) and memory models
(mem library), a Data Block Dependency Graph (DBDG), a
target bus matrix template (e.g. AMBA [15] bus matrix)
and a communication-memory constraint set (Ψ) – which
includes ΨG and ΨL. The general idea is to first preprocess
the memory (represented by DBs in the CTG) in the design
by merging the non conflicting DBs into virtual memory
(VM) blocks to reduce memory cost. Then we map the
modified CTG to a full bus matrix template and optimize
the matrix by removing unused busses. Next, we perform a
static branch and bound hierarchical clustering of slave
components in the matrix which further reduces the number
of busses, and store prospective matrix architecture
solutions in a ranked matrix solution database. We then
use a heuristic (memmap), which first merges VMs at each
slave access point (SAP) in the bus matrix to further reduce
memory cost and then maps these VMs to physical
memory modules from the memory library. The output of
memmap is a set of N valid solutions which meet memory
area and performance constraints. Finally we optimize the
output solutions to reduce bus speeds, arbitration costs and

prune out-of-order (OO) buffer sizes. We now elaborate on
the five phases in the COSMECA flow, shown in Fig. 4.

Phase 1. mem preprocess: In the first phase, we merge
data blocks (DBs) in the CTG into virtual memories (VMs)
to reduce memory area cost, by potentially reducing the
number of memory modules in the system. Only DBs
satisfying the two criteria of having (i) similar edges (i.e.
edges from the same masters) and (ii) non-overlapping
access are merged, so as not to constrain the mapping
freedom and eliminate useful channel clustering
possibilities later in the flow. Fig. 5(a) shows a CTG for an
example MPSoC system, with the following groups of DBs
having similar edges: (DB1, DB2) and (DB4, DB5, DB6).
We use a Data Block Dependency Graph (DBDG) to
determine if DBs have non-overlapping access. The DBDG
is a directed graph which shows the dependency of DB
accesses on each other. It can either be created manually or
derived automatically from a Control Data Flow Graph
(CDFG). A node in a DBDG represents a DB access while
an edge represents a dependency between DBs – a DB
cannot be accessed till the source DBs of all its input edges
have been accessed. Fig. 5(b) shows the DBDG for the
example in Fig. 5(a). If two DBs have similar edges and
non-overlapping access, they are eligible for merger (e.g.
DB1, DB2 in Fig. 5(b)). The size of the VM created, after
merger, depends on the lifetime analysis of merged DBs –
it is the sum of the sizes of the merged DBs, unless the
lifetimes do not overlap, in which case it is the size of the
larger DB being merged. Fig 5(b) shows the lifetime of
DB1. It is possible for DB2 to overwrite DB1, thus saving
memory space.

CTGCTG

DBDGDBDG matrix
template
matrix

template

mem preprocessmem preprocess

constraint
set (Ψ)

constraint
set (Ψ)

output synthesized
architecture(s)

output synthesized
architecture(s)

Branch and bound
clustering algorithm
Branch and bound
clustering algorithm

ranked matrix
solution database
ranked matrix

solution database
memmap heuristicmemmap heuristic

matrix map
and analyze
matrix map
and analyze

1

2

3

4

optimize designoptimize design
5

mem
library
mem

library

IP
library

IP
library

Fig. 4 COSMECA co-synthesis flow

Phase 2. matrix map and analyze: In the second phase,
the modified CTG is mapped onto a full bus matrix
template. The full bus matrix is subsequently pruned by
removing unused busses on which there are no data
transfers. Dedicated slave and memory components are

 7

also migrated to the local busses of their corresponding
masters to further reduce busses in the matrix. Fig. 5(d)
shows the bus matrix after these steps, for the example in
Fig. 5(a). Finally, we perform a fast high level, Transaction
Level (TLM) simulation [26] of the application, using
communication protocol-independent channels for
communication and assuming no arbitration contention, to
obtain application-specific data traffic statistics such as the
number of transactions on a bus and average transaction
burst size on a bus. Knowing the bandwidth to be
maintained on a bus from the TCPs in the CTG, we can
also estimate the minimum clock speed at which any bus in
the matrix must operate, in order to meet its throughput
constraint, as follows. The data throughput (Γ TLM/B) from
the TLM simulation, for any bus B in the matrix is given by

Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / B σ

where numT is the number of data transactions on bus B,
sizeT is the average data transaction size, width is the bus
width, Ω is the clock speed, and σ is the total number of
cycles of TLM simulation for the application. The values
for numT, sizeT and σ are obtained from the TLM
simulation. To meet throughput constraint Γ TCP/B for bus
B,

Γ TLM/B ≥ Γ TCP/B
∴ Ω B (B ≥ σ × Γ TCP/B) / (numTB × sizeTB × widthB)

The minimum bus speed thus found is used to create (or
update) the local bus speed constraint set ΨL(speed) for bus B.

