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Abstract 

 

 Memory and communication architectures have a significant impact on the cost, performance, and time-
to-market of complex multi-processor system-on-chip (MPSoC) designs. The memory architecture dictates most 
of the data traffic flow in a design, which in turn influences the design of the communication architecture. Thus 
there is a need to co-synthesize the memory and communication architectures to avoid making sub-optimal 
design decisions. This is in contrast to traditional platform-based design approaches where memory and 
communication architectures are synthesized separately. In this technical report, we propose an automated 
application specific co-synthesis framework for memory and communication architectures (COSMECA) in 
MPSoC designs. The primary objective is to design a communication architecture having the least number of 
busses, which satisfies performance and memory area constraints, while the secondary objective is to reduce the 
memory area cost. Results of applying COSMECA to several industrial strength MPSoC applications from the 
networking domain indicate a saving of as much as 40% in number of busses and 29% in memory area 
compared to the traditional approach.  
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Abstract 
 

Memory and communication architectures have a 
significant impact on the cost, performance, and time-to-
market of complex multi-processor system-on-chip 
(MPSoC) designs. The memory architecture dictates most 
of the data traffic flow in a design, which in turn influences 
the design of the communication architecture. Thus there is 
a need to co-synthesize the memory and communication 
architectures to avoid making sub-optimal design 
decisions. This is in contrast to traditional platform-based 
design approaches where memory and communication 
architectures are synthesized separately. In this technical 
report, we propose an automated application specific co-
synthesis framework for memory and communication 
architectures (COSMECA) in MPSoC designs. The primary 
objective is to design a communication architecture having 
the least number of busses, which satisfies performance 
and memory area constraints, while the secondary 
objective is to reduce the memory area cost. Results of 
applying COSMECA to several industrial strength MPSoC 
applications from the networking domain indicate a saving 
of as much as 40% in number of busses and 29% in 
memory area compared to the traditional approach.  

 
1 Motivation 
 

Modern multi-processor system-on-chip (MPSoC) 
designs are rapidly increasing in complexity. These designs 
are characterized by large bandwidth requirements and 
massive data sets which must be stored and accessed from 
memories, especially for applications in the multimedia and 
networking domains. The communication architecture in 
such systems – which must cope with the entire inter-
component traffic – not only impacts performance 
considerably, but also consumes a significant chunk of the 
design cycle [1-2]. Another major factor influencing 
performance is the memory architecture, which can occupy 
upto 70% of the die area [3]. Estimates indicate that this 
figure will go up to 90% in the coming years [4]. Since 
memory and communication architectures have such a 
significant impact on system cost, performance and time-
to-market, it becomes imperative for designers to focus on 
their exploration and synthesis early in the design flow, 

with the help of efficient design flow concepts such as 
those proposed in platform-based design [6].  

Traditionally, in platform-based design, memory 
synthesis is performed before the communication 
architecture synthesis step [7-11]. While treating these two 
steps separately is done mainly due to tractability issues 
[5][12], it can lead to sub-optimal design decisions. 
Consider the example of a networking MPSoC subsystem 
shown in Fig. 1(a). The figure shows the system after 
HW/SW partitioning, with all the IPs defined, including 
memory which is synthesized based on data size and high-
level bandwidth constraint analysis. Fig. 1(b) shows the 
traditional approach where communication architecture 
synthesis is performed after memory synthesis, while Fig. 
1(c) shows the case where memory and communication 
architectures have been co-synthesized using the 
COSMECA approach. Now let us consider the implications 
of using a co-synthesis framework. Firstly, the co-synthesis 
approach is able to detect that the data arrays stored in 
Mem1 and Mem2 end up sharing the same bus, and 
automatically merges and then maps the arrays onto a 
larger single physical memory from the library, thus saving 
area. Secondly, the co-synthesis approach is able to merge 
data arrays stored in Mem3 and Mem5 onto a single 
memory from the library, saving not only area but also 
eliminating two busses, as shown in Fig. 1(c). However, 
Mem5 cannot share the same bus as Mem3 (or Mem4) in 
Fig. 1(b) because the access times of the pre-synthesized 
physical memories are such that they cause traffic conflicts 
which violate bandwidth constraints. Thirdly, due to the 
knowledge of support for out-of-order (OO) transaction 
completion [14] by the communication architecture, the co-
synthesis approach is able to add an OO buffer of depth 6 
to Mem4, which enables it to reduce the number of ports 
from 2 to 1, thus saving area, while still meeting bandwidth 
constraints. It is thus apparent that the COSMECA co-
synthesis approach is able to make better synthesis 
decisions by exploiting the synergy and interdependence 
between the memory and communication architecture 
design spaces, to reduce the overall cost of the synthesized 
system.  

In this technical report, we propose an automated 
application specific co-synthesis framework for memory 
and communication architectures (COSMECA) in MPSoC 
designs. The primary objective is to design a 
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communication architecture having the least number of 
busses, which satisfies performance and memory area 
constraints, while the secondary objective is to reduce the 
memory area cost. We consider a bus matrix (sometimes 
also called crossbar switch) [18] type of communication 
architecture for synthesis, since it is increasingly being 
used by designers in high bandwidth designs today.  
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(b) Result of performing memory synthesis before 
communication architecture synthesis 
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(c)  Result of performing co-synthesis of memory and 
communication architectures 

 
Fig. 1  Comparison of traditional approach (separate memory 
and communication architecture synthesis) and co-synthesis 
approaches for MPSoC example   
 

Our approach tailors the memory and communication 
architectures to the application being considered, to reduce 
system cost. Using a combination of an efficient static 
branch and bound hierarchical clustering algorithm and 
heuristics, we are able to quickly prune the uninteresting 
portion of the design space, while using fast transaction-
based bus cycle-accurate SystemC [19] simulation models 
to capture dynamic system-level effects accurately and 

verify the results. COSMECA effectively synthesizes bus 
topology, arbitration schemes, bus speeds and OO buffer 
sizes for the communication architecture; and 
simultaneously performs data array allocation/mapping to 
memory blocks, deciding their number, sizes, ports and 
types from the memory library, for the memory subsystem. 
To the best of our knowledge, no previous work has 
performed automated co-synthesis considering so many 
exploration parameters. Results of applying COSMECA to 
several industrial strength MPSoC networking applications 
indicate a saving of as much as 40% in number of busses 
and 29% in memory area, compared to the traditional 
approach of separate synthesis. 
 
