

NISC Technology Online Toolset

Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

Technical Report CECS-05-19

December 2005

Center for Embedded Computer Systems

University of California Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{reshadi, bgorjiar, gajski}@cecs.uci.edu

NISC Technology Online Toolset

Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

Technical Report CECS-05-19

December 2005

Center for Embedded Computer Systems

University of California Irvine

Irvine, CA 92697-3425, USA

(949) 824-8059

{reshadi, bgorjiar, gajski}@cecs.uci.edu

Abstract
We are currently developing the NISC technology at CECS at UC Irvine. The main goal
of this technology is to simplify the design of custom processors. It simplifies the process
by removing the instruction abstraction from processor. Consequently, the compiler for a
NISC processor is more complex because it must combine compilation / synthesis
techniques. The current online toolset (at http://www.cecs.uci.edu/~nisc) demonstrates
this technology. At this link, the user can provide the program C code and processor
netlist (user may upload these files or select from predefined examples) and the tool
compiles the program on the datapath and generates several outputs including views of
pipeline and simulatable Verilog codes.

Table of contents

1 About the online toolset ...4
2 How to run the online tool ...4

3 The input application ...5
4 The input processor ...5

4.1 Uploading processor description file ..6
4.2 Example processors ...6

4.2.1 Controller Pipelining ..6
4.2.2 Controller and Datapath Pipelining...6

4.2.3 Controller and Datapath Pipelining + Forwarding.....................................7
4.2.4 NISC style MIPS..7

4.2.5 NISC style extended MIPS...8
5 The options of the tool...8

6 The outputs of the tool...9
6.1 Input files...9

6.2 Log files...9
6.3 Compiler outputs ...9

6.3.1 Binary output ...9
6.3.2 Compilation summary ..9

6.3.3 Views of pipeline ...10
6.3.3.1 Control words...11

6.3.3.2 Contents of pipeline registers..11
6.3.3.3 Data flow in pipeline stages..12

6.4 Verilog outputs ..14

NISC Technology Online Toolset
Mehrdad Reshadi, Bita Gorjiara, Daniel Gajski

(reshadi, bgorjiar, gajski)@cecs.uci.edu

1 About the online toolset
We are currently developing the NISC technology at CECS at UC Irvine. The main goal
of this technology is to simplify the design of custom processors. It simplifies the process
by removing the instruction abstraction from processor. Consequently, the compiler for a
NISC processor is more complex because it must combine compilation / synthesis
techniques.
In the NISC design flow, an application written in C as well as the netlist of datapath is
input to the NISC toolset. Using these tools, first the application is compiled on the
datapath and then the proper control word for each cycle of execution is produced.
Finally the tools generate (a) the simulatable and synthesizable RTL (Verilog) of the
complete NISC processor and (b) the contents of NISC control / data memory.

The current online NISC toolset (at http://www.cecs.uci.edu/~nisc) demonstrates this
technology. At this link, the user can provide the program C code and processor netlist
(user may upload these files or select from predefined example) and the tool compiles the
program on the datapath and generates several outputs including views of pipeline and
simulatable Verilog codes.
The NISC compiler, used in the online tool, is a stable version that does not include any
code generation optimizations. Exclusion of optimizations also reduces the work load on
our server. Only standard front end optimizations on the input C code is included in this
online demo. In this document, we first explain how to run the tool in Section 2 and then
describe the inputs and outputs of the tool.

2 How to run the online tool
The interface of the tool is simple and straight forward. To run the tool, follow these
steps:

1. Press the Start to go to the Application page.
2. Input your code or select one of the available examples and then press Next.
3. Upload your processor description file or select one of the available examples and

then press the Next.
4. Select the proper compiler options and then press the Compile button.
5. Wait until the results are ready. If there was any error, check the log files to resolve

the error.

Notes:

***After the first run of the demo, you can repeat the above steps in any order using the
menu on the top of each page.

*** At the top of each page, you can find a link to the help file that explains the contents
and operations of that page.

3 The input application
The C code is first compiled to a 3-address code and then mapped to the given datapath.
The supported operations and data types in the program depend on the components in the
architecture. For example, to compile a C code that has a multiplication or division, the
given architecture must have at least one multiplier or divider, respectively.

Currently, every thing in C-language is supported, except:

• Standard libraries: you cannot #include any of the standard libraries such as
stdio.h. Note that we are compiling the application on a single processor that does
not have an OS or I/O (yet). Therefore, I/O function calls such as printf or OS calls
such as malloc are meaningless in this setup. However, other standard library
functions, e.g. string manipulators, can be used in the program if the source code of
the body of these functions is also included in the input program.

• Function pointers and indirect call/jumps: at this point, we do not support indirect
jumps, therefore (a) function pointers, (b) indirect call/jumps, and (c) switch
statements that are converted to a jump table (this may happen if the case statements
form a sequence of integral values) are not supported.