µP1

µP2

µP3

DB0 DB1 DB1 DB2 DB2 DB3 DB3

DB1 DB4 DB5 DB6 DB6 DB2 DB4

DB6 DB5 DB3 DB4

DB1 lifetime

 (b) DBDG

µP1

µP2

µP3

S1
DB0

DB1
DB2

DB3

DB4

DB5

DB6

S2

S3

VM0

VM1

VM2

VM3

VM4
 (a) CTG

VM2

VM3

VM4
(c) VM access trace

S2

S3

VM1

VM4

VM3

VM2

µP1

µP2

µP3

S1

VM0

S2

S3 VM4

VM3VM2

µP1

µP2

µP3

S1

VM0
VM1

VM23
 (d) reduced matrix (e) best synthesized solution

Fig. 5 COSMECA co-synthesis example

Phase 3. Branch and bound clustering algorithm: In the
third phase, a static branch and bound hierarchical
clustering algorithm is used to cluster slave/memory
components to reduce the number of busses in the matrix

even further. Note that we do not consider merging masters
because it adds two levels of contention (one at the master
end and another at the slave end) in a data path, which can
drastically degrade system performance. Before describing
the algorithm, we present a few definitions. A slave cluster
SC = {s1…sn} refers to an aggregation of slaves that share a
common arbiter. Let MSC refer to the set of masters
connected to a slave cluster SC. Next, let Π SC1/SC2 be a
superset of sets of busses which are merged when slave
clusters SC1 and SC2 are merged. Finally, for a merged bus
set β = {b1…bn}, where β ⊂ Π SC1/SC2, βΚ refers to the set
of allowed bus speeds for the newly created bus when the
busses in set β are merged, and is given by

βΚ = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … Ψ∩ L(speed)(bn)

The branching algorithm starts by clustering two slave
clusters at a time, and evaluating the gain from this
operation. Initially, each slave cluster has just one slave.
The total number of clustering configurations possible for a
bus matrix with n slaves is given by (n! × (n-1)!)/2(n-1).
This creates an extremely large exploration space, which is
too time-consuming to traverse. In order to consider only
valid clustering configurations, we make us of a bounding
function.

 Step 1: if (exists lookupTable(SC1,SC2)) then discard duplicate clustering
 else updatelookupTable(SC1, SC2)
 Step 2: if (MSC1 ∩ MSC2 == φ) then bound clustering
 else cum_weight = cum_weight + | MSC1 ∩ MSC2|
 Step 3: for each set β ∈ Π SC1/SC2 do

 if ((βΚ ==φ) || (> (width∑
=

||β

Γ
1i

TCP/i B × max_speedB))) then B

 bound clustering

Fig. 6 bound function

Fig. 6 shows the pseudocode for the bound function

which is called after every clustering operation of any two
slave clusters SC1 and SC2. In Step 1, we use a look up
table to see if the clustering operation has already been
considered previously, and if so, we discard the duplicate
clustering. Otherwise we update the lookup table with the
entry for the new clustering. In Step 2, we check to see if
the clustering of SC1 and SC2 results in the merging of
busses in the matrix, otherwise the clustering is not
beneficial and the solution can be bounded. If the clustering
results in bus mergers, we calculate the number of merged
busses for the clustering and store the cumulative weight of
the clustering operation in the branch solution node. In Step
3, we check to see if the allowed set of bus speeds for every
merged bus is compatible or not. If the allowed speeds for
any of the busses being merged are incompatible (βΚ ==φ
for any β), the clustering is not possible and we bound the
solution. Additionally, we also calculate if the throughput
requirement of each of the merged busses can be

 8

theoretically supported by the new merged bus. If this is
not the case, we bound the solution. The bound function
thus enables a conservative pruning process which quickly
eliminates invalid solutions and allows us to rapidly
converge on the optimal solution. The solutions obtained
from the algorithm are ranked from best (least number of
busses) to worst and stored in a ranked matrix solution
database. Fig. 5(e) shows the best solution after this phase,
for the example in Fig. 5(a). For each of the solutions, we
set OO buffer sizes to the maximum allowed in Ψ, for the
components which support it. For the arbitration scheme at
the SAPs, we initially use a possible more expensive-to-
implement arbitration strategy such as the TDMA/RR
scheme to proportionally grant accesses to masters based
on the magnitude of throughput requirements. Our previous
work has shown the effectiveness of TDMA/RR for this
purpose [26]. More details on the branch and bound
clustering algorithm can be found in [46].