2 Related Work 
 

Communication architectures have been the focus of 
much research over the past several years because of their 
significant impact on system performance [12][24]. 
Hierarchical shared bus communication architectures such 
as those proposed by AMBA [15], CoreConnect [16] and 
STbus [17] can cost effectively connect few tens of IPs, but 
are not scalable to cope with the demands of modern 
MPSoC systems. Network-on-Chip (NoC) based 
communication architectures [20] have recently emerged as 
a promising alternative to handle communication needs for 
the next generation of high performance designs, but 
research on the topic is still in its infancy, and few concrete 
implementations of complex NoCs exist to date [21]. 
Currently, designers are increasingly making use of bus 
matrix [18] communication architectures to meet the 
bandwidth requirements of modern MPSoC systems. The 
need for bus matrix architectures in high performance 
designs and its superiority over hierarchical shared busses 
has been emphasized in previous work [22-24]. 
Accordingly, we focus on the synthesis of bus matrix 
communication architectures. 

Although a lot of work has been done in the area of 
hierarchical shared bus architecture synthesis (e.g. [2][25-
26][36-40]) and NoC architecture synthesis (e.g. [27-
28][41-43]), few efforts have focused on bus matrix 
synthesis. [29] proposed a transaction based simulation 
environment that allows designers to explore and design a 
bus matrix. But the designer needs to manually specify the 
communication topology, and arbitration scheme, which is 
too time consuming for today’s complex systems. The 
automated synthesis approach for STBus crossbars 
proposed in [30] generates crossbar topology, but does not 
consider generation of parameters such as arbitration 
schemes, bus speeds and OO buffer sizes, which have 
considerable impact on system performance [12][26][44]. 
COSMECA overcomes these shortcomings by 
automatically synthesizing both topology and 
communication parameters for the bus matrix.  

Previous research in the area of memory and 
communication architecture synthesis has either ignored 
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the co-synthesis aspect, or focused on a small subset of the 
problem. Typically, high-level synthesis approaches 
perform memory allocation and mapping before 
communication architecture synthesis [7-11], ignoring the 
overhead of the communication protocol during synthesis. 
While treating these two steps separately is mainly due to 
tractability issues [5][12], the merits of integrating 
communication synthesis with memory synthesis are 
clearly demonstrated in [13]. Only a few approaches have 
attempted to simultaneously explore memory and 
communication subsystems. [31] presents a tool to 
automatically generate a full crossbar and a dynamic 
memory management unit (DMMU). [32] considers the 
connectivity topology early in the design flow in 
conjunction with memory exploration, for simple 
processor-memory systems. More recently, [33] deals with 
bus topology and static priority based arbitration 
exploration, to determine the best memory port-to-bus 
mapping for pre-synthesized memory blocks. Other 
approaches which deal with memory synthesis make use of 
static estimations of communication architectures such as 
those proposed in [34-35]. Such approaches are unable to 
capture dynamic effects such as contention and address 
only a limited exploration space. More importantly, none of 
the abovementioned approaches attempts to perform co-
synthesis. COSMECA is a novel memory and 
communication architecture co-synthesis framework which 
improves upon existing synthesis approaches by (i) 
automatically generating bus topology and parameter 
values for arbitration schemes, bus speeds and OO buffer 
sizes, while considering dynamic simulation effects, and 
(ii) simultaneously determining a mapping of data arrays to 
physical memories while also deciding the number, size, 
ports and type of these memories, from a memory library. 
Results of applying the COSMECA approach to several 
industrial strength case studies (presented in Section 6) 
emphasizes the usefulness and need of such an approach 
for MPSoC designs. 
 
3 Bus Matrix Communication Architectures 
 

This section describes bus matrix architectures. Fig. 2 (a) 
shows a three-master, five-slave full AMBA bus matrix. A 
bus matrix consists of several busses in parallel which can 
support concurrent high bandwidth data streams. The Input 
stage is used to handle interrupted bursts, and to register 
and hold incoming transfers if receiving slaves cannot 
accept them immediately. Decode generates select signals 
for slaves. Unlike in traditional shared bus architectures, 
arbitration in a bus matrix is not centralized, but distributed 
so that every slave has its own arbitration. Also, typically, 
all busses within a bus matrix have the same data bus 
width, which usually depends on the application. 

