

System Modeling
A Case Study on a Wireless Sensor Network

Gautam Sachdeva
Rainer Dömer

Pai Chou

Technical Report CECS-TR-05-12
June 15, 2005

Center for Embedded Computer System
University of California, Irvine

Irvine, California 92697-3425, USA
Email: {gsachdev,doemer,phchou}@uci.edu

System Modeling

A Case Study on a Wireless Sensor Network

Gautam Sachdeva
Rainer Dömer

Pai Chou

Technical Report CECS-TR-05-12
June 15, 2005

Center for Embedded Computer System
University of California, Irvine

Irvine, California 92697-3425, USA
Email: {gsachdev,doemer,phchou}@uci.edu

Abstract

System modeling in a large extent is a matter of handling abstract and possibly incomplete information and trying to
evaluate different solutions based on the system model. The ease with which a system can be modeled depends on the
semantics and syntax of the language used. At present, there is no complete language available for entire system
modeling but there are few System-Level Design Language’s (SLDL) that are being used for following system-level
design methodology. In this project, we have modeled a wireless sensor network system in SLDL to determine if SLDL
can be used for system modeling. This report gives details of the project, results & conclusions arrived during the
project as well as the limitations of SLDL for entire system modeling.

 i

Contents

List of Figures ……………………………………………………………………………………………………. ii

Abstract ……… 1

1. Introduction ……………………………………………………………………………………………………. 1

1.1 System-level Design Language (SLDL) ……………………………………………………………… 2
1.1.1 SpecC ………………………………………………………………………………………. 2

2. System Modeling ………………………………………………………………………………………………. 2

3. Case Study: Wireless Sensor Network ……………………………………………………………………….. 3

3.1 Eco System …………………………………………………………………………………………… 4
3.1.1 Eco Node …………………………………………………………………………………... 4
3.1.2 Eco Station …………………………………………………………………………………. 5
3.1.3. Host PC ………………………………………………………………………………….… 5

3.2 System Modeling ……………………………………………………………………………………… 5
3.2.1 Design Unit ………………………………………………………………………………… 5
3.2.2 Node Behavior ……………………………………………………………………………... 6
3.2.3 Station Behavior …………………………………………………………………………… 6
3.2.4 Monitor & Stimulus Behavior ……………………………………………………………... 6
3.2.5 Communication ……………………………………………………………………………. 6
3.2.6 Model Scalability ………………………………………………………………………….. 7
3.2.7 Results ……………………………………………………………………………………… 7

4. Discussion ………………….…………………………………………………………………………………... 8

4.1 Conclusion ……………………………………………………………………………………………. 8
4.2 SpecC Limitation for System Modeling .……………………………………………………………... 8
4.3 Future Scope ………………………………………………………………………………………….. 8

5. References ……………………………………………………………………………………………………… 9

6. Appendix ……………………………………………………………………………………………………….. 9

 ii

List of Figures

1. Traditional Model [9] ..………………………………………………………………………………………….. 3
2. SpecC Model [9] ..………………………………………………………………………………………………. 3
3. Application Setup of the Infant Monitor [10] …………………………………………………………………... 4
4. nRF24E1 Package Format [11] …………………………………………………………………………………. 4
5. System Model/Test bench …….………………………………………………………………………………… 5
6. Node Behavior ………………………………………………………………………………………………….. 6
7. Station Behavior ………………………………………………………………………………………………… 6
8. Stimulus Behavior ………………………………………………………………………………………………. 7
9. Test bench Input: Node 1(x) ……………………………………………………………………………………. 7
10.Test bench Output: Node 1(x) ………………………………………………………………………………….. 8

 1

System Modeling
A Case Study on a Wireless Sensor Network

Gautam Sachdeva, Rainer Dömer and Pai Chou

Center for Embedded Computer System
University of California, Irvine

Irvine, California 92697-3425, USA
Email: {gsachdev,doemer,phchou}@uci.edu

 Abstract

System modeling in a large extent is a matter of
handling abstract and possibly incomplete information
and trying to evaluate different solutions based on the
system model. The ease with which a system can be
modeled depends on the semantics and syntax of the
language used. At present, there is no complete
language available for entire system modeling but
there are few System-Level Design Language’s (SLDL)
that are being used for following system-level design
methodology. In this project, we have modeled a
wireless sensor network system in SLDL to determine if
SLDL can be used for system modeling. This report
gives details of the project, results & conclusions
arrived during the project as well as the limitations of
SLDL for entire system modeling.

1. Introduction
Embedded computing systems have grown
tremendously in recent years, not only in popularity, but
also in their complexity. With the ever increasing
complexity and time-to-market pressures in the design
of embedded systems, both industry and EDA vendors
are trying to move the design to higher levels of
abstraction, in order to cope with these issues, new
methodologies that emphasize re-use at all levels of
abstraction are a “must” [1]. At higher level, there is no
difference between hardware and software and the
complexity in terms of number of objects to be handled
reduces. An embedded system at the lowest level
consists millions of transistors, which reduces to only
thousands of components at the register-transfer level
(RTL). Furthermore, RTL components are grouped
together at the algorithm level. Moving another higher
level, the so-called system-level, the one system is
composed of only few components which include
microprocessors, special-purpose hardware units,
memories and busses. Finally at the highest level, the
entire system consists of many subsystems. There is
always a tradeoff between the level of abstraction and
accuracy. A higher abstraction level implies low
accuracy, and vice versa.

A system consists of components from heterogeneous
design domains which must be integrated. Multiple
design domains must be considered and analog, digital,
MEMs and optics represent only a few domains where
embedded system originates. Multilanguage solutions
are required for the design of heterogeneous systems
where different parts belong to different application
classes e.g. control/data or continuous/discrete. The
main problem that needs to be solved when dealing with
multilanguage design is the refinement of
communication between heterogeneous subsystems[2].
The use of a multilanguage specification requires new
validation techniques able to handle a multiparadigm
model. Instead of simulation we will need cosimulation
and instead of verification we will need coverification.
Additionally, multilanguage specification brings about
the issue of interfacing subsystems which are described
in different languages.

The goal of any language designed to support system
modeling must be to bring together heterogeneous
information in a common language environment.
Central to these problems is that different design
domains employ radically different knowledge in their
representation and reasoning about models. The
language must provide modeling support for different
design domains employing semantics and syntax
appropriate for those domains. At present, there is no
complete language available for system modeling but
work for developing such a language is in progress. One
such language being developed is system modeling
language (SysML) [3]. SysML is a new general-purpose
modeling language based on UML that can be used for
specifying requirements, system structure and
functional behavior but SysML doesn’t support
complete testing, comprehensive verification and
validation or fully executable functional behavior.
These gaps will be addressed in the future versions of
SysML.