 1: procedure memmap()
 2: while (num_sol < N) do
 3: select next candidate from ranked matrix solution database
 4: simulate design; //to generate memory trace
 5: for each SAP do
 6: merge VMs with overlap τ % ≤
 7: for each VM do
 8: if (VM data overlap τ %) ≤
 9: map to single port physical mem with best size match, max. port b/w
 10: else
 11: map to dual port physical memory with best size match, max. port b/w
 12: simulate design; //to verify mem area, performance constraint satisfaction
 13: if (performance constraint violation) then
 14: remove candidate from ranked matrix solution database; goto 3
 15: else if ((perf. constraint satisfied)&&(mem area constraint satisfied)) then
 16: add to final solution database; num_sol++
 17: area_improvement_possible = true
 18: while ((num_sol < N) && (area_improvement_possible)) do
 19: for each SAP do
 20: randomly select eligible VM
 21: map physical memory with best size, port match, lower area
 22: simulate design; //to verify area, performance constraint satisfaction
 23: if ((perf constraint satisfied)&&(mem area constraint satisfied)) then
 24: add to final solution database; num_sol++
 25: else
 26: undo mapping for VM with port bandwidth violation
 27: make VM with violation ineligible for further selection
 28: if (all VMs ineligible) then
 29: area_improvement_possible = false
 30: end memmap

Fig. 7 memmap heuristic

Phase 4. memmap heuristic: In the next phase, we use the
memmap heuristic to guide the mapping of VMs to
physical memories in the memory library. Fig. 7 shows the
pseudo code for the memmap heuristic. The goal is to find
N solutions which satisfy memory area and performance
constraints of the design. We begin by selecting the best
solution from the ranked matrix solution database,
populated in the previous phase, and simulate the design
(lines 3-4), with the simulation engine described in Section
5.2. The output of this simulation is a set of memory access
traces which are used to determine the extent of access
overlap of VMs at each SAP. If the overlap is below a user

defined overlap threshold τ, we merge the VMs (lines 5-6).
Fig. 5(e) shows how we merge VM2 and VM3, as their
memory access trace shown in Fig. 5(c) has an overlap less
than the chosen value for τ. The size of the merged VM is
the sum of the memory sizes, unless the lifetimes do not
overlap, in which case it is the size of the larger of the two
VMs being merged. This VM merge step further reduces
the number of memories, and consequently memory area
cost.

Next we proceed to map the VMs in the design to
physical memories from the memory library (lines 8-11).
We choose the best memory from the library which fits the
size requirement and has the maximum port bandwidth (i.e.
combination of access time and operating frequency, which
determines performance, expressed in terms of port
bandwidth). The mapping step takes into consideration any
memory mapping constraints in Ψ. It is possible that a VM
has self conflict greater than τ, in which case we map a
dual port memory if possible, otherwise we use single port
memories. The type of port (R,W,R/W) is determined by
the maximum simultaneous reads/writes from the memory
trace. The reason for using physical memories with the best
performance is that we want to check the feasibility of the
matrix solution being considered, and eliminate a solution
quickly if it is not a good match. Once the mapping is
complete, we simulate the design. If throughput constraints
are not met even for the memory mapping with best
performance, we discard the matrix solution, and go back
to select the next best matrix solution from the ranked
matrix solution database. If performance constraints are
met, we check if memory area constraints are met. If the
area constraint is also met, we add the solution to the final
solution database (lines 12-16). Next, we attempt to lower
memory area, while still meeting performance constraints,
by changing the memory mapping for the current matrix
solution (lines 17-29). We do this by selecting one eligible
VM at each SAP randomly and replacing the mapped
physical memory with one which meets the size (capacity)
requirements, but has lower area. All VMs are initially
eligible for this mapping optimization. Next we simulate
the design. If we find a performance violation at one or
more SAPs, we undo the change in mapping for the VM at
each violated SAP, and make it ineligible for further
mapping optimization. The reason for selecting just one
VM per SAP is that it makes it easier to determine which
physical memory to VM mapping caused a performance
violation, if one is found. If there is no performance
violation, and if the area bounds are met, we have found a
solution. We keep repeating this process till all VMs
become ineligible for mapping optimization, or if the
required N solutions have been found. If we encounter the
former case and the number of solutions found is less than
N, we proceed to select the next best solution from the
ranked matrix solution database (line 3), and repeat the
process.