One drawback of the full bus matrix structure shown in 
Fig. 2(a) is that it connects every master to every slave in 
the system, resulting in a prohibitively large number of 

busses. The excessive wire congestion can make it 
practically impossible to route and achieve timing closure 
for the design [1-2]. Fig. 2(b) shows a partial bus matrix 
which has fewer busses and consequently uses fewer 
components (e.g. decoders, arbiters, buffers), has a smaller 
area and also utilizes less power. The basic idea here is to 
group slaves/memories on shared busses, as long as 
performance constraints are met. Points A and B in Fig. 
2(b) are referred to as slave access points (SAPs). The 
communication architecture synthesis in COSMECA 
attempts to generate a partial bus matrix tailored to the 
target application, with a minimal number of busses in the 
matrix. Additionally, we generate arbitration schemes at 
the SAPs, bus clock speed values and OO buffer size 
values. 
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Fig. 2   Bus Matrix Communication Architecture 

  
4 Memory Subsystem 
 

There are a variety of different memory types available 
to satisfy memory requirements in applications. Typically, 
designers have used off-chip DRAMs for larger memory 
requirements and on-chip embedded SRAMs for smaller 
memory requirements. Lately, on-chip embedded DRAMs 
are gaining in popularity as they eliminate I/O signals to 
separate memory chips, boosting performance and reducing 
noise, as well as pin count, which ends up lowering system 
cost. Although SRAMs have smaller access times than 
DRAMs, they also take up a larger area, requiring a 
tradeoff between area and performance between the two 
memory types during synthesis. There is also a need for 
non-volatile memories such as EPROMs and EEPROMs to 
typically store read-only data in a system. The memory 
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synthesis in COSMECA uses a memory library populated 
by on-chip SRAMs, on-chip DRAMs, EPROMs and 
EEPROMs having different capacities, areas, ports and 
access times. We assume that the word size of these 
memories is fixed, based on the application. Data arrays 
and groups of scalars in the application are grouped 
together into virtual memories (VMs) based on certain 
rules, before being mapped onto the appropriate physical 
memories from the library, which allow the application to 
meet its area and performance constraints. This grouping of 
data blocks allows us to reduce the number of memories in 
the design, thus reducing area. We also try to avoid multi-
port memories because of their excessive area and cost 
overhead. 

 

 
 

Fig. 3   Communication Throughput Graph (CTG) 
 

5 COSMECA Co-Synthesis Framework 
    
This section describes the COSMECA co-synthesis 

framework. First we state our assumptions and present the 
problem definition. Next, we describe our simulation 
engine and elaborate on the communication-memory 
constraint set, which guides the co-synthesis process. 
Finally, we describe the COSMECA co-synthesis flow in 
detail. 
 
5.1 Assumptions and Problem Definition 

 
We are given an application for which we assume the 

HW/SW partitioning has already been performed. The 
resulting MPSoC design has possibly several hardware and 
software IPs onto which application functionality has been 
mapped. Memory in this model is initially represented by 
abstract data blocks (DBs) which are collections of scalars 
or arrays accessed by the application, similar to basic 
groups in [10]. Generally, this MPSoC design will have 
performance constraints, dependent on the application. The 
throughput of communication between components is a 
good measure of the performance of a system [25]. To 
represent performance constraints in COSMECA, we define 
a Communication Throughput Graph CTG = G(V,A) [2] 
which is a directed graph, where each vertex v represents 

an IP (or DB) in the system, and an edge a connects 
components that need to communicate with each other. A 
Throughput Constraint Path (TCP) is a sub-graph of a 
CTG, consisting of a single component for which data 
throughput must be maintained and other masters, slaves 
and DBs which are in the critical path that impacts the 
maintenance of the throughput.  

Fig. 3 shows a CTG for a network subsystem, with a 
TCP involving the ARM2, DB2, DMA and ‘Network I/F’ 
components, where the rate of data packets streaming out 
of the ‘Network I/F’ component must not fall below 1 
Gbps.   
Problem Definition: A bus B can be considered to be a 
partition of the set of components V in a CTG, where B  
V. Then our primary objective is to determine an optimal 
component to bus assignment for a bus matrix architecture, 
such that the partitioning of V onto N busses results in a 
minimal number of busses N and satisfies memory area 
bounds while meeting all performance constraints in the 
design, represented by the TCPs in a CTG. As a secondary 
objective, we attempt to reduce memory area cost of the 
solution. 
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5.2 Simulation Engine 
 

Since communication behavior in a system is 
characterized by unpredictability due to dynamic bus 
requests from IPs, contention for shared resources, buffer 
overflows etc., a simulation engine is necessary for 
accurate performance estimation. COSMECA uses a hybrid 
approach based on static estimation as well as dynamic 
simulation. For the dynamic simulation part, we capture 
behavioral models of IPs and bus architectures in SystemC 
[19][26][45], and keep them in an IP library database. 
SystemC provides a rich set of primitives for modeling 
concurrency, timing and synchronization - channels, ports, 
interfaces, events, clocks, signals and wait-state insertion. 
Concurrent execution is performed by multiple threads and 
processes (lightweight threads) and execution schedule is 
governed by the scheduler. SystemC also supports capture 
of a wide range of modeling abstractions from high level 
specifications to pin and timing accurate system models. 
Since it is a library based on C++, it is object oriented, 
modular and allows data encapsulation – all of which are 
essential for easing IP distribution, reuse and adaptability 
across different modeling abstraction levels. 

Since simulation speed is important, we chose a fast 
transaction-based, bus cycle accurate modeling abstraction, 
which averaged simulation speeds of 150–200 Kcycles/sec 
[26][44], while running embedded software applications on 
processor ISS models. The communication model in this 
abstraction is extremely detailed, capturing delays arising 
due to frequency and data width adapters, bridge 
overheads, interface buffering and all the static and 
dynamic delays associated with the standard bus 
architecture protocol being used. 