 2

Though there is no specific C/C++ based language that
supports system modeling but there are few System-
Level Design Languages (SLDL) that support top-down
system level design methodology. Unlike the traditional
single semantics languages, the SLDL provides a
collection of interacting domain theories for describing
systems facets. In this project we have used SpecC
(SLDL) for modeling wireless sensor network system.

1.1 SLDL
System-level specification model are written in SLDLs
which can be used to model complex systems consisting
of hardware and software components. Though it is
possible to model designs in any of the programming
languages, the choice of a good SLDL is a key in
reducing the effort required in writing the specification
model. A good SLDL provides native support to model
both hardware and software concepts found in
embedded system designs. A good SLDL provides
native support to model concurrency, pipelining,
structural hierarchy, interrupts and synchronization
primitives. They also provide native support to
implement computation models like sequential, FSM,
FSMD and so on, apart from providing all the typical
features provided by other programming languages. In
general a SLDL requires two essential attributes: 1) it
should support modeling at all levels of abstraction,
from purely behavioral un-timed models to cycle
accurate RTL/ISS models, and 2) the models should be
executable and simulatable, so that functionality and
constraints can be validated.

The following languages are popular choices for writing
specification model: VHDL [4], Verilog [5], SystemC
[6], and SpecC [7]. VHDL and Verilog are primarily
Hardware Description Languages (HDLs) and hence are
not suitable to model software components. SystemC
implements system level modeling concepts in the form
of C++ library. It can model both hardware and
software concepts and thus is a good candidate for
system level design.

SpecC is another major candidate for system design.
Being a true superset of ANSI-C, it has a natural
suitability to describe software components. It has
added features like signals, wait, notify etc. to support
hardware description.

1.1.1 SpecC
The SpecC language was specifically developed for the
specification and design of digital embedded systems,
including hardware and software portions. Built on the

top of the ANSI-C programming language, the SpecC
language supports concepts essential for embedded
systems design, including behavioral and structural
hierarchy, concurrency, communication,
synchronization, state transitions, exception handling,
and timing. Since SpecC is a true superset of ANSI-C,
so every C program is also a SpecC program [7].

The SpecC language provides a minimal, well-defined
set of orthogonal constructs that precisely cover the
concepts identified in embedded systems in a one-to-
one fashion. These constructs are defined in detail in the
SpecC language reference manual [8]. It should be
emphasized that the concepts supported by the SpecC
language cannot be extended by the user. While this
intuitively sounds like a limitation, it is actually an
important feature of the language. Having a fixed and
well-defined set of constructs in the language is of
crucial importance for the development of CAD tools
because tools need to "understand" the semantics of
each construct in order to be able to support the
particular concept.

Note that this is contrast to other approaches, such as
SystemC, where the extendability of the language
(adding user-defined classes with special functionality)
is part of the methodology. While such language
extendability can be easily supported in simulation
(after all, it is just C++ code to be compiled), this leads
to significantly higher complexity. Moreover, support
of such extensions by general synthesis and verification
tools becomes impossible.

2. System Modeling
The language used for system modeling must be able to
support specification, analysis, design, verification and
validation of a broad range of complex systems. These
systems may include hardware, software, processes and
subsystems. The key representation of any system is a
block diagram and the ease with which a system can be
represented in block diagram depends on model
supported by the language.

Block diagram consists of a set of blocks and a set of
interconnections between the blocks. The blocks in the
diagram represent components which perform a
particular function or computation. Also, the blocks can
communicate with each other through interconnection.
Hence, each block performs two main functions,
namely computation and communication [9].

 3

In traditional model, Figure 1 [9], such as in VHDL or
Verilog the processes (represented as blocks) contain
code for both communication and computation.
Because communication and computation are freely
intermixed in the code, they cannot be identified by
any tool. As a result, it is not possible to automatically
change the communication protocol when design
constraints change. On the other hand, it is also
impossible to automatically switch to a new algorithm
to perform the computation.

Figure 1 Traditional Model [9]

In SpecC model, as shown in Figure 2 [9],
communication and computation are clearly separated.
Computation is encapsulated in behaviors and
communication is encapsulated in channels. Behaviors
only contain computation and in order to communicate,
the behaviors call the functions provided by the
connected channel.

Figure 2 SpecC Model [9]

As a result of the separation of communication and
computation, the SpecC model supports “plug and
play”. The communication protocol can be easily
exchanged by the use of another channel with
compatible interfaces, whenever this is desirable in the
design process. In the same manner, the behaviors can
also be exchanged with others, without affecting the
communication protocol.

SpecC Reference Compiler (SCRC) includes a
standard channel library that supports a set of standard
channels for communication. These channels provide
well-known mechanisms for synchronization, resource
management and communication. Some of the
channels included in the SpecC standard channel
library are listed below. Semaphore channel is used for
providing protected access to shared resources between

different behaviors. Queue channel defines a type-less,
fixed-size queue that can be used by any number of
sender and receiver behaviors. Handshake channel is
used for providing safe one-way synchronized
communication between sender and receiver behavior.
Double Handshake Channel provides a 2-way
handshake channel for type-less data transfer between
sender and receiver behaviors. SpecC standard channel
library provides number of more channels, and they are
listed in the SpecC language reference manual [8].
Though SpecC standard channel library includes many
channels, at this time, the list is not complete and
several channels are still missing from the library.

3. Case Study: Wireless Sensor Network
As mentioned before, the aim of this project was to
determine whether a SLDL can be used for entire
system modeling. In this project, we selected SpecC
(SLDL) for system modeling for a number of reasons.
First, models defined in SpecC can be easily validated
through simulation. Second, it supports structural
hierarchy in the style of standard block diagram.
Structure is represented as a hierarchical network of
behaviors and channels. Third, it also supports
behavioral hierarchy by providing well defined
constructs such as par, fsm and pipe. Hence, behaviors
can be executed sequentially, concurrently or in a
pipelined fashion. Fourth, SpecC Model separates the
computation and communication as is the case for
every real system. Moreover, SpecC provides SpecC
standard channel library that includes implementation
of various channels. And since SpecC is the superset of
C, therefore it’s easy to learn.

In order to determine if SpecC is suitable for entire
system modeling, we wanted to model a system that is
complex enough to determine the capabilities of a
language for system modeling. We selected a wireless
sensor network system, Eco System [10], for this
purpose due to the fact:
1. Eco System contains many subsystems, Eco Nodes

and Eco Stations
2. Subsystems being independent of each other must be

simulated concurrently
3. Subsystems involves significant communication

internally as well as between each other
4. Each subsystems consists of many components each

performing some function
5. Each component involves reasonable amount of

computation
6. Eco System is easily scalable
7. Includes analog and digital domain.