 9

Phase 5. optimize design: Finally, we call the optimize
design procedure for each of the N solutions obtained in the
last phase. This simple procedure attempts to further reduce
system cost by minimizing (i) bus speeds, (ii) arbitration
scheme implementation cost and (iii) fix OO buffer sizes.
The procedure first iterates over the busses in a solution,
reducing the bus speed to the lowest possible allowed,
simulating the design to ensure that no performance
constraints are violated. Similarly, the procedure attempts
to iteratively replace an arbitration scheme which is more
expensive to implement (e.g. TDMA/RR) with one which is
less expensive to implement (e.g. a static priority based
scheme with priorities assigned depending on bandwidth
requirements) at each SAP. Finally we fix the OO buffer
sizes wherever applicable to the maximum number of
buffers used during simulation of the application, if the
number is less than the maximum allowed buffer size.

6 Case Studies

We applied the COSMECA approach to four industrial
strength MPSoC applications – PYTHON, SIRIUS,
VIPER2 and HNET8 – from the networking domain.
PYTHON and SIRIUS are variants of existing industrial
strength designs, VIPER2 and HNET8 are larger systems
which have been derived from the next generation of
MPSoC applications currently in development. Table 1
shows the number of components in each of these
applications, after HW/SW partitioning. Note that the
Masters column includes the processors in the design,
while the Slaves column does not include the memory
blocks, which will be co-synthesized with the
communication architecture later.

Table 1. Core distribution in MPSoC applications

Applications Processors Masters Slaves
PYTHON 2 3 8
SIRIUS 3 5 10
VIPER2 5 7 14
HNET8 8 13 17

µP1

µP2

DMA

Watchdog
UART

ITC

VM1
VM2

Timer
GPIO

VM3

Network I/F1

Network I/F2

VM4
VM5
VM6
VM7

MFSU

Fig. 8 PYTHON Communication Throughput Graph (CTG)

We will first consider the PYTHON MPSoC and make

use of the COSMECA co-synthesis framework to
synthesize memory and communication architectures for it.
Fig. 8 shows the CTG for the PYTHON application, after
the initial memory preprocessing phase in which DBs are
merged into VMs. Not shown in the CTG, but included in
our memory area analysis are the 32 KB instruction and
data caches for each of the two processors. For clarity, the
TCPs are presented separately in Table 2. µP1 is used for
overall system control, generating data cells for signaling,
operating and maintenance, communicating and controlling
external hardware and to setup and close data stream
connections. µP2 interacts with data streams from external
interfaces and performs data packet/frame encryption and
compression. These processors interact with each other via
shared memory and a set of shared registers (not shown
here). The DMA engine is used to handle fast memory to
memory and network interface data transfers, freeing up
the processors for more useful work. PYTHON also has
several peripherals such as a multi functional serial port
interface (MFSU), a universal asynchronous receiver
/transmitter block (UART), a general purpose I/O block
(GPIO), timers (Timer, Watchdog), an interrupt controller
(ITC) and two proprietary external network interfaces.

Table 2. PYTHON Throughput Constraint Paths (TCPs)

IP cores in Throughput Constraint Path (TCP) TCP
constraint

µP2, VM2, VM3, Network I/F1, DMA, VM6 400 Mbps
µP2, VM2, VM6, VM7, DMA, Network I/F2 960 Mbps
µP1, MFSU, VM3, VM4, DMA, Network I/F1 400 Mbps
µP2, VM4,VM5,VM7, DMA, Network I/F1, Network I/F2 600 Mbps

Table 3. PYTHON Global Constraint Set ΨG

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8
mem mapping VM1=>EEPROM

µP1

µP2

DMA

GPIO

ITC
Timer

Watchdog

eDRAM1

SRAM1
MFSU

static

static

100

200

200

200

100

AXI Matrix (32 bit)
- bus speed

OO(3)

UART

Network I/F1

4 MB

memory area = 115.81 mm2

256 KB

128 KB

(1 r/w)

(1 r/w)

EEPROM1

SRAM2
512 KB (1 r/w)

Network I/F2

100

200

Fig. 9 Synthesized Output for PYTHON

Table 3 shows the global constraint set ΨG for PYTHON.