 6



5.3 Communication-Memory Constraint Set Ψ 
 

In the interest of generating a practically realizable 
system, we allow a designer to specify a discrete set of 
valid values (referred to as a constraint set Ψ) for 
communication parameters such as bus clock speeds, OO 
buffer sizes and arbitration schemes. Additionally, Ψ 
allows the specification of constraints on the type of 
memory to allocate for DBs, for instance, in the case of a 
DB which the designer knows must be read from an 
EEPROM memory. We allow the specification of two 
types of constraint sets for components – a global 
constraint set (ΨG) and a local constraint set (ΨL). The 
presence of a local constraint overrides the global 
constraint, while the absence of it results in the resource 
inheriting global constraints. For instance, a designer might 
set the allowable bus clock speeds for a set of busses in a 
subsystem to multiples of 33 MHz, with a maximum speed 
of 166 MHz, based on the operation frequency of the cores 
in the subsystem, while globally, the allowed bus clock 
speeds are multiples of 50 MHz, up to maximum of 250 
MHz. This provides a convenient mechanism for the 
designer to bias the co-synthesis process based on 
knowledge of the design and the technology being targeted. 
Such knowledge about the design is not a prerequisite for 
using our co-synthesis framework, but informed decisions 
can help avoid the synthesis of unrealistic system 
configurations. 

 
5.4 COSMECA Co-Synthesis Flow 
 

We describe the COSMECA co-synthesis flow in more 
detail in this section. Fig. 4 gives a high level overview of 
the flow. The inputs to COSMECA include a 
Communication Throughput Graph (CTG), a library of 
behavioral IP models (IP library) and memory models 
(mem library), a Data Block Dependency Graph (DBDG), a 
target bus matrix template (e.g. AMBA [15] bus matrix) 
and a communication-memory constraint set (Ψ) – which 
includes ΨG and ΨL. The general idea is to first preprocess 
the memory (represented by DBs in the CTG) in the design 
by merging the non conflicting DBs into virtual memory 
(VM) blocks to reduce memory cost. Then we map the 
modified CTG to a full bus matrix template and optimize 
the matrix by removing unused busses. Next, we perform a 
static branch and bound hierarchical clustering of slave 
components in the matrix which further reduces the number 
of busses, and store prospective matrix architecture 
solutions in a ranked matrix solution database. We then 
use a heuristic (memmap), which first merges VMs at each 
slave access point (SAP) in the bus matrix to further reduce 
memory cost and then maps these VMs to physical 
memory modules from the memory library. The output of 
memmap is a set of N valid solutions which meet memory 
area and performance constraints. Finally we optimize the 
output solutions to reduce bus speeds, arbitration costs and 

prune out-of-order (OO) buffer sizes. We now elaborate on 
the five phases in the COSMECA flow, shown in Fig. 4. 

 
Phase 1. mem preprocess: In the first phase, we merge 
data blocks (DBs) in the CTG into virtual memories (VMs) 
to reduce memory area cost, by potentially reducing the 
number of memory modules in the system. Only DBs 
satisfying the two criteria of having (i) similar edges (i.e. 
edges from the same masters) and (ii) non-overlapping 
access are merged, so as not to constrain the mapping 
freedom and eliminate useful channel clustering 
possibilities later in the flow. Fig. 5(a) shows a CTG for an 
example MPSoC system, with the following groups of DBs 
having similar edges: (DB1, DB2) and (DB4, DB5, DB6). 
We use a Data Block Dependency Graph (DBDG) to 
determine if DBs have non-overlapping access. The DBDG 
is a directed graph which shows the dependency of DB 
accesses on each other. It can either be created manually or 
derived automatically from a Control Data Flow Graph 
(CDFG). A node in a DBDG represents a DB access while 
an edge represents a dependency between DBs – a DB 
cannot be accessed till the source DBs of all its input edges 
have been accessed. Fig. 5(b) shows the DBDG for the 
example in Fig. 5(a). If two DBs have similar edges and 
non-overlapping access, they are eligible for merger (e.g. 
DB1, DB2 in Fig. 5(b)). The size of the VM created, after 
merger, depends on the lifetime analysis of merged DBs – 
it is the sum of the sizes of the merged DBs, unless the 
lifetimes do not overlap, in which case it is the size of the 
larger DB being merged. Fig 5(b) shows the lifetime of 
DB1. It is possible for DB2 to overwrite DB1, thus saving 
memory space.  
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Fig. 4 COSMECA co-synthesis flow 
 
Phase 2. matrix map and analyze: In the second phase, 
the modified CTG is mapped onto a full bus matrix 
template. The full bus matrix is subsequently pruned by 
removing unused busses on which there are no data 
transfers. Dedicated slave and memory components are 
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also migrated to the local busses of their corresponding 
masters to further reduce busses in the matrix. Fig. 5(d) 
shows the bus matrix after these steps, for the example in 
Fig. 5(a). Finally, we perform a fast high level, Transaction 
Level (TLM) simulation [26] of the application, using 
communication protocol-independent channels for 
communication and assuming no arbitration contention, to 
obtain application-specific data traffic statistics such as the 
number of transactions on a bus and average transaction 
burst size on a bus. Knowing the bandwidth to be 
maintained on a bus from the TCPs in the CTG, we can 
also estimate the minimum clock speed at which any bus in 
the matrix must operate, in order to meet its throughput 
constraint, as follows. The data throughput ( Γ TLM/B) from 
the TLM simulation, for any bus B in the matrix is given by 

 
Γ TLM/B = (numTB × sizeTB × widthB × Ω B) / B σ  

 
where numT is the number of data transactions on bus B, 
sizeT is the average data transaction size, width is the bus 
width, Ω  is the clock speed, and σ  is the total number of 
cycles of TLM simulation for the application.  The values 
for numT, sizeT and σ  are obtained from the TLM 
simulation. To meet throughput constraint Γ TCP/B for bus 
B,  

Γ TLM/B  ≥ Γ TCP/B
∴   Ω B  (B ≥ σ  × Γ TCP/B) / (numTB × sizeTB × widthB) 

 
The minimum bus speed thus found is used to create (or 
update) the local bus speed constraint set ΨL(speed) for bus B. 
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Fig. 5 COSMECA co-synthesis example 