 4

Figure 3 Application setup of the Infant Monitor [10]

Hence, Eco System was a perfect example for system
modeling. Another motivation for selecting Eco
System was its practical application of motion
monitoring of pre-term infants. Analysis results of the
model can be used in improving future versions of the
Eco System.

3.1 Eco System
Eco System [10] is basically for real time motion
monitoring. Eco System consists of a set of Eco nodes,
Eco stations and software on the host computer. The
Eco node is possibly the world’s smallest, low power
wireless sensor node in its class, capable of taking
vibration data and transmitting wirelessly in real-time
to the Eco station, which provides the up-link to the
host computer. Eco nodes are generally applicable to
cases where the ultra-compact form factor is essential.
Most important practical application of Eco Node is
monitoring motion of pre-term infants, to help the
infants grow in weight and bone strength. Today’s
available wireless or cordless sensors are too bulky that
they impede the motion of the infants.

For motion monitoring purpose of an infant we need
four Eco nodes, as one is required for each limb (arms
& legs) and two Eco stations are needed to monitor the
four Eco nodes, see Figure 3 [10]. All the Eco nodes
must operate in coordinated manner, which means they
must synchronize to the same clock and take samples
at the same time. In addition, they should perform
communication scheduling at different times so that the
nodes do not interfere with each other.

It is clear from the above diagram that four Eco Nodes
and two Eco Station are being used. Each station

controls or communicates with two Eco nodes and the
Eco Stations are being controlled by the host computer.

3.1.1 Eco Node
Eco node performs a simple task: take an analog
sample for ten times per second, and transmit the data
over the wireless link to one or more receivers
connected to a host computer. Eco node basically
consists of two main components: Sensor and
Transceiver.

ADXL202E is a dual-axis accelerometer which senses
motion and give analog output for both X & Y
direction. We also have an nRF24E1 transceiver with
an embedded 8051-compatible microcontroller and a
10 bit 9 input ADC. The ADC converts the analog X
and Y signal into digital values, the transceiver
transmits the data through the wireless channel only
after forming a package of the form as shown in Figure
4 [11] and the microcontroller controls the whole
process by being an interface between the two.

Figure 4 nRF24E1 Package Format [11]

Preamble marks the beginning of the package, ADDR
is the address of the receiving node, PAYLOAD is the
data and CRC is the cyclic redundancy check. ADDR
is added by the microcontroller and Preamble & CRC
are added by the transceiver. All the eco nodes perform
the same function but at different frequency.

 5

Figure 5 System Model/Test bench

3.1.2 Eco Station
An Eco station is the interface between the Eco nodes
and the host computer. It receives data over the
wireless link from one or more Eco nodes one at a
time. Then, it sends the data to the host computer over
RS-232. Once the Eco station receives the initial
startup commands from the host computer, it
immediately starts listening to the two Eco nodes it is
assigned for a period of time. Eco Station performs the
ADDR and CRC check on each package received.
After having received multiple data packets from both
Eco nodes, the Eco station computes the average
values of the motion data on each node, and sends
them in a single data packet to the host computer. The
listen-package-send cycle on the second Eco station is
interleaved with the same cycle of the first Eco station,
such that in each sampling period the host computer
can receive data from both stations sequentially.

3.1.3 Host PC
On startup, the host computer sends commands to both
receivers (Eco Stations) to set the sampling rate and
total duration of the experiment. Then, host starts
waiting for the incoming data from the first and second
Eco stations. Upon receiving the data packets, the GUI
on the host computer will plot the motion data on all
four Eco nodes in real-time. The same recv-recv-paint
cycle repeats until the experimental duration expires.

3.2 System Modeling
System model is pure functional and abstract model
which is free of any implementation details. A SpecC

model is defined by a set of behaviors and channels,
behaviors encapsulate computation and channels
encapsulate communication and hence separate the
computation from communication.

A behavior in SpecC provides structural and behavioral
hierarchy and a behavior consists of hierarchy of
behaviors [9]. The hierarchy of behaviors in model
reflects the system functionality without implying
anything much about the system architecture. At each
level of hierarchy the behavior is an arbitrary serial-
parallel composition of behaviors. At the lowest level
of hierarchy, leaf behaviors execute the algorithms in
the form of C code. Behaviors communicate either
through variables and synchronize through events
attached to their ports or through channels. The default
execution of the behaviors is sequential but SpecC
provides dedicated constructs such as par (parallel
execution), pipe (pipelined execution) and fsm (FSM
execution). A channel consists of set of variables and
methods, methods operate on the variables and define
the communication protocol.

3.2.1 Design Unit
As shown before in Figure 3, Eco System for motion
monitoring of a pre-term infants requires four nodes
and two stations. Each station controls and
communicates with two nodes. In the model we have
implemented, Figure 5, the test bench consists of
Design Unit, Stimulus and Monitor. The design unit
consists of two similar Nodes and one Station behavior
executing concurrently. The test bench is implemented

M
on

ito
r

x

D
bL

. H
sK

Sn
g.

 H
sK

 +
 V

ar
.

Node 1

Eco System/Design Unit

 Station 1

St
im

ul
us

Node 2

y

x

y

 6

in such a way that it is easily scalable by adding few
lines of codes. Hence the test bench can be quickly
extended for four Nodes and two Stations or even
more. In fact, we simulated the test bench for four
Nodes and two Stations and the results were consistent.

3.2.2 Node Behavior
Node behavior functionally represents the Eco node
and consists of three concurrent behaviors, which are
analogous to the three main components of the Eco
node, namely, ADC, microcontroller, and transceiver,
Figure 6.

Figure 6 Node Behavior

Behavior ADC converts the analog value into 10-bit
digital value. Behavior µC takes the data from the
ADC, adds the address of the receiver node and
provides the data payload to the Sender behavior.
Sender is analogous to the transceiver, it forms the
packet by adding CRC and Preamble to the payload
and transmits the packet to the Station. In Eco System,
two similar Eco nodes perform the same function and
communicate to single Eco Station but at different
frequency, therefore we have two similar Node
behaviors representing the two Eco nodes and
communicating with the Station through two different
channels.

3.2.3 Station Behavior
Behavior Station is similar to the Eco station and
consists of three behaviors, two Receivers and one
CPU, Figure 7. Since a Station receives data from two
concurrent Node behaviors, so we have two similar
Receiver behaviors that can listen to each Node
simultaneously. Receiver behavior performs the CRC
and ADDR check on each packet received, and
provides the CPU with the payload. Behavior CPU

first waits for the initial startup commands from the
monitor and then starts listening to the two Receivers.
After having received multiple data packets from the
Receivers, the CPU computes the average values of the
motion data on each Node, and sends them in a single
data packet to the Monitor.