 10

For the synthesis we target an AMBA3 AXI [14] bus
matrix. We assume a fixed bus width of 32 bits, as per
application requirements. The memory area constraint is set
to 120 mm2 and the estimated memory area numbers are
for a 0.18-µm technology. We assume the value for overlap
threshold τ = 10% for this example. Fig. 9 shows the best
solution (least number of busses) with the least memory
area for PYTHON. The figure also shows bus speeds,
memory sizes, number of ports and OO buffer sizes.

Fig. 10 shows the variation in memory area and number
of busses in he matrix for the ten best solutions (N=10), for
PYTHON. From the figure we can see that no solution
having 7 busses in the bus matrix exists for PYTHON. The
dotted line indicates the solution shown in Fig. 9. We can
see that there is a significant variation of combinations of
memory area and number of busses, in the solution space.
COSMECA thus allows a designer to tradeoff memory area
and bus count during the solution selection process.

100

105

110

115

120

125

6 6 8 8 8 9 9 10 10 10

busses in matrix

m
em

 a
re

a
(m

m
 s

q.
)

Fig. 10 PYTHON final solution space (for N=10)

During the course of the COSMECA co-synthesis flow,
we made use of a threshold factor τ (Fig. 7; memmap
heuristic) to determine the extent to which virtual
memories are merged at SAPs in the bus matrix. This
parameter is specified by the designer. To understand the
effect of this threshold factor τ on the quality of solution,
we varied the threshold value and repeated our COSMECA
co-synthesis flow for the PYTHON MPSoC. The result of
this experiment is shown in Fig. 11.

0
2
4
6
8

10
12
14
16

0 5 10 15 20 25 30

threshold value

bu
ss

es
 in

 m
at

rix

Fig. 11 Effect of varying threshold value on solution quality
for PYTHON

It can be seen that for very low values of τ (e.g. < 10%),

the number of busses in the matrix for the best solution is
high. This is because low values of τ discourage merger of
virtual memories, which ends up creating a system with
several physical memories that exceed memory area
bounds due to their excessive area overhead. For larger
values of τ (e.g. 20%), the number of busses for the best
solution is also high, because it becomes harder to meet
application throughput constraints with the large overlap.
There might be slight variations to this trend, depending
upon a complex amalgamation of factors such as stringency
of throughput requirements, allowed maximum bus speeds,
available memory port bandwidths and data traffic
schedules for the application. Typically however, for the
COSMECA co-synthesis framework, our experience shows
that lower values around 10 – 20% for overlap threshold τ
give the best quality solutions.

≥

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1
ITC2
VM1
VM2

Timer1
Timer2
VM3

VM8

VM12
VM13

Network I/F1

Network I/F2

Network I/F3

VM14

VM16

Acc1

VM4
VM5
VM6
VM7

VM9
VM10
VM11

VM15

VM17
VM18

Fig. 12 SIRIUS Communication Throughput Graph (CTG)

Next we consider a more complex application: the

SIRIUS MPSoC, and go into more detail of how it was
used as another driver for the COSMECA framework. Fig.
12 shows the CTG for the SIRIUS application, after the
initial memory preprocessing phase in which DBs are
merged into VMs. Not shown in the CTG, but included in
our memory area analysis are the 32 KB instruction and
data caches for each of the three processors. For clarity, the
TCPs are presented separately in Table 4. µP1 is a protocol
processor (PP) while µP2 and µP3 are network processors
(NP). The µP1 PP is responsible for setting up and closing
network connections, converting data from one protocol

 11

type to another, generating data frames for signaling,
operating and maintenance and exchanging data with NP
using shared memory. The µP2 and µP3 NPs directly
interact with the network ports and are used for assembling
incoming packets into frames for the network connections,
network port packet/cell flow control, assembling incoming
packets/cells into frames, segmenting outgoing frames into
packets/cells, keeping track of errors and gathering
statistics. ASIC1 performs hardware cryptography
acceleration for DES, 3DES and AES. The DMA is used to
handle fast memory to memory and network interface data
transfers, freeing up the processors for more useful work.
SIRIUS also has a number of network interfaces and
peripherals such as interrupt controllers (ITC1, ITC2), a
UART, timers (Watchdog, Timer1, Timer2) and a packet
accelerator (Acc1).