 
Phase 3. Branch and bound clustering algorithm: In the 
third phase, a static branch and bound hierarchical 
clustering algorithm is used to cluster slave/memory 
components to reduce the number of busses in the matrix 

even further. Note that we do not consider merging masters 
because it adds two levels of  contention  (one at the master 
end and another at the slave end) in a data path, which can 
drastically degrade system performance. Before describing 
the algorithm, we present a few definitions. A slave cluster 
SC = {s1…sn} refers to an aggregation of slaves that share a 
common arbiter. Let MSC refer to the set of masters 
connected to a slave cluster SC. Next, let Π SC1/SC2 be a 
superset of sets of busses which are merged when slave 
clusters SC1 and SC2 are merged. Finally, for a merged bus 
set β = {b1…bn}, where β ⊂ Π SC1/SC2, βΚ  refers to the set 
of allowed bus speeds for the newly created bus when the 
busses in set β  are merged, and is given by 
 

βΚ  = ΨL(speed)(b1) ∩ ΨL(speed)(b2) … Ψ∩ L(speed)(bn) 
 

The branching algorithm starts by clustering two slave 
clusters at a time, and evaluating the gain from this 
operation. Initially, each slave cluster has just one slave. 
The total number of clustering configurations possible for a 
bus matrix with n slaves is given by (n! ×  (n-1)!)/2(n-1). 
This creates an extremely large exploration space, which is 
too time-consuming to traverse. In order to consider only 
valid clustering configurations, we make us of a bounding 
function.  

 
     

   Step 1:  if (exists lookupTable(SC1,SC2))  then discard duplicate clustering 
 else  updatelookupTable(SC1, SC2) 
   Step 2:  if (MSC1 ∩  MSC2 == φ ) then bound clustering 
 else  cum_weight = cum_weight + | MSC1 ∩ MSC2| 
   Step 3: for each set β  ∈  Π SC1/SC2 do   

       if  (( βΚ ==φ ) || ( > (width∑
=

||β

Γ
1i

TCP/i B ×  max_speedB))) then B

       bound clustering 
 

 
Fig. 6 bound function 

 
Fig. 6 shows the pseudocode for the bound function 

which is called after every clustering operation of any two 
slave clusters SC1 and SC2. In Step 1, we use a look up 
table to see if the clustering operation has already been 
considered previously, and if so, we discard the duplicate 
clustering. Otherwise we update the lookup table with the 
entry for the new clustering. In Step 2, we check to see if 
the clustering of SC1 and SC2 results in the merging of 
busses in the matrix, otherwise the clustering is not 
beneficial and the solution can be bounded. If the clustering 
results in bus mergers, we calculate the number of merged 
busses for the clustering and store the cumulative weight of 
the clustering operation in the branch solution node. In Step 
3, we check to see if the allowed set of bus speeds for every 
merged bus is compatible or not. If the allowed speeds for 
any of the busses being merged are incompatible ( βΚ ==φ  
for any β ), the clustering is not possible and we bound the 
solution. Additionally, we also calculate if the throughput 
requirement of each of the merged busses can be 
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theoretically supported by the new merged bus. If this is 
not the case, we bound the solution. The bound function 
thus enables a conservative pruning process which quickly 
eliminates invalid solutions and allows us to rapidly 
converge on the optimal solution. The solutions obtained 
from the algorithm are ranked from best (least number of 
busses) to worst and stored in a ranked matrix solution 
database. Fig. 5(e) shows the best solution after this phase, 
for the example in Fig. 5(a). For each of the solutions, we 
set OO buffer sizes to the maximum allowed in Ψ, for the 
components which support it. For the arbitration scheme at 
the SAPs, we initially use a possible more expensive-to-
implement arbitration strategy such as the TDMA/RR 
scheme to proportionally grant accesses to masters based 
on the magnitude of throughput requirements. Our previous 
work has shown the effectiveness of TDMA/RR for this 
purpose [26]. More details on the branch and bound 
clustering algorithm can be found in [46]. 

     

   1:  procedure memmap() 
   2:    while (num_sol < N) do 
   3:        select next candidate from ranked matrix solution database 
   4:        simulate design; //to generate memory trace 
   5:        for each SAP do 
   6:            merge VMs with overlap  τ % ≤
   7:        for each VM do 
   8:            if (VM data overlap  τ %)  ≤
   9:                map to single port physical mem with best size match,  max. port b/w  
   10:          else 
   11:              map to dual port physical memory with best size match, max. port b/w  
   12:       simulate design; //to verify mem area, performance constraint satisfaction 
   13:       if (performance constraint violation) then 
   14:           remove candidate from ranked matrix solution database; goto 3 
   15:       else if ((perf. constraint satisfied)&&(mem area constraint satisfied)) then 
   16:           add to final solution database; num_sol++  
   17:       area_improvement_possible = true 
   18:       while ((num_sol < N) && (area_improvement_possible)) do 
   19:           for each SAP do 
   20:               randomly select eligible VM  
   21:               map physical memory with best size, port match, lower area 
   22:           simulate design; //to verify area, performance constraint satisfaction  
   23:           if ((perf constraint satisfied)&&(mem area constraint satisfied)) then  
   24:               add to final solution database; num_sol++ 
   25:           else 
   26:               undo mapping for VM with port bandwidth violation 
   27:               make VM with violation ineligible for further selection 
   28:           if (all VMs ineligible) then 
   29:               area_improvement_possible = false 
   30:  end memmap 
 

 
Fig. 7 memmap heuristic  

 
Phase 4. memmap heuristic: In the next phase, we use the 
memmap heuristic to guide the mapping of VMs to 
physical memories in the memory library. Fig. 7 shows the 
pseudo code for the memmap heuristic. The goal is to find 
N solutions which satisfy memory area and performance 
constraints of the design. We begin by selecting the best 
solution from the ranked matrix solution database, 
populated in the previous phase, and simulate the design 
(lines 3-4), with the simulation engine described in Section 
5.2. The output of this simulation is a set of memory access 
traces which are used to determine the extent of access 
overlap of VMs at each SAP. If the overlap is below a user 

defined overlap threshold τ, we merge the VMs (lines 5-6). 
Fig. 5(e) shows how we merge VM2 and VM3, as their 
memory access trace shown in Fig. 5(c) has an overlap less 
than the chosen value for τ. The size of the merged VM is 
the sum of the memory sizes, unless the lifetimes do not 
overlap, in which case it is the size of the larger of the two 
VMs being merged. This VM merge step further reduces 
the number of memories, and consequently memory area 
cost.  