 Figure 7 Station Behavior

3.2.4 Monitor & Stimulus Behavior
Monitor behavior performs the functions of the host
computer. Initially, the Monitor sends initial startup
commands to the Station that sets the number of
samples to be sampled. Then, the Monitor starts
waiting for the incoming data from the Station and
after receiving the data packets it plots the motion data
of each Node. Behavior Stimulus basically provides the
test bench with the sample input data and performs the
function of the sensor. Since the Stimulus should
provide the continuous varying analog input to the two
Nodes continuously, hence the Stimulus behavior
consists of two leaf behaviors, Stimulus 1 & Stimulus 2
each executing concurrently and providing data to each
node, as shown in Figure 8. To provide analog input to
the test bench, we continuously vary a floating-point
variable with time, though this is not an analog signal
but it acts similar to an analog signal.

3.2.5 Communication
Behaviors communicate with each other either via
variables or channels. The choice of the channel for
communication between the behaviors depends on two
main factors: 1) Required characteristics of the channel
2) No. of behaviors involved. The characteristics of the

ADC µC

Sender

X

Y
1

DbL. HsK

Node 1

C
PU

 R
ec

ei
ve

r 1

R
ec

ei
ve

r 2

D
bL

. H
sK

 Station 1

 7

Figure 8 Stimulus Behavior

channel can be classified as:
1) Reliable/Unreliable
2) Blocking/Non-Blocking
3) Synchronized/Unsynchronized
4) No-Handshake/One-Way Handshake/Two-Way
 Handshake
5) Lossy/Non-Lossy
6) Simplex/Half-Duplex/Duplex
7) Stack/Queue/Variable and so on.

Depending on the number of behaviors involved
communication channels can be classified as:
1) one-to-one
2) 1-to-N (Multicast)
3) N-to-1
4) 1-to-All (Broadcast)
5) All-to-1
6) N-to-M.

We have basically used three types of channel from the
SpecC standard channel library for the communication
between the behaviors, depending on the
characteristics of the channel and number of behaviors
involved:
1) Zero Handshake/Variable
2) Handshake plus Variable
3) Double Handshake.

For instance, to model the wireless communication
channel between the Eco Node and Eco Station, we
have used Handshake plus Variable channel due to the
following characteristic of communication required:
1) Simplex
2) Non-Blocking Sender

3) Unreliable
4) Lossy
5) Synchronized
6) One-Way Handshake (as a particular frequency is
 used).
Similarly, channels between the other behaviors were
selected based on the characteristic of the
communication required between the behaviors.

3.2.6 Model Scalability
As mentioned before, the test bench was implemented
in such a way to support scalability. In case of 4-Nodes
and 2-Stations, the whole test bench was duplicated by
adding few lines of code. Hence the new test bench
obtained consisted of two similar Stimulus, Design
Unit and Monitor (same as mentioned in previous
section). The results obtained on simulation of this test
bench were consistent. Therefore, the model can be
easily extended for any number of nodes and stations,
thus is fully scalable.

3.2.7 Results
Eco system, wireless sensor network was simulated on
a Linux, 2.4 GHz x86 Intel® Pentium® 4 processor.
Simulation time for the system model was 20ms in the
case when system model contained 2000 time unit
delay. In the above simulation, the CPU utilization for
the task was 5% and CPU-seconds that the process
spend in kernel mode was 10ms.

Figure 9, shows the input signal (x) provided to the
Node behavior by the Stimulus behavior. It is clear
from the figure that the input (x) to the node behavior
is a sine wave, that changes its value every 100 time
units.

Figure 9 Test bench Input: Node 1(x)

St
im

ul
us

 2

St
im

ul
us

 1

St
im

ul
us

 8

Figure 10 Test bench Output: Node 1(x)

The above figure, Figure 10, shows the output received
in the Monitor behavior for the input sine wave and
two things can be easily noted above figure. First,
number of samples received in Monitor are half the
number of samples provided by the Stimulus. This is
due to the fact that for every two samples received by
the Station from the Node, Station calculates the
average and transmits the result to the Monitor.
Second, the output wave is somewhat distorted as
compared to the input wave due to the following
reasons:
1. Analog Value is converted in to a digital value and

back to analog value, adding twice the analog-to-
digital error.

2. Every two digital values are averaged in the station
resulting in lack of accuracy.

3. Analog input is modeled with a floating-point
variable that is changed after every particular time
units. If the same value of the variable is read twice
due to the concurrency/parallelism of behaviors in
the specC, it can result in more distorted output. This
is the reason for the distortion of the output wave
between time units 2000 and 2500 in the Figure 10.

The above results show that Eco system was
successfully modeled in SpecC and the simulation
results were consistent. Any time varying input signal
provided by the sensor (Stimulus) can be easily
recovered and monitored in the Monitor. Hence, SLDL
can be used for entire system modeling.

4. Discussion
The various conclusions derived from this project and
the future scopes of this project are listed below.

4.1 Conclusion
In this project we were able to model a wireless sensor
network, Eco System, in SLDL successfully, even
though SLDL have not been developed to support
entire system modeling. Hence, we can claim that
SLDL’s such as SpecC can be used for system
modeling but it needs to overcome the below
mentioned limitation before it can be employed
extensively for system modeling.

4.2 SpecC Limitation for System Modeling
SpecC model separates the communication and
computation by encapsulating communication in
channels and computation in behaviors. Though this
separation of communication and computation is a
useful concept and makes the life of the programmer
easy, the SpecC standard channel library is very
limited to utilize this feature completely. Even the
basic channel such as type-less one-way handshake is
still missing from the channel library. We had to use
the Handshake channel (SpecC Channel library) along
with a variable for this purpose, in the case of
communication between the Eco node and Eco station.

Though in this project, we modeled a wireless network
in SpecC but there is no support for the wireless
channel in the SpecC standard channel library.
Wireless channel has features such as lossy,
synchronized, unreliable, non-blocking, simplex/half-
duplex/duplex and so on. Not only wireless channel,
but also many other kinds of channels such as
broadcast, multicast, etc. need to be implemented, if
SpecC is to be used for system modeling. In fact, at
present there is no channel in the SpecC standard
library that supports communication between more
than two behaviors. For instance, in the Eco Model we
mentioned before, in Station behavior, we have two
Receiver behaviors that communicate with the CPU
behavior. But there is no channel in the library that
supports communication between three behaviors.
Hence, we had to use two separate channels to
overcome this limitation.

SpecC increased the flexibility by providing explicit
support for the bit vectors (digital domain) and various
operators on bit vectors. But SpecC doesn’t provide
any support for analog domain. Hardware languages
such as VHDL and Verilog support analog and mixed-
signal. Moreover SpecC doesn’t provide any library for
the stimulus block, which can be used again and again.
Instead, the Stimulus block needs to be implemented
every time by the programmer manually.