• Memory block copy / init: a struct or string variable that is treated as a normal
variable (and not a pointer) may cause a compiler error indicating that “a cpblk or
initblk operation is not supported”. Some of the cases that may cause this problem
includes:

− Initializing an array of strings in the declaration. For example char
x[][]={"S1", "S2"};

− Copying one struct variable to another.

− Passing a struct variable as the parameter of a function, or returning a struct
value in a function.

• Floating point operations and variables: At this point we do not have Verilog
components with floating point operands in our Verilog library. Therefore, floating
point is not supported.

4 The input processor
You can either upload your own processor description file, or select one of the example
processors.

4.1 Uploading processor description file
You can specify your own processor using our Generic Netlist Representation (GNR) [?].
GNR is a set of (a) component instantiations, (b) component connections, and (c)
annotation specifications. One good approach is to select an example processor,
download and save the corresponding file on your hard disk from the results page,
modify the file, and upload it back in the Processor page.

4.2 Example processors

4.2.1 Controller Pipelining
The datapath of this processor is not pipelined. The control path (activated for jumps) has
two registers (control word register and status register).

4.2.2 Controller and Datapath Pipelining
Both datapath and control path of this processor are pipelined.

4.2.3 Controller and Datapath Pipelining + Forwarding
Both datapath and control path of this processor are pipelined. Additionally, the outputs
of components are forwarded to the input of other components.

4.2.4 NISC style MIPS
The datapath of this processor is the same as the datapath of a MIPS processor. However,
the controller is a NISC style controller and does not have any instruction decoder.

4.2.5 NISC style extended MIPS
This is an extended version of the MIPS processor datapath. An extra ALU and a
DIVIDER component are added to the datapath. Note that in this processor, the data
forwarding paths are not uniform. The output of alu1 is forwarded only to its left input
(and not both inputs). Similarly, the output of mul is forwarded to its right input and the
right input of alu1.

5 The options of the tool
In the Compile page you can select different options that control the behavior of the tool.
In this page, you can also see the program code and the processor GNR file that are used
as inputs of the NISC toolset.

You can select the following options:

• Optimize application code: by selecting this option the C code of the application is
optimized. These are standard architecture independent optimizations that are
implemented by the front end. We use Microsoft® Visual C++ 2003 as front end.

• Generate CFG/DFG graphs: by selecting this option, the Control Flow Graph
(CFG) and Data Flow Graph (DFG) of each function in the C code are generated.

• Generate Verilog: by selecting this option, the Verilog files of the processor and its
control/data memory contents are generated.

6 The outputs of the tool
In the Results page, there are four groups of files. Each group is explained in the
following sections.

6.1 Input files
This group contains the following files:

• Application source code: the C code of the input program

• Processor code: the GNR file of input processor.

6.2 Log files
This group contains the log files that report the status of different tools. These files
include:

• GNR processor log shows the warnings and errors that are encountered during
processing the processor GNR file. It also includes the errors that might have been
encountered by the (a) C compiler front end, (b) NISC compiler, or (c) the Verilog
generator.

• C compiler build log shows the status of the C compiler and the list of possible errors
and warning that are encountered during processing of program C code.

• NISC compiler log shows the timing and warnings corresponding to various phases of
the NISC compiler that maps the program (after converting to 3-address operations)
on the given processor.

6.3 Compiler outputs

6.3.1 Binary output
 The “Binary output” file shows the contents of control/data memory.

6.3.2 Compilation summary
The “Compilation summary” file shows some statistics for each function in the program.

6.3.3 Views of pipeline
The NISC compiler generates several HTML output files that represent different views of
the pipeline components during execution of the program. These pipeline view (PV) files
have a similar structure but present different set of information.

Functions of the program are listed at the top of a PV file. Each function in the program
has a section in the PV file that includes: name, storage binding, CFG/DFG of that
function, and the status of pipeline during execution of basic block of that function.

Figure 1 shows the first three columns of the PV table of a sample main function. The
first column of the table shows the clock cycle starting from the beginning of a basic
block and the third columns shows the value of program counter (PC) in that clock. The
second column shows the schedule of 3-address operations of the program. A 3-address
operation is an expression that performs an operation on variables, constants and
registers. For example, in Figure 1, in clock cycle 0, the value of stack pointer (__$SP) is
added with constant 4 and stored in the temporary variable t146. The registers of the
architecture are shown with __$reg-name. For example, __$SP is stack pointer (that
points the top of stack), __$FP is frame pointer (that points to the beginning of the stack
of current function), __$LR is link register (that stores the return address of a function
call), and __$RF(3) is register index 3 in register file RF.

Figure 1- The common part of pipeline view (PV) files.

In the rest of this section, we describe the specific PV tables that are generated by the
tool.