Table 4. SIRIUS Throughput Constraint Paths (TCPs)

IP cores in Throughput Constraint Path (TCP) TCP
constraint

µP1, VM3, VM4, DMA, VM16, VM17, VM18 640 Mbps
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps
µP2, Network I/F1, VM8, VM9 5.2 Gbps
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps
µP3, DMA , Network I/F3, VM13 2.8 Gbps

Table 5. SIRIUS Global Constraint Set ΨG

Set Values
bus speed 25, 50, 100, 200, 300, 400
arbitration strategy static, RR, TDMA/RR
OO buffer size 1 – 8
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM

µP1

µP2

µP3

DMA

ASIC1

Watchdog
UART
ITC1

EEPROM1

EEPROM2

Timer1

Acc1

ITC2
Timer2

eDRAM2

eDRAM1

SRAM1

SRAM2

SRAM3
Network I/F2
Network I/F3

static

static

TDMA/RR

200

400

200

100

200

100

200

200200

50

200

200

100

AXI Matrix (32 bit)
- bus speed

OO(3)

OO(2)

SRAM3
Network I/F1

4 MB

2 MB

memory area = 219.42 mm2

256 KB

512 KB

1 MB

512 KB
64 KB

128 KB

(2 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

(1 r/w)

Fig. 13 Synthesized output for SIRIUS

Table 5 shows the global constraint set ΨG for SIRIUS.
For the synthesis we target an AMBA3 AXI [14] bus
matrix. We assume a fixed bus width of 32 bits, as per
application requirements. The memory area constraint is set

to 225 mm2 and the estimated memory area numbers are
for a 0.18-µm technology. We assume the value for overlap
threshold τ = 10% for this example. Fig. 13 shows the best
solution (least number of busses) with the least memory
area for SIRIUS. The figure also shows bus speeds,
memory sizes, number of ports and OO buffer sizes.

150

175

200

225

9 9 9 10 10 10 10 10 11 11

busses in matrix

m
em

 a
re

a
(m

m
 s

q.
)

Fig. 14 SIRIUS final solution space (for N=10)

Fig. 14 shows the variation in memory area and number
of busses for the ten best solutions (N=10) for SIRIUS. The
dotted line indicates the solution shown in Fig. 13. It can be
seen that the memory area cost varies dramatically, not
only when the bus matrix configuration is changed (by
changing number of busses), but also for the same
configuration, for different memory mapping decisions.
Again, the key observation from this experiment is that
COSMECA enables a designer to select a solution having
the desired tradeoff between memory area and bus count in
the matrix.

To determine the impact of varying the threshold factor τ
on the quality of solution for the SIRIUS MPSoC, we
varied the threshold value and repeated our COSMECA co-
synthesis flow for SIRIUS. The result of this experiment is
shown in Fig. 15. The trend for this experiment is similar to
our observation for Fig. 11, which showed the results for
this experiment on the PYTHON MPSoC. As observed
earlier, lower values around 10 – 20% for overlap threshold
τ give the best quality solutions for the SIRIUS application.

0

5

10

15

20

0 5 10 15 20 25 30

threshold value

bu
ss

es
 in

 m
at

rix

Fig. 15 Effect of varying threshold value on solution quality
for SIRIUS

The entire COSMECA flow took only a few hours to

complete, including simulation time, for each of the four

 12

MPSoC applications considered. This is in contrast to the
traditional semi-automated (or manual) communication
architecture synthesis techniques which can take several
days [2], and would take even longer with the added
complexity of handling memory synthesis.

0
5

10
15
20
25
30
35
40

1 2 3 4 5

max. no of slaves/cluster

no
. o

f b
us

se
s BMSYN

S(10)
S(20)
S(30)
S(40)

Fig. 16 Comparison of bus matrix synthesis approach
(BMSYN) used in COSMECA with a threshold based
approach for SIRIUS MPSoC