 9

4.3 Future Scope
The model that has been implemented is a very basic
and generic model of the Eco System. The model
contains one station and two nodes, but it is scalable
for N stations and 2N nodes. Model was also easily
simulated and verified for two stations and four nodes
by just adding few lines of code. In stead of changing
the code for adding more nodes and stations, there
should be script that asks for number of nodes and
stations as input and generates the modified code.

In future, the model can be extended to include more
complex features, such as lossy or faulty
communication between nodes and station (wireless
link). By introducing additional parameter in the
communication channel, we can easily simulate lossy
or faulty environment, and the affect of such
environment on the performance of the whole system
can be easily studied and analyzed. We can also come
with some approximate performance and fault
tolerance figures for the whole system. These results
can be utilized in the future version of the Eco system.
Moreover, a more extensive CRC check algorithm can
be included to detect any kind of error in the packets
received at the station and these packets can them be
discarded.

The model can also be made customizable, where the
user can specify the number of nodes and stations in
the system, percentage of faulty communication and
many other features. As mentioned before we basically
need a script that asks the users for these inputs.
Different simulation environment can be easily
simulated, studied and analyzed to come up with better
performance situation.

This model can also serve as a functional model to
some system design tool for generating an
implementation model, and various tight hardware
constraints like memory size can then be applied.

5. References
[1] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey,
and A. Sangiovanni-Vincentelli, “System-Level
Design: Orthogonalization of Concerns and Platform-
Based Design”, IEEE Trans. CAD Integrated Circuits
and Systems, vol. 19, no. 12, 2000, pp. 1523-1543.

[2] P. Coste, F. Hessel, P. L. Marrec, Z. Sugar, M.
Romdhani, R. Suescun, N. Zergainoh, A. A. Jerraya,
“Multilanguage design of Heterogenous Systems”,

TIMA Laboratory, 46 avenue F�lix Viallet, 38000
Grenoble France.

[3] SysML Partners, “Systems Modeling Language
(SysML) Specification, version 0.9”,
http://www.sysml.com

[4] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng.,
“System Synthesis with VHDL”, Kluwer Academic
Publishers, December 1997.

[5] David J. Lilja and Sachin S. Sapatnekar,
“Designing Digital Computer Systems with Verilog”,
Cambridge University Press, December 2004.

[6] Thorsten Grötker, Stan Liao, Grant Martin, and
Stuart Swan, “System Design with SystemC”, Kluwer
Academic Publishers, 2002.

[7] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer,
Andreas Gerstlauer, and Shuqing Zhao, “SpecC:
Specification Language and Design Methodology”,
Kluwer Academic Publishers, 2000.

[8] SpecC Open Technology Consortium, “SpecC
Language Reference Manual, version 2.0”, 2004,
http://www.specc.org.

[9] A. Gerstlauer, R. Dömer, J. Peng, D.D. Gajski,
“System Design: A Practical Guide with SpecC”,
Kluwer Academic Publishers, 2001.

[10]C. Park, J. Liu and Pai. H. Chou, “Eco: an Ultra-
Compact Low-Power Wireless Sensor Node for Real-
Time Motion Monitoring”, IPSN, 2005.

[11]nRF24E1: 2.4GHz Transmitter/MCU/ADC
http://www.nvlsi.no/files/Product/data_sheet/nRF2
4E2rev1_2.pdf

6. Appendix
[A] Simulation Results
[B] Code

 10

Appendix

[A] Simulation Results

[gsachdev@alpha eco]$./ECO 1000
0.00ms StimulusID # 1 X = 0.000000 Y = 1.000000
0.00ms StimulusID # 2 X = 0.000000 Y = 1.000000
100.00ms StimulusID # 2 X = 0.099833 Y = 0.995004
100.00ms StimulusID # 1 X = 0.099833 Y = 0.995004
100.00ms Behavior # Monitor1 Payload1 = 01111100101111100110 Payload2 = 01111100101111100110
100.00ms Behavior # Monitor1 x1 = -0.004000 y1 = 0.996000 x2 = -0.004000 y2 = 0.996000
200.00ms StimulusID # 1 X = 0.198669 Y = 0.980067
200.00ms StimulusID # 2 X = 0.198669 Y = 0.980067
300.00ms StimulusID # 2 X = 0.295520 Y = 0.955336
300.00ms StimulusID # 1 X = 0.295520 Y = 0.955336
300.00ms Behavior # Monitor1 Payload1 = 10001001001111100010 Payload2 = 10001001001111100010
300.00ms Behavior # Monitor1 x1 = 0.096000 y1 = 0.988000 x2 = 0.096000 y2 = 0.988000
400.00ms StimulusID # 1 X = 0.389418 Y = 0.921061
400.00ms StimulusID # 2 X = 0.389418 Y = 0.921061
500.00ms StimulusID # 2 X = 0.479426 Y = 0.877583
500.00ms StimulusID # 1 X = 0.479426 Y = 0.877583
500.00ms Behavior # Monitor1 Payload1 = 10100001101111001111 Payload2 = 10100001101111001111
500.00ms Behavior # Monitor1 x1 = 0.292000 y1 = 0.950000 x2 = 0.292000 y2 = 0.950000
600.00ms StimulusID # 1 X = 0.564642 Y = 0.825336
600.00ms StimulusID # 2 X = 0.564642 Y = 0.825336
700.00ms StimulusID # 2 X = 0.644218 Y = 0.764842
700.00ms StimulusID # 1 X = 0.644218 Y = 0.764842
700.00ms Behavior # Monitor1 Payload1 = 10111000101110101000 Payload2 = 10111000101110101000
700.00ms Behavior # Monitor1 x1 = 0.476000 y1 = 0.872000 x2 = 0.476000 y2 = 0.872000
800.00ms StimulusID # 1 X = 0.717356 Y = 0.696707
800.00ms StimulusID # 2 X = 0.717356 Y = 0.696707
900.00ms StimulusID # 2 X = 0.783327 Y = 0.621610
900.00ms StimulusID # 1 X = 0.783327 Y = 0.621610
900.00ms Behavior # Monitor1 Payload1 = 11001101001101110000 Payload2 = 11001101001101110000
900.00ms Behavior # Monitor1 x1 = 0.640000 y1 = 0.760000 x2 = 0.640000 y2 = 0.760000

 11

/***

* Filename: cnst.sh

* Description: Declares the Constant Parameters used in modelling ECO System

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

***/

/* Defines the Time Constants */
#define NS 1 /* NS = Nano Seconds = 1 Clock Cycle */
#define MS 1000 * NS /* MS = Micro Seconds = 1000NS */
#define mS 1000 * MS /* mS = Milli Seconds = 1000MS */
#define S 1000 * mS /* S = Seconds = 1000mS */