6.3.3.1 Control words
The “Control words” PV file shows the control word and components’ control bits in
each clock cycle. The main structure of this PV and the first three columns of the tables
are as described in Section 6.3.3. The fourth column of the tables shows the hexadecimal
value of the control word for the corresponding PC value. The rest of the columns of the
tables, show the binary values of the control ports of the components of the datapath. The
header of each column shows the name of the corresponding control port as well as the
bit-slice in the control word that corresponds to that control port.

6.3.3.2 Contents of pipeline registers
The “Contents of pipeline registers” PV file shows the value of registers in the datapath
in different clock cycles. The main structure of this PV and the first three columns of the
tables are as described in Section 6.3.3. The rest of the columns show the value of the
registers. Figure 2 shows contents of pipeline registers after compiling a sample main
function on the example architecture shown in Section 4.2.2. In this example, execution
of 3-address operation t146=__$SP+4 starts at clock cycle 0 when PC points to address

10. In cycle 1, the CW register contains a value 4 in its constant field. In cycle 2, registers
r1 and r2 contain the value of __$SP register and constant 4, respectively. The result of
addition (t146) is first loaded into register r3 in cycle 3 and then loaded into register file
RF in cycle 4. Note that the colors of data values correspond to the operations (in the
second column) that is using or generating them.

Figure 2- Contents of pipeline registers.

6.3.3.3 Data flow in pipeline stages
The “Data flow in pipeline stages” PV file shows the flow of values in pipeline. The main
structure of this PV and the first three columns of the tables are as described in Section
6.3.3. The rest of the columns show what pipeline stages the data values are at in each
clock cycle. Figure 3 shows the PV file for the example explained in Section 6.3.3.2.
However, instead of showing the values for each register in the pipeline, this PV shows
only the flow of data in the pipeline stages. For example, for the 3-address operation
t146=__$SP+4, values of __$SP register and constant 4 are first loaded in pipeline
stage 1 (registers r1 and r2) and then the result goes through stages 2 and 3 (register r3
and register file RF) in the next clock cycles. As always, the colors of data values
correspond to the operations (in the second column) that is using or generating them.

Figure 3- Data flow in pipeline stages.

6.4 Verilog outputs
The NISC tool-set also generates Verilog description of NISC processors for simulation
and synthesis. In the online tool, the simulatable version is available. Synthesizable
version may be provided upon request.

Figure 4. List of Verilog files generated for datapath of Section 4.2.1

The generated files include: contents of control/data memory, and Verilog code for
controller, datapath, memories, and RTL components. Figure 4 shows the list of Verilog
files generated for datapath of Section 4.2.1. The CMEM_80_10.txt and
DMEM_32_10.txt contain the content of the Control Memory and Data Memory
respectively, and they are generated according to a given application C code. The
numbers in their filenames show the word size and address width of the required
memories. The content of DMem_32_10.txt may be empty if no global variable is
defined in the program.

Figure 5. Hierarchy of main modules in Design.v

The Design.v file contains all the Verilog modules needed for simulation of a NISC
processor. The top module in the design is NiscSystem which contains NiscWrapper
module. The NiscWrapper contains the NISC architecture, data memory, and control
memory. To simulate the design, a simple testbench file must also be created. Figure 6
shows the Verilog code of a sample testbench for NiscSystem. The NiscSystem has two
input ports (i.e. clk and reset) and one output port (i.e. halt). The testbench simply drives
the clk signal and resets the processor for one cycle. Then, the execution of program

NiscSystem

NiscArchitecture
NiscWrapper

DMem

CMem Controller

starts. Finally, when the program finishes, the halt signal is set by the processor and
simulation is terminated.

`timescale 1ns/1ps

module testbench();
 parameter halfClk = 10;
 parameter clock = 20;
 reg clk;
 reg reset;
 wire halt;

 integer clkCount;

 NiscSystem u1 (
 .clk(clk),
 .reset(reset),
 .halt(halt)
);

 always begin
 #halfClk clk=~clk;
 if(clk == 1)
 clkCount = clkCount + 1;
 end

 initial begin
 clkCount = 0;
 clk = 0;
 reset = 0;
 #clock;
 reset = 1;
 #clock;
 reset=0;
 end

 always @(halt) begin
 if(halt ==1) begin
 $display("Halt!!!!!!!!!!");
 $display("No. of cycles:%d", clkCount);
 $finish;
 end
 end
endmodule
Figure 6- A sample test bench for simulation of NISC processors.

During simulation the trace of the Program Counter (PC) and memory read/write
operations are displayed on the screen of the simulator tool. When simulation finishes,
the final content of data memory is dumped into a text file called
DMEM_32_10_dump.txt. Currently, the dumped file is used to check the correctness of
produced results. The global variables defined in the C program are usually used to store

the outputs of the program. To check the produced outputs, first find their addresses in
Storage Binding file produced by the NISC compiler. Then, read the content of the
dumped memory file in that address. Storage Binding file can be accessed by clicking on
“Control words” in “Compiler output files” section of the output page. Then click on the
“Storage bindings” page.