Next, we will compare the quality of the results obtained

from the bus matrix communication architecture synthesis
approach used in COSMECA, with the closest existing
piece of work that deals with automated matrix synthesis
with the aim of minimizing number of busses [30]. Since
their bus matrix synthesis approach only generates matrix
topology (while we generate both topology and parameter
values), we restricted our comparison to the number of
busses in the final synthesized design. The threshold based
approach proposed in [30] requires the designer to
statically specify (i) the maximum number of slaves per
cluster and (ii) the traffic overlap threshold, which if
exceeded prevents two slaves from being assigned to the
same bus cluster. The results of our comparison study are
shown in Fig. 16. BMSYN is the name given to the bus
matrix synthesis approach used in COSMECA, while the
other comparison points are obtained from [30]. S(x), for x
= 10, 20, 30, 40, represents the threshold based approach
where no two slaves having a traffic overlap of greater than
x% can be assigned to the same bus, and the X-axis in Fig.
16 varies the maximum number of slaves allowed in a bus
cluster for these comparison points. The values of 10 –
40% for traffic overlap are chosen as per recommendations
from [30]. It is clear from Fig. 16 that our bus matrix
synthesis approach used in COSMECA produces a lower
cost system (having lesser number of busses) than
approaches which force the designer to statically
approximate application characteristics.

Finally, Fig. 17 and 18 compare the number of busses
and memory areas for the best solution (having least
number of busses, minimum memory area for the solution)
obtained with COSMECA and the traditional approach
(where memory synthesis is done before communication
architecture synthesis) for the four applications. It can be

seen that COSMECA performs much better for each of the
applications, saving from 25-40% in the number of busses
in the matrix and from 17-29% in memory area, because it
is able to make better decisions by taking the
communication architecture into account while allocating
and mapping data blocks to physical memory components.

0

5

10

15

20

25

30

PYTHON SIRIUS VIPER2 HNET8

bu
ss

es
 in

 m
at

rix

traditional
COSMECA

Fig. 17 Comparison of best solution bus count

0
50

100
150
200
250
300
350
400
450

PYTHON SIRIUS VIPER2 HNET8

m
em

 a
re

a
(m

m
 s

q.
) traditional

COSMECA

Fig. 18 Comparison of best solution memory area

7 Conclusion and Future Work

In this technical report, we have presented an automated
application specific framework to co-synthesize memory
and communication architectures (COSMECA) in MPSoC
designs. The primary objective is to design a
communication architecture having the least number of
busses, which satisfies performance and memory area
constraints, while the secondary objective is to reduce the
memory area cost. COSMECA couples the decision making
process during memory and communication architecture
synthesis, which enables it to generate a lower cost system.
Results of applying COSMECA to several industrial
strength MPSoC applications from the networking domain
indicate a saving of as much as 40% in number of busses
and 29% in memory area compared to the traditional
approach, where memory synthesis is performed before
communication architecture synthesis. Our ongoing work is
trying to integrate more detailed memory access protocol
models for the memories in the library. Future work will
deal with incorporating power as another metric to guide

 13

the co-synthesis and including cache customization in the
memory synthesis process.

References

[1] D. Sylvester, K. Keutzer, “Getting to the bottom of

deep submicron”, ICCAD 1998
[2] S. Pasricha, N. Dutt, E. Bozorgzadeh, M. Ben-

Romdhane, "Floorplan-aware Automated Synthesis of
Bus-based Communication Architectures", DAC 2005

[3] S. Meftali et al, “An optimal memory allocation for
application-specific multiprocessor system-on-chip”,
ISSS 2001

[4] A. Allan et al, “2001 Technology Roadmap for
Semiconductors”, IEEE Computer, Vol. 35, No. 1,
2002

[5] J. A. Rowson et al., “Interface based design” DAC
1997

[6] K. Keutzer et al. “System-level design:
Orthogonalization of concerns and platform-based
design,” IEEE TCAD, Dec. 2000

[7] I.-M. Daveau, et al. “Synthesis of System-Level
Communication by an Allocation-Based Aporoach”,
ISSS, 1995

[8] S. Narayan, D. Gajski, “Protocol generation for
communication channels” DAC 1994

[9] I. Madsen, B. Hald, “An Approach to Interface
Synthesis”, ISSS, 1995

[10] S. Wuytack et al. “Minimizing the required memory
bandwidth in VLSI system realizations”, IEEE TVLSI
Vol 7, Issue 4, Dec. 1999

[11] L. Cai, H. Yu, D. Gajski, “A novel memory size model
for variable-mapping in system level design”, ASP-
DAC 2004

[12] K. Lahiri, et al, "System-level performance analysis
for designing system-on-chip communication
architecture", IEEE TCAD Jun, 2001

[13] P. Knudsen, J. Madsen, “Integrating communication
protocol selection with partitioning in
hardware/software codesign,” ISSS, 1998