/* Defines the Delays in different Behaviors */
#define STIMULUS_DELAY 100 * mS /* Delay in the Stimulus */
#define ADC_DELAY 100 * mS /* Delay in the ADC */
#define MICROCONTROLLER_DELAY 100 * mS /* Delay in the Microcontroller */

/* Defines the Preamble and CRC */
#define preamble1 01010101ub
#define preamble2 10101010ub
#define crc 1111111111ub

/* Defines the specific bits in Packet, Package and Payload */
/* LSB = Least Significant bit */
/* MSB = Most Significant bit */
#define LSB_ADDRESS_PACKET 20

#define LSB_PREAMABLE_PACKAGE 40
#define MSB_PREAMABLE_PACKAGE 47

#define LSB_ADDRESS_PACKAGE 30
#define MSB_ADDRESS_PACKAGE 39

#define LSB_CRC_PACKAGE 0
#define MSB_CRC_PACKAGE 9

#define LSB_PAYLOAD_PACKAGE 10
#define MSB_PAYLOAD_PACKAGE 29

#define LSB_SAMPLE1_PAYLOAD 10
#define MSB_SAMPLE1_PAYLOAD 19
#define LSB_SAMPLE2_PAYLOAD 0
#define MSB_SAMPLE2_PAYLOAD 9

 12

/**

* Filename: typedef.sh

* Description: Defines basic types used in modelling ECO System

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

/* Analog value is converted in to a digtal value represented by 10 bits */
typedef unsigned bit[10] SAMPLE;

/* Address used to refer each startion is 10 bi t*/
typedef unsigned bit[10] ADDR;

/* CRC used is a 10 bit vector */
typedef unsigned bit[10] CRC;

/* PAYLOAD = SAMPLE(X) @ SAMPLE(y) */
typedef unsigned bit[20] PAYLOAD;

/* PACKET = ADDR @ PAYLOAD */
typedef unsigned bit[30] PACKET;
typedef unsigned bit[8] PREAMBLE;

/* PACKAGE = PREAMBLE @ PACKET @ CRC */
typedef unsigned bit[48] PACKAGE;

 13

/***

* Filename: Stimulus.sc

* Description: Provides Analog Values to the Design Unit

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>
#include<stdlib.h>
#include<math.h>

#include"cnst.sh"
#include"typedef.sh"
/* SID = Stimulus ID */
behavior Stimulus(inout double X , inout double Y , inout sim_time time , in const int SID)
{
 void main(void)
 {
 sim_time runningtime; /* Running Time for the Testbench, taken as an command line
argument */
 double a = 0.000;
 runningtime = time * mS; /* Running Time is in milli Seconds */

 while(runningtime > now())
 {
 X = sin(a); /* Provides sensor Analog Output in X and Y direction using Single
Handshake Channel */
 Y = cos(a); /* Sin and Cos Functions are being used to make them vary with
time */
 a = a + 0.1;

 printf("%2.2fms\t StimulusID # %d X = %f Y =
%f\n",(double)now()/(double)1000000.0,SID,X,Y);

 waitfor STIMULUS_DELAY; /* X and Y values are changed after every
STIMULUS_DELAY */

 }
 exit(0);
 }
};

 14

/***

* Filename: ADC.sc

* Description: Converts an Analog Value to Digital Value

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/
#include<stdio.h>
#include<sim.sh>
#include"typedef.sh"
#include"cnst.sh"
/* NID = Node ID , ADCID = Analog to Digital Convertor ,SID = Station ID */
behavior ADC(in double INPUT , out SAMPLE OUTPUT , in const int NID , in const int ADCID , in const int SID)
{
 void main(void)
 {

 SAMPLE output; /* Output of the ADC */
 double input; /* Input of the ADC */
 char c[11],d[11];

 while(true)
 {
 input = INPUT; /* Analog value supplied by the Stimulus through
Zero Handshake Channel */
 input = input + 1; /* Input value varies from -1 to 1, first add 1 to the
input value,
 * so that input value varies from 0 to 2 */
 output = (int)(input/0.002); /* converts a analog value to digital */
 /* 10 bits are being used to represent a digital value
for 0 to 2 interval
 * hence each 0.002 interval of analog value will be
represented
 * by a digital value, hence either divide by 0.002 or
multiple by 500 */
#ifdef DEBUG
 printf("%2.2fms\t Node ID # %d Behavior # ADC%d INPUT =
%f",(double)now()/(double)1000000.0,NID,ADCID,input);
 printf(" OUTPUT = %s\n",ubit2str(2,&c[10],output));
#endif

 OUTPUT = output; /* Provides the Digital output through Zero
Handshake Channel */
 waitfor ADC_DELAY; /* ADC converts an analog value to digital value
after every ADC_DELAY */
 }
 }
};

 15

/**

* Filename: Microcontroller.sc

* Description: Takes samples from the ADC, from an Payload, adds Address and sends the Packet to Sender

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/
#include<stdio.h>
#include<sim.sh>
#include"typedef.sh"
#include"cnst.sh"

import"i_sender";

/* NID = Node ID , SID = Station ID */
behavior Microcontroller(in SAMPLE datax , in SAMPLE datay ,i_sender port , in const int NID , in const int SID)
{
 void main(void)
 {

 char c[11],d[11];
 char e[31];
 SAMPLE X,Y;
 ADDR Addr;
 PAYLOAD payload;
 PACKET packet;

 while(true)
 {
 X = datax; /* Input = Digital Sample from the ADC for both X
and Y direction */
 Y = datay; /* Using Zero Handshake Channel */
 payload = X @ Y; /* Concatenates the Two Samples */

#ifdef DEBUG
 printf("%2.2fms\t Node ID # %d Behavior # Microcontroller X = %s Y =
%s\n",(double)now()/(double)1000000.0,NID,ubit2str(2,&c[10],X),ubit2str(2,&d[10],Y));
#endif
 Addr = SID; /* Assigns the Station ID to each payload */
 packet = Addr @ payload; /* Concatenates Address of the Station to each
packet */
 port.send(&packet,sizeof(packet)); /* Sends the packet to the Sender using double
Handsahke Channel */
 waitfor MICROCONTROLLER_DELAY; /* Microcontroller sends a packet
after every MICROCONTROLLER_DELAY */
 }
 }
};

 16

/**

* Filename: Sender.sc

* Description: Receives Payload from Microcontroller,adds Preamble & CRC to it and sends the package to the
Station

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>

#include"typedef.sh"
#include"cnst.sh"

import"i_receiver";
import"i_send";