Next we proceed to map the VMs in the design to 
physical memories from the memory library (lines 8-11). 
We choose the best memory from the library which fits the 
size requirement and has the maximum port bandwidth (i.e. 
combination of access time and operating frequency, which 
determines performance, expressed in terms of port 
bandwidth). The mapping step takes into consideration any 
memory mapping constraints in Ψ. It is possible that a VM 
has self conflict greater than τ, in which case we map a 
dual port memory if possible, otherwise we use single port 
memories. The type of port (R,W,R/W) is determined by 
the maximum simultaneous reads/writes from the memory 
trace. The reason for using physical memories with the best 
performance is that we want to check the feasibility of the 
matrix solution being considered, and eliminate a solution 
quickly if it is not a good match. Once the mapping is 
complete, we simulate the design. If throughput constraints 
are not met even for the memory mapping with best 
performance, we discard the matrix solution, and go back 
to select the next best matrix solution from the ranked 
matrix solution database. If performance constraints are 
met, we check if memory area constraints are met. If the 
area constraint is also met, we add the solution to the final 
solution database (lines 12-16). Next, we attempt to lower 
memory area, while still meeting performance constraints, 
by changing the memory mapping for the current matrix 
solution (lines 17-29). We do this by selecting one eligible 
VM at each SAP randomly and replacing the mapped 
physical memory with one which meets the size (capacity) 
requirements, but has lower area. All VMs are initially 
eligible for this mapping optimization. Next we simulate 
the design. If we find a performance violation at one or 
more SAPs, we undo the change in mapping for the VM at 
each violated SAP, and make it ineligible for further 
mapping optimization. The reason for selecting just one 
VM per SAP is that it makes it easier to determine which 
physical memory to VM mapping caused a performance 
violation, if one is found. If there is no performance 
violation, and if the area bounds are met, we have found a 
solution. We keep repeating this process till all VMs 
become ineligible for mapping optimization, or if the 
required N solutions have been found. If we encounter the 
former case and the number of solutions found is less than 
N, we proceed to select the next best solution from the 
ranked matrix solution database (line 3), and repeat the 
process. 
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Phase 5. optimize design: Finally, we call the optimize 
design procedure for each of the N solutions obtained in the 
last phase. This simple procedure attempts to further reduce 
system cost by minimizing (i) bus speeds, (ii) arbitration 
scheme implementation cost and (iii) fix OO buffer sizes. 
The procedure first iterates over the busses in a solution, 
reducing the bus speed to the lowest possible allowed, 
simulating the design to ensure that no performance 
constraints are violated. Similarly, the procedure attempts 
to iteratively replace an arbitration scheme which is more 
expensive to implement (e.g. TDMA/RR) with one which is 
less expensive to implement (e.g. a static priority based 
scheme with priorities assigned depending on bandwidth 
requirements) at each SAP. Finally we fix the OO buffer 
sizes wherever applicable to the maximum number of 
buffers used during simulation of the application, if the 
number is less than the maximum allowed buffer size. 
 
6 Case Studies 
 

We applied the COSMECA approach to four industrial 
strength MPSoC applications – PYTHON, SIRIUS, 
VIPER2 and HNET8 – from the networking domain. 
PYTHON and SIRIUS are variants of existing industrial 
strength designs, VIPER2 and HNET8 are larger systems 
which have been derived from the next generation of 
MPSoC applications currently in development. Table 1 
shows the number of components in each of these 
applications, after HW/SW partitioning. Note that the 
Masters column includes the processors in the design, 
while the Slaves column does not include the memory 
blocks, which will be co-synthesized with the 
communication architecture later. 

 
Table 1. Core distribution in MPSoC applications 

 

Applications Processors Masters Slaves 
PYTHON 2 3 8 
SIRIUS 3 5 10 
VIPER2 5 7 14 
HNET8 8 13 17 
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Fig. 8 PYTHON Communication Throughput Graph (CTG) 

 
We will first consider the PYTHON MPSoC and make 

use of the COSMECA co-synthesis framework to 
synthesize memory and communication architectures for it. 
Fig. 8 shows the CTG for the PYTHON application, after 
the initial memory preprocessing phase in which DBs are 
merged into VMs. Not shown in the CTG, but included in 
our memory area analysis are the 32 KB instruction and 
data caches for each of the two processors. For clarity, the 
TCPs are presented separately in Table 2. µP1 is used for 
overall system control, generating data cells for signaling, 
operating and maintenance, communicating and controlling 
external hardware and to setup and close data stream 
connections. µP2 interacts with data streams from external 
interfaces and performs data packet/frame encryption and 
compression. These processors interact with each other via 
shared memory and a set of shared registers (not shown 
here). The DMA engine is used to handle fast memory to 
memory and network interface data transfers, freeing up 
the processors for more useful work. PYTHON also has 
several peripherals such as a multi functional serial port 
interface (MFSU), a universal asynchronous receiver 
/transmitter block (UART), a general purpose I/O block 
(GPIO), timers (Timer, Watchdog), an interrupt controller 
(ITC) and two proprietary external network interfaces.   