[14] ARM AMBA AXI Specification
www.arm.com/armtech/AXI

[15] ARM AMBA Specification (rev2.0), www.arm.com,
2001

[16] "IBM On-chip CoreConnect Bus Architecture",
www.chips.ibm.com

[17] “STBus Communication System: Concepts and
Definitions”, Reference Guide, STMicroelectronics,
May 2003

[18] M. Nakajima et al. “A 400MHz 32b embedded
microprocessor core AM34-1 with 4.0GB/s cross-bar
bus switch for SoC”, ISSCC 2002

[19] SystemC initiative. www.systemc.org
[20] L.Benini, G.D.Micheli, “Networks on Chips: A New

SoC Paradigm”, IEEE Computers, Jan. 2002

[21] J. Henkel, et al, “On-chip networks: A scalable,
communication-centric embedded system design
paradigm”, VLSI Design, 2004

[22] V. Lahtinen et al, “Comparison of synthesized bus and
crossbar interconnection architectures”, ISCAS 2003

[23] K.K Ryu, E. Shin, V.J. Mooney, “A Comparison of
Five Different Multiprocessor SoC Bus Architectures”,
DSS 2001

[24] M. Loghi, et al “Analyzing On-Chip Communication
in a MPSoC Environment”, DATE 2004

[25] M. Gasteier, M. Glesner “Bus-based communication
synthesis on system level”, ACM TODAES, January
1999

[26] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Fast
Exploration of Bus-based On-chip Communication
Architectures”, CODES+ISSS 2004

[27] K. Srinivasan, et al, “Linear Programming based
Techniques for Synthesis of Network-on-Chip
Architectures”, ICCD 2004

[28] D. Bertozzi et al. “NoC synthesis flow for customized
domain specific multiprocessor systems-on-chip”,
IEEE TPDS, Feb 2005

[29] O. Ogawa et al, “A Practical Approach for Bus
Architecture Optimization at Transaction Level”,
DATE 2003

[30] S. Murali, G. De Micheli, “An Application-Specific
Design Methodology for STbus Crossbar Generation”,
DATE 2005

[31] M. Shalan, et al, "DX-Gt: Memory Management and
Crossbar Switch Generator for Multiprocessor System-
on-a-Chip" SASIMI, 2003

[32] P. Grun, et al, “Memory system connectivity
exploration”, DATE 2002

[33] S. Kim, C. Im, S. Ha, “Efficient Exploration of On-
Chip Bus Architectures and Memory Allocation”,
CODES+ISSS, 2004

[34] P. V. Knudsen and J. Madsen, “Communication
estimation for hardware/software codesign”, CODES
1998

[35] A. Nandi, R. Marculescu, “System-level power/
performance analysis for embedded systems design”,
DAC 2001

[36] A. Pinto, L. Carloni, A. Sangiovanni-Vincentelli,
“Constraint-driven communication synthesis”, DAC
2002

[37] K. K. Ryu, V. J. Mooney III, “Automated Bus
Generation for Multiprocessor SoC Design”, DATE
2003

[38] M. Gasteier, M. Glesner, “Bus-based communication
synthesis on system level”, ACM TODAES, January
1999

[39] D. Lyonnard, S. Yoo, A. Baghdadi, A. A. Jerraya,
“Automatic generation of application-specific
architectures for heterogeneous multiprocessor system-
on-chip”, DAC 2001

 14

[40] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Automated
Throughput-driven Synthesis of Bus-based
Communication Architectures", In Proc of ASPDAC
2005

[41] U. Ogras, R. Marculescu, “Energy- and Performance-
Driven NoC Communication Architecture Synthesis
using a Decomposition Approach”, DATE 2005

[42] A. Pinto, L. P. Carloni, A. L. Sangiovanni-Vincentelli,
“Efficient Synthesis of Networks On Chip,” ICCD
2003

[43] A. Jalabert, S. Murali, L. Benini, G. De Micheli.
“xpipesCompiler: A Tool for instantiating application
specific Networks on Chip,” DATE 2004

[44] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Extending
the Transaction Level Modeling Approach for Fast
Communication Architecture Exploration", DAC 2004

[45] S. Pasricha, “Transaction Level Modeling of SoC with
SystemC 2.0”, SNUG, 2002

[46] S. Pasricha, N. Dutt, M. Ben-Romdhane, "Constraint-
Driven Bus Matrix Synthesis for MPSoC", ASPDAC
2006

 15