/* NID = Node ID , SID = Station ID */
behavior Sender(i_receiver port,i_send wirelessport,out PACKAGE package,in const int NID,in const int SID)
{
 void main(void)
 {

 char c[31];
 char d[49];
 PACKET packet;
 PACKAGE data;
 PAYLOAD payload;

 while(true)
 {
 port.receive(&packet,sizeof(packet)); /* Receives the Packet from the MicroCotroller
using double Handshake Channel */

#ifdef DEBUG
 printf("%2.2fms\t Node ID # %d Behavior # Sender packet =
%s\n",(double)now()/(double)1000000.0,NID,ubit2str(2,&c[30],packet));
#endif

 /* Adds preamble and CRC to the packet and forms the Package */
 if(packet[LSB_ADDRESS_PACKET] == 0)
 {
 data = preamble1 @ packet @ crc;
 }
 else if(packet[LSB_ADDRESS_PACKET] == 1)
 {

 17

 data = preamble2 @ packet @ crc;
 }

#ifdef DEBUG
 printf("%2.2fms\t Node ID # %d Behavior # Sender package =
%s\n",(double)now()/(double)1000000.0,NID,ubit2str(2,&d[48],data));
#endif

 package = data; /* Transmits the Package to the Station */
 wirelessport.send(); /* Using Sigle Handshake Channel */

 }
 }
};

 18

/**

* Filename: Node.sc

* Description: Contains Two ADC , Microcontroller and Sender

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>
#include<stdlib.h>

#include"typedef.sh"
#include"cnst.sh"

import"c_double_handshake";
import"i_send";

import"ADC";
import"Microcontroller";
import"Sender";

/* NID = Node ID , SID = Station ID */
behavior Node(in double X,in double Y,i_send wirelessport,out PACKAGE package,in int const NID,in const int
SID)
{
 c_double_handshake port;
 unsigned bit[10] datax,datay;
 ADC adc1(X,datax,NID,1,SID); /* Declares ADC's */
 ADC adc2(Y,datay,NID,2,SID);
 Microcontroller microcontroller(datax,datay,port,NID,SID); /* Declares the Microcontroller */
 Sender sender(port,wirelessport,package,NID,SID); /* Declares the Sender */

 void main(void)
 {
 par
 {
 adc1.main();
 adc2.main();
 microcontroller.main();
 sender.main();
 }
 }
};

 19

/**

* Filename: Receiver.sc

* Description: Receives Package from Node, Checks the Address, Preamble and CRC of each Package

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>

#include"cnst.sh"
#include"typedef.sh"

import"i_sender";
import"i_receive";

/* SID = Station ID , RID = Receiver ID */
behavior Receiver(i_receive wirelessport,in PACKAGE package,i_sender port,in const int SID,in const int RID)
{
 void main(void)
 {

 char c[49];
 char e[9],f[11],g[21],h[11];
 PACKAGE data;
 PAYLOAD payload;
 ADDR addr1,addr;
 CRC crc1;
 PREAMBLE preamble;

 addr1 = SID; /* Assigns the address of the Station, each Package Address is
 * checked with the Station Address */
 while(true)
 {
 wirelessport.receive(); /* Receives the package through Single
Handshake Channel */
 data = package;

#ifdef DEBUG
 printf("%2.2fms\t Station ID # %d Behavior # Receiver%d data =
%s\n",(double)now()/(double)1000000.0,SID,RID,ubit2str(2,&c[48],data));
#endif

 preamble = data[MSB_PREAMABLE_PACKAGE:LSB_PREAMABLE_PACKAGE]; /*
Slices the Preamble from the Package */
 if(preamble == preamble1 || preamble == preamble2) /* Checks the Preamble */
 {

 20

 addr = data[MSB_ADDRESS_PACKAGE:LSB_ADDRESS_PACKAGE]; /*
Slices the Address from the Package */
 if(addr == addr1) /* Checks the Address */
 {
 crc1 = data[MSB_CRC_PACKAGE:LSB_CRC_PACKAGE]; /* Slices the
CRC */
 if(crc1 == crc) /* Checks the CRC */
 {
 payload =
data[MSB_PAYLOAD_PACKAGE:LSB_PAYLOAD_PACKAGE]; /* Slices the Payload */
 port.send(&payload,sizeof(payload)); /* Sends the payload to CPU
 * if Preamble, Address &
 * CRC are correct, using
 * Double Handshake Channel
*/
 }
 else
 printf("%2.2fms\t Station ID # %d Behavior # Receiver%d Packet
received doesn't have correct CRC\n",(double)now()/(double)1000000.0,SID,RID);
 }
 else
 printf("%2.2fms\t Station ID # %d Behavior # Receiver%d Packet received
doesn't have correct Address\n",(double)now()/(double)1000000.0,SID,RID);
 }
 else
 printf("%2.2fms\t Station ID # %d Behavior # Receiver%d Packet received doesn't
have correct Preamble\n",(double)now()/(double)1000000.0,SID,RID);
 }
 }
};

 21

/**

* Filename: CPU.sc

* Description: Receives Commands from Monitor, Payload from Receiver and provides the payload to the Monitor

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>

#include"cnst.sh"
#include"typedef.sh"

import"i_tranceiver";
import"i_receiver";

/* SID = Station ID */
behavior CPU(i_tranceiver port,i_receiver port1,i_receiver port2,in const int SID)
{
 void main(void)
 {

 char c[21],d[21];
 PAYLOAD avgpayload1,avgpayload2;
 PAYLOAD payload1[10],payload2[10];
 int i,j;

 SAMPLE AX1,AY1,AX2,AY2;
 SAMPLE X1[10],Y1[10],X2[10],Y2[10];
 int NoOfSamples;

 port.receive(&NoOfSamples,sizeof(NoOfSamples)); /* Command Received from the
Monitor */
 /* Monitor provides the No of
Samples that need to be
 * Averaged before sending to the
MOnitor */
#ifdef DEBUG
 printf("%2.2fms\t Station ID # %d Behavior # CPU No Of Samples =
%d\n",(double)now()/(double)1000000.0,SID,NoOfSamples);
#endif

 while(true)
 { i = 0;
 AX1 = 0; /* Contains the Average Value */
 AY1 = 0; /* Initialize then to Zero in each
Cycle */

 22

 AX2 = 0;
 AY2 = 0;
 while(i < NoOfSamples)
 {

 port1.receive(&payload1[i],sizeof(payload1[i])); /* Payload from Two Receiver */
 port2.receive(&payload2[i],sizeof(payload2[i]));

#ifdef DEBUG
 printf("%2.2fms\t Station ID # %d Behavior # CPU Payload1[%d] = %s Payload2[%d] =
%s\n",(double)now()/(double)1000000.0,SID,i,ubit2str(2,&c[20],payload1[i]),i,ubit2str(2,&d[21],payload2[i]));
#endif