 
Table 2. PYTHON Throughput Constraint Paths (TCPs)  

IP cores in Throughput Constraint Path (TCP) TCP 
constraint 

µP2, VM2, VM3, Network I/F1, DMA, VM6 400 Mbps 
µP2, VM2, VM6, VM7, DMA, Network I/F2 960 Mbps 
µP1, MFSU, VM3, VM4, DMA, Network I/F1  400 Mbps 
µP2, VM4,VM5,VM7, DMA, Network I/F1, Network I/F2 600 Mbps 

 
Table 3. PYTHON Global Constraint Set ΨG 

 

Set Values 
bus speed 25, 50, 100, 200, 300, 400 
arbitration strategy static, RR, TDMA/RR 
OO buffer size 1 – 8  
mem mapping VM1=>EEPROM 
 

µP1

µP2

DMA

GPIO

ITC
Timer

Watchdog

eDRAM1

SRAM1
MFSU

static

static

100

200

200

200

100

AXI Matrix (32 bit)
- bus speed

OO(3)

UART

Network I/F1

4 MB

memory area = 115.81 mm2

256 KB

128 KB

(1 r/w)

(1 r/w)

EEPROM1

SRAM2
512 KB (1 r/w)

Network I/F2

100

200

 
 

Fig. 9 Synthesized Output for PYTHON 
 

Table 3 shows the global constraint set ΨG for PYTHON. 
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For the synthesis we target an AMBA3 AXI [14] bus 
matrix. We assume a fixed bus width of 32 bits, as per 
application requirements. The memory area constraint is set 
to 120 mm2 and the estimated memory area numbers are 
for a 0.18-µm technology. We assume the value for overlap 
threshold τ = 10% for this example. Fig. 9 shows the best 
solution (least number of busses) with the least memory 
area for PYTHON. The figure also shows bus speeds, 
memory sizes, number of ports and OO buffer sizes.  

Fig. 10 shows the variation in memory area and number 
of busses in he matrix for the ten best solutions (N=10), for 
PYTHON. From the figure we can see that no solution 
having 7 busses in the bus matrix exists for PYTHON. The 
dotted line indicates the solution shown in Fig. 9. We can 
see that there is a significant variation of combinations of 
memory area and number of busses, in the solution space. 
COSMECA thus allows a designer to tradeoff memory area 
and bus count during the solution selection process.  
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Fig. 10 PYTHON final solution space (for N=10) 
 

During the course of the COSMECA co-synthesis flow, 
we made use of a threshold factor τ (Fig. 7; memmap 
heuristic) to determine the extent to which virtual 
memories are merged at SAPs in the bus matrix. This 
parameter is specified by the designer. To understand the 
effect of this threshold factor τ on the quality of solution, 
we varied the threshold value and repeated our COSMECA 
co-synthesis flow for the PYTHON MPSoC. The result of 
this experiment is shown in Fig. 11.  
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Fig. 11 Effect of varying threshold value on solution quality 
for PYTHON 

 
It can be seen that for very low values of τ (e.g. < 10%), 

the number of busses in the matrix for the best solution is 
high. This is because low values of τ discourage merger of 
virtual memories, which ends up creating a system with 
several physical memories that exceed memory area 
bounds due to their excessive area overhead. For larger 
values of τ (e.g.  20%), the number of busses for the best 
solution is also high, because it becomes harder to meet 
application throughput constraints with the large overlap. 
There might be slight variations to this trend, depending 
upon a complex amalgamation of factors such as stringency 
of throughput requirements, allowed maximum bus speeds, 
available memory port bandwidths and data traffic 
schedules for the application. Typically however, for the 
COSMECA co-synthesis framework, our experience shows 
that lower values around 10 – 20% for overlap threshold τ 
give the best quality solutions. 

≥
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Fig. 12 SIRIUS Communication Throughput Graph (CTG) 
 
Next we consider a more complex application: the 

SIRIUS MPSoC, and go into more detail of how it was 
used as another driver for the COSMECA framework. Fig. 
12 shows the CTG for the SIRIUS application, after the 
initial memory preprocessing phase in which DBs are 
merged into VMs. Not shown in the CTG, but included in 
our memory area analysis are the 32 KB instruction and 
data caches for each of the three processors. For clarity, the 
TCPs are presented separately in Table 4. µP1 is a protocol 
processor (PP) while µP2 and µP3 are network processors 
(NP). The µP1 PP is responsible for setting up and closing 
network connections, converting data from one protocol 
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type to another, generating data frames for signaling, 
operating and maintenance and exchanging data with NP 
using shared memory. The µP2 and µP3 NPs directly 
interact with the network ports and are used for assembling 
incoming packets into frames for the network connections, 
network port packet/cell flow control, assembling incoming 
packets/cells into frames, segmenting outgoing frames into 
packets/cells, keeping track of errors and gathering 
statistics. ASIC1 performs hardware cryptography 
acceleration for DES, 3DES and AES. The DMA is used to 
handle fast memory to memory and network interface data 
transfers, freeing up the processors for more useful work. 
SIRIUS also has a number of network interfaces and 
peripherals such as interrupt controllers (ITC1, ITC2), a 
UART, timers (Watchdog, Timer1, Timer2) and a packet 
accelerator (Acc1).  