 X1[i] = payload1[i][MSB_SAMPLE1_PAYLOAD:LSB_SAMPLE1_PAYLOAD]; /*
Separates each Sample from Payload*/
 Y1[i] = payload1[i][MSB_SAMPLE2_PAYLOAD:LSB_SAMPLE2_PAYLOAD];
 X2[i] = payload2[i][MSB_SAMPLE1_PAYLOAD:LSB_SAMPLE1_PAYLOAD];
 Y2[i] = payload2[i][MSB_SAMPLE2_PAYLOAD:LSB_SAMPLE2_PAYLOAD];
 i++;
 }

 /* Calculates the Average of the Received Samples */
 for(j=0; j < i ; j++)
 {
 AX1 = AX1 + (X1[j]/NoOfSamples);
 AY1 = AY1 + (Y1[j]/NoOfSamples);
 AX2 = AX2 + (X2[j]/NoOfSamples);
 AY2 = AY2 + (Y2[j]/NoOfSamples);
 }

 /* Forms the payload again */
 avgpayload1 = AX1 @ AY1;
 avgpayload2 = AX2 @ AY2;
 port.send(&avgpayload1,sizeof(avgpayload1)); /* Sends the Payload to the Monitor*/
 port.send(&avgpayload2,sizeof(avgpayload2));
 }
 }
};

 23

/**

* Filename: Station.sc

* Description: Contains Two receiver and a CPU

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include<stdio.h>
#include<sim.sh>

#include"cnst.sh"
#include"typedef.sh"

import"c_double_handshake";
import"i_tranceiver";
import"i_receive";

import"Receiver";
import"CPU";

behavior Station(i_tranceiver port,i_receive wirelessport1,in PACKAGE package1,i_receive wirelessport2,in
PACKAGE package2,in const int SID)
{
 c_double_handshake port1,port2;
 Receiver receiver1(wirelessport1,package1,port1,SID,1); /* Declares Two Receivers */
 Receiver receiver2(wirelessport2,package2,port2,SID,2);
 CPU cpu(port,port1,port2,SID); /* Declares the CPU */

 void main(void)
 {
 par
 {
 receiver1.main();
 receiver2.main();
 cpu.main();
 }
 }
};

 24

/**

* Filename: ECO.sc

* Description: Declares the complite Testbench for ECO System

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

**/

#include"cnst.sh"
#include"typedef.sh"

#include<stdio.h>
#include<sim.sh>
#include<stdlib.h>

import"c_double_handshake";
import"i_tranceiver";
import"c_handshake";
import"i_receive";

import"Stimulus";
import"Node";
import"Station";
import"Monitor";

behavior Main
{
 sim_time time;

 /* For Two Nodes and One Station */
 c_handshake wirelessport1,wirelessport2;
 c_double_handshake port1;
 PACKAGE package1,package2;
 double X1,Y1,X2,Y2;

 Stimulus stimulus1(X1,Y1,time,1); /* Declares Two Stimulus */
 Stimulus stimulus2(X2,Y2,time,2);
 Node node1(X1,Y1,wirelessport1,package1,1,1); /* Declares Two
Nodes */
 Node node2(X2,Y2,wirelessport2,package2,2,1);
 Station station1(port1,wirelessport1,package1,wirelessport2,package2,1); /* Declares a Station */
 Monitor monitor1(port1,1); /* Declares a Monitor */

 /* For Four Nodes and Two Station */
/* c_handshake wirelessport3,wirelessport4;
 c_double_handshake port2;

 25

 PACKAGE package3,package4;
 double X3,Y3,X4,Y4;

 Stimulus stimulus3(X3,Y3,time,3);
 Stimulus stimulus4(X4,Y4,time,4);
 Node node3(X3,Y4,wirelessport3,package3,3,2);
 Node node4(X4,Y4,wirelessport4,package4,4,2);
 Station station2(port2,wirelessport3,package3,wirelessport3,package3,2);
 Monitor monitor2(port2,2); */

 int main(int argc , char *argv[])
 {

 if(argc == 2)
 {
 /* Running Time for Testbench is taken as a command-line argument */
 time = atol(argv[1]);

 /* Runs the Testbench(ECO System) */
 par
 {

 stimulus1.main();
 stimulus2.main();
 node1.main();
 node2.main();
 station1.main();
 monitor1.main();

/*
 stimulus3.main();
 stimulus4.main();
 node3.main();
 node4.main();
 station2.main();
 monitor2.main();
*/

 }
 }
 else
 printf("No Argument Supplied\n");
 return(0);
 }
};

 26

/***

* Filename: Monitor.sc

* Description: Provides Commands to Station and Receives the payload from Station

* Author: Gautam Sachdeva

* Last Update: 6/22/2005

***/
#include<stdio.h>
#include<sim.sh>
#include"cnst.sh"
#include"typedef.sh"
import"i_tranceiver";
behavior Monitor(i_tranceiver port, in const int MID)
{
 void main(void)
 {
 double x1,y1,x2,y2;
 SAMPLE X1,Y1,X2,Y2;
 PAYLOAD payload1,payload2;
 char c[21],d[21];
 int NoOfSamples = 2;

 port.send(&NoOfSamples,sizeof(NoOfSamples));
 while(true)
 {
 port.receive(&payload1,sizeof(payload1)); /* Receives the payload
from the Station */
 port.receive(&payload2,sizeof(payload2));

 X1 = payload1[MSB_SAMPLE1_PAYLOAD:LSB_SAMPLE1_PAYLOAD]; /* Separates
each Sample */
 Y1 = payload1[MSB_SAMPLE2_PAYLOAD:LSB_SAMPLE2_PAYLOAD];
 X2 = payload2[MSB_SAMPLE1_PAYLOAD:LSB_SAMPLE1_PAYLOAD];
 Y2 = payload2[MSB_SAMPLE2_PAYLOAD:LSB_SAMPLE2_PAYLOAD];

 x1 =(((double) X1) * 0.002)-1; /* Converts each Sample
back to analog*/
 y1 =(((double) Y1) * 0.002)-1;
 x2 =(((double) X2) * 0.002)-1;
 y2 =(((double) Y2) * 0.002)-1;

 printf("%2.2fms\t Behavior # Monitor%d Payload1 = %s Payload2 =
%s\n",(double)now()/(double)1000000.0,MID,ubit2str(2,&c[20],payload1),ubit2str(2,&d[20],payload2));
 printf("%2.2fms\t Behavior # Monitor%d x1 = %f y1 = %f x2 = %f y2 =
%f\n",(double)now()/(double)1000000.0,MID,x1,y1,x2,y2);
 }
 }
};