 
Table 4. SIRIUS Throughput Constraint Paths (TCPs)  

IP cores in Throughput Constraint Path (TCP) TCP 
constraint 

µP1, VM3, VM4, DMA, VM16, VM17, VM18  640 Mbps 
µP1, VM5, VM6, VM14, VM15, DMA, Network I/F2 480 Mbps 
µP2, Network I/F1, VM8, VM9  5.2 Gbps 
µP2, VM10,VM11,VM12, DMA, Network I/F3 1.4 Gbps 
ASIC1, µP3, VM16, VM17, VM18, Acc1, VM13, Network I/F2 240 Mbps 
µP3, DMA , Network I/F3, VM13 2.8 Gbps 

 
Table 5. SIRIUS Global Constraint Set ΨG 

 

Set Values 
bus speed 25, 50, 100, 200, 300, 400 
arbitration strategy static, RR, TDMA/RR 
OO buffer size 1 – 8  
mem mapping VM16,VM17=>DRAM; VM1,VM2=>EEPROM 
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Fig. 13 Synthesized output for SIRIUS 
 

Table 5 shows the global constraint set ΨG for SIRIUS. 
For the synthesis we target an AMBA3 AXI [14] bus 
matrix. We assume a fixed bus width of 32 bits, as per 
application requirements. The memory area constraint is set 

to 225 mm2 and the estimated memory area numbers are 
for a 0.18-µm technology. We assume the value for overlap 
threshold τ = 10% for this example. Fig. 13 shows the best 
solution (least number of busses) with the least memory 
area for SIRIUS. The figure also shows bus speeds, 
memory sizes, number of ports and OO buffer sizes.  
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Fig. 14 SIRIUS final solution space (for N=10) 
 

Fig. 14 shows the variation in memory area and number 
of busses for the ten best solutions (N=10) for SIRIUS. The 
dotted line indicates the solution shown in Fig. 13. It can be 
seen that the memory area cost varies dramatically, not 
only when the bus matrix configuration is changed (by 
changing number of busses), but also for the same 
configuration, for different memory mapping decisions. 
Again, the key observation from this experiment is that 
COSMECA enables a designer to select a solution having 
the desired tradeoff between memory area and bus count in 
the matrix.   

To determine the impact of varying the threshold factor τ 
on the quality of solution for the SIRIUS MPSoC, we 
varied the threshold value and repeated our COSMECA co-
synthesis flow for SIRIUS. The result of this experiment is 
shown in Fig. 15. The trend for this experiment is similar to 
our observation for Fig. 11, which showed the results for 
this experiment on the PYTHON MPSoC. As observed 
earlier, lower values around 10 – 20% for overlap threshold 
τ give the best quality solutions for the SIRIUS application. 
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Fig. 15 Effect of varying threshold value on solution quality 
for SIRIUS 

 
The entire COSMECA flow took only a few hours to 

complete, including simulation time, for each of the four 
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MPSoC applications considered. This is in contrast to the 
traditional semi-automated (or manual) communication 
architecture synthesis techniques which can take several 
days [2], and would take even longer with the added 
complexity of handling memory synthesis.  
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Fig. 16 Comparison of bus matrix synthesis approach 
(BMSYN) used in COSMECA with a threshold based 
approach for SIRIUS MPSoC 

 
Next, we will compare the quality of the results obtained 

from the bus matrix communication architecture synthesis 
approach used in COSMECA, with the closest existing 
piece of work that deals with automated matrix synthesis 
with the aim of minimizing number of busses [30]. Since 
their bus matrix synthesis approach only generates matrix 
topology (while we generate both topology and parameter 
values), we restricted our comparison to the number of 
busses in the final synthesized design. The threshold based 
approach proposed in [30] requires the designer to 
statically specify (i) the maximum number of slaves per 
cluster and (ii) the traffic overlap threshold, which if 
exceeded prevents two slaves from being assigned to the 
same bus cluster. The results of our comparison study are 
shown in Fig. 16. BMSYN is the name given to the bus 
matrix synthesis approach used in COSMECA, while the 
other comparison points are obtained from [30]. S(x), for x 
= 10, 20, 30, 40, represents the threshold based approach 
where no two slaves having a traffic overlap of greater than 
x% can be assigned to the same bus, and the X-axis in Fig. 
16 varies the maximum number of slaves allowed in a bus 
cluster for these comparison points. The values of 10 – 
40% for traffic overlap are chosen as per recommendations 
from [30]. It is clear from Fig. 16 that our bus matrix 
synthesis approach used in COSMECA produces a lower 
cost system (having lesser number of busses) than 
approaches which force the designer to statically 
approximate application characteristics. 

Finally, Fig. 17 and 18 compare the number of busses 
and memory areas for the best solution (having least 
number of busses, minimum memory area for the solution) 
obtained with COSMECA and the traditional approach 
(where memory synthesis is done before communication 
architecture synthesis) for the four applications. It can be 

seen that COSMECA performs much better for each of the 
applications, saving from 25-40% in the number of busses 
in the matrix and from 17-29% in memory area, because it 
is able to make better decisions by taking the 
communication architecture into account while allocating 
and mapping data blocks to physical memory components. 
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Fig. 17 Comparison of best solution bus count  
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Fig. 18 Comparison of best solution memory area  
 

 
7 Conclusion and Future Work 
 

In this technical report, we have presented an automated 
application specific framework to co-synthesize memory 
and communication architectures (COSMECA) in MPSoC 
designs. The primary objective is to design a 
communication architecture having the least number of 
busses, which satisfies performance and memory area 
constraints, while the secondary objective is to reduce the 
memory area cost. COSMECA couples the decision making 
process during memory and communication architecture 
synthesis, which enables it to generate a lower cost system. 
Results of applying COSMECA to several industrial 
strength MPSoC applications from the networking domain 
indicate a saving of as much as 40% in number of busses 
and 29% in memory area compared to the traditional 
approach, where memory synthesis is performed before 
communication architecture synthesis. Our ongoing work is 
trying to integrate more detailed memory access protocol 
models for the memories in the library. Future work will 
deal with incorporating power as another metric to guide 
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the co-synthesis and including cache customization in the 
memory synthesis process.  
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